1
|
Lambourne L, Mattioli K, Santoso C, Sheynkman G, Inukai S, Kaundal B, Berenson A, Spirohn-Fitzgerald K, Bhattacharjee A, Rothman E, Shrestha S, Laval F, Carroll BS, Plassmeyer SP, Emenecker RJ, Yang Z, Bisht D, Sewell JA, Li G, Prasad A, Phanor S, Lane R, Moyer DC, Hunt T, Balcha D, Gebbia M, Twizere JC, Hao T, Holehouse AS, Frankish A, Riback JA, Salomonis N, Calderwood MA, Hill DE, Sahni N, Vidal M, Bulyk ML, Fuxman Bass JI. Widespread variation in molecular interactions and regulatory properties among transcription factor isoforms. Mol Cell 2025; 85:1445-1466.e13. [PMID: 40147441 DOI: 10.1016/j.molcel.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/06/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
Most human transcription factor (TF) genes encode multiple protein isoforms differing in DNA-binding domains, effector domains, or other protein regions. The global extent to which this results in functional differences between isoforms remains unknown. Here, we systematically compared 693 isoforms of 246 TF genes, assessing DNA binding, protein binding, transcriptional activation, subcellular localization, and condensate formation. Relative to reference isoforms, two-thirds of alternative TF isoforms exhibit differences in one or more molecular activities, which often could not be predicted from sequence. We observed two primary categories of alternative TF isoforms: "rewirers" and "negative regulators," both of which were associated with differentiation and cancer. Our results support a model wherein the relative expression levels of, and interactions involving, TF isoforms add an understudied layer of complexity to gene regulatory networks, demonstrating the importance of isoform-aware characterization of TF functions and providing a rich resource for further studies.
Collapse
Affiliation(s)
- Luke Lambourne
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kaia Mattioli
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Clarissa Santoso
- Department of Biology, Boston University, Boston, MA 02215, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Gloria Sheynkman
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sachi Inukai
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Babita Kaundal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anna Berenson
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA
| | - Kerstin Spirohn-Fitzgerald
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anukana Bhattacharjee
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elisabeth Rothman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Florent Laval
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium; Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Brent S Carroll
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen P Plassmeyer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Zhipeng Yang
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Deepa Bisht
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jared A Sewell
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Guangyuan Li
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Anisa Prasad
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard College, Cambridge, MA 02138, USA
| | - Sabrina Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ryan Lane
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Devlin C Moyer
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Toby Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CD10 1SD, UK
| | - Dawit Balcha
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marinella Gebbia
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Jean-Claude Twizere
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium; Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CD10 1SD, UK
| | - Josh A Riback
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Martha L Bulyk
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Juan I Fuxman Bass
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biology, Boston University, Boston, MA 02215, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA; Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Narayan AB, Hariom SK, Mukherjee AP, Das D, Nair A, Nelson EJR. 'Nomadic' Hematopoietic Stem Cells Navigate the Embryonic Landscape. Stem Cell Rev Rep 2025; 21:605-628. [PMID: 39786676 DOI: 10.1007/s12015-025-10843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Hematopoietic stem cells are a unique population of tissue-resident multipotent cells with an extensive ability to self-renew and regenerate the entire lineage of differentiated blood cells. Stem cells reside in a highly specialized microenvironment with surrounding supporting cells, forming a complex and dynamic network to preserve and maintain their function. The survival, activation, and quiescence of stem cells are largely influenced by niche-derived signals, with aging niche contributing to a decline in stem cell function. Although the role of niche in regulating hematopoiesis has long been established by transplantation studies, limited methods in observing the process in vivo have eluded a detailed understanding of the various niche components. Danio rerio (zebrafish) has emerged as a solution in the past few decades, enabling discovery of cellular interactions, in addition to chemical and genetic factors regulating HSCs. This review reiterates zebrafish as a suitable model for studies on vertebrate embryonic and adult hematopoiesis, delving into this temporally and spatially dissected multi-step process. The critical role played by epigenetic regulators are discussed, along with contributions of the various physiological processes in sustaining the stem cell population. Stem cell niche transcends mere knowledge acquisition, assuring scope in cell therapy, organoid cultures, aging research, and clinical applications including bone marrow transplantation and cancer. A better understanding of the various niche components could also leverage therapeutic efforts to drive differentiation of HSCs from pluripotent progenitors, sustain stemness in laboratory cultures, and improve stem cell transplantation outcomes.
Collapse
Affiliation(s)
- Anand Badhri Narayan
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Senthil Kumar Hariom
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Ayan Prasad Mukherjee
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Deotima Das
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Aadhira Nair
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Everette Jacob Remington Nelson
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India.
| |
Collapse
|
3
|
Korzeniwsky KG, de Mello PL, Liang Y, Feltes M, Farber SA, Parichy DM. Dominant Negative Mitf Allele Impacts Melanophore and Xanthophore Development and Reveals Collaborative Interactions With Tfec in Zebrafish Chromatophore Lineages. Pigment Cell Melanoma Res 2025; 38:e70009. [PMID: 40123122 PMCID: PMC11931198 DOI: 10.1111/pcmr.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Ectothermic vertebrates exhibit a diverse array of pigment cell types-chromatophores-that provide valuable opportunities to uncover mechanisms of fate specification and how they evolve. Like melanocytes of mammals, the melanophores of teleosts and other ectotherms depend on basic helix-loop-helix leucine zipper transcription factors encoded by orthologues of MITF. A different chromatophore, the iridescent iridophore, depends on the closely related transcription factor Tfec. Requirements for the specification of other chromatophore lineages remain largely uncertain. Here we identify a new allele of the zebrafish Mitf gene, mitfa, that results in a complete absence of not only melanophores but also yellow-orange xanthophores. Harboring a missense substitution in the DNA-binding domain identical to previously isolated alleles of mouse, we show that this new allele has defects in chromatophore precursor survival and xanthophore differentiation that extend beyond those of mitfa loss-of-function. Additional genetic analyses revealed interactions between Mitfa and Tfec as a likely basis for the observed phenotypes. Our findings point to collaborative roles for Mitfa and Tfec in promoting chromatophore development, particularly in xanthophore lineages, and provide new insights into evolutionary aspects of MITF functions across vertebrates.
Collapse
Affiliation(s)
| | | | - Yipeng Liang
- Department of BiologyUniversity of VirginiaVirginiaUSA
| | - McKenna Feltes
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Steven A. Farber
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - David M. Parichy
- Department of BiologyUniversity of VirginiaVirginiaUSA
- Department of Cell BiologyUniversity of VirginiaVirginiaUSA
| |
Collapse
|
4
|
Yi H, Liang W, Yang S, Liu H, Deng J, Han S, Feng X, Cheng W, Chen Y, Hang J, Lu H, Ran R. Melanin deposition and key molecular features in Xenopus tropicalis oocytes. BMC Biol 2025; 23:62. [PMID: 40016733 PMCID: PMC11866844 DOI: 10.1186/s12915-025-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Melanin pigmentation in oocytes is a critical feature for both the esthetic and developmental aspects of oocytes, influencing their polarity and overall development. Despite substantial knowledge of melanogenesis in melanocytes and retinal pigment epithelium cells, the molecular mechanisms underlying oocyte melanogenesis remain largely unknown. RESULTS Here, we compare the oocytes of wild-type, tyr-/- and mitf-/- Xenopus tropicalis and found that mitf-/- oocytes exhibit normal melanin deposition at the animal pole, whereas tyr-/- oocytes show no melanin deposition at this site. Transmission electron microscopy confirmed that melanogenesis in mitf-/- oocytes proceeds normally, similar to wild-type oocytes. Transcriptomic analysis revealed that mitf-/- oocytes still express melanogenesis-related genes, enabling them to complete melanogenesis. Additionally, in Xenopus tropicalis oocytes, the expression of the MiT subfamily factor tfe3 is relatively high, while tfeb, mitf, and tfec levels are extremely low. The expression pattern of tfe3 is similar to that of tyr and other melanogenesis-related genes. Thus, melanogenesis in Xenopus tropicalis oocytes is independent of Mitf and may be regulated by other MiT subfamily factors such as Tfe3, which control the expression of genes like tyr, dct, and tyrp1. Furthermore, transcriptomic data revealed that changes in the expression of genes related to mitochondrial cloud formation represent the most significant molecular changes during oocyte development. CONCLUSIONS Overall, these findings suggest that further elucidation of Tyr-dependent and Mitf-independent mechanisms of melanin deposition at the animal pole will enhance our understanding of melanogenesis and Oogenesis.
Collapse
Affiliation(s)
- Hongyang Yi
- National Clinical Research Centre for Infectious Diseases, the Third People'S Hospital of Shenzhenand, the Second Affiliated Hospital of Southern University of Science and Technologyaq , Shenzhen, 518112, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weizheng Liang
- Hebei Provincial Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Sumei Yang
- National Clinical Research Centre for Infectious Diseases, the Third People'S Hospital of Shenzhenand, the Second Affiliated Hospital of Southern University of Science and Technologyaq , Shenzhen, 518112, China
| | - Han Liu
- National Clinical Research Centre for Infectious Diseases, the Third People'S Hospital of Shenzhenand, the Second Affiliated Hospital of Southern University of Science and Technologyaq , Shenzhen, 518112, China
| | - Jiayu Deng
- National Clinical Research Centre for Infectious Diseases, the Third People'S Hospital of Shenzhenand, the Second Affiliated Hospital of Southern University of Science and Technologyaq , Shenzhen, 518112, China
| | - Shuhong Han
- National Clinical Research Centre for Infectious Diseases, the Third People'S Hospital of Shenzhenand, the Second Affiliated Hospital of Southern University of Science and Technologyaq , Shenzhen, 518112, China
| | - Xiaohui Feng
- Department of Obstetrics and Gynecology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China
| | - Wenjie Cheng
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China
| | - Yonglong Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jing Hang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| | - Hongzhou Lu
- National Clinical Research Centre for Infectious Diseases, the Third People'S Hospital of Shenzhenand, the Second Affiliated Hospital of Southern University of Science and Technologyaq , Shenzhen, 518112, China.
| | - Rensen Ran
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
5
|
Barrientos NB, Shoppell EA, Boyd RJ, Culotta VC, McCallion AS. Proof of concept study deploying CRISPR inhibition and activation opens key avenues for systematic biological exploration in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.16.613289. [PMID: 39345571 PMCID: PMC11430107 DOI: 10.1101/2024.09.16.613289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The application of CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) technologies in zebrafish has the potential to expand its capacity for the study of gene function significantly. We report proof-of-principle data evaluating transient expression of a codon optimized CRISPRi/a system for zebrafish across established pigmentary and growth phenotypes. A codon-optimized and catalytically inactive cas9 gene ( dcas9 ) was cloned upstream of codon-optimized Krüppel associated box (KRAB) and methyl-CpG binding protein 2 (MeCP2) for CRISPRi, and VP64 for CRISPRa. To validate CRISPRi, we targeted key genes in melanocyte differentiation ( sox10, mitfa, and mitfb) ; and melanin production (tyrosinase; tyr ). Microinjection of CRISPRi mRNA and single guide RNAs (sgRNAs) targeting the tyr promoter or 5'-UTR resulted in larvae with hypopigmented epidermal melanocytes. CRISPRi-mediated targeting of the promoters or 5'-UTR of transcription factors mitfa and mitfb also results in pronounced hypopigmentation of epidermal melanocytes ( mitfa ), and RPE ( mitfb ). Also, CRISPRi targeting of the sox10 promoter results in hypopigmentation of both epidermal melanocytes and RPE consistent with its role upstream of mitfa and mitfb , and tyr . Finally, we tested both CRISPRi/a to modulate a single gene to yield hypomorphic and hypermorphic effects, selecting mrap2a as our target. This gene regulates energy homeostasis and somatic growth via inhibition of the melanocortin 4 receptor gene ( mc4r ). We demonstrate that inactivating or activating mrap2a with CRISPRi/a significantly decreases or increases larval body length, respectively. We demonstrate that CRISPRi/a can modulate control of zebrafish gene expression, facilitating efficient assay of candidate gene function and disease relevance.
Collapse
|
6
|
Martínez-López MF, de Almeida CR, Fontes M, Mendes RV, Kaufmann SHE, Fior R. Macrophages directly kill bladder cancer cells through TNF signaling as an early response to BCG therapy. Dis Model Mech 2024; 17:dmm050693. [PMID: 39114912 PMCID: PMC11554267 DOI: 10.1242/dmm.050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/09/2024] [Indexed: 11/13/2024] Open
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine is the oldest cancer immunotherapeutic agent in use. Despite its effectiveness, its initial mechanisms of action remain largely unknown. Here, we elucidate the earliest cellular mechanisms involved in BCG-induced tumor clearance. We developed a fast preclinical in vivo assay to visualize in real time and at single-cell resolution the initial interactions among bladder cancer cells, BCG and innate immunity using the zebrafish xenograft model. We show that BCG induced the recruitment and polarization of macrophages towards a pro-inflammatory phenotype, accompanied by induction of the inflammatory cytokines tnfa, il1b and il6 in the tumor microenvironment. Macrophages directly induced apoptosis of human cancer cells through zebrafish TNF signaling. Macrophages were crucial for this response as their depletion completely abrogated the BCG-induced phenotype. Contrary to the general concept that macrophage anti-tumoral activities mostly rely on stimulating an effective adaptive response, we demonstrate that macrophages alone can induce tumor apoptosis and clearance. Thus, our results revealed an additional step to the BCG-induced tumor immunity model, while providing proof-of-concept experiments demonstrating the potential of this unique model to test innate immunomodulators.
Collapse
Affiliation(s)
| | | | - Márcia Fontes
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - Raquel Valente Mendes
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
| | - Rita Fior
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| |
Collapse
|
7
|
Lambourne L, Mattioli K, Santoso C, Sheynkman G, Inukai S, Kaundal B, Berenson A, Spirohn-Fitzgerald K, Bhattacharjee A, Rothman E, Shrestha S, Laval F, Yang Z, Bisht D, Sewell JA, Li G, Prasad A, Phanor S, Lane R, Campbell DM, Hunt T, Balcha D, Gebbia M, Twizere JC, Hao T, Frankish A, Riback JA, Salomonis N, Calderwood MA, Hill DE, Sahni N, Vidal M, Bulyk ML, Fuxman Bass JI. Widespread variation in molecular interactions and regulatory properties among transcription factor isoforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584681. [PMID: 38617209 PMCID: PMC11014633 DOI: 10.1101/2024.03.12.584681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Most human Transcription factors (TFs) genes encode multiple protein isoforms differing in DNA binding domains, effector domains, or other protein regions. The global extent to which this results in functional differences between isoforms remains unknown. Here, we systematically compared 693 isoforms of 246 TF genes, assessing DNA binding, protein binding, transcriptional activation, subcellular localization, and condensate formation. Relative to reference isoforms, two-thirds of alternative TF isoforms exhibit differences in one or more molecular activities, which often could not be predicted from sequence. We observed two primary categories of alternative TF isoforms: "rewirers" and "negative regulators", both of which were associated with differentiation and cancer. Our results support a model wherein the relative expression levels of, and interactions involving, TF isoforms add an understudied layer of complexity to gene regulatory networks, demonstrating the importance of isoform-aware characterization of TF functions and providing a rich resource for further studies.
Collapse
Affiliation(s)
- Luke Lambourne
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kaia Mattioli
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clarissa Santoso
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Gloria Sheynkman
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sachi Inukai
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Babita Kaundal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Berenson
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Kerstin Spirohn-Fitzgerald
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anukana Bhattacharjee
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elisabeth Rothman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Florent Laval
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
| | - Zhipeng Yang
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Deepa Bisht
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared A Sewell
- Department of Biology, Boston University, Boston, MA, USA
| | - Guangyuan Li
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anisa Prasad
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge MA, USA
| | - Sabrina Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ryan Lane
- Department of Biology, Boston University, Boston, MA, USA
| | | | - Toby Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Dawit Balcha
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marinella Gebbia
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - Jean-Claude Twizere
- TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adam Frankish
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
| | - Josh A Riback
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Juan I Fuxman Bass
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| |
Collapse
|
8
|
Miyadai M, Takada H, Shiraishi A, Kimura T, Watakabe I, Kobayashi H, Nagao Y, Naruse K, Higashijima SI, Shimizu T, Kelsh RN, Hibi M, Hashimoto H. A gene regulatory network combining Pax3/7, Sox10 and Mitf generates diverse pigment cell types in medaka and zebrafish. Development 2023; 150:dev202114. [PMID: 37823232 PMCID: PMC10617610 DOI: 10.1242/dev.202114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Neural crest cells generate numerous derivatives, including pigment cells, and are a model for studying how fate specification from multipotent progenitors is controlled. In mammals, the core gene regulatory network for melanocytes (their only pigment cell type) contains three transcription factors, Sox10, Pax3 and Mitf, with the latter considered a master regulator of melanocyte development. In teleosts, which have three to four pigment cell types (melanophores, iridophores and xanthophores, plus leucophores e.g. in medaka), gene regulatory networks governing fate specification are poorly understood, although Mitf function is considered conserved. Here, we show that the regulatory relationships between Sox10, Pax3 and Mitf are conserved in zebrafish, but the role for Mitf is more complex than previously emphasized, affecting xanthophore development too. Similarly, medaka Mitf is necessary for melanophore, xanthophore and leucophore formation. Furthermore, expression patterns and mutant phenotypes of pax3 and pax7 suggest that Pax3 and Pax7 act sequentially, activating mitf expression. Pax7 modulates Mitf function, driving co-expressing cells to differentiate as xanthophores and leucophores rather than melanophores. We propose that pigment cell fate specification should be considered to result from the combinatorial activity of Mitf with other transcription factors.
Collapse
Affiliation(s)
- Motohiro Miyadai
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroyuki Takada
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Akiko Shiraishi
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tetsuaki Kimura
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Ikuko Watakabe
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Hikaru Kobayashi
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yusuke Nagao
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Shin-ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Takashi Shimizu
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Robert N. Kelsh
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Masahiko Hibi
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hisashi Hashimoto
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
9
|
Chen J, Baxi K, Lipsitt AE, Hensch NR, Wang L, Sreenivas P, Modi P, Zhao XR, Baudin A, Robledo DG, Bandyopadhyay A, Sugalski A, Challa AK, Kurmashev D, Gilbert AR, Tomlinson GE, Houghton P, Chen Y, Hayes MN, Chen EY, Libich DS, Ignatius MS. Defining function of wild-type and three patient-specific TP53 mutations in a zebrafish model of embryonal rhabdomyosarcoma. eLife 2023; 12:e68221. [PMID: 37266578 PMCID: PMC10322150 DOI: 10.7554/elife.68221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/01/2023] [Indexed: 06/03/2023] Open
Abstract
In embryonal rhabdomyosarcoma (ERMS) and generally in sarcomas, the role of wild-type and loss- or gain-of-function TP53 mutations remains largely undefined. Eliminating mutant or restoring wild-type p53 is challenging; nevertheless, understanding p53 variant effects on tumorigenesis remains central to realizing better treatment outcomes. In ERMS, >70% of patients retain wild-type TP53, yet mutations when present are associated with worse prognosis. Employing a kRASG12D-driven ERMS tumor model and tp53 null (tp53-/-) zebrafish, we define wild-type and patient-specific TP53 mutant effects on tumorigenesis. We demonstrate that tp53 is a major suppressor of tumorigenesis, where tp53 loss expands tumor initiation from <35% to >97% of animals. Characterizing three patient-specific alleles reveals that TP53C176F partially retains wild-type p53 apoptotic activity that can be exploited, whereas TP53P153Δ and TP53Y220C encode two structurally related proteins with gain-of-function effects that predispose to head musculature ERMS. TP53P153Δ unexpectedly also predisposes to hedgehog-expressing medulloblastomas in the kRASG12D-driven ERMS-model.
Collapse
Affiliation(s)
- Jiangfei Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical UniversityWenzhouChina
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Kunal Baxi
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Amanda E Lipsitt
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Pediatrics, Division of Hematology Oncology, UT Health Sciences CenterSan AntonioUnited States
| | - Nicole Rae Hensch
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Long Wang
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Prethish Sreenivas
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Paulomi Modi
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Xiang Ru Zhao
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Antoine Baudin
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Biochemistry and Structural Biology, UT Health Sciences CenterSan AntonioUnited States
| | - Daniel G Robledo
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Abhik Bandyopadhyay
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Aaron Sugalski
- Department of Pediatrics, Division of Hematology Oncology, UT Health Sciences CenterSan AntonioUnited States
| | - Anil K Challa
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Dias Kurmashev
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Andrea R Gilbert
- Department of Pathology and Laboratory Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Gail E Tomlinson
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Pediatrics, Division of Hematology Oncology, UT Health Sciences CenterSan AntonioUnited States
| | - Peter Houghton
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Yidong Chen
- Department of Population Health Sciences, UT Health Sciences CenterSan AntonioUnited States
| | - Madeline N Hayes
- Developmental and Stem Cell Biology, Hospital for Sick ChildrenTorontoCanada
| | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - David S Libich
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Biochemistry and Structural Biology, UT Health Sciences CenterSan AntonioUnited States
| | - Myron S Ignatius
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| |
Collapse
|
10
|
Pan Q, Luo J, Jiang Y, Wang Z, Lu K, Chen T. Medaka (Oryzias latipes) Olpax6.2 acquires maternal inheritance and germ cells expression, but was functionally degenerated in the eye. Gene 2023; 872:147439. [PMID: 37094695 DOI: 10.1016/j.gene.2023.147439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Gene duplication provides raw material for the evolution of genetic and phenotypic complexity. It has remained a long-standing mystery how duplicated genes evolve into new genes by neofunctionalization via the acquisition of new expression and/or activity and simultaneous loss of the old expression and activity. Fishes have many gene duplicates from whole genome duplication, making them excellent for studying the evolution of gene duplicates. In the fish medaka (Oryzias latipes), an ancestral pax6 gene has given rise to Olpax6.1 and Olpax6.2. Here we report that medaka Olpax6.2 is evolving towards neofunctionalization. A chromosomal syntenic analysis indicated that Olpax6.1 and Olpax6.2 are structurally co-homologous to the single pax6 in other organisms. Interestingly, Olpax6.2 maintains all conserved coding exons but loses the non-coding exons of Olpax6.1, and has 4 promoters versus 8 in Olpax6.1. RT-PCR revealed that Olpax6.2 maintained expression in the brain eye, pancreas as Olpax6.1. Surprisingly, Olpax6.2 also exhibited maternal inheritance and gonadal expression by RT-PCR, in situ hybridization and RNA transcriptome analysis. The expression and distribution of Olpax6.2 is not different from Olpax6.1 in the adult brain, eye and pancreas, but exhibited overlapping and distinct expression in early embryogenesis. We show that ovarian Olpax6.2 expression occurs in female germ cells. Olpax6.2 knockout showed no obvious defect in eye development, while Olpax6.1 F0 mutant have severe defects in eye development. Thus, Olpax6.2 has acquired maternal inheritance and germ cell expression, but was functionally degenerated in the eye, making this gene as an excellent model to study the neofunctionalization of duplicated genes.
Collapse
Affiliation(s)
- Qihua Pan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, China; College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junzhi Luo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuewen Jiang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhi Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ke Lu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tiansheng Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, China; College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Krug J, Perner B, Albertz C, Mörl H, Hopfenmüller VL, Englert C. Generation of a transparent killifish line through multiplex CRISPR/Cas9mediated gene inactivation. eLife 2023; 12:81549. [PMID: 36820520 PMCID: PMC10010688 DOI: 10.7554/elife.81549] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/23/2023] [Indexed: 02/24/2023] Open
Abstract
Body pigmentation is a limitation for in vivo imaging and thus for the performance of longitudinal studies in biomedicine. A possibility to circumvent this obstacle is the employment of pigmentation mutants, which are used in fish species like zebrafish and medaka. To address the basis of aging, the short-lived African killifish Nothobranchius furzeri has recently been established as a model organism. Despite its short lifespan, N. furzeri shows typical signs of mammalian aging including telomere shortening, accumulation of senescent cells, and loss of regenerative capacity. Here, we report the generation of a transparent N. furzeri line by the simultaneous inactivation of three key loci responsible for pigmentation. We demonstrate that this stable line, named klara, can serve as a tool for different applications including behavioral experiments and the establishment of a senescence reporter by integration of a fluorophore into the cdkn1a (p21) locus and in vivo microscopy of the resulting line.
Collapse
Affiliation(s)
- Johannes Krug
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
| | - Birgit Perner
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
- Core Facility Imaging, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Carolin Albertz
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
| | - Hanna Mörl
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
| | - Vera L Hopfenmüller
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
| | - Christoph Englert
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-University JenaJenaGermany
| |
Collapse
|
12
|
Agostini F, Agostinis R, Medina DL, Bisaglia M, Greggio E, Plotegher N. The Regulation of MiTF/TFE Transcription Factors Across Model Organisms: from Brain Physiology to Implication for Neurodegeneration. Mol Neurobiol 2022; 59:5000-5023. [PMID: 35665902 PMCID: PMC9363479 DOI: 10.1007/s12035-022-02895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022]
Abstract
The microphthalmia/transcription factor E (MiTF/TFE) transcription factors are responsible for the regulation of various key processes for the maintenance of brain function, including autophagy-lysosomal pathway, lipid catabolism, and mitochondrial homeostasis. Among them, autophagy is one of the most relevant pathways in this frame; it is evolutionary conserved and crucial for cellular homeostasis. The dysregulation of MiTF/TFE proteins was shown to be involved in the development and progression of neurodegenerative diseases. Thus, the characterization of their function is key in the understanding of the etiology of these diseases, with the potential to develop novel therapeutics targeted to MiTF/TFE proteins and to the autophagic process. The fact that these proteins are evolutionary conserved suggests that their function and dysfunction can be investigated in model organisms with a simpler nervous system than the mammalian one. Building not only on studies in mammalian models but also in complementary model organisms, in this review we discuss (1) the mechanistic regulation of MiTF/TFE transcription factors; (2) their roles in different regions of the central nervous system, in different cell types, and their involvement in the development of neurodegenerative diseases, including lysosomal storage disorders; (3) the overlap and the compensation that occur among the different members of the family; (4) the importance of the evolutionary conservation of these protein and the process they regulate, which allows their study in different model organisms; and (5) their possible role as therapeutic targets in neurodegeneration.
Collapse
Affiliation(s)
| | - Rossella Agostinis
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Scuola Superiore Meridionale SSM, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Medical and Translational, Science, II University, Naples, Federico, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, Padua, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
| | | |
Collapse
|
13
|
Faisal M, Hassan M, Kumar A, Zubair M, Jamal M, Menghwar H, Saad M, Kloczkowski A. Hematopoietic Stem and Progenitor Cells (HSPCs) and Hematopoietic Microenvironment: Molecular and Bioinformatic Studies of the Zebrafish Models. Int J Mol Sci 2022; 23:7285. [PMID: 35806290 PMCID: PMC9266955 DOI: 10.3390/ijms23137285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a specialized microenvironment in a peculiar anatomic location which regulates the maintenance of stem cells and controls its functions. Recent scientific progress in experimental technologies have enabled the specific detection of epigenetic factors responsible for the maintenance and quiescence of the hematopoietic niche, which has improved our knowledge of regulatory mechanisms. The aberrant role of RNA-binding proteins and their impact on the disruption of stem cell biology have been reported by a number of recent studies. Despite recent modernization in hematopoietic microenvironment research avenues, our comprehension of the signaling mechanisms and interactive pathways responsible for integration of the hematopoietic niche is still limited. In the past few decades, zebrafish usage with regards to exploratory studies of the hematopoietic niche has expanded our knowledge for deeper understanding of novel cellular interactions. This review provides an update on the functional roles of different genetic and epigenetic factors and molecular signaling events at different sections of the hematopoietic microenvironment. The explorations of different molecular approaches and interventions of latest web-based tools being used are also outlined. This will help us to get more mechanistic insights and develop therapeutic options for the malignancies.
Collapse
Affiliation(s)
- Muhammad Faisal
- Division of Hematology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Aman Kumar
- Department of Ophthalmology and Vision Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Muhammad Zubair
- Department of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan 430072, China;
| | - Harish Menghwar
- Axe Molecular Endocrinology and Nephrology, CHU de Quebec-Research Center (CHUL), Laval University, Quebec City, QC G1V 4G2, Canada;
| | - Muhammad Saad
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43205, USA;
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
14
|
Jiang B, Wang L, Luo M, Zhu W, Fu J, Dong Z. Molecular and functional analysis of the microphthalmia-associated transcription factor (mitf) gene duplicates in red tilapia. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111257. [PMID: 35691494 DOI: 10.1016/j.cbpa.2022.111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
In vertebrates, the microphthalmia-associated transcription factor (mitf) is at the hub of the melanin synthesis regulation network. However, little information is known about its molecular characterization, expression, location, or function in skin color differentiation and variation of red tilapia. The full-length cDNA sequences (1977 bp and 1999 bp) of mitfa and mitfb, encoding polypeptides of 491 and 514 amino acids, were effectively identified from red tilapia in this study. The Mitfa and Mitfb sequences of red tilapia clustered first with O. aureus, then with other teleost fish, according to phylogenetic analysis. Mitfa and mitfb mRNA were highly expressed in the brain, dorsal skin and eye tissues using quantitative real-time PCR. The mRNA expressions of mitfa and mitfb were the highest in the cleavage stage during the early development of red tilapia. Among three different colors of red tilapia, the expression levels of mitfa and mitfb were highest in the PB (pink with scattered black spots) dorsal skin. After overwintering, the mitfa and mitfb mRNA expressions were high in the dorsal skin of PB (color changed from pink to black). Mitfa and mitfb were mostly found in the epidermal layer of the dorsal skin, according to in situ hybridization (ISH) analysis. After injecting mitf-dsRNA duplicates along the tail vein of red tilapia, the activity of tyrosinase and the level of melanin in the dorsal skin both decreased significantly. The mRNA expressions of mitfa and its downstream genes (tyrb, tyrp1a and dct) decreased, whereas the mRNA expression of mitfb increased after mitfa-dsRNA injection. The mRNA expressions of mitfb, tyrb, tyrp1a and dct decreased, whereas the mRNA expression of mitfa increased after injecting mitfb-dsRNA. These findings suggest that mitf gene duplicates may play an important role in red tilapia skin color differentiation and variation via the melanogenesis pathway.
Collapse
Affiliation(s)
- Bingjie Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
15
|
Jiang B, Wang L, Luo M, Fu J, Zhu W, Liu W, Dong Z. Transcriptome analysis of skin color variation during and after overwintering of Malaysian red tilapia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:669-682. [PMID: 35419737 DOI: 10.1007/s10695-022-01073-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
The commercial value of red tilapia is hampered by variations in skin color during overwintering. In this study, three types of skin of red tilapia, including the skin remained pink color during and after overwintering (P), the skin changed from pink color to black color during overwintering and remained black color after overwintering (P-B), and the skin changed from pink color to black color during overwintering but recovered to pink color when the temperature rose after overwintering (P-B-P), were used to analyze their molecular mechanisms of color variation. The transcriptome results revealed that the P, P-B, and P-B-P libraries had 43, 42, and 43 million clean reads, respectively. The top 10 abundance mRNAs and specific mRNAs (specificity measure SPM > 0.9) were screened. After comparing intergroup gene expression levels, there were 2528, 1924, and 1939 differentially expressed genes (DEGs) between P-B-P and P-B, P-B-P and P, and P-B and P, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of color-related mRNAs showed that a number of DEGs, including tyrp1, tyr, pmel, mitf, mc1r, asip, tat, hpdb, and foxd3, might play a potential role in pigmentation. Additionally, the co-expression patterns of genes were detected within the pigment-related pathways by the PPI network from P-B vs. P group. Furthermore, DEGs from the apoptosis and autophagy pathways, such as baxα, beclin1, and atg7, might be involved in the fading of red tilapia melanocytes. The findings will aid in understanding the molecular mechanism underlying skin color variation in red tilapia during and after overwintering as well as lay a foundation for future research aimed at improving red tilapia skin color characteristics.
Collapse
Affiliation(s)
- Bingjie Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi, 214081, Jiangsu, China
| | - Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi, 214081, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi, 214081, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi, 214081, Jiangsu, China
| | - Wei Liu
- AGCU ScienTech Incorporation, Wuxi, 214174, Jiangsu, China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi, 214081, Jiangsu, China.
| |
Collapse
|
16
|
Bian C, Li R, Wen Z, Ge W, Shi Q. Phylogenetic Analysis of Core Melanin Synthesis Genes Provides Novel Insights Into the Molecular Basis of Albinism in Fish. Front Genet 2021; 12:707228. [PMID: 34422008 PMCID: PMC8371935 DOI: 10.3389/fgene.2021.707228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Melanin is the most prevalent pigment in animals. Its synthesis involves a series of functional genes. Particularly, teleosts have more copies of these genes related to the melanin synthesis than tetrapods. Despite the increasing number of available vertebrate genomes, a few systematically genomic studies were reported to identify and compare these core genes for the melanin synthesis. Here, we performed a comparative genomic analysis on several core genes, including tyrosinase genes (tyr, tyrp1, and tyrp2), premelanosome protein (pmel), microphthalmia-associated transcription factor (mitf), and solute carrier family 24 member 5 (slc24a5), based on 90 representative vertebrate genomes. Gene number and mutation identification suggest that loss-of-function mutations in these core genes may interact to generate an albinism phenotype. We found nonsense mutations in tyrp1a and pmelb of an albino golden-line barbel fish, in pmelb of an albino deep-sea snailfish (Pseudoliparis swirei), in slc24a5 of cave-restricted Mexican tetra (Astyanax mexicanus, cavefish population), and in mitf of a transparent icefish (Protosalanx hyalocranius). Convergent evolution may explain this phenomenon since nonsense mutations in these core genes for melanin synthesis have been identified across diverse albino fishes. These newly identified nonsense mutations and gene loss will provide molecular guidance for ornamental fish breeding, further enhancing our in-depth understanding of human skin coloration.
Collapse
Affiliation(s)
- Chao Bian
- Faculty of Health Sciences, Centre of Reproduction, Development and Aging, University of Macau, Taipa, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ruihan Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhengyong Wen
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Ge
- Faculty of Health Sciences, Centre of Reproduction, Development and Aging, University of Macau, Taipa, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Wang L, Sun F, Wan ZY, Ye B, Wen Y, Liu H, Yang Z, Pang H, Meng Z, Fan B, Alfiko Y, Shen Y, Bai B, Lee MSQ, Piferrer F, Schartl M, Meyer A, Yue GH. Genomic Basis of Striking Fin Shapes and Colors in the Fighting Fish. Mol Biol Evol 2021; 38:3383-3396. [PMID: 33871625 PMCID: PMC8321530 DOI: 10.1093/molbev/msab110] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Resolving the genomic basis underlying phenotypic variations is a question of great importance in evolutionary biology. However, understanding how genotypes determine the phenotypes is still challenging. Centuries of artificial selective breeding for beauty and aggression resulted in a plethora of colors, long-fin varieties, and hyper-aggressive behavior in the air-breathing Siamese fighting fish (Betta splendens), supplying an excellent system for studying the genomic basis of phenotypic variations. Combining whole-genome sequencing, quantitative trait loci mapping, genome-wide association studies, and genome editing, we investigated the genomic basis of huge morphological variation in fins and striking differences in coloration in the fighting fish. Results revealed that the double tail, elephant ear, albino, and fin spot mutants each were determined by single major-effect loci. The elephant ear phenotype was likely related to differential expression of a potassium ion channel gene, kcnh8. The albinotic phenotype was likely linked to a cis-regulatory element acting on the mitfa gene and the double-tail mutant was suggested to be caused by a deletion in a zic1/zic4 coenhancer. Our data highlight that major loci and cis-regulatory elements play important roles in bringing about phenotypic innovations and establish Bettas as new powerful model to study the genomic basis of evolved changes.
Collapse
Affiliation(s)
- Le Wang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Fei Sun
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Zi Yi Wan
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Baoqing Ye
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Yanfei Wen
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Huiming Liu
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Zituo Yang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Hongyan Pang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Zining Meng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Fan
- Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang, China
| | - Yuzer Alfiko
- Biotech Lab, Wilmar International, Jakarta, Indonesia
| | - Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Bin Bai
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - May Shu Qing Lee
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Francesc Piferrer
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gen Hua Yue
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
18
|
Caioni G, d'Angelo M, Panella G, Merola C, Cimini A, Amorena M, Benedetti E, Perugini M. Environmentally relevant concentrations of triclocarban affect morphological traits and melanogenesis in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105842. [PMID: 33964520 DOI: 10.1016/j.aquatox.2021.105842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Human activity is responsible for producing several chemical compounds, which contaminate the aquatic environment and adversely influence the survival of aquatic species and indirectly human health. Triclocarban (TCC) belongs to the category of emerging pollutants and its presence in aquatic environment is justified by its wide use as antimicrobial agent in personal care products. The concern about this chemical is due to the risk of persistence in water and soils and bioaccumulation, which contributes to human exposition through the contaminated food consumption. The present study evaluated the developmental toxicity of TCC in zebrafish early-life stages starting with the assessment of acute toxicity and then focusing on the integrative analyses of the observed phenotype on zebrafish development. For this purpose, lethal and sublethal alterations of zebrafish embryos were investigated by the Fish Embryo Acute Toxicity Tests (FET tests). Subsequently, two concentrations of TCC were used to investigate the morphometric features and defects in larvae developmental pigmentation: an environmentally relevant (5μg/L) and toxicological (50μg/L), derived from the No Observed Effect Concentration (NOEC) value concentration. Furthermore, the expression levels of a key transcription factor for melanocyte differentiation and melanin syntheses, such as mitfa (microphthalmia-associated transcription factor) and tyr (tyrosinase) and its activity, were evaluated.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy.
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy.
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy.
| | - Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy.
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA.
| | - Michele Amorena
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy.
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy.
| |
Collapse
|
19
|
Ullate-Agote A, Tzika AC. Characterization of the Leucistic Texas Rat Snake Pantherophis obsoletus. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.583136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Albinism and leucism are phenotypes resulting from impaired melanin pigmentation in the skin and skin appendages. However, melanin pigmentation of eyes remains unaffected in leucism. Here, using transmission electron microscopy, we show that the leucistic morph of the Texas rat snake (Pantherophis obsoletus lindheimeri) lacks both melanophores and xanthophores in its skin and exhibits a uniform ivory white color generated by iridophores and collagen fibers. In addition, we sequenced the full genome of a leucistic individual and obtained a highly-contiguous near-chromosome quality assembly of 1.69 Gb with an N50 of 14.5 Mb and an L50 of 29 sequences. Using a candidate-gene approach, we then identify in the leucistic genome a single-nucleotide deletion that generates a frameshift and a premature termination codon in the melanocyte inducing transcription factor (MITF) gene. This mutation shortens the translated protein from 574 to 286 amino acids, removing the helix-loop-helix DNA-binding domain that is highly conserved among vertebrates. Genotyping leucistic animals of independent lineages showed that not all leucistic individuals carry this single-nucleotide deletion. Subsequent gene expression analyses reveal that all leucistic individuals that we analyzed exhibit a significantly decreased expression of MITF. We thus suggest that mutations affecting the regulation and, in some cases, the coding sequence of MITF, the former probably predating the latter, could be associated with the leucistic phenotype in Texas rat snakes. MITF is involved in the development and survival of melanophores in vertebrates. In zebrafish, a classical model species for pigmentation that undergoes metamorphosis, larvae and adults of homozygous mitfa mutants lack melanophores, show an excess of iridophores and exhibit reduced yellow pigmentation. On the contrary, in the leucistic Texas rat snake, a non-metamorphic species, only iridophores persist. Our results suggest that fate determination of neural-crest derived melanophores and xanthophores, but not of iridophores, could require the expression of MITF during snake embryonic development.
Collapse
|
20
|
MITF p.Arg217Thr Variant Identified in a Han Chinese Family with Tietz/Waardenburg Syndrome. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4381272. [PMID: 33506017 PMCID: PMC7815406 DOI: 10.1155/2021/4381272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 01/09/2023]
Abstract
Waardenburg syndrome (WS) is a group of rare genetic disorders characterized by hearing loss, changes in coloring of hair, skin, and eyes, and alterations in the shape of the face. Tietz syndrome is another rare disorder which presented similar phenotypes to WS. Patients with Tietz/Waardenburg syndrome often present with pale blue eyes, albino skin, and distinctive hair coloring, such as a patch of white hair or hair that prematurely turns gray. At present, more than six candidate genes are responsible for four types of Waardenburg syndrome and Tietz syndrome. This study is aimed at identifying the pathogenic gene variants in a three-generation Han Chinese family with hearing loss, blue-gray iris, albino skin, and white hair. In order to discover the molecular genetic lesion underlying the disease phenotype, whole exome sequencing in the proband, with Tietz/Waardenburg syndrome phenotypes, of a Han Chinese family from HeBei, China, was conducted. A novel heterozygous c.650G>C/p.Arg217Thr variant in melanocyte inducing transcription factor (MITF) was identified. Sanger sequencing further validated that this mutation existed in three affected individuals and absent in healthy family members. Bioinformatics analysis predicted that this mutation was deleterious. Our study further identified the genetic lesion of the family. Simultaneously, our study may also contribute to genetic counseling, embryonic screening of in vitro fertilized embryos, and prenatal genetic diagnosis of patients with Tietz/Waardenburg syndrome, especially for the proband, unmarried and unpregnant women, to reduce familial transmission in this Han Chinese family.
Collapse
|
21
|
Niu J, Zhao W, Lu DQ, Xie JJ, He XS, Fang HH, Liao SY. Dual-Function Analysis of Astaxanthin on Golden Pompano ( Trachinotus ovatus) and Its Role in the Regulation of Gastrointestinal Immunity and Retinal Mitochondrial Dysfunction Under Hypoxia Conditions. Front Physiol 2020; 11:568462. [PMID: 33335485 PMCID: PMC7736049 DOI: 10.3389/fphys.2020.568462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
The present study investigated the potential mechanisms of astaxanthin in the regulation of gastrointestinal immunity and retinal mitochondrial function of golden pompano (Trachinotus ovatus). Triplicate groups of juvenile T. ovatus (mean initial weight: 6.03 ± 0.01 g) were fed one of six diets (D1, D2, D3, D4, D5, and D6) for 8 weeks, with each diet containing various concentrations of astaxanthin (0, 0.0005, 0.001, 0.005, 0.01, or 0.1%, respectively). Growth performance of fish fed the D2–D5 diets was higher than that of fish fed the D1 diet; however, growth performance and survival of fish deteriorated sharply in fish fed the D6 diet. Gut villus in fish fed the D2–D5 diets were significantly longer and wider than that of fish fed the D6 diet. Feeding with D2–D5 diets led to increased abundance of Bacillus, Pseudomonas, Oceanobacillus, Lactococcus, Halomonas, Lactobacillus, and Psychrobacter while abundance of Vibrio and Bacterium decreased. Additionally, feeding with the D6 diet resulted in a sharp decline in Pseudomonas and Lactobacillus abundance and a sharp increase in Vibrio abundance. A low dissolved oxygen environment (DO, 1.08 mg/L) was conducted for 10 h after the rearing trial. No fish mortality was observed for any of the diet treatments. Lysozyme (LZY) activity in fish fed the D6 diet decreased sharply and was significantly lower than that in other groups. ROS production also decreased sharply in fish fed the D6 diet. Moreover, the conjunctiva and sclera in the fish fed the D6 diet were indistinguishable. Suitable dietary astaxanthin supplementation levels (0.005–0.1%) exerting a neuroprotective effect from low dissolved oxygen environments is due to up-regulated expression of anti-apoptotic factors, such as phosphorylated Bcl-2-associated death promoter (pBAD), phosphorylated glycogen synthase kinase-3β (pGSK-3β), Bcl-2 extra large (Bcl-xL), and down-regulated expression of Bcl-2-associated X protein (Bax) pro-apoptotic factor in retinas. Furthermore, suitable dietary astaxanthin levels (0.0005–0.01%) suppressed up-regulation of critical mitochondrial components, such as peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), mitochondrial transcription factor A (TFAM), and mitochondrial DNA (mtDNA), while excessive astaxanthin supplementation produces the opposite effect. In brief, high-dose astaxanthin arouses and aggravates low dissolved oxygen-induced inflammation, oxidative stress, intestinal disorder, retinal apoptosis, and retinal mitochondrial dysfunction in T. ovatus. Second-degree polynomial regression of WG indicated that the optimum dietary astaxanthin for juvenile T. ovatus is 0.049%.
Collapse
Affiliation(s)
- Jin Niu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan-Qi Lu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Jun Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan-Shu He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao-Hang Fang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi-Yu Liao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Vu HN, Dilshat R, Fock V, Steingrímsson E. User guide to MiT-TFE isoforms and post-translational modifications. Pigment Cell Melanoma Res 2020; 34:13-27. [PMID: 32846025 DOI: 10.1111/pcmr.12922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
The microphthalmia-associated transcription factor (MITF) is at the core of melanocyte and melanoma fate specification. The related factors TFEB and TFE3 have been shown to be instrumental for transcriptional regulation of genes involved in lysosome biogenesis and autophagy, cellular processes important for mediating nutrition signals and recycling of cellular materials, in many cell types. The MITF, TFEB, TFE3, and TFEC proteins are highly related. They share many structural and functional features and are targeted by the same signaling pathways. However, the existence of several isoforms of each factor and the increasing number of residues shown to be post-translationally modified by various signaling pathways poses a difficulty in indexing amino acid residues in different isoforms across the different proteins. Here, we provide a resource manual to cross-reference amino acids and post-translational modifications in all isoforms of the MiT-TFE family in humans, mice, and zebrafish and summarize the protein accession numbers for each isoform of these factors in the different genomic databases. This will facilitate future studies on the signaling pathways that regulate different isoforms of the MiT-TFE transcription factor family.
Collapse
Affiliation(s)
- Hong Nhung Vu
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Ramile Dilshat
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Valerie Fock
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
23
|
Liang Y, Meyer A, Kratochwil CF. Neural innervation as a potential trigger of morphological color change and sexual dimorphism in cichlid fish. Sci Rep 2020; 10:12329. [PMID: 32704058 PMCID: PMC7378239 DOI: 10.1038/s41598-020-69239-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Many species change their coloration during ontogeny or even as adults. Color change hereby often serves as sexual or status signal. The cellular and subcellular changes that drive color change and how they are orchestrated have been barely understood, but a deeper knowledge of the underlying processes is important to our understanding of how such plastic changes develop and evolve. Here we studied the color change of the Malawi golden cichlid (Melanchromis auratus). Females and subordinate males of this species are yellow and white with two prominent black stripes (yellow morph; female and non-breeding male coloration), while dominant males change their color and completely invert this pattern with the yellow and white regions becoming black, and the black stripes becoming white to iridescent blue (dark morph; male breeding coloration). A comparison of the two morphs reveals that substantial changes across multiple levels of biological organization underlie this polyphenism. These include changes in pigment cell (chromatophore) number, intracellular dispersal of pigments, and tilting of reflective platelets (iridosomes) within iridophores. At the transcriptional level, we find differences in pigmentation gene expression between these two color morphs but, surprisingly, 80% of the genes overexpressed in the dark morph relate to neuronal processes including synapse formation. Nerve fiber staining confirms that scales of the dark morph are indeed innervated by 1.3 to 2 times more axonal fibers. Our results might suggest an instructive role of nervous innervation orchestrating the complex cellular and ultrastructural changes that drive the morphological color change of this cichlid species.
Collapse
Affiliation(s)
- Yipeng Liang
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| | - Claudius F Kratochwil
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| |
Collapse
|
24
|
Sinagoga KL, Larimer-Picciani AM, George SM, Spencer SA, Lister JA, Gross JM. Mitf-family transcription factor function is required within cranial neural crest cells to promote choroid fissure closure. Development 2020; 147:dev187047. [PMID: 32541011 PMCID: PMC7375471 DOI: 10.1242/dev.187047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
A crucial step in eye development is the closure of the choroid fissure (CF), a transient structure in the ventral optic cup through which vasculature enters the eye and ganglion cell axons exit. Although many factors have been identified that function during CF closure, the molecular and cellular mechanisms mediating this process remain poorly understood. Failure of CF closure results in colobomas. Recently, MITF was shown to be mutated in a subset of individuals with colobomas, but how MITF functions during CF closure is unknown. To address this issue, zebrafish with mutations in mitfa and tfec, two members of the Mitf family of transcription factors, were analyzed and their functions during CF closure determined. mitfa;tfec mutants possess severe colobomas and our data demonstrate that Mitf activity is required within cranial neural crest cells (cNCCs) during CF closure. In the absence of Mitf function, cNCC migration and localization in the optic cup are perturbed. These data shed light on the cellular mechanisms underlying colobomas in individuals with MITF mutations and identify a novel role for Mitf function in cNCCs during CF closure.
Collapse
Affiliation(s)
- Katie L Sinagoga
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Alessandra M Larimer-Picciani
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Stephanie M George
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Samantha A Spencer
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - James A Lister
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
25
|
DiNapoli SE, Martinez-McFaline R, Gribbin CK, Wrighton PJ, Balgobin CA, Nelson I, Leonard A, Maskin CR, Shwartz A, Quenzer ED, Mailhiot D, Kao C, McConnell SC, de Jong JLO, Goessling W, Houvras Y. Synthetic CRISPR/Cas9 reagents facilitate genome editing and homology directed repair. Nucleic Acids Res 2020; 48:e38. [PMID: 32064511 PMCID: PMC7144937 DOI: 10.1093/nar/gkaa085] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022] Open
Abstract
CRISPR/Cas9 has become a powerful tool for genome editing in zebrafish that permits the rapid generation of loss of function mutations and the knock-in of specific alleles using DNA templates and homology directed repair (HDR). We examined the efficiency of synthetic, chemically modified gRNAs and demonstrate induction of indels and large genomic deletions in combination with recombinant Cas9 protein. We developed an in vivo genetic assay to measure HDR efficiency and we utilized this assay to test the effect of altering template design on HDR. Utilizing synthetic gRNAs and linear dsDNA templates, we successfully performed knock-in of fluorophores at multiple genomic loci and demonstrate transmission through the germline at high efficiency. We demonstrate that synthetic HDR templates can be used to knock-in bacterial nitroreductase (ntr) to facilitate lineage ablation of specific cell types. Collectively, our data demonstrate the utility of combining synthetic gRNAs and dsDNA templates to perform homology directed repair and genome editing in vivo.
Collapse
Affiliation(s)
- Sara E DiNapoli
- Department of Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA.,Meyer Cancer Center, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA
| | - Raul Martinez-McFaline
- Department of Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA.,Meyer Cancer Center, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA
| | - Caitlin K Gribbin
- Department of Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA.,Meyer Cancer Center, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA
| | - Paul J Wrighton
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Courtney A Balgobin
- Department of Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA.,Meyer Cancer Center, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA
| | - Isabel Nelson
- Department of Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA.,Meyer Cancer Center, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA
| | - Abigail Leonard
- Department of Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA.,Meyer Cancer Center, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA
| | - Carolyn R Maskin
- Department of Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA.,Meyer Cancer Center, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA
| | - Arkadi Shwartz
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eleanor D Quenzer
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darya Mailhiot
- Department of Surgery, Animal Resources Center, University of Chicago, Chicago, IL, USA
| | - Clara Kao
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Sean C McConnell
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Jill L O de Jong
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Wolfram Goessling
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yariv Houvras
- Department of Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA.,Meyer Cancer Center, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
26
|
Bian C, Chen W, Ruan Z, Hu Z, Huang Y, Lv Y, Xu T, Li J, Shi Q, Ge W. Genome and Transcriptome Sequencing of casper and roy Zebrafish Mutants Provides Novel Genetic Clues for Iridophore Loss. Int J Mol Sci 2020; 21:ijms21072385. [PMID: 32235607 PMCID: PMC7177266 DOI: 10.3390/ijms21072385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
casper has been a widely used transparent mutant of zebrafish. It possesses a combined loss of reflective iridophores and light-absorbing melanophores, which gives rise to its almost transparent trunk throughout larval and adult stages. Nevertheless, genomic causal mutations of this transparent phenotype are poorly defined. To identify the potential genetic basis of this fascinating morphological phenotype, we constructed genome maps by performing genome sequencing of 28 zebrafish individuals including wild-type AB strain, roy orbison (roy), and casper mutants. A total of 4.3 million high-quality and high-confidence homozygous single nucleotide polymorphisms (SNPs) were detected in the present study. We also identified a 6.0-Mb linkage disequilibrium block specifically in both roy and casper that was composed of 39 functional genes, of which the mpv17 gene was potentially involved in the regulation of iridophore formation and maintenance. This is the first report of high-confidence genomic mutations in the mpv17 gene of roy and casper that potentially leads to defective splicing as one major molecular clue for the iridophore loss. Additionally, comparative transcriptomic analyses of skin tissues from the AB, roy and casper groups revealed detailed transcriptional changes of several core genes that may be involved in melanophore and iridophore degeneration. In summary, our updated genome and transcriptome sequencing of the casper and roy mutants provides novel genetic clues for the iridophore loss. These new genomic variation maps will offer a solid genetic basis for expanding the zebrafish mutant database and in-depth investigation into pigmentation of animals.
Collapse
Affiliation(s)
- Chao Bian
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (C.B.); (W.C.); (Z.H.)
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
| | - Weiting Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (C.B.); (W.C.); (Z.H.)
- School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Zhe Hu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (C.B.); (W.C.); (Z.H.)
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Yunyun Lv
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
| | - Tengfei Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- Correspondence: (Q.S.); (W.G.); Tel.: +86-185-6627-9826 (Q.S.); +853-8822-4998 (W.G.)
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (C.B.); (W.C.); (Z.H.)
- Correspondence: (Q.S.); (W.G.); Tel.: +86-185-6627-9826 (Q.S.); +853-8822-4998 (W.G.)
| |
Collapse
|
27
|
Patterson LB, Parichy DM. Zebrafish Pigment Pattern Formation: Insights into the Development and Evolution of Adult Form. Annu Rev Genet 2019; 53:505-530. [DOI: 10.1146/annurev-genet-112618-043741] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vertebrate pigment patterns are diverse and fascinating adult traits that allow animals to recognize conspecifics, attract mates, and avoid predators. Pigment patterns in fish are among the most amenable traits for studying the cellular basis of adult form, as the cells that produce diverse patterns are readily visible in the skin during development. The genetic basis of pigment pattern development has been most studied in the zebrafish, Danio rerio. Zebrafish adults have alternating dark and light horizontal stripes, resulting from the precise arrangement of three main classes of pigment cells: black melanophores, yellow xanthophores, and iridescent iridophores. The coordination of adult pigment cell lineage specification and differentiation with specific cellular interactions and morphogenetic behaviors is necessary for stripe development. Besides providing a nice example of pattern formation responsible for an adult trait of zebrafish, stripe-forming mechanisms also provide a conceptual framework for posing testable hypotheses about pattern diversification more broadly. Here, we summarize what is known about lineages and molecular interactions required for pattern formation in zebrafish, we review some of what is known about pattern diversification in Danio, and we speculate on how patterns in more distant teleosts may have evolved to produce a stunningly diverse array of patterns in nature.
Collapse
Affiliation(s)
| | - David M. Parichy
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| |
Collapse
|
28
|
Qi D, Chao Y, Zhang C, Wang Z, Wang W, Chen Q, Zheng Z, Zhang Z. Duplication of toll-like receptor 22 in teleost fishes. FISH & SHELLFISH IMMUNOLOGY 2019; 94:752-760. [PMID: 31580937 DOI: 10.1016/j.fsi.2019.09.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
The TLRs of teleost fishes have distinct features and are highly diverse, but the duplication characteristics and expression patterns of the tlr22 gene remain unclear. Here, we identified paralogous tlr22 genes in 13 teleost fishes by screening available fish genomic resources and using molecular cloning. We then conducted comprehensive bioinformatics analyses and investigated spatiotemporal differences in the expression patterns of the tlr22 genes in G. eckloni. The results indicated that more than three paralogous tlr22 genes were possessed by some teleost fishes. Of these, tlr22c is specific to some subfamilies of the Cyprinidae (e.g., Barbinae, Cyprininae, Schizothoracinae, and Leuciscinae). Phylogenetic and syntenic analyses showed that the paralogous tlr22 genes originated from two single-gene duplication events. Molecular clock calculations dated the two gene duplication events at 49.5 and 39.3 MYA, which is before the common carp-specific genome duplication event and well after the fish-specific genome duplication. Gene duplication of tlr22 was followed by gene loss or pseudogene events in certain lineages. Spatiotemporal expression differences between the three duplicated tlr22 genes from G. eckloni suggested that these genes diverged functionally after gene duplication.
Collapse
Affiliation(s)
- Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| | - Yan Chao
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining, 810016, China
| | - Cunfang Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Zhenji Wang
- Fishery Environmental Monitoring Station of Qinghai Province, Xining, 810012, China
| | - Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Qichang Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Ziqin Zheng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China; Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining, 810016, China
| | - Zhao Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China; Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining, 810016, China
| |
Collapse
|
29
|
Heriniaina RM, Dong J, Kalavagunta PK, Wu HL, Yan DS, Shang J. Effects of six compounds with different chemical structures on melanogenesis. Chin J Nat Med 2018; 16:766-773. [PMID: 30322610 DOI: 10.1016/s1875-5364(18)30116-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Indexed: 01/29/2023]
Abstract
Several chemical compounds can restore pigmentation in vitiligo through mechanisms that vary according to disease etiology. In the present study, we investigated the melanogenic activity of six structurally distinct compounds, namely, scopoletin, kaempferol, chrysin, vitamin D3, piperine, and 6-benzylaminopurine. We determined their effectiveness, toxicity, and mechanism of action for stimulating pigmentation in B16F10 melanoma cells and in a zebrafish model. The melanogenic activity of 6-benzylaminopurine, the compound identified as the most potent, was further verified by measuring green fluorescent protein concentration in tyrp1 a: eGFP (tyrosinase-related protein 1) zebrafish and mitfa: eGFP (microphthalmia associated transcription factor) zebrafish and antioxidative activity. All the tested compounds were found to enhance melanogenesis responses both in vivo and in vitro at their respective optimal concentration by increasing melanin content and expression of TYR and MITF. 6-Benzyamino-purine showed the strongest re-pigmentation action at a concentration of 20 μmol·L-1in vivo and 100 μmol·L-1in vitro, and up-regulated the strong fluorescence expression of green fluorescent protein in tyrp1a: eGFP and mitfa: eGFP zebrafish in vitro. However, its relative anti-oxidative activity was found to be very low. Overall, our results indicated that 6-benzylaminopurine stimulated pigmentation through a direct mechanism, by increasing melanin content via positive regulation of tyrosinase activity in vitro, as well as up-regulating the expression of the green fluorescent protein in transgenic zebrafish in vivo.
Collapse
Affiliation(s)
- Rakotomalala Manda Heriniaina
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
| | - Jing Dong
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325035, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325035, China
| | - Praveen Kumar Kalavagunta
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
| | - Hua-Li Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
| | - Dong-Sheng Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325035, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325035, China
| | - Jing Shang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
30
|
Petratou K, Subkhankulova T, Lister JA, Rocco A, Schwetlick H, Kelsh RN. A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest. PLoS Genet 2018; 14:e1007402. [PMID: 30286071 PMCID: PMC6191144 DOI: 10.1371/journal.pgen.1007402] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/16/2018] [Accepted: 08/22/2018] [Indexed: 12/29/2022] Open
Abstract
Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells (chromatophores), but the molecular mechanisms allowing balanced selection of each fate remain unknown. In zebrafish, melanocytes, iridophores and xanthophores, the three chromatophore lineages, are thought to share progenitors and so lend themselves to investigating the complex gene regulatory networks (GRNs) underlying fate segregation of NC progenitors. Although the core GRN governing melanocyte specification has been previously established, those guiding iridophore and xanthophore development remain elusive. Here we focus on the iridophore GRN, where mutant phenotypes identify the transcription factors Sox10, Tfec and Mitfa and the receptor tyrosine kinase, Ltk, as key players. Here we present expression data, as well as loss and gain of function results, guiding the derivation of an initial iridophore specification GRN. Moreover, we use an iterative process of mathematical modelling, supplemented with a Monte Carlo screening algorithm suited to the qualitative nature of the experimental data, to allow for rigorous predictive exploration of the GRN dynamics. Predictions were experimentally evaluated and testable hypotheses were derived to construct an improved version of the GRN, which we showed produced outputs consistent with experimentally observed gene expression dynamics. Our study reveals multiple important regulatory features, notably a sox10-dependent positive feedback loop between tfec and ltk driving iridophore specification; the molecular basis of sox10 maintenance throughout iridophore development; and the cooperation between sox10 and tfec in driving expression of pnp4a, a key differentiation gene. We also assess a candidate repressor of mitfa, a melanocyte-specific target of sox10. Surprisingly, our data challenge the reported role of Foxd3, an established mitfa repressor, in iridophore regulation. Our study builds upon our previous systems biology approach, by incorporating physiologically-relevant parameter values and rigorous evaluation of parameter values within a qualitative data framework, to establish for the first time the core GRN guiding specification of the iridophore lineage.
Collapse
Affiliation(s)
- Kleio Petratou
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Tatiana Subkhankulova
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| | - James A. Lister
- Department of Human and Molecular Genetics and Massey Cancer Center, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Andrea Rocco
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Hartmut Schwetlick
- Department of Mathematical Sciences, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| |
Collapse
|
31
|
Callahan SJ, Tepan S, Zhang YM, Lindsay H, Burger A, Campbell NR, Kim IS, Hollmann TJ, Studer L, Mosimann C, White RM. Cancer modeling by Transgene Electroporation in Adult Zebrafish (TEAZ). Dis Model Mech 2018; 11:dmm.034561. [PMID: 30061297 PMCID: PMC6177007 DOI: 10.1242/dmm.034561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
Transgenic animals are invaluable for modeling cancer genomics, but often require complex crosses of multiple germline alleles to obtain the desired combinations. Zebrafish models have advantages in that transgenes can be rapidly tested by mosaic expression, but typically lack spatial and temporal control of tumor onset, which limits their utility for the study of tumor progression and metastasis. To overcome these limitations, we have developed a method referred to as Transgene Electroporation in Adult Zebrafish (TEAZ). TEAZ can deliver DNA constructs with promoter elements of interest to drive fluorophores, oncogenes or CRISPR-Cas9-based mutagenic cassettes in specific cell types. Using TEAZ, we created a highly aggressive melanoma model via Cas9-mediated inactivation of Rb1 in the context of BRAFV600E in spatially constrained melanocytes. Unlike prior models that take ∼4 months to develop, we found that TEAZ leads to tumor onset in ∼7 weeks, and these tumors develop in fully immunocompetent animals. As the resulting tumors initiated at highly defined locations, we could track their progression via fluorescence, and documented deep invasion into tissues and metastatic deposits. TEAZ can be deployed to other tissues and cell types, such as the heart, with the use of suitable transgenic promoters. The versatility of TEAZ makes it widely accessible for rapid modeling of somatic gene alterations and cancer progression at a scale not achievable in other in vivo systems.
Collapse
Affiliation(s)
- Scott J Callahan
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics and Department of Medicine, New York, NY 10065, USA.,Memorial Sloan Kettering Cancer Center, Developmental Biology, New York, NY 10065, USA.,Memorial Sloan Kettering Cancer Center, Gerstner Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Stephanie Tepan
- Memorial Sloan Kettering Cancer Center, 2017 Summer Clinical Oncology Research Experience (SCORE) Program, New York, NY 10065, USA.,Hunter College, New York, NY 10065, USA
| | - Yan M Zhang
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics and Department of Medicine, New York, NY 10065, USA
| | - Helen Lindsay
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich 8057, Switzerland
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Nathaniel R Campbell
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Isabella S Kim
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics and Department of Medicine, New York, NY 10065, USA
| | - Travis J Hollmann
- Memorial Sloan Kettering Cancer Center, Pathology, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics and Department of Medicine, New York, NY 10065, USA .,Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
32
|
Cooper CD, Erickson SD, Yin S, Moravec T, Peh B, Curran K. Protein Kinase A Signaling Inhibits Iridophore Differentiation in Zebrafish. J Dev Biol 2018; 6:jdb6040023. [PMID: 30261583 PMCID: PMC6315511 DOI: 10.3390/jdb6040023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/08/2018] [Accepted: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
In zebrafish (Danio rerio), iridophores are specified from neural crest cells and represent a tractable system for examining mechanisms of cell fate and differentiation. Using this system, we have investigated the role of cAMP protein kinase A (PKA) signaling in pigment cell differentiation. Activation of PKA with the adenylyl cyclase activator forskolin reduces the number of differentiated iridophores in wildtype larvae, with insignificant changes to melanophore number. Inhibition of PKA with H89 significantly increases iridophore number, supporting a specific role for PKA during iridophore development. To determine the effects of altering PKA activity on iridophore and melanophore gene expression, we examined expression of iridophore marker pnp4a, melanophore marker mitfa, and the mitfa repressor foxd3. Consistent with our cell counts, forskolin significantly decreased pnp4a expression as detected by in situ hybridization and quantification of pnp4a+ cells. Forskolin had the opposite effect on mitfa and foxd3 gene activity, increasing the area of expression. As mitfa/nacre mutants have extra iridophores as compared to wildtype larvae, we examined the function of mitfa during PKA-sensitive iridophore development. Forskolin treatment of mitfa/nacre mutants did significantly reduce the number of iridophores but to a lesser extent than that observed in treated wildtype larvae. Taken together, our data suggests that PKA inhibits iridophore development in a subset of iridophore precursors, potentially via a foxd3-independent pathway.
Collapse
Affiliation(s)
- Cynthia D Cooper
- School of Molecular Biosciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Steve D Erickson
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Scott Yin
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Trevor Moravec
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Brian Peh
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Kevin Curran
- Department of Biology, University of San Diego, San Diego, CA 92110, USA.
| |
Collapse
|
33
|
Severi KE, Böhm UL, Wyart C. Investigation of hindbrain activity during active locomotion reveals inhibitory neurons involved in sensorimotor processing. Sci Rep 2018; 8:13615. [PMID: 30206288 PMCID: PMC6134141 DOI: 10.1038/s41598-018-31968-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/30/2018] [Indexed: 11/14/2022] Open
Abstract
Locomotion in vertebrates relies on motor circuits in the spinal cord receiving inputs from the hindbrain to execute motor commands while dynamically integrating proprioceptive sensory feedback. The spatial organization of the neuronal networks driving locomotion in the hindbrain and role of inhibition has not been extensively investigated. Here, we mapped neuronal activity with single-cell resolution in the hindbrain of restrained transgenic Tg(HuC:GCaMP5G) zebrafish larvae swimming in response to whole-field visual motion. We combined large-scale population calcium imaging in the hindbrain with simultaneous high-speed recording of the moving tail in animals where specific markers label glycinergic inhibitory neurons. We identified cells whose activity preferentially correlates with the visual stimulus or motor activity and used brain registration to compare data across individual larvae. We then morphed calcium imaging data onto the zebrafish brain atlas to compare with known transgenic markers. We report cells localized in the cerebellum whose activity is shut off by the onset of the visual stimulus, suggesting these cells may be constitutively active and silenced during sensorimotor processing. Finally, we discover that the activity of a medial stripe of glycinergic neurons in the domain of expression of the transcription factor engrailed1b is highly correlated with the onset of locomotion. Our efforts provide a high-resolution, open-access dataset for the community by comparing our functional map of the hindbrain to existing open-access atlases and enabling further investigation of this population's role in locomotion.
Collapse
Affiliation(s)
- Kristen E Severi
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm, CNRS, AP-HP, F-75013, Paris, France
- Federated Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Urs L Böhm
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm, CNRS, AP-HP, F-75013, Paris, France
- Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm, CNRS, AP-HP, F-75013, Paris, France.
| |
Collapse
|
34
|
Fukuzawa T. A wide variety of Mitf transcript variants are expressed in the Xenopus laevis periodic albino mutant. Genes Cells 2018; 23:638-648. [PMID: 29920861 DOI: 10.1111/gtc.12606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 11/29/2022]
Abstract
The periodic albino mutant of Xenopus laevis has been used to study the development of pigment cells because both the retinal pigment epithelium (RPE) and melanophores are affected. In this mutant, "white pigment cells" containing both melanophore-specific and iridophore-specific pigment organelles appear. The present experiments were designed to investigate the structural organization and expression of microphthalmia-associated transcription factor (Mitf) in the mutant since Mitf is known to regulate the development of melanocytes and RPE. The exon structures of X. laevis mitf genes (mitf.L and mitf.S) were defined using newly obtained Mitf transcripts and X. laevis genomic data. Compared to mouse mitf, exons 3 and 6a were absent in X. laevis mitf. The four exons between exons 4 and 6b in X. laevis mitf were named 5α, 5β, 5γ, and 5δ. Exons 5α and 5δ were specific to X. laevis mitf, whereas the continuous exons 5β/γ were identical to exon 5 of mouse mitf. A wide variety of A-Mitf and M-Mitf transcript variants lacking one or more exons were found in X. laevis; however, different types of Mitf transcripts were expressed in the mutant. In addition, white pigment cells and melanophores expressed both the mitf and dopachrome tautomerase (dct) genes.
Collapse
|
35
|
Mouti MA, Dee C, Coupland SE, Hurlstone AFL. Minimal contribution of ERK1/2-MAPK signalling towards the maintenance of oncogenic GNAQQ209P-driven uveal melanomas in zebrafish. Oncotarget 2018; 7:39654-39670. [PMID: 27166257 PMCID: PMC5129960 DOI: 10.18632/oncotarget.9207] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/18/2016] [Indexed: 02/03/2023] Open
Abstract
Mutations affecting Gαq proteins are pervasive in uveal melanoma (UM), suggesting they ‘drive’ UM pathogenesis. The ERK1/2-MAPK pathway is critical for cutaneous melanoma development and consequently an important therapeutic target. Defining the contribution of ERK1/2-MAPK signalling to UM development has been hampered by the lack of an informative animal model that spontaneously develops UM. Towards this end, we engineered transgenic zebrafish to express oncogenic GNAQQ209P in the melanocyte lineage. This resulted in hyperplasia of uveal melanocytes, but with no evidence of malignant progression, nor perturbation of skin melanocytes. Combining expression of oncogenic GNAQQ209P with p53 inactivation resulted in earlier onset and even more extensive hyperplasia of uveal melanocytes that progressed to UM. Immunohistochemistry revealed only weak immunoreactivity to phosphorylated (p)ERK1/2 in established uveal tumours—in contrast to strong immunoreactivity in oncogenic RAS-driven skin lesions—but ubiquitous positive staining for nuclear Yes-associated protein (YAP). Moreover, no changes were observed in pERK1/2 levels upon transient knockdown of GNAQ or phospholipase C-beta (PLC-β) inhibition in the majority of human UM cell lines we tested harbouring GNAQ mutations. In summary, our findings demonstrate a weak correlation between oncogenic GNAQQ209P mutation and sustained ERK1/2-MAPK activation, implying that ERK1/2 signalling is unlikely to be instrumental in the maintenance of GNAQQ209P-driven UMs.
Collapse
Affiliation(s)
- Mai Abdel Mouti
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Christopher Dee
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Adam F L Hurlstone
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
36
|
Zhang Y, Liu J, Peng L, Ren L, Zhang H, Zou L, Liu W, Xiao Y. Comparative transcriptome analysis of molecular mechanism underlying gray-to-red body color formation in red crucian carp (Carassius auratus, red var.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1387-1398. [PMID: 28676950 DOI: 10.1007/s10695-017-0379-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Red crucian carp (Carassius auratus red var.) is an ornamental fish with vivid red/orange color. It has been found that the adult body color of this strain forms a gray-to-red change. In this study, skin transcriptomes of red crucian carp are first obtained for three different stages of body color development, named by gray-color (GC), color-variation (CV), and red-color (RC) stages, respectively. From the skins of GC, CV, and RC, 103,229; 108,208; and 120,184 transcripts have been identified, respectively. Bioinformatics analysis reveals that 2483, 2967, and 4473 unigenes are differentially expressed between CV and GC, RC and CV, and RC and GC, respectively. A part of the differentially expressed genes (DEGs) are involved in the signaling pathway of pigment synthesis, such as the melanogenesis genes (Mitfa, Pax3a, Foxd3, Mc1r, Asip); tyrosine metabolism genes (Tyr, Dct, Tyrp1, Silva, Tat, Hpda); and pteridine metabolism genes (Gch, Xdh, Ptps, Tc). According to the data of transcriptome and quantitative PCR, the expression of Mitfa and its regulated genes which include the genes of Tyr, Tyrp1, Dct, Tfe3a, and Baxα, decreases with gray-to-red change. It is suggested that Mitfa and some genes, being related to melanin synthesis or melanophore development, are closely related to the gray-to-red body color transformation in the red crucian carp. Furthermore, the DEGs of cell apoptosis and autophagy pathway, such as Tfe3a, Baxα, Hsp70, Beclin1, Lc3, Atg9a, and Atg4a, might be involved in the melanocytes fade away of juvenile fish. These results shed light on the regulation mechanism of gray-to-red body color transformation in red crucian carp, and are helpful to the selective breeding of ornamental fish strains.
Collapse
Affiliation(s)
- Yongqin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Huiqin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Lijun Zou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China.
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China.
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| |
Collapse
|
37
|
Cooper CD. Insights from zebrafish on human pigment cell disease and treatment. Dev Dyn 2017; 246:889-896. [DOI: 10.1002/dvdy.24550] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/22/2017] [Accepted: 06/29/2017] [Indexed: 12/24/2022] Open
Affiliation(s)
- Cynthia D. Cooper
- School of Molecular Biosciences; Washington State University Vancouver; Vancouver Washington
| |
Collapse
|
38
|
Cechmanek PB, McFarlane S. Retinal pigment epithelium expansion around the neural retina occurs in two separate phases with distinct mechanisms. Dev Dyn 2017; 246:598-609. [PMID: 28556369 DOI: 10.1002/dvdy.24525] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/17/2017] [Accepted: 05/10/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The retinal pigment epithelium (RPE) is a specialized monolayer of epithelial cells that forms a tight barrier surrounding the neural retina. RPE cells are indispensable for mature photoreceptor renewal and survival, yet how the initial RPE cell population expands around the neural retina during eye development is poorly understood. RESULTS Here we characterize the differentiation, proliferation, and movements of RPE progenitors in the Zebrafish embryo over the period of optic cup morphogenesis. RPE progenitors are present in the dorsomedial eye vesicle shortly after eye vesicle evagination. We define two separate phases that allow for full RPE expansion. The first phase involves a previously uncharacterized antero-wards expansion of the RPE progenitor domain in the inner eye vesicle leaflet, driven largely by an increase in cell number. During this phase, RPE progenitors start to express differentiation markers. In the second phase, the progenitor domain stretches in the dorsoventral and posterior axes, involving cell movements and shape changes, and coinciding with optic cup morphogenesis. Significantly, cell division is not required for RPE expansion. CONCLUSIONS RPE development to produce the monolayer epithelium that covers the back of the neural retina occurs in two distinct phases driven by distinct mechanisms. Developmental Dynamics 246:598-609, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paula Bernice Cechmanek
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
39
|
Seberg HE, Van Otterloo E, Loftus SK, Liu H, Bonde G, Sompallae R, Gildea DE, Santana JF, Manak JR, Pavan WJ, Williams T, Cornell RA. TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF. PLoS Genet 2017; 13:e1006636. [PMID: 28249010 PMCID: PMC5352137 DOI: 10.1371/journal.pgen.1006636] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/15/2017] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Mutations in the gene encoding transcription factor TFAP2A result in pigmentation anomalies in model organisms and premature hair graying in humans. However, the pleiotropic functions of TFAP2A and its redundantly-acting paralogs have made the precise contribution of TFAP2-type activity to melanocyte differentiation unclear. Defining this contribution may help to explain why TFAP2A expression is reduced in advanced-stage melanoma compared to benign nevi. To identify genes with TFAP2A-dependent expression in melanocytes, we profile zebrafish tissue and mouse melanocytes deficient in Tfap2a, and find that expression of a small subset of genes underlying pigmentation phenotypes is TFAP2A-dependent, including Dct, Mc1r, Mlph, and Pmel. We then conduct TFAP2A ChIP-seq in mouse and human melanocytes and find that a much larger subset of pigmentation genes is associated with active regulatory elements bound by TFAP2A. These elements are also frequently bound by MITF, which is considered the "master regulator" of melanocyte development. For example, the promoter of TRPM1 is bound by both TFAP2A and MITF, and we show that the activity of a minimal TRPM1 promoter is lost upon deletion of the TFAP2A binding sites. However, the expression of Trpm1 is not TFAP2A-dependent, implying that additional TFAP2 paralogs function redundantly to drive melanocyte differentiation, which is consistent with previous results from zebrafish. Paralogs Tfap2a and Tfap2b are both expressed in mouse melanocytes, and we show that mouse embryos with Wnt1-Cre-mediated deletion of Tfap2a and Tfap2b in the neural crest almost completely lack melanocytes but retain neural crest-derived sensory ganglia. These results suggest that TFAP2 paralogs, like MITF, are also necessary for induction of the melanocyte lineage. Finally, we observe a genetic interaction between tfap2a and mitfa in zebrafish, but find that artificially elevating expression of tfap2a does not increase levels of melanin in mitfa hypomorphic or loss-of-function mutants. Collectively, these results show that TFAP2 paralogs, operating alongside lineage-specific transcription factors such as MITF, directly regulate effectors of terminal differentiation in melanocytes. In addition, they suggest that TFAP2A activity, like MITF activity, has the potential to modulate the phenotype of melanoma cells.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites/genetics
- Cell Differentiation/genetics
- Cell Line
- Cell Line, Tumor
- Cells, Cultured
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Gene Expression Profiling/methods
- Gene Expression Regulation, Developmental
- Humans
- Melanocytes/metabolism
- Mice, Knockout
- Microphthalmia-Associated Transcription Factor/genetics
- Microphthalmia-Associated Transcription Factor/metabolism
- Microscopy, Confocal
- Mutation
- Pigmentation/genetics
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Transcription Factor AP-2/genetics
- Transcription Factor AP-2/metabolism
- Zebrafish
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Hannah E. Seberg
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Eric Van Otterloo
- SDM-Craniofacial Biology, University of Colorado – Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Stacie K. Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Huan Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Greg Bonde
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ramakrishna Sompallae
- Bioinformatics Division, Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Derek E. Gildea
- Bioinformatics and Scientific Programming Core, Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Juan F. Santana
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - J. Robert Manak
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Trevor Williams
- SDM-Craniofacial Biology, University of Colorado – Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Robert A. Cornell
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
40
|
Wang WD, Hsu HJ, Li YF, Wu CY. Retinoic Acid Protects and Rescues the Development of Zebrafish Embryonic Retinal Photoreceptor Cells from Exposure to Paclobutrazol. Int J Mol Sci 2017; 18:ijms18010130. [PMID: 28085063 PMCID: PMC5297764 DOI: 10.3390/ijms18010130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/26/2016] [Accepted: 01/02/2017] [Indexed: 12/24/2022] Open
Abstract
Paclobutrazol (PBZ) is a widely used fungicide that shows toxicity to aquatic embryos, probably through rain-wash. Here, we specifically focus on its toxic effect on eye development in zebrafish, as well as the role of retinoic acid (RA), a metabolite of vitamin A that controls proliferation and differentiation of retinal photoreceptor cells, in this toxicity. Embryos were exposed to PBZ with or without RA from 2 to 72 h post-fertilization (hpf), and PBZ-treated embryos (2–72 hpf) were exposed to RA for additional hours until 120 hpf. Eye size and histology were examined. Expression levels of gnat1 (rod photoreceptor marker), gnat2 (cone photoreceptor marker), aldehyde dehydrogenases (encoding key enzymes for RA synthesis), and phospho-histone H3 (an M-phase marker) in the eyes of control and treated embryos were examined. PBZ exposure dramatically reduces photoreceptor proliferation, thus resulting in a thinning of the photoreceptor cell layer and leading to a small eye. Co-treatment of PBZ with RA, or post-treatment of PBZ-treated embryos with RA, partially rescues photoreceptor cells, revealed by expression levels of marker proteins and by retinal cell proliferation. PBZ has strong embryonic toxicity to retinal photoreceptors, probably via suppressing the production of RA, with effects including impaired retinal cell division.
Collapse
Affiliation(s)
- Wen-Der Wang
- Department of Bio-Agricultural Sciences, National Chiayi University, Chiayi City 60004, Taiwan.
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei City 11529, Taiwan.
| | - Yi-Fang Li
- Department of Bio-Agricultural Sciences, National Chiayi University, Chiayi City 60004, Taiwan.
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung City 80424, Taiwan.
| |
Collapse
|
41
|
Ahi EP, Sefc KM. A gene expression study of dorso-ventrally restricted pigment pattern in adult fins of Neolamprologus meeli, an African cichlid species. PeerJ 2017; 5:e2843. [PMID: 28097057 PMCID: PMC5228514 DOI: 10.7717/peerj.2843] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/29/2016] [Indexed: 01/04/2023] Open
Abstract
Fish color patterns are among the most diverse phenotypic traits found in the animal kingdom. Understanding the molecular and cellular mechanisms that control in chromatophore distribution and pigmentation underlying this diversity is a major goal in developmental and evolutionary biology, which has predominantly been pursued in the zebrafish model system. Here, we apply results from zebrafish work to study a naturally occurring color pattern phenotype in the fins of an African cichlid species from Lake Tanganyika. The cichlid fish Neolamprologus meeli displays a distinct dorsal color pattern, with black and white stripes along the edges of the dorsal fin and of the dorsal half of the caudal fin, corresponding with differences in melanophore density. To elucidate the molecular mechanisms controlling the differences in dorsal and ventral color patterning in the fins, we quantitatively assessed the expression of 15 candidate target genes involved in adult zebrafish pigmentation and stripe formation. For reference gene validation, we screened the expression stability of seven widely expressed genes across the investigated tissue samples and identified tbp as appropriate reference. Relative expression levels of the candidate target genes were compared between the dorsal, striped fin regions and the corresponding uniform, grey-colored regions in the anal and ventral caudal fin. Dorso-ventral expression differences, with elevated levels in both white and black stripes, were observed in two genes, the melanosome protein coding gene pmel and in igsf11, which affects melanophore adhesion, migration and survival. Next, we predicted potential shared upstream regulators of pmel and igsf11. Testing the expression patterns of six predicted transcriptions factors revealed dorso-ventral expression difference of irf1 and significant, negative expression correlation of irf1 with both pmel and igsf11. Based on these results, we propose pmel, igsf11 and irf1 as likely components of the genetic mechanism controlling distinct dorso-ventral color patterns in N. meeli fins.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Zoology, Universitätsplatz 2, Universität Graz , Graz , Austria
| | - Kristina M Sefc
- Institute of Zoology, Universitätsplatz 2, Universität Graz , Graz , Austria
| |
Collapse
|
42
|
Functional constraints on SoxE proteins in neural crest development: The importance of differential expression for evolution of protein activity. Dev Biol 2016; 418:166-178. [DOI: 10.1016/j.ydbio.2016.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 10/21/2022]
|
43
|
tfec controls the hematopoietic stem cell vascular niche during zebrafish embryogenesis. Blood 2016; 128:1336-45. [PMID: 27402973 DOI: 10.1182/blood-2016-04-710137] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022] Open
Abstract
In mammals, embryonic hematopoiesis occurs in successive waves, culminating with the emergence of hematopoietic stem cells (HSCs) in the aorta. HSCs first migrate to the fetal liver (FL), where they expand, before they seed the bone marrow niche, where they will sustain hematopoiesis throughout adulthood. In zebrafish, HSCs emerge from the dorsal aorta and colonize the caudal hematopoietic tissue (CHT). Recent studies showed that they interact with endothelial cells (ECs), where they expand, before they reach their ultimate niche, the kidney marrow. We identified tfec, a transcription factor from the mitf family, which is highly enriched in caudal endothelial cells (cECs) at the time of HSC colonization in the CHT. Gain-of-function assays indicate that tfec is capable of expanding HSC-derived hematopoiesis in a non-cell-autonomous fashion. Furthermore, tfec mutants (generated by CRISPR/Cas9) showed reduced hematopoiesis in the CHT, leading to anemia. Tfec mediates these changes by increasing the expression of several cytokines in cECs from the CHT niche. Among these, we found kitlgb, which could rescue the loss of HSCs observed in tfec mutants. We conclude that tfec plays an important role in the niche to expand hematopoietic progenitors through the modulation of several cytokines. The full comprehension of the mechanisms induced by tfec will represent an important milestone toward the expansion of HSCs for regenerative purposes.
Collapse
|
44
|
Wojciechowska S, van Rooijen E, Ceol C, Patton EE, White RM. Generation and analysis of zebrafish melanoma models. Methods Cell Biol 2016; 134:531-49. [PMID: 27312504 DOI: 10.1016/bs.mcb.2016.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The rapid emergence of the zebrafish as a cancer model has been aided by advances in genetic, chemical, and imaging technologies. Melanoma in particular highlights both the power and challenges associated with cancer modeling in zebrafish. This chapter focuses on the lessons that have emerged from the melanoma models as paradigmatic of what will apply to nearly all cancer models in the zebrafish system. We specifically focus on methodologies related to germline and mosaic transgenic melanoma generation, and how these can be used to deeply interrogate additional cooperating oncogenes or tumor suppressors. These transgenic tumors can in turn be used to generate zebrafish-specific, stable melanoma cell lines which can be fluorescently labeled, modified by cDNA/CRISPR techniques, and used for detailed in vivo imaging of cancer progression in real time. These zebrafish melanoma models are beginning to elucidate both cell intrinsic and microenvironmental factors in melanoma that have broader implications for human disease. We envision that nearly all of the techniques described here can be applied to other zebrafish cancer models, and likely expanded beyond what we describe here.
Collapse
Affiliation(s)
- S Wojciechowska
- MRC Human Genetics Unit, and The University of Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, United Kingdom
| | - E van Rooijen
- Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, MA, United States; Harvard Medical School, Boston, MA, United States
| | - C Ceol
- Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - E E Patton
- MRC Human Genetics Unit, and The University of Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, United Kingdom
| | - R M White
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
45
|
Ohba K, Takeda K, Yamamoto H, Shibahara S. Microphthalmia-associated transcription factor is expressed in projection neurons of the mouse olfactory bulb. Genes Cells 2015; 20:1088-102. [DOI: 10.1111/gtc.12312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Koji Ohba
- Department of Molecular Biology and Applied Physiology; Tohoku University School of Medicine; 2-1 Seiryo-machi Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Kazuhisa Takeda
- Department of Molecular Biology and Applied Physiology; Tohoku University School of Medicine; 2-1 Seiryo-machi Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Hiroaki Yamamoto
- Faculty of Bioscience; Nagahama Institute of Bio-Science and Technology; 1266 Tamura-cho Nagahama Shiga 526-0829 Japan
| | - Shigeki Shibahara
- Department of Molecular Biology and Applied Physiology; Tohoku University School of Medicine; 2-1 Seiryo-machi Aoba-ku Sendai Miyagi 980-8575 Japan
| |
Collapse
|
46
|
Grone BP, Maruska KP. Divergent evolution of two corticotropin-releasing hormone (CRH) genes in teleost fishes. Front Neurosci 2015; 9:365. [PMID: 26528116 PMCID: PMC4602089 DOI: 10.3389/fnins.2015.00365] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
Genome duplication, thought to have happened twice early in vertebrate evolution and a third time in teleost fishes, gives rise to gene paralogs that can evolve subfunctions or neofunctions via sequence and regulatory changes. To explore the evolution and functions of corticotropin-releasing hormone (CRH), we searched sequenced teleost genomes for CRH paralogs. Our phylogenetic and synteny analyses indicate that two CRH genes, crha and crhb, evolved via duplication of crh1 early in the teleost lineage. We examined the expression of crha and crhb in two teleost species from different orders: an African cichlid, Burton's mouthbrooder, (Astatotilapia burtoni; Order Perciformes) and zebrafish (Danio rerio; Order Cypriniformes). Furthermore, we compared expression of the teleost crha and crhb genes with the crh1 gene of an outgroup to the teleost clade: the spotted gar (Lepisosteus oculatus). In situ hybridization for crha and crhb mRNA in brains and eyes revealed distinct expression patterns for crha in different teleost species. In the cichlid, crha mRNA was found in the retina but not in the brain. In zebrafish, however, crha mRNA was not found in the retina, but was detected in the brain, restricted to the ventral hypothalamus. Spotted gar crh1 was found in the retina as well as the brain, suggesting that the ancestor of teleost fishes likely had a crh1 gene expressed in both retina and brain. Thus, genome duplication may have freed crha from constraints, allowing it to evolve distinct sequences, expression patterns, and likely unique functions in different lineages.
Collapse
Affiliation(s)
- Brian P Grone
- Department of Neurological Surgery, University of California, San Francisco San Francisco, CA, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University Baton Rouge, LA, USA
| |
Collapse
|
47
|
The circadian clock of teleost fish: a comparative analysis reveals distinct fates for duplicated genes. J Mol Evol 2014; 80:57-64. [PMID: 25487517 DOI: 10.1007/s00239-014-9660-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The circadian clock is a central oscillator that coordinates endogenous rhythms. Members of six gene families underlie the metabolic machinery of this system. Although this machinery appears to correspond to a highly conserved genetic system in metazoans, it has been recognized that vertebrates possess a more diverse gene inventory than that of non-vertebrates. This difference could have originated in the two successive rounds of whole-genome duplications that took place in the common ancestor of the group. Teleost fish underwent an extra event of whole-genome duplication, which is thought to have provided an abundance of raw genetic material for the biological innovations that facilitated the radiation of the group. In this study, we assessed the relative contributions of whole-genome duplication and small-scale gene duplication to generate the repertoire of genes associated with the circadian clock of teleost fish. To achieve this goal, we annotated genes from six gene families associated with the circadian clock in eight teleost fish species, and we reconstructed their evolutionary history by inferring phylogenetic relationships. Our comparative analysis indicated that teleost species possess a variable repertoire of genes related to the circadian clock gene families and that the actual diversity of these genes has been shaped by a variety of phenomena, such as the complete deletion of ohnologs, the differential retention of genes, and lineage-specific gene duplications. From a functional perspective, the subfunctionalization of two ohnolog genes (PER1a and PER1b) in zebrafish highlights the power of whole-genome duplications to generate biological diversity.
Collapse
|
48
|
The transcriptional response to oxidative stress during vertebrate development: effects of tert-butylhydroquinone and 2,3,7,8-tetrachlorodibenzo-p-dioxin. PLoS One 2014; 9:e113158. [PMID: 25402455 PMCID: PMC4234671 DOI: 10.1371/journal.pone.0113158] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/20/2014] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress is an important mechanism of chemical toxicity, contributing to teratogenesis and to cardiovascular and neurodegenerative diseases. Developing animals may be especially sensitive to chemicals causing oxidative stress. The developmental expression and inducibility of anti-oxidant defenses through activation of NF-E2-related factor 2 (NRF2) affect susceptibility to oxidants, but the embryonic response to oxidants is not well understood. To assess the response to chemically mediated oxidative stress and how it may vary during development, zebrafish embryos, eleutheroembryos, or larvae at 1, 2, 3, 4, 5, and 6 days post fertilization (dpf) were exposed to DMSO (0.1%), tert-butylhydroquinone (tBHQ; 10 µM) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 2 nM) for 6 hr. Transcript abundance was assessed by real-time qRT-PCR and microarray. qRT-PCR showed strong (4- to 5-fold) induction of gstp1 by tBHQ as early as 1 dpf. tBHQ also induced gclc (2 dpf), but not sod1, nqo1, or cyp1a. TCDD induced cyp1a but none of the other genes. Microarray analysis showed that 1477 probes were significantly different among the DMSO-, tBHQ-, and TCDD-treated eleutheroembryos at 4 dpf. There was substantial overlap between genes induced in developing zebrafish and a set of marker genes induced by oxidative stress in mammals. Genes induced by tBHQ in 4-dpf zebrafish included those involved in glutathione synthesis and utilization, signal transduction, and DNA damage/stress response. The strong induction of hsp70 determined by microarray was confirmed by qRT-PCR and by use of transgenic zebrafish expressing enhanced green fluorescent protein (EGFP) under control of the hsp70 promoter. Genes strongly down-regulated by tBHQ included mitfa, providing a molecular explanation for the loss of pigmentation in tBHQ-exposed embryos. These data show that zebrafish embryos are responsive to oxidative stress as early as 1 dpf, that responsiveness varies with development in a gene-specific manner, and that the oxidative stress response is substantially conserved in vertebrate animals.
Collapse
|
49
|
Transcriptome analysis indicates considerable divergence in alternative splicing between duplicated genes in Arabidopsis thaliana. Genetics 2014; 198:1473-81. [PMID: 25326238 DOI: 10.1534/genetics.114.169466] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gene and genome duplication events have created a large number of new genes in plants that can diverge by evolving new expression profiles and functions (neofunctionalization) or dividing extant ones (subfunctionalization). Alternative splicing (AS) generates multiple types of mRNA from a single type of pre-mRNA by differential intron splicing. It can result in new protein isoforms or downregulation of gene expression by transcript decay. Using RNA-seq, we investigated the degree to which alternative splicing patterns are conserved between duplicated genes in Arabidopsis thaliana. Our results revealed that 30% of AS events in α-whole-genome duplicates and 33% of AS events in tandem duplicates are qualitatively conserved within leaf tissue. Loss of ancestral splice forms, as well as asymmetric gain of new splice forms, may account for this divergence. Conserved events had different frequencies, as only 31% of shared AS events in α-whole-genome duplicates and 41% of shared AS events in tandem duplicates had similar frequencies in both paralogs, indicating considerable quantitative divergence. Analysis of published RNA-seq data from nonsense-mediated decay (NMD) mutants indicated that 85% of α-whole-genome duplicates and 89% of tandem duplicates have diverged in their AS-induced NMD. Our results indicate that alternative splicing shows a high degree of divergence between paralogs such that qualitatively conserved alternative splicing events tend to have quantitative divergence. Divergence in AS patterns between duplicates may be a mechanism of regulating expression level divergence.
Collapse
|
50
|
Insights from Genetic Models of Melanoma in Fish. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|