1
|
Liu H, Guo Q, Wang X, Ma X, Li X, Tian X. Characterization of insulin-like growth factor 3 and its potential role in the spotted steed Hemibarbus maculatus ovary development. Gen Comp Endocrinol 2024; 349:114464. [PMID: 38316320 DOI: 10.1016/j.ygcen.2024.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
As a new member of the insulin-like growth factors (Igfs), Igf3 was reported to play a vital role in fish reproduction. However, in spotted steed, the function of Igf3 remains largely unknown. In the present study, we identified and characterized Igf3 gene in spotted steed. Structural analysis showed that Igf3 contained five domains (B, C, A, D, E) and six conserved cysteine residues. The expression of Igf3 mRNA and protein were increased during ovary development and peaked in the maturation stage. The subcellular localization of IGF3 was highly expressed in granulosa cells and theca cells. Furthermore, recombinant IGF3 protein was produced and in vitro treatment with ovarian follicles significantly promoted the germinal vesicle breakdown (GVBD) rates of spotted steed follicles. The mRNA expression of cdc2 and cyclinB genes were significantly increased after IGF3 treatment, which were main components of maturation promoting factor (MPF). In addition, transcription levels of 3β-hsd, 20β-hsd, Cyp17a and Cyp19a1a were also changed. Taken together, these findings suggest that Igf3 is essential for ovary steroidogenesis and maturation in spotted steed.
Collapse
Affiliation(s)
- Huifen Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China; Hangzhou Xiaoshan Donghai Aquaculture Co., Ltd., Hangzhou 311200, Zhejiang, PR China.
| | - Qi Guo
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| | - Xinyu Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| | - Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| | - Xue Tian
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
2
|
King AC, Zenker AK. Sex blind: bridging the gap between drug exposure and sex-related gene expression in Danio rerio using next-generation sequencing (NGS) data and a literature review to find the missing links in pharmaceutical and environmental toxicology studies. FRONTIERS IN TOXICOLOGY 2023; 5:1187302. [PMID: 37398910 PMCID: PMC10312089 DOI: 10.3389/ftox.2023.1187302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The sex of both humans and Danio rerio has previously been shown to affect the way individuals respond to drug exposure. Genes which allow identification of sex in juvenile zebrafish show potential to reveal these confounding variables between sex in toxicological and preclinical trials but the link between these is so far missing. These sex-specific, early expressed genes where expression is not altered by drug exposure must be carefully selected for this purpose. We aimed to discover genes which can be used in pharmaceutical trials and environmental toxicology studies to uncover sex-related variations in gene expression with drug application using the model organism Danio rerio. Previously published early sex determining genes from King et al. were evaluated as well as additional genes selected from our zebrafish Next-generation sequencing (NGS) data which are known from previously published works not to be susceptible to changes in expression with drug exposure. NGS revealed a further ten female-specific genes (vtg1, cyp17a1, cyp19a1a, igf3, ftz-f1, gdf9, foxl2a, Nr0b1, ipo4, lhcgr) and five male related candidate genes (FKBP5, apobb1, hbaa1, dmrt1, spata6) which are also expressed in juvenile zebrafish, 28 days post fertilisation (dpf). Following this, a literature review was performed to classify which of these early-expressed sex specific genes are already known to be affected by drug exposure in order to determine candidate genes to be used in pharmaceutical trials or environmental toxicology testing studies. Discovery of these early sex-determining genes in Danio rerio will allow identification of sex-related responses to drug testing to improve sex-specific healthcare and the medical treatment of human patients.
Collapse
Affiliation(s)
| | - Armin K. Zenker
- University of Applied Sciences and Arts North-Western Switzerland (FHNW), Muttenz, Switzerland
| |
Collapse
|
3
|
Sato K, Sakai M, Ishii A, Maehata K, Takada Y, Yasuda K, Kotani T. Identification of embryonic RNA granules that act as sites of mRNA translation after changing their physical properties. iScience 2022; 25:104344. [PMID: 35620421 PMCID: PMC9127168 DOI: 10.1016/j.isci.2022.104344] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/16/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022] Open
Abstract
Fertilized eggs begin to translate mRNAs at appropriate times and placements to control development, but how the translation is regulated remains unclear. Here, we found that pou5f3 mRNA encoding a transcriptional factor essential for development formed granules in a dormant state in zebrafish oocytes. Although the number of pou5f3 granules remained constant, Pou5f3 protein accumulated after fertilization. Intriguingly, signals of newly synthesized peptides and a ribosomal protein became colocalized with pou5f3 granules after fertilization and, moreover, nascent Pou5f3 was shown to be synthesized in the granules. This functional change was accompanied by changes in the state and internal structure of granules. Dissolution of the granules reduced the rate of protein synthesis. Similarly, nanog and sox19b mRNAs in zebrafish and Pou5f1/Oct4 mRNA in mouse assembled into granules. Our results reveal that subcellular compartments, termed embryonic RNA granules, function as activation sites of translation after changing physical properties for directing vertebrate development.
Collapse
Affiliation(s)
- Keisuke Sato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Moeko Sakai
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Anna Ishii
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kaori Maehata
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Takada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kyota Yasuda
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Hiroshima 739-8526, Japan
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
4
|
Takei N, Takada Y, Kawamura S, Sato K, Saitoh A, Bormann J, Yuen WS, Carroll J, Kotani T. Changes in subcellular structures and states of pumilio 1 regulate the translation of target Mad2 and cyclin B1 mRNAs. J Cell Sci 2020; 133:jcs249128. [PMID: 33148609 DOI: 10.1242/jcs.249128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Temporal and spatial control of mRNA translation has emerged as a major mechanism for promoting diverse biological processes. However, the molecular nature of temporal and spatial control of translation remains unclear. In oocytes, many mRNAs are deposited as a translationally repressed form and are translated at appropriate times to promote the progression of meiosis and development. Here, we show that changes in subcellular structures and states of the RNA-binding protein pumilio 1 (Pum1) regulate the translation of target mRNAs and progression of oocyte maturation. Pum1 was shown to bind to Mad2 (also known as Mad2l1) and cyclin B1 mRNAs, assemble highly clustered aggregates, and surround Mad2 and cyclin B1 RNA granules in mouse oocytes. These Pum1 aggregates were dissolved prior to the translational activation of target mRNAs, possibly through phosphorylation. Stabilization of Pum1 aggregates prevented the translational activation of target mRNAs and progression of oocyte maturation. Together, our results provide an aggregation-dissolution model for the temporal and spatial control of translation.
Collapse
Affiliation(s)
- Natsumi Takei
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Takada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shohei Kawamura
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keisuke Sato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Atsushi Saitoh
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Jenny Bormann
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Wai Shan Yuen
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - John Carroll
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
5
|
King AC, Gut M, Zenker AK. Shedding new light on early sex determination in zebrafish. Arch Toxicol 2020; 94:4143-4158. [PMID: 32975586 PMCID: PMC7655572 DOI: 10.1007/s00204-020-02915-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023]
Abstract
In contrast to established zebrafish gene annotations, the question of sex determination has still not been conclusively clarified for developing zebrafish, Danio rerio, larvae, 28 dpf or earlier. Recent studies indicate polygenic sex determination (PSD), with the genes being distributed throughout the genome. Early genetic markers of sex in zebrafish help unravel co-founding sex-related differences to apply to human health and environmental toxicity studies. A qPCR-based method was developed for six genes: cytochrome P450, family 17, subfamily A, polypeptide 1 (cyp17a1); cytochrome P450, family 19, subfamily A, polypeptide 1a (cyp19a1a); cytochrome P450, family 19, subfamily A, polypeptides 1b (cyp19a1b); vitellogenin 1 (vtg1); nuclear receptor subfamily 0, group B, member 1 (nr0b1), sry (sex-determining region Y)-box 9b (sox9b) and actin, beta 1 (actb1), the reference gene. Sry-box 9a (Sox9a), insulin-like growth factor 3 (igf3) and double sex and mab-3 related transcription factor 1 (dmrt1), which are also known to be associated with sex determination, were used in gene expression tests. Additionally, Next-Generation-Sequencing (NGS) sequenced the genome of two adult female and male and two juveniles. PCR analysis of adult zebrafish revealed sex-specific expression of cyp17a1, cyp19a1a, vtg1, igf3 and dmrt1, the first four strongly expressed in female zebrafish and the last one highly expressed in male conspecifics. From NGS, nine female and four male-fated genes were selected as novel for assessing zebrafish sex, 28 dpf. Differences in transcriptomes allowed allocation of sex-specific genes also expressed in juvenile zebrafish.
Collapse
Affiliation(s)
- Alex C King
- FHNW, University of Applied Sciences and Arts North-Western Switzerland, School of Life Sciences, Institute for Ecopreneurship, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Michelle Gut
- FHNW, University of Applied Sciences and Arts North-Western Switzerland, School of Life Sciences, Institute for Ecopreneurship, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Armin K Zenker
- FHNW, University of Applied Sciences and Arts North-Western Switzerland, School of Life Sciences, Institute for Ecopreneurship, Hofackerstrasse 30, 4132, Muttenz, Switzerland.
| |
Collapse
|
6
|
Jessus C, Munro C, Houliston E. Managing the Oocyte Meiotic Arrest-Lessons from Frogs and Jellyfish. Cells 2020; 9:E1150. [PMID: 32392797 PMCID: PMC7290932 DOI: 10.3390/cells9051150] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
During oocyte development, meiosis arrests in prophase of the first division for a remarkably prolonged period firstly during oocyte growth, and then when awaiting the appropriate hormonal signals for egg release. This prophase arrest is finally unlocked when locally produced maturation initiation hormones (MIHs) trigger entry into M-phase. Here, we assess the current knowledge of the successive cellular and molecular mechanisms responsible for keeping meiotic progression on hold. We focus on two model organisms, the amphibian Xenopus laevis, and the hydrozoan jellyfish Clytia hemisphaerica. Conserved mechanisms govern the initial meiotic programme of the oocyte prior to oocyte growth and also, much later, the onset of mitotic divisions, via activation of two key kinase systems: Cdk1-Cyclin B/Gwl (MPF) for M-phase activation and Mos-MAPkinase to orchestrate polar body formation and cytostatic (CSF) arrest. In contrast, maintenance of the prophase state of the fully-grown oocyte is assured by highly specific mechanisms, reflecting enormous variation between species in MIHs, MIH receptors and their immediate downstream signalling response. Convergence of multiple signalling pathway components to promote MPF activation in some oocytes, including Xenopus, is likely a heritage of the complex evolutionary history of spawning regulation, but also helps ensure a robust and reliable mechanism for gamete production.
Collapse
Affiliation(s)
- Catherine Jessus
- Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Catriona Munro
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
- Inserm, Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, 75005 Paris, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
| |
Collapse
|
7
|
Regulation of Translationally Repressed mRNAs in Zebrafish and Mouse Oocytes. Results Probl Cell Differ 2019; 63:297-324. [PMID: 28779323 DOI: 10.1007/978-3-319-60855-6_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
From the beginning of oogenesis, oocytes accumulate tens of thousands of mRNAs for promoting oocyte growth and development. A large number of these mRNAs are translationally repressed and localized within the oocyte cytoplasm. Translational activation of these dormant mRNAs at specific sites and timings plays central roles in driving progression of the meiotic cell cycle, axis formation, mitotic cleavages, transcriptional initiation, and morphogenesis. Regulation of the localization and temporal translation of these mRNAs has been shown to rely on cis-acting elements in the mRNAs and trans-acting factors recognizing and binding to the elements. Recently, using model vertebrate zebrafish, localization itself and formation of physiological structures such as RNA granules have been shown to coordinate the accurate timings of translational activation of dormant mRNAs. This subcellular regulation of mRNAs is also utilized in other animals including mouse. In this chapter, we review fundamental roles of temporal regulation of mRNA translation in oogenesis and early development and then focus on the mechanisms of mRNA regulation in the oocyte cytoplasm by which the activation of dormant mRNAs at specific timings is achieved.
Collapse
|
8
|
Takahashi K, Ishii K, Yamashita M. Staufen1, Kinesin1 and microtubule function in cyclin B1 mRNA transport to the animal polar cytoplasm of zebrafish oocytes. Biochem Biophys Res Commun 2018; 503:2778-2783. [PMID: 30103945 DOI: 10.1016/j.bbrc.2018.08.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/04/2018] [Indexed: 12/22/2022]
Abstract
In zebrafish oocytes, cyclin B1 mRNAs are transported to the animal polar cytoplasm. To elucidate the molecular basis of cyclin B1 mRNA transport, we analyzed zebrafish Staufen1, a protein known to play a central role in mRNA transport to the vegetal pole of Xenopus oocytes. Zebrafish Staufen1 interacts with cyclin B1 mRNA throughout oocyte growth. Both cyclin B1 mRNA and Staufen1 are evenly distributed in the cytoplasm of young oocytes but are co-localized to the animal polar cytoplasm in later stages. Real-time imaging showed that the plus ends of oocyte microtubules are free in the cytoplasm in early stages but anchored to the animal polar cytoplasm in later stages. Transport of cyclin B1 reporter mRNA to the animal polar cytoplasm was inhibited by disruption of microtubules and injection of antibodies against Staufen1 or Kinesin1, a plus-end-directed microtubule motor that interacts with Staufen1, indicating that the transport depends on movement along microtubules toward the plus ends. Reporter mRNAs with an element required for the vegetal localization of vg1 mRNA in Xenopus oocytes were localized to the animal polar cytoplasm in zebrafish oocytes, indicating that the element is functional for animal polar localization in zebrafish oocytes. Our findings suggest that cyclin B1 mRNA-Staufen1 protein complexes are transported toward the animal pole of zebrafish oocytes by the plus-end-directed motor protein Kinesin1 along microtubules and that a common mRNA transport machinery functions in zebrafish and Xenopus oocytes, although its transport direction is opposite due to different organizations of microtubules.
Collapse
Affiliation(s)
- Kazuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Kana Ishii
- Laboratory of Reproductive and Developmental Biology, Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Masakane Yamashita
- Laboratory of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
9
|
Takei N, Nakamura T, Kawamura S, Takada Y, Satoh Y, Kimura AP, Kotani T. High-Sensitivity and High-Resolution In Situ Hybridization of Coding and Long Non-coding RNAs in Vertebrate Ovaries and Testes. Biol Proced Online 2018; 20:6. [PMID: 29507535 PMCID: PMC5831722 DOI: 10.1186/s12575-018-0071-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Background Subcellular localization of coding and non-coding RNAs has emerged as major regulatory mechanisms of gene expression in various cell types and many organisms. However, techniques that enable detection of the subcellular distribution of these RNAs with high sensitivity and high resolution remain limited, particularly in vertebrate adult tissues and organs. In this study, we examined the expression and localization of mRNAs encoding Pou5f1/Oct4, Mos, Cyclin B1 and Deleted in Azoospermia-like (Dazl) in zebrafish and mouse ovaries by combining tyramide signal amplification (TSA)-based in situ hybridization with paraffin sections which can preserve cell morphology of tissues and organs at subcellular levels. In addition, the distribution of a long non-coding RNA (lncRNA), lncRNA-HSVIII, in mouse testes was examined by the same method. Results The mRNAs encoding Mos, Cyclin B1 and Dazl were found to assemble into distinct granules that were distributed in different subcellular regions of zebrafish and mouse oocytes, suggesting conserved and specific regulations of these mRNAs. The lncRNA-HSVIII was first detected in the nucleus of spermatocytes at prophase I of the meiotic cell cycle and was then found in the cytoplasm of round spermatids, revealing expression patterns of lncRNA during germ cell development. Collectively, the in situ hybridization method demonstrated in this study achieved the detection and comparison of precise distribution patterns of coding and non-coding RNAs at subcellular levels in single cells of adult tissues and organs. Conclusions This high-sensitivity and high-resolution in situ hybridization is applicable to many vertebrate species and to various tissues and organs and will be useful for studies on the subcellular regulation of gene expression at the level of RNA localization. Electronic supplementary material The online version of this article (10.1186/s12575-018-0071-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natsumi Takei
- 1Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Takuma Nakamura
- 1Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Shohei Kawamura
- 1Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Yuki Takada
- 1Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Yui Satoh
- 1Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Atsushi P Kimura
- 1Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan.,2Department of Biological Sciences, Faculty of Science, Hokkaido University, North 10 West 8, Sapporo, Hokkaido 060-0810 Japan
| | - Tomoya Kotani
- 1Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan.,2Department of Biological Sciences, Faculty of Science, Hokkaido University, North 10 West 8, Sapporo, Hokkaido 060-0810 Japan
| |
Collapse
|
10
|
Formation of mos RNA granules in the zebrafish oocyte that differ from cyclin B1 RNA granules in distribution, density and regulation. Eur J Cell Biol 2016; 95:563-573. [PMID: 27756483 DOI: 10.1016/j.ejcb.2016.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/07/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022] Open
Abstract
Many translationally repressed mRNAs are deposited in the oocyte cytoplasm for progression of the meiotic cell cycle and early development. mos and cyclin B1 mRNAs encode proteins promoting oocyte meiosis, and translational control of these mRNAs is important for normal progression of meiotic cell division. We previously demonstrated that cyclin B1 mRNA forms RNA granules in the zebrafish and mouse oocyte cytoplasm and that the formation of RNA granules is crucial for regulating the timing of translational activation of the mRNA. However, whether the granule formation is specific to cyclin B1 mRNA remains unknown. In this study, we found that zebrafish mos mRNA forms granules distinct from those of cyclin B1 mRNA. Fluorescent in situ hybridization analysis showed that cyclin B1 RNA granules were assembled in dense clusters, while mos RNA granules were distributed diffusely in the animal polar cytoplasm. Sucrose density gradient ultracentrifugation analysis showed that the density of mos RNA granules was partly lower than that of cyclin B1 mRNA. Similar to cyclin B1 RNA granules, mos RNA granules were disassembled after initiation of oocyte maturation at the timing at which the poly(A) tail was elongated. However, while almost all of the granules of cyclin B1 were disassembled simultaneously, a fraction of mos RNA granules firstly disappeared and then a large part of them was disassembled. In addition, while cyclin B1 RNA granules were disassembled in a manner dependent on actin filament depolymerization, certain fractions of mos RNA granules were disassembled independently of actin filaments. These results suggest that cytoplasmic regulation of translationally repressed mRNAs by formation of different RNA granules is a key mechanism for translational control of distinct mRNAs in the oocyte.
Collapse
|
11
|
Nukada Y, Horie M, Fukui A, Kotani T, Yamashita M. Real-time imaging of actin filaments in the zebrafish oocyte and embryo. Cytoskeleton (Hoboken) 2015; 72:491-501. [PMID: 26335601 DOI: 10.1002/cm.21253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/09/2015] [Accepted: 08/26/2015] [Indexed: 01/01/2023]
Abstract
Dynamic changes of cytoplasmic and cortical actin filaments drive various cellular and developmental processes. Although real-time imaging of actin filaments in living cells has been developed, imaging of actin filaments in specific cells of living organisms remains limited, particularly for the analysis of gamete formation and early embryonic development. Here, we report the production of transgenic zebrafish expressing the C-terminus of Moesin, an actin filament-binding protein, fused with green fluorescent protein or red fluorescent protein (GFP/RFP-MoeC), under the control of a cyclin B1 promoter. GFP/RFP-MoeC was expressed maternally, which labels the cortical actin cytoskeleton of blastula-stage cells. High levels of GFP/RFP fluorescence were detected in the adult ovary and testis. In the ovaries, GFP/RFP-MoeC was expressed in oocytes but not in follicle cells, which allows us to clearly visualize the organization of actin filaments in different stages of the oocyte. Using full-grown oocytes, we revealed the dynamic changes of actin columns assembled in the cortical cytoplasm during oocyte maturation. The number of columns slightly decreased in the early period before germinal vesicle breakdown (GVBD) and then significantly decreased at GVBD, followed by recovery after GVBD. Our transgenic fish are useful for analyzing the dynamics of actin filaments in oogenesis and early embryogenesis.
Collapse
Affiliation(s)
- Yumiko Nukada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Mayu Horie
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Akimasa Fukui
- Laboratory of Tissue and Polymer Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tomoya Kotani
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Masakane Yamashita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Takahashi K, Kotani T, Katsu Y, Yamashita M. Possible involvement of insulin-like growth factor 2 mRNA-binding protein 3 in zebrafish oocyte maturation as a novel cyclin B1 mRNA-binding protein that represses the translation in immature oocytes. Biochem Biophys Res Commun 2014; 448:22-7. [DOI: 10.1016/j.bbrc.2014.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/06/2014] [Indexed: 01/10/2023]
|
13
|
Yasuda K, Kotani T, Yamashita M. A cis-acting element in the coding region of cyclin B1 mRNA couples subcellular localization to translational timing. Dev Biol 2013; 382:517-29. [DOI: 10.1016/j.ydbio.2013.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 12/20/2022]
|
14
|
Kotani T, Yasuda K, Ota R, Yamashita M. Cyclin B1 mRNA translation is temporally controlled through formation and disassembly of RNA granules. J Cell Biol 2013; 202:1041-55. [PMID: 24062337 PMCID: PMC3787373 DOI: 10.1083/jcb.201302139] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 08/15/2013] [Indexed: 11/22/2022] Open
Abstract
Temporal control of messenger RNA (mRNA) translation is an important mechanism for regulating cellular, neuronal, and developmental processes. However, mechanisms that coordinate timing of translational activation remain largely unresolved. Full-grown oocytes arrest meiosis at prophase I and deposit dormant mRNAs. Of these, translational control of cyclin B1 mRNA in response to maturation-inducing hormone is important for normal progression of oocyte maturation, through which oocytes acquire fertility. In this study, we found that dormant cyclin B1 mRNA forms granules in the cytoplasm of zebrafish and mouse oocytes. Real-time imaging of translation revealed that the granules disassemble at the time of translational activation during maturation. Formation of cyclin B1 RNA granules requires binding of the mRNA to Pumilio1 protein and depends on actin filaments. Disruption of cyclin B1 RNA granules accelerated the timing of their translational activation after induction of maturation, whereas stabilization hindered translational activation. Thus, our results suggest that RNA granule formation is critical for the regulation of timing of translational activation.
Collapse
Affiliation(s)
- Tomoya Kotani
- Department of Biological Sciences, Faculty of Science, and Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kyota Yasuda
- Department of Biological Sciences, Faculty of Science, and Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ryoma Ota
- Department of Biological Sciences, Faculty of Science, and Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masakane Yamashita
- Department of Biological Sciences, Faculty of Science, and Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
15
|
Abramov R, Fu G, Zhang Y, Peng C. Expression and regulation of miR-17a and miR-430b in zebrafish ovarian follicles. Gen Comp Endocrinol 2013; 188:309-15. [PMID: 23453964 DOI: 10.1016/j.ygcen.2013.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/04/2013] [Accepted: 02/09/2013] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate gene expression and control many developmental and physiological processes. Oocyte maturation in fish is mainly regulated by luteinizing hormone (LH) and maturation-inducing hormone (MIH). In addition, growth factors, including members of the transforming growth factor β (TGF-β) superfamily, have also been shown to play important roles in regulating oocyte maturation. In this study, we determined the expression and regulation of two miRNAs, miR-17a and miR-430b, which potentially target signalling molecules in the TGF-β pathway, in zebrafish ovarian follicles. Using real-time PCR, we observed that miR-17a and miR-430b levels in follicular cells were significantly lower in late vitellogenic and full grown follicles than in early vitellogenic follicles. Treatment with a LH analog, human chorionic gonadotropin, significantly down-regulated miR-17a and miR-430b expression in follicular cells but had no effect on their expression in oocytes. Forskolin also inhibited follicular cell miR-430b expression; however, no significant changes in miR-17a levels were observed after Forskolin treatment. Finally, MIH did not affect the expression of these miRNAs either in follicular cells or oocytes at the time points tested. These findings suggest that miR-17a and miR-430b may be involved in the regulation of follicle development and oocyte maturation in zebrafish.
Collapse
Affiliation(s)
- Rina Abramov
- Department of Biology, York University, Toronto, Canada
| | | | | | | |
Collapse
|
16
|
Yasuda K, Kotani T, Ota R, Yamashita M. Transgenic zebrafish reveals novel mechanisms of translational control of cyclin B1 mRNA in oocytes. Dev Biol 2010; 348:76-86. [DOI: 10.1016/j.ydbio.2010.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 12/21/2022]
|
17
|
Passage through vertebrate gap junctions of 17/18kDa molecules is primarily dependent upon molecular configuration. Tissue Cell 2009; 42:47-52. [PMID: 19726067 DOI: 10.1016/j.tice.2009.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/15/2009] [Accepted: 07/28/2009] [Indexed: 11/22/2022]
Abstract
In fish, amphibians and mammals, gap junctions of some cells allow passage of elongate molecules as large as 18kDa, while excluding smaller, less elongate molecules. Fluorescently labeled Calmodulin (17kDa) and fluorescently labeled Troponin-C (18kDa), when microinjected into oocytes of Danio rerio, Xenopus laevis or Mus domestica, were able to transit the gap junctions between these oocytes and the granulosa cells which surrounded them. Co-microinjected with these Ca(2+)-binding proteins, Texas-red-labeled dextran (10kDa) remained in the microinjected cell. Osteocalcin (6kDa), also a Ca(2+)-binding protein, but with a wide "V" shape proved unable to transit these gap junctions. Calmodulin, but not Troponin-C, was able to transit gap junctions of gonadotropin treated WB cells in culture. We show evidence that molecules as large as 18kDa can pass through some vertebrate gap junctions, both homologous and heterologous, and that it is primarily molecular configuration which governs gap junctional permeability.
Collapse
|
18
|
Siripattarapravat K, Busta A, Steibel JP, Cibelli J. Characterization and in vitro control of MPF activity in zebrafish eggs. Zebrafish 2009; 6:97-105. [PMID: 19292671 DOI: 10.1089/zeb.2008.0527] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe the characterization of maturation-promoting factor (MPF) in zebrafish eggs and used different defined conditions to maintain its activity in vitro. MPF activity levels are high in freshly ovulated mature eggs and decline rapidly within 5 min after either fertilization or parthenogenetic activation. The MPF activity of eggs matured in vitro declines faster when the eggs are incubated in Hank's culture medium supplemented with 0.5% BSA (H-BSA) than when incubated in Chinook salmon ovarian fluid (CSOF). MPF activity in nonactivated, aged eggs remains high in H-BSA supplemented with 75 microM MG132 or 10 mM caffeine, but neither MG132 nor caffeine can sustain high MPF activity in activated eggs. MG132-treated eggs showed delayed completion of metaphase and extrusion of the second polar body. Nuclear staining of the activated eggs confirmed the correlation between their cell cycle stage and MPF activity at each time point. An embryotoxic effect was found when matured eggs were held in 100 microM of MG132 or 20 mM caffeine for 1 h. Calcium-depleted medium and 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid also showed detrimental effects on the embryos. Conversely, nonactivated, aged matured eggs maintained high MPF activity and developmental potential when CSOF was used as a holding medium.
Collapse
Affiliation(s)
- Kannika Siripattarapravat
- Comparative Medicine and Integrative Biology Program-College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
19
|
Kortner TM, Rocha E, Arukwe A. Previtellogenic oocyte growth and transcriptional changes of steroidogenic enzyme genes in immature female Atlantic cod (Gadus morhua L.) after exposure to the androgens 11-ketotestosterone and testosterone. Comp Biochem Physiol A Mol Integr Physiol 2009; 152:304-13. [DOI: 10.1016/j.cbpa.2008.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 11/29/2022]
|
20
|
Lessman CA. Oocyte maturation: converting the zebrafish oocyte to the fertilizable egg. Gen Comp Endocrinol 2009; 161:53-7. [PMID: 19027744 DOI: 10.1016/j.ygcen.2008.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 10/17/2008] [Accepted: 11/01/2008] [Indexed: 01/02/2023]
Abstract
The process of oogenesis culminates in steroid-induced oocyte maturation to produce the fertilizable egg. A quintessential biological entity, the egg is central to the production of new individuals. The result of egg fertilization by a sperm cell is the production of the mother of all stem cells (i.e. the zygote). Furthermore, the egg cytoplasm is the only one known to support reprogramming a transplanted nucleus to give rise to an individual (i.e. animal cloning). Zebrafish oocyte maturation is a complex event encompassing a number of cellular changes including germinal vesicle migration (GVM) and dissolution or breakdown (GVD), ooplasmic clearing (OC) with correlated yolk protein changes (YP), development of osmoregulation (OR) in fresh water, the formation of the future embryonic pole, the blastodisc (BF) and activatibility (AC) or cortical maturation. In zebrafish, and many other teleosts, 17alpha, 20beta-dihydroxy-4-pregnen-3-one (17alpha, 20beta-DP) has been shown to be the normal inducer of oocyte maturation. A 17alpha, 20beta-DP membrane-resident receptor mediates oocyte maturation via non-genomic mechanisms that are beginning to be understood. This paper will highlight some of the cellular markers resulting from the signaling initiated by 17alpha, 20beta-DP. By describing these markers, it is hoped that workers in the field will have additional tools to help further elucidate the signaling events of oocyte maturation.
Collapse
Affiliation(s)
- Charles A Lessman
- Department of Biology, The University of Memphis, 3774 Walker Ave., Room 223 Life Science Bldg., Memphis, TN 38152, USA.
| |
Collapse
|
21
|
Zhang Y, Sheets MD. Analyses of zebrafish and Xenopus oocyte maturation reveal conserved and diverged features of translational regulation of maternal cyclin B1 mRNA. BMC DEVELOPMENTAL BIOLOGY 2009; 9:7. [PMID: 19175933 PMCID: PMC2644680 DOI: 10.1186/1471-213x-9-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 01/28/2009] [Indexed: 11/10/2022]
Abstract
Background Vertebrate development relies on the regulated translation of stored maternal mRNAs, but how these regulatory mechanisms may have evolved to control translational efficiency of individual mRNAs is poorly understood. We compared the translational regulation and polyadenylation of the cyclin B1 mRNA during zebrafish and Xenopus oocyte maturation. Polyadenylation and translational activation of cyclin B1 mRNA is well characterized during Xenopus oocyte maturation. Specifically, Xenopus cyclin B1 mRNA is polyadenylated and translationally activated during oocyte maturation by proteins that recognize the conserved AAUAAA hexanucleotide and U-rich Cytoplasmic Polyadenylation Elements (CPEs) within cyclin B1 mRNA's 3'UnTranslated Region (3'UTR). Results The zebrafish cyclin B1 mRNA was polyadenylated during zebrafish oocyte maturation. Furthermore, the zebrafish cyclin B1 mRNA's 3'UTR was sufficient to stimulate translation of a reporter mRNA during zebrafish oocyte maturation. This stimulation required both AAUAAA and U-rich CPE-like sequences. However, in contrast to AAUAAA, the positions and sequences of the functionally defined CPEs were poorly conserved between Xenopus and zebrafish cyclin B1 mRNA 3'UTRs. To determine whether these differences were relevant to translation efficiency, we analyzed the translational activity of reporter mRNAs containing either the zebrafish or Xenopus cyclin B1 mRNA 3'UTRs during both zebrafish and Xenopus oocyte maturation. The zebrafish cyclin B1 3'UTR was quantitatively less effective at stimulating polyadenylation and translation compared to the Xenopus cyclin B1 3'UTR during both zebrafish and Xenopus oocyte maturation. Conclusion Although the factors that regulate translation of maternal mRNAs are highly conserved, the target sequences and overall sequence architecture within the 3'UTR of the cyclin B1 mRNA have diverged to affect translational efficiency, perhaps to optimize levels of cyclin B1 protein required by these different species during their earliest embryonic cell divisions.
Collapse
Affiliation(s)
- Yan Zhang
- University of Wisconsin School of Medicine and Public Health, Department of Biomolecular Chemistry, 1300 University Avenue Madison, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
22
|
Kortner TM, Rocha E, Arukwe A. Androgenic modulation of early growth of Atlantic cod (Gadus morhua L.) previtellogenic oocytes and zona radiata-related genes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:184-195. [PMID: 19184733 DOI: 10.1080/15287390802539020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Available evidence suggests that androgens play critical roles in early oocyte growth and development in fish. However, the molecular mechanisms underlying this important aspect of reproductive endocrinology have not yet been established. In this study the effects of androgens (11-ketotestosterone [11-KT] and testosterone [T]) were determined on gene expression patterns and growth of cod previtellogenic oocytes, using an in vitro oocyte culture technique. Previtellogenic ovarian tissue was cultured for 5 and 10 d at different concentrations of 11-KT and T (0, 1, or 1000 microM) dissolved in ethanol (0.3%). The androgen concentrations were selected as they represent physiological and supra-physiological concentrations, respectively. Quantitative polymerase chain reaction (PCR) demonstrated increased mRNA expression for five genes recently identified as androgen responsive in our subtracted cDNA library in previtellogenic cod ovary exposed in vitro to androgens. Quantitative histological analyses showed a consistent stereological validation of oocyte growth and development after exposure to androgens. In general, both 11-KT and T induced previtellogenic oocyte growth and development, and these effects were more pronounced with 11-KT exposure. Taken together, our study reveals some novel roles of androgens on the development of previtellogenic oocytes, indicating control of early follicular and oocyte growth in cod ovary. The potent effects of 11-KT on oocyte growth support our earlier hypothesis that non-aromatizable androgens play significant roles in regulating early oocyte growth with potential consequences for the fecundity process. Therefore, these novel roles of androgens as promoters of ovarian growth and development presented in this study may be useful for the aquaculture industry and for breeding of new captive and endangered species. From a toxicological point of view, the cod is a marine species and exposure to complex chemical mixtures that may exert androgenic and/or anti-androgenic effects represents an environmental issue of reasonable concern in the marine environment. Therefore, the findings in the present study represent a novel basis that can be used to determine the effects of xenoandrogens on oocyte development and fecundity in this important marine species.
Collapse
Affiliation(s)
- Trond M Kortner
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | |
Collapse
|
23
|
Kortner TM, Rocha E, Silva P, Castro LFC, Arukwe A. Genomic approach in evaluating the role of androgens on the growth of Atlantic cod (Gadus morhua) previtellogenic oocytes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 3:205-18. [DOI: 10.1016/j.cbd.2008.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 11/27/2022]
|
24
|
|
25
|
Changes of γ-tubulin expression and distribution in the zebrafish (Danio rerio) ovary, oocyte and embryo. Gene Expr Patterns 2008; 8:237-47. [DOI: 10.1016/j.gep.2007.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 11/22/2022]
|
26
|
Curran JE, Woodruff RI. Passage of 17kDa calmodulin through gap junctions of three vertebrate species. Tissue Cell 2007; 39:303-9. [PMID: 17675125 DOI: 10.1016/j.tice.2007.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/30/2007] [Accepted: 06/11/2007] [Indexed: 11/16/2022]
Abstract
Gap junctions of some vertebrates are capable of passing the elongate molecule, calmodulin, with a molecular weight 8-17 times greater than the previously recognized size limits. Fluorescently labeled calmodulin (FCaM) (17.34 kDa) microinjected into oocytes of ovarian follicles from an amphibian, Xenopus laevis, and from two species of teleost fish, Danio rerio (Zebrafish) and Oryzias latipes (Medaka), is shown to transit their gap junctions and enter the surrounding epithelial cells. Passage of FCaM was terminated when follicles were first treated with 1 mM octanol, a molecule known to down-regulate gap junctions. There was no FCaM detected in the surrounding medium, nor did epithelial cells become fluorescent when follicles were incubated in medium containing dye. Calmodulin is well known to modulate many cytoplasmic reactions; thus, its passage through gap junctions opens possibilities of additional means by which cells may be supplied with this signaling molecule, and by which their supply may be regulated.
Collapse
Affiliation(s)
- J E Curran
- Department of Biology, West Chester University, West Chester, PA 19383-2112, USA
| | | |
Collapse
|
27
|
Ramasamy S, Wang H, Quach HNB, Sampath K. Zebrafish Staufen1 and Staufen2 are required for the survival and migration of primordial germ cells. Dev Biol 2006; 292:393-406. [PMID: 16513105 DOI: 10.1016/j.ydbio.2006.01.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 01/11/2006] [Accepted: 01/12/2006] [Indexed: 11/15/2022]
Abstract
In sexually reproducing organisms, primordial germ cells (PGCs) give rise to the cells of the germ line, the gametes. In many animals, PGCs are set apart from somatic cells early during embryogenesis. Work in Drosophila, C. elegans, Xenopus, and zebrafish has shown that maternally provided localized cytoplasmic determinants specify the germ line in these organisms (Raz, E., 2003. Primordial germ-cell development: the zebrafish perspective. Nat. Rev., Genet. 4, 690--700; Santos, A.C., Lehmann, R., 2004. Germ cell specification and migration in Drosophila and beyond. Curr. Biol. 14, R578-R589). The Drosophila RNA-binding protein, Staufen is required for germ cell formation, and mutations in stau result in a maternal effect grandchild-less phenotype (Schupbach,T., Weischaus, E., 1989. Female sterile mutations on the second chromosome of Drosophila melanogaster:1. Maternal effect mutations. Genetics 121, 101-17). Here we describe the functions of two zebrafish Staufen-related proteins, Stau1 and Stau2. When Stau1 or Stau2 functions are compromised in embryos by injecting antisense morpholino modified oligonucleotides or dominant-negative Stau peptides, germ layer patterning is not affected. However, expression of the PGC marker vasa is not maintained. Furthermore, expression of a green fluorescent protein (GFP):nanos 3'UTR fusion protein in germ cells shows that PGC migration is aberrant, and the mis-migrating PGCs do not survive in Stau-compromised embryos. Stau2 is also required for survival of neurons in the central nervous system (CNS). These phenotypes are rescued by co-injection of Drosophila stau mRNA. Thus, staufen has an evolutionarily conserved function in germ cells. In addition, we have identified a function for Stau proteins in PGC migration.
Collapse
Affiliation(s)
- Srinivas Ramasamy
- Vertebrate Development Group, Temasek Life Sciences Laboratory, 1 Research link, National University of Singapore, 117604, Singapore
| | | | | | | |
Collapse
|
28
|
Rivera AS, Gonsalves FC, Song MH, Norris BJ, Weisblat DA. Characterization of Notch-class gene expression in segmentation stem cells and segment founder cells in Helobdella robusta (Lophotrochozoa; Annelida; Clitellata; Hirudinida; Glossiphoniidae). Evol Dev 2006; 7:588-99. [PMID: 16336412 DOI: 10.1111/j.1525-142x.2005.05062.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To understand the evolution of segmentation, we must compare segmentation in all three major groups of eusegmented animals: vertebrates, arthropods, and annelids. The leech Helobdella robusta is an experimentally tractable annelid representative, which makes segments in anteroposterior progression from a posterior growth zone consisting of 10 identified stem cells. In vertebrates and some arthropods, Notch signaling is required for normal segmentation and functions via regulation of hes-class genes. We have previously characterized the expression of an hes-class gene (Hro-hes) during segmentation in Helobdella, and here, we characterize the expression of an H. robusta notch homolog (Hro-notch) during this process. We find that Hro-notch is transcribed in the segmental founder cells (blast cells) and their stem-cell precursors (teloblasts), as well as in other nonsegmental tissues. The mesodermal and ectodermal lineages show clear differences in the levels of Hro-notch expression. Finally, Hro-notch is shown to be inherited by newly born segmental founder cells as well as transcribed by them before their first cell division.
Collapse
Affiliation(s)
- Ajna S Rivera
- Department of Molecular and Cell Biology, 385 LSA University of California, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|
29
|
Lessman CA, Nathani R, Uddin R, Walker J, Liu J. Computer-aided meiotic maturation assay (CAMMA) of zebrafish (danio rerio) oocytes in vitro. Mol Reprod Dev 2006; 74:97-107. [PMID: 16998847 DOI: 10.1002/mrd.20530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have developed a new technique called Computer-Aided Meiotic Maturation Assay (CAMMA) for imaging large arrays of zebrafish oocytes and automatically collecting image files at regular intervals during meiotic maturation. This novel method uses a transparency scanner interfaced to a computer with macro programming that automatically scans and archives the image files. Images are stacked and analyzed with ImageJ to quantify changes in optical density characteristic of zebrafish oocyte maturation. Major advantages of CAMMA include (1) ability to image very large arrays of oocytes and follow individual cells over time, (2) simultaneously image many treatment groups, (3) digitized images may be stacked, animated, and analyzed in programs such as ImageJ, NIH-Image, or ScionImage, and (4) CAMMA system is inexpensive, costing less than most microscopes used in traditional assays. We have used CAMMA to determine the dose response and time course of oocyte maturation induced by 17alpha-hydroxyprogesterone (HP). Maximal decrease in optical density occurs around 5 hr after 0.1 micro g/ml HP (28.5 degrees C), approximately 3 hr after germinal vesicle migration (GVM) and dissolution (GVD). In addition to changes in optical density, GVD is accompanied by streaming of ooplasm to the animal pole to form a blastodisc. These dynamic changes are readily visualized by animating image stacks from CAMMA; thus, CAMMA provides a valuable source of time-lapse movies for those studying zebrafish oocyte maturation. The oocyte clearing documented by CAMMA is correlated to changes in size distribution of major yolk proteins upon SDS-PAGE, and, this in turn, is related to increased cyclin B(1) protein.
Collapse
Affiliation(s)
- Charles A Lessman
- The University of Memphis, Department of Biology, Memphis, TN 38152-3540, USA.
| | | | | | | | | |
Collapse
|
30
|
Kohli G, Clelland E, Peng C. Potential targets of transforming growth factor-beta1 during inhibition of oocyte maturation in zebrafish. Reprod Biol Endocrinol 2005; 3:53. [PMID: 16197550 PMCID: PMC1274345 DOI: 10.1186/1477-7827-3-53] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 09/30/2005] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND TGF-beta is a multifunctional growth factor involved in regulating a variety of cellular activities. Unlike mammals, the function of TGF-beta in the reproduction of lower vertebrates, such as fish, is not clear. Recently, we showed that TGF-beta1 inhibits gonadotropin- and 17alpha, 20beta-dihydroxyprogesterone (DHP)-induced maturation in zebrafish. The aim of the present study was to investigate the mechanisms underlying this action. METHOD To determine if the effect of TGF-beta1 on oocyte maturation involves transcription and/or translation, ovarian follicles were pre-treated with actinomycin D, a blocker of transcription, and cyclohexamide, an inhibitor of translation, and incubated with hCG or DHP, either alone or in combination with TGF-beta1 and oocyte maturation scored. To determine the effect of TGF-beta1 on mRNA levels of several key effectors of oocyte maturation, three sets of experiments were performed. First, follicles were treated with control medium or TGF-beta1 for 2, 6, 12, and 24 h. Second, follicles were treated with different concentrations of TGF-beta1 (0 to 10 ng/ml) for 18 h. Third, follicles were incubated with hCG in the absence or presence of TGF-beta1 for 18 h. At the end of each experiment, total RNA was extracted and reverse transcribed. PCR using primers specific for 20beta-hydroxysteroid dehydrogenase (20beta-HSD) which is involved in DHP production, follicle stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), the two forms of membrane progestin receptor: mPR-alpha and mPR-beta, as well as GAPDH (control), were performed. RESULTS Treatment with actinomycin D, a blocker of transcription, reduced the inhibitory effect of TGF-beta1 on DHP-induced oocyte maturation, indicating that the inhibitory action of TGF-beta1 is in part due to regulation of gene transcription. Treatment with TGF-beta1 caused a dose and time-dependent decrease in mRNA levels of 20beta-HSD, LHR and mPR-beta in follicles. On the other hand, TGF-beta1 had no effect on mPR-alpha mRNA expression and increased FSHR mRNA levels. Furthermore, hCG upregulated 20beta-HSD, LHR and mPR-beta mRNA levels, but this stimulatory effect was blocked by TGF-beta1. CONCLUSION These findings suggest that TGF-beta1 acts at multiple sites, including LHR, 20beta-HSD and mPR-beta, to inhibit zebrafish oocyte maturation.
Collapse
Affiliation(s)
- Gurneet Kohli
- Department Of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Eric Clelland
- Department Of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Chun Peng
- Department Of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
31
|
Mathavan S, Lee SGP, Mak A, Miller LD, Murthy KRK, Govindarajan KR, Tong Y, Wu YL, Lam SH, Yang H, Ruan Y, Korzh V, Gong Z, Liu ET, Lufkin T. Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet 2005; 1:260-76. [PMID: 16132083 PMCID: PMC1193535 DOI: 10.1371/journal.pgen.0010029] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 07/14/2005] [Indexed: 11/18/2022] Open
Abstract
Zebrafish (Danio rerio) is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmentation, and pharyngula) revealed a highly dynamic transcriptional profile. Hierarchical clustering, stage-specific clustering, and algorithms to detect onset and peak of gene expression revealed clearly demarcated transcript clusters with maximum gene activity at distinct developmental stages as well as co-regulated expression of gene groups involved in dedicated functions such as organogenesis. Our study also revealed a previously unidentified cohort of genes that are transcribed prior to the mid-blastula transition, a time point earlier than when the zygotic genome was traditionally thought to become active. Here we provide, for the first time to our knowledge, a comprehensive list of developmentally regulated zebrafish genes and their expression profiles during embryogenesis, including novel information on the temporal expression of several thousand previously uncharacterized genes. The expression data generated from this study are accessible to all interested scientists from our institute resource database (http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/data_download.html).
Collapse
Affiliation(s)
| | | | - Alicia Mak
- Genome Institute of Singapore, Singapore
| | | | | | | | - Yan Tong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yi Lian Wu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Siew Hong Lam
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Yijun Ruan
- Genome Institute of Singapore, Singapore
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Thomas Lufkin
- Genome Institute of Singapore, Singapore
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
von Schalburg KR, Rise ML, Brown GD, Davidson WS, Koop BF. A Comprehensive Survey of the Genes Involved in Maturation and Development of the Rainbow Trout Ovary1. Biol Reprod 2005; 72:687-99. [PMID: 15496514 DOI: 10.1095/biolreprod.104.034967] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Development and maturation of the ovary requires precisely coordinated expression of specific gene classes to produce viable oocytes. We undertook identification of some of the genes involved in these processes by creating ovary-specific cDNA libraries by suppression subtractive hybridization and by microarray-based analyses. We present 5778 tissue- and sex-specific genes from subtracted ovary and testis libraries, many of which remain unidentified. A microarray containing 3557 salmonid cDNAs was used to compare the transcriptomes of precocious ovary at three different stages during the second year of life with a reference (normal ovary) transcriptome. On average, approximately 240 genes were developmentally regulated during the study period from June to October. Classes of genes maintaining relatively steady-state levels of expression, such as those controlling tissue remodeling, immunoregulation, cell-cycle progression, apoptosis, and growth also were identified. Concurrent expression of various cell division and ubiquitin-mediated proteolysis regulators revealed the utility of microarray analysis to monitor important maturation events. We also report unequivocal evidence for expression of the transcripts that encode the common glycoprotein alpha, LH beta, FSH beta, thyroid-stimulating hormone beta, and retinol-binding protein in both the ovary and testis of trout.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada V8W 3N5
| | | | | | | | | |
Collapse
|
33
|
Basu D, Navneet AK, Dasgupta S, Bhattacharya S. Cdc2-Cyclin B–Induced G2 to M Transition in Perch Oocyte Is Dependent on Cdc251. Biol Reprod 2004; 71:894-900. [PMID: 15151934 DOI: 10.1095/biolreprod.104.029611] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The G2 to M phase transition in perch oocytes is regulated by maturation promoting factor (MPF), a complex of Cdc2 and cyclin B. In Anabas testudineus, a fresh water perch, 17 alpha,20 beta-dihydroxy-4-pregnen-3-one, the maturation inducing hormone (MIH), induced complete germinal vesicle breakdown (GVBD) of oocytes at 21 h. An unusual cyclin, p30 cyclin B, has been identified in oocyte extract using both monoclonal and polyclonal antibodies. Surprisingly, Cdc2 could not be identified, although a Northern blot with Cdc2 cDNA demonstrated expression of the gene. Purification of MPF through an immunoaffinity column followed by SDS-PAGE showed three proteins, Cdc2, cyclin B, and a 20 kDa fragment, indicating earlier failure in immunodetection may be due to the interference by this fragment. In uninduced oocytes, p30 cyclin B was present, and its expression was increased by MIH. MIH increased p30 cyclin B accumulation at 3 h, a high level which was maintained between 9 and 21 h, but an effective increase in GVBD and H1 kinase activation could only be observed between 15 and 21 h. This delay in active MPF formation was found to be related to the activation of Cdc25, phosphorylation of which was detected at 12 h, and a substantial increase occurred during 15-18 h. Sodium orthovanadate, a tyrosine phosphatase inhibitor, inhibited H1 kinase activity and GVBD, suggesting the requirement of Cdc25 activity in MPF activation. Our results show occurrence of pre-MPF in uninduced oocytes and its conversion to active MPF requires dephosphorylation by Cdc25, the existence of which has not yet been shown in fish.
Collapse
Affiliation(s)
- Dipanjan Basu
- Department of Zoology, School of Life Science, Visva-Bharati, Santiniketan 731 235, India
| | | | | | | |
Collapse
|
34
|
Gutiérrez JN, Duncan NJ, Estañol PV, García-Aguilar N, García-Gasca A. Partial cloning and expression of the cyclin B gene in the ovary of the bullseye puffer (Sphoeroides annulatus). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 295:211-6. [PMID: 12541306 DOI: 10.1002/jez.a.10229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The bullseye puffer is a marine fish species with great potential for aquaculture in Mexico, and the understanding of its reproductive physiology at every level of biological organization is essential in order to succeed. Several molecules orchestrate the complex process of oocyte maturation and spawning. One of these molecules is cyclin B, which is the regulatory subunit of the maturation-promoting factor. In this study, a fragment of the cyclin B gene was isolated from the ovary of the bullseye puffer using an RT-PCR approach. The gene fragment was homologous to the cyclin B2 gene of other vertebrate species. Similar levels of cyclin B gene expression were detected in ovaries at different developmental stages, except for atretic ovaries from captive fish which did not spawn. However, cyclin B gene expression was maintained in captive fish treated with LHRH-a to induce spawning, and appeared to be similar to the pattern observed in wild fish. It is possible that the reduced expression of cyclin B in atretic ovaries is the result of mRNA degradation during atresia. Alternatively, reduced gene expression could be a controlling factor in the process of oocyte reabsorption since cyclin B is required for final oocyte maturation and ovulation.
Collapse
Affiliation(s)
- Jesús Neftalí Gutiérrez
- Centro de Investigación en Alimentación y Desarrollo, AP 711, Mazatlán, Sinaloa 82010, Mexico
| | | | | | | | | |
Collapse
|
35
|
Gore AV, Sampath K. Localization of transcripts of the zebrafish morphogen Squint is dependent on egg activation and the microtubule cytoskeleton. Mech Dev 2002; 112:153-6. [PMID: 11850186 DOI: 10.1016/s0925-4773(01)00622-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The generation of polarity and patterning in multicellular organisms depends in part on the asymmetric localization of molecules to specific subdomains within a cell. Localized transcripts for several molecules are known to be required for patterning oocytes and embryos in Drosophila as well as Caenorhabditis elegans. Here, we describe the localization of transcripts encoding the nodal-related morphogen, Squint (sqt), in zebrafish oocytes and early embryos, and the mechanisms by which sqt RNA is localized. sqt transcripts are uniformly distributed in oocytes through all stages of oogenesis. Upon egg activation, sqt RNA is localized to the blastoderm, and excluded from the yolk cell. The mechanism of sqt RNA transport was examined using cytoskeletal inhibitors. Disruption of actin microfilaments by treatment with latrunculin A does not alter the localization of sqt RNA to the blastoderm. However, disruption of the microtubule cytoskeleton by treatment with nocodazole affects sqt RNA localization. These results indicate that sqt transcripts are translocated by an RNA localization pathway which is initiated upon egg activation, and that sqt RNA localization through this pathway is mediated via the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Aniket V Gore
- Laboratory of Fish Embryology, Institute of Molecular Agrobiology, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | | |
Collapse
|