1
|
Divyanshi, Yang J. Germ plasm dynamics during oogenesis and early embryonic development in Xenopus and zebrafish. Mol Reprod Dev 2024; 91:e23718. [PMID: 38126950 PMCID: PMC11190040 DOI: 10.1002/mrd.23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 12/23/2023]
Abstract
Specification of the germline and its segregation from the soma mark one of the most crucial events in the lifetime of an organism. In different organisms, this specification can occur through either inheritance or inductive mechanisms. In species such as Xenopus and zebrafish, the specification of primordial germ cells relies on the inheritance of maternal germline determinants that are synthesized and sequestered in the germ plasm during oogenesis. In this review, we discuss the formation of the germ plasm, how germline determinants are recruited into the germ plasm during oogenesis, and the dynamics of the germ plasm during oogenesis and early embryonic development.
Collapse
Affiliation(s)
- Divyanshi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Jing Yang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
2
|
Otis JP, Mowry KL. Hitting the mark: Localization of mRNA and biomolecular condensates in health and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1807. [PMID: 37393916 PMCID: PMC10758526 DOI: 10.1002/wrna.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
Subcellular mRNA localization is critical to a multitude of biological processes such as development of cellular polarity, embryogenesis, tissue differentiation, protein complex formation, cell migration, and rapid responses to environmental stimuli and synaptic depolarization. Our understanding of the mechanisms of mRNA localization must now be revised to include formation and trafficking of biomolecular condensates, as several biomolecular condensates that transport and localize mRNA have recently been discovered. Disruptions in mRNA localization can have catastrophic effects on developmental processes and biomolecular condensate biology and have been shown to contribute to diverse diseases. A fundamental understanding of mRNA localization is essential to understanding how aberrations in this biology contribute the etiology of numerous cancers though support of cancer cell migration and biomolecular condensate dysregulation, as well as many neurodegenerative diseases, through misregulation of mRNA localization and biomolecular condensate biology. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jessica P. Otis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| |
Collapse
|
3
|
Evolutionary conservation of maternal RNA localization in fishes and amphibians revealed by TOMO-Seq. Dev Biol 2022; 489:146-160. [PMID: 35752299 DOI: 10.1016/j.ydbio.2022.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 06/19/2022] [Indexed: 11/24/2022]
Abstract
Asymmetrical localization of biomolecules inside the egg, results in uneven cell division and establishment of many biological processes, cell types and the body plan. However, our knowledge about evolutionary conservation of localized transcripts is still limited to a few models. Our goal was to compare localization profiles along the animal-vegetal axis of mature eggs from four vertebrate models, two amphibians (Xenopus laevis, Ambystoma mexicanum) and two fishes (Acipenser ruthenus, Danio rerio) using the spatial expression method called TOMO-Seq. We revealed that RNAs of many known important transcripts such as germ layer determinants, germ plasm factors and members of key signalling pathways, are localized in completely different profiles among the models. It was also observed that there was a poor correlation between the vegetally localized transcripts but a relatively good correlation between the animally localized transcripts. These findings indicate that the regulation of embryonic development within the animal kingdom is highly diverse and cannot be deduced based on a single model.
Collapse
|
4
|
Neil CR, Jeschonek SP, Cabral SE, O'Connell LC, Powrie EA, Otis JP, Wood TR, Mowry KL. L-bodies are RNA-protein condensates driving RNA localization in Xenopus oocytes. Mol Biol Cell 2021; 32:ar37. [PMID: 34613784 PMCID: PMC8694076 DOI: 10.1091/mbc.e21-03-0146-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ribonucleoprotein (RNP) granules are membraneless compartments within cells, formed by phase separation, that function as regulatory hubs for diverse biological processes. However, the mechanisms by which RNAs and proteins interact to promote RNP granule structure and function in vivo remain unclear. In Xenopus laevis oocytes, maternal mRNAs are localized as large RNPs to the vegetal hemisphere of the developing oocyte, where local translation is critical for proper embryonic patterning. Here we demonstrate that RNPs containing vegetally localized RNAs represent a new class of cytoplasmic RNP granule, termed localization-bodies (L-bodies). We show that L-bodies contain a dynamic protein-containing phase surrounding a nondynamic RNA-containing phase. Our results support a role for RNA as a critical component within these RNP granules and suggest that cis-elements within localized mRNAs may drive subcellular RNA localization through control over phase behavior.
Collapse
Affiliation(s)
- Christopher R Neil
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Samantha P Jeschonek
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Sarah E Cabral
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Liam C O'Connell
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Erin A Powrie
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Jessica P Otis
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Timothy R Wood
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| |
Collapse
|
5
|
Janas T, Sapoń K, Janas T, Yarus M. Specific binding of VegT mRNA localization signal to membranes in Xenopus oocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118952. [PMID: 33422615 DOI: 10.1016/j.bbamcr.2021.118952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
We have studied the interaction of a VegT mRNA localization signal sequence with the membranes of the mitochondrial cloud in Xenopus oocytes, and the binding of the VegT mRNA signal sequence to the lipid raft regions of the vesicles bounded by ordered and disordered phospholipid bilayers. RNA preference for the membranes of the mitochondrial cloud was confirmed using microscopy of a fluorescence resonance energy transfer from RNA molecules to membranes. Our studies show that VegT mRNA has a higher affinity for ordered regions of lipid bilayers. This conclusion is supported by the dissociation constant measurements for RNA-liposome complex and the visualization of the FRET signal between giant vesicles and RNA. Our data indicate that these affinities are sensitive and distinct to the location of the localization elements within the VegT mRNA localization signal structure. Therefore, specific binding of VegT mRNA localization signal sequence to membranes can be responsible for polarized distribution of VegT mRNA in Xenopus oocytes. We suggest that the mechanism of this binding can involve the interaction of the localization elements within the VegT mRNA signal sequence with lipid raft regions of the mitochondrial cloud membranes, thereby utilizing localization elements as novel lipid raft-binding RNA motifs.
Collapse
Affiliation(s)
- Tadeusz Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland; Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Karolina Sapoń
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Teresa Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Michael Yarus
- Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
6
|
Garg A, Singhal N, Kumar R, Kumar M. mRNALoc: a novel machine-learning based in-silico tool to predict mRNA subcellular localization. Nucleic Acids Res 2020; 48:W239-W243. [PMID: 32421834 PMCID: PMC7319581 DOI: 10.1093/nar/gkaa385] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Recent evidences suggest that the localization of mRNAs near the subcellular compartment of the translated proteins is a more robust cellular tool, which optimizes protein expression, post-transcriptionally. Retention of mRNA in the nucleus can regulate the amount of protein translated from each mRNA, thus allowing a tight temporal regulation of translation or buffering of protein levels from bursty transcription. Besides, mRNA localization performs a variety of additional roles like long-distance signaling, facilitating assembly of protein complexes and coordination of developmental processes. Here, we describe a novel machine-learning based tool, mRNALoc, to predict five sub-cellular locations of eukaryotic mRNAs using cDNA/mRNA sequences. During five fold cross-validations, the maximum overall accuracy was 65.19, 75.36, 67.10, 99.70 and 73.59% for the extracellular region, endoplasmic reticulum, cytoplasm, mitochondria, and nucleus, respectively. Assessment on independent datasets revealed the prediction accuracies of 58.10, 69.23, 64.55, 96.88 and 69.35% for extracellular region, endoplasmic reticulum, cytoplasm, mitochondria, and nucleus, respectively. The corresponding values of AUC were 0.76, 0.75, 0.70, 0.98 and 0.74 for the extracellular region, endoplasmic reticulum, cytoplasm, mitochondria, and nucleus, respectively. The mRNALoc standalone software and web-server are freely available for academic use under GNU GPL at http://proteininformatics.org/mkumar/mrnaloc.
Collapse
Affiliation(s)
- Anjali Garg
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | - Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | - Ravindra Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
7
|
Abstract
RNA localization is a key biological strategy for organizing the cytoplasm and generating both cellular and developmental polarity. During RNA localization, RNAs are targeted asymmetrically to specific subcellular destinations, resulting in spatially and temporally restricted gene expression through local protein synthesis. First discovered in oocytes and embryos, RNA localization is now recognized as a significant regulatory strategy for diverse RNAs, both coding and non-coding, in a wide range of cell types. Yet, the highly polarized cytoplasm of the oocyte remains a leading model to understand not only the principles and mechanisms underlying RNA localization, but also links to the formation of biomolecular condensates through phase separation. Here, we discuss both RNA localization and biomolecular condensates in oocytes with a particular focus on the oocyte of the frog, Xenopus laevis.
Collapse
Affiliation(s)
- Sarah E Cabral
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
8
|
Chen H, Einstein LC, Little SC, Good MC. Spatiotemporal Patterning of Zygotic Genome Activation in a Model Vertebrate Embryo. Dev Cell 2019; 49:852-866.e7. [PMID: 31211992 PMCID: PMC6655562 DOI: 10.1016/j.devcel.2019.05.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/26/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
A defining feature of early embryogenesis is the transition from maternal to zygotic control. This transition requires embryo-wide zygotic genome activation (ZGA), but the extent of spatiotemporal coordination of ZGA between individual cells is unknown. Multiple interrelated parameters, including elapsed time, completed cycles of cell division, and cell size may impact ZGA onset; however, the principal determinant of ZGA during vertebrate embryogenesis is debated. Here, we perform single-cell imaging of large-scale ZGA in whole-mount Xenopus embryos. We find a striking new spatiotemporal pattern of ZGA whose onset tightly correlates with cell size but not with elapsed time or number of cell divisions. Further, reducing cell size induces premature ZGA, dose dependently. We conclude that large-scale ZGA is not spatially uniform and that its onset is determined at the single-cell level, primarily by cell size. Our study suggests that spatial patterns of ZGA onset may be a common feature of embryonic systems.
Collapse
Affiliation(s)
- Hui Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lily C Einstein
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shawn C Little
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C Good
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Ciocanel MV, Sandstede B, Jeschonek SP, Mowry KL. Modeling microtubule-based transport and anchoring of mRNA. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS 2018; 17:2855-2881. [PMID: 34135697 PMCID: PMC8205424 DOI: 10.1137/18m1186083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Localization of messenger RNA (mRNA) at the vegetal cortex plays an important role in the early development of Xenopus laevis oocytes. While it is known that molecular motors are responsible for the transport of mRNA cargo along microtubules to the cortex, the mechanisms of localization remain unclear. We model cargo transport along microtubules using partial differential equations with spatially-dependent rates. A theoretical analysis of reduced versions of our model predicts effective velocity and diffusion rates for the cargo and shows that randomness of microtubule networks enhances effective transport. A more complex model using parameters estimated from fluorescence microscopy data reproduces the spatial and timescales of mRNA localization observed in Xenopus oocytes, corroborates experimental hypotheses that anchoring may be necessary to achieve complete localization, and shows that anchoring of mRNA complexes actively transported to the cortex is most effective in achieving robust accumulation at the cortex.
Collapse
Affiliation(s)
| | - Björn Sandstede
- Division of Applied Mathematics, Brown University, Providence, RI
| | - Samantha P Jeschonek
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI
| |
Collapse
|
10
|
Wanke KA, Devanna P, Vernes SC. Understanding Neurodevelopmental Disorders: The Promise of Regulatory Variation in the 3'UTRome. Biol Psychiatry 2018; 83:548-557. [PMID: 29289333 DOI: 10.1016/j.biopsych.2017.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/28/2023]
Abstract
Neurodevelopmental disorders have a strong genetic component, but despite widespread efforts, the specific genetic factors underlying these disorders remain undefined for a large proportion of affected individuals. Given the accessibility of exome sequencing, this problem has thus far been addressed from a protein-centric standpoint; however, protein-coding regions only make up ∼1% to 2% of the human genome. With the advent of whole genome sequencing we are in the midst of a paradigm shift as it is now possible to interrogate the entire sequence of the human genome (coding and noncoding) to fill in the missing heritability of complex disorders. These new technologies bring new challenges, as the number of noncoding variants identified per individual can be overwhelming, making it prudent to focus on noncoding regions of known function, for which the effects of variation can be predicted and directly tested to assess pathogenicity. The 3'UTRome is a region of the noncoding genome that perfectly fulfills these criteria and is of high interest when searching for pathogenic variation related to complex neurodevelopmental disorders. Herein, we review the regulatory roles of the 3'UTRome as binding sites for microRNAs or RNA binding proteins, or during alternative polyadenylation. We detail existing evidence that these regions contribute to neurodevelopmental disorders and outline strategies for identification and validation of novel putatively pathogenic variation in these regions. This evidence suggests that studying the 3'UTRome will lead to the identification of new risk factors, new candidate disease genes, and a better understanding of the molecular mechanisms contributing to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kai A Wanke
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.
| |
Collapse
|
11
|
Butler AM, Owens DA, Wang L, King ML. A novel role for sox7 in Xenopus early primordial germ cell development: mining the PGC transcriptome. Development 2018; 145:dev.155978. [PMID: 29158442 DOI: 10.1242/dev.155978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022]
Abstract
Xenopus primordial germ cells (PGCs) are determined by the presence of maternally derived germ plasm. Germ plasm components both protect PGCs from somatic differentiation and begin a unique gene expression program. Segregation of the germline from the endodermal lineage occurs during gastrulation, and PGCs subsequently initiate zygotic transcription. However, the gene network(s) that operate to both preserve and promote germline differentiation are poorly understood. Here, we utilized RNA-sequencing analysis to comprehensively interrogate PGC and neighboring endoderm cell mRNAs after lineage segregation. We identified 1865 transcripts enriched in PGCs compared with endoderm cells. We next compared the PGC-enriched transcripts with previously identified maternal, vegetally enriched transcripts and found that ∼38% of maternal transcripts were enriched in PGCs, including sox7 PGC-directed sox7 knockdown and overexpression studies revealed an early requirement for sox7 in germ plasm localization, zygotic transcription and PGC number. We identified pou5f3.3 as the most highly expressed and enriched POU5F1 homolog in PGCs. We compared the Xenopus PGC transcriptome with human PGC transcripts and showed that 80% of genes are conserved, underscoring the potential usefulness of Xenopus for understanding human germline specification.
Collapse
Affiliation(s)
- Amanda M Butler
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Dawn A Owens
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Lingyu Wang
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| |
Collapse
|
12
|
The New RNA World: Growing Evidence for Long Noncoding RNA Functionality. Trends Genet 2017; 33:665-676. [DOI: 10.1016/j.tig.2017.08.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
|
13
|
Abstract
3'-untranslated regions (3'-UTRs) are the noncoding parts of mRNAs. Compared to yeast, in humans, median 3'-UTR length has expanded approximately tenfold alongside an increased generation of alternative 3'-UTR isoforms. In contrast, the number of coding genes, as well as coding region length, has remained similar. This suggests an important role for 3'-UTRs in the biology of higher organisms. 3'-UTRs are best known to regulate diverse fates of mRNAs, including degradation, translation, and localization, but they can also function like long noncoding or small RNAs, as has been shown for whole 3'-UTRs as well as for cleaved fragments. Furthermore, 3'-UTRs determine the fate of proteins through the regulation of protein-protein interactions. They facilitate cotranslational protein complex formation, which establishes a role for 3'-UTRs as evolved eukaryotic operons. Whereas bacterial operons promote the interaction of two subunits, 3'-UTRs enable the formation of protein complexes with diverse compositions. All of these 3'-UTR functions are accomplished by effector proteins that are recruited by RNA-binding proteins that bind to 3'-UTR cis-elements. In summary, 3'-UTRs seem to be major players in gene regulation that enable local functions, compartmentalization, and cooperativity, which makes them important tools for the regulation of phenotypic diversity of higher organisms.
Collapse
Affiliation(s)
- Christine Mayr
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
14
|
Kubiak JZ, Kloc M. Elusive Role of TCTP Protein and mRNA in Cell Cycle and Cytoskeleton Regulation. Results Probl Cell Differ 2017; 64:217-225. [PMID: 29149411 DOI: 10.1007/978-3-319-67591-6_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Translationally Controlled Tumor-associated Protein (TCTP) is a small, 23 kDa multifunctional and ubiquitous protein localized both in the cytoplasm and in the nucleus of eukaryotic cells. It is evolutionarily highly conserved. Certain aspects of its structure show remarkable similarities to guanine nucleotide-free chaperons Mss4 and Dss4 suggesting that at least some functions of TCTP may depend on its chaperon-like action on other proteins. Besides other functions, TCTP is clearly involved in cell cycle regulation. It is also regulated in a cell-cycle-dependent manner suggesting a reciprocal interaction between this protein and the cell cycle-regulating machinery. TCTP also interacts with the cytoskeleton, mostly with actin microfilaments (MFs) and microtubules (MTs). It regulates the cytoskeleton organization and through this action it also influences cell shape and motility. The exact role of TCTP in cell cycle and cytoskeleton regulation is certainly not fully understood. In this chapter, we summarize recent data on cell cycle and cytoskeletal aspects of TCTP regulatory role.
Collapse
Affiliation(s)
- Jacek Z Kubiak
- Institute of Genetics and Development of Rennes (IGDR), Cell Cycle Group, CNRS, UMR 6290, 35043, Rennes, France.
- Faculty of Medicine, University Rennes 1, UEB, IFR 140, 35043, Rennes, France.
- Laboratory of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland.
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
- University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
15
|
King ML. Maternal messages to live by: a personal historical perspective. Genesis 2017; 55:10.1002/dvg.23007. [PMID: 28095642 PMCID: PMC5276792 DOI: 10.1002/dvg.23007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
Abstract
In the 1980s, the study of localized maternal mRNAs was just emerging as a new research area. Classic embryological studies had linked the inheritance of cytoplasmic domains with specific cell lineages, but the underlying molecular nature of these putative determinants remained a mystery. The model system Xenopus would play a pivotal role in the progress of this new field. In fact, the first localized maternal mRNA to be identified and cloned from any organism was Xenopus vg1, a TGF-beta family member. This seminal finding opened the door to many subsequent studies focused on how RNAs are localized and what functions they had in development. As the field moves into the future, Xenopus remains the system of choice for studies identifying RNA/protein transport particles and maternal RNAs through RNA-sequencing.
Collapse
Affiliation(s)
- Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| |
Collapse
|
16
|
Min Z, Lin H, Zhu X, Gao L, Khand AA, Tao Q. Ascl1 represses the mesendoderm induction in Xenopus. Acta Biochim Biophys Sin (Shanghai) 2016; 48:1006-1015. [PMID: 27624953 DOI: 10.1093/abbs/gmw092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/15/2016] [Indexed: 11/13/2022] Open
Abstract
Ascl1 is a multi-functional regulator of neural development in invertebrates and vertebrates. Ectopic expression of Ascl1 can generate functional neurons from non-neural somatic cells. The abnormal expression of ASCL1 has been reported in several types of carcinomas. We have previously identified Ascl1 as a crucial maternal regulator of the germ layer pattern formation in Xenopus Functional studies have indicated that the maternally-supplied Ascl1 renders embryonic cells a propensity to adopt neural fates on one hand, and represses the mesendoderm formation on the other. However, it remains unclear how Ascl1 achieves its repressor function during the activation of mesendoderm genes by VegT. Here, we performed series of gain- and loss-of-function experiments and found that: (i) VegT, the maternal mesendoderm determinant in Xenopus, is required for the deposition of H3K27ac and H3K9ac at its target gene loci during mesendoderm induction; (ii) Ascl1 and VegT antagonistically modulate the deposition of acetylated histone marks at mesendoderm gene loci; (iii) Ascl1 overexpression reduces the VegT-occupancy at mesendoderm gene loci; (iv) Ascl1 but not Neurog2 possesses a repressive activity during mesendoderm induction. These findings reveal a novel repressive function for Ascl1 in inhibiting non-neural fates during early Xenopus embryogenesis.
Collapse
Affiliation(s)
- Zheying Min
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Hao Lin
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Xuechen Zhu
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Li Gao
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Aftab A Khand
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Qinghua Tao
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| |
Collapse
|
17
|
Sampath K, Ephrussi A. CncRNAs: RNAs with both coding and non-coding roles in development. Development 2016; 143:1234-41. [PMID: 27095489 DOI: 10.1242/dev.133298] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RNAs are known to regulate diverse biological processes, either as protein-encoding molecules or as non-coding RNAs. However, a third class that comprises RNAs endowed with both protein coding and non-coding functions has recently emerged. Such bi-functional 'coding and non-coding RNAs' (cncRNAs) have been shown to play important roles in distinct developmental processes in plants and animals. Here, we discuss key examples of cncRNAs and review their roles, regulation and mechanisms of action during development.
Collapse
Affiliation(s)
- Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AJ, UK
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg 69117, Germany
| |
Collapse
|
18
|
Varela N, Aranguiz A, Lizama C, Sepulveda H, Antonelli M, Thaler R, Moreno RD, Montecino M, Stein GS, van Wijnen AJ, Galindo M. Mitotic Inheritance of mRNA Facilitates Translational Activation of the Osteogenic-Lineage Commitment Factor Runx2 in Progeny of Osteoblastic Cells. J Cell Physiol 2016; 231:1001-14. [PMID: 26381402 PMCID: PMC5812339 DOI: 10.1002/jcp.25188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/24/2022]
Abstract
Epigenetic mechanisms mediate the acquisition of specialized cellular phenotypes during tissue development, maintenance and repair. When phenotype-committed cells transit through mitosis, chromosomal condensation counteracts epigenetic activation of gene expression. Subsequent post-mitotic re-activation of transcription depends on epigenetic DNA and histone modifications, as well as other architecturally bound proteins that "bookmark" the genome. Osteogenic lineage commitment, differentiation and progenitor proliferation require the bone-related runt-related transcription factor Runx2. Here, we characterized a non-genomic mRNA mediated mechanism by which osteoblast precursors retain their phenotype during self-renewal. We show that osteoblasts produce maximal levels of Runx2 mRNA, but not protein, prior to mitotic cell division. Runx2 mRNA partitions symmetrically between daughter cells in a non-chromosomal tubulin-containing compartment. Subsequently, transcription-independent de novo synthesis of Runx2 protein in early G1 phase results in increased functional interactions of Runx2 with a representative osteoblast-specific target gene (osteocalcin/BGLAP2) in chromatin. Somatic transmission of Runx2 mRNAs in osteoblasts and osteosarcoma cells represents a versatile mechanism for translational rather than transcriptional induction of this principal gene regulator to maintain osteoblast phenotype identity after mitosis.
Collapse
Affiliation(s)
- Nelson Varela
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Alejandra Aranguiz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Carlos Lizama
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo Sepulveda
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roman Thaler
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905
| | - Ricardo D. Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Gary S. Stein
- Department of Biochemistry, HSRF 326, Vermont Cancer Center for Basic and Translational Research, University of Vermont Medical School, Burlington, VT
| | - Andre J. van Wijnen
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905
| | - Mario Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| |
Collapse
|
19
|
Carter JM, Gibbs M, Breuker CJ. Divergent RNA Localisation Patterns of Maternal Genes Regulating Embryonic Patterning in the Butterfly Pararge aegeria. PLoS One 2015; 10:e0144471. [PMID: 26633019 PMCID: PMC4669120 DOI: 10.1371/journal.pone.0144471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022] Open
Abstract
The maternal effect genes responsible for patterning the embryo along the antero-posterior (AP) axis are broadly conserved in insects. The precise function of these maternal effect genes is the result of the localisation of their mRNA in the oocyte. The main developmental mechanisms involved have been elucidated in Drosophila melanogaster, but recent studies have shown that other insect orders often diverge in RNA localisation patterns. A recent study has shown that in the butterfly Pararge aegeria the distinction between blastodermal embryonic (i.e. germ band) and extra-embryonic tissue (i.e. serosa) is already specified in the oocyte during oogenesis in the ovariole, long before blastoderm cellularisation. To examine the extent by which a female butterfly specifies and patterns the AP axis within the region fated to be the germ band, and whether she specifies a germ plasm, we performed in situ hybridisation experiments on oocytes in P. aegeria ovarioles and on early embryos. RNA localisation of the following key maternal effect genes were investigated: caudal (cad), orthodenticle (otd), hunchback (hb) and four nanos (nos) paralogs, as well as TDRD7 a gene containing a key functional domain (OST-HTH/LOTUS) shared with oskar. TDRD7 was mainly confined to the follicle cells, whilst hb was exclusively zygotically transcribed. RNA of some of the nos paralogs, otd and cad revealed complex localisation patterns within the cortical region prefiguring the germ band (i.e. germ cortex). Rather interestingly, otd was localised within and outside the anterior of the germ cortex. Transcripts of nos-O formed a distinct granular ring in the middle of the germ cortex possibly prefiguring the region where germline stem cells form. These butterfly RNA localisation patterns are highly divergent with respect to other insects, highlighting the diverse ways in which different insect orders maternally regulate early embryogenesis of their offspring.
Collapse
Affiliation(s)
- Jean-Michel Carter
- Evolutionary Developmental Biology Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, United Kingdom
| | - Melanie Gibbs
- NERC Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Casper J. Breuker
- Evolutionary Developmental Biology Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Abstract
For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as 'cncRNAs', have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions.
Collapse
Affiliation(s)
- Pooja Kumari
- Division of Biomedical Cell Biology, Warwick Medical School, The University of Warwick, Gibbet Hill Road, Coventry CV47AJ, United Kingdom
| | - Karuna Sampath
- Division of Biomedical Cell Biology, Warwick Medical School, The University of Warwick, Gibbet Hill Road, Coventry CV47AJ, United Kingdom.
| |
Collapse
|
21
|
Ryu YH, Macdonald PM. RNA sequences required for the noncoding function of oskar RNA also mediate regulation of Oskar protein expression by Bicoid Stability Factor. Dev Biol 2015; 407:211-23. [PMID: 26433064 DOI: 10.1016/j.ydbio.2015.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/13/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
Abstract
The Drosophila oskar (osk) mRNA is unusual in having both coding and noncoding functions. As an mRNA, osk encodes a protein which is deployed specifically at the posterior of the oocyte. This spatially-restricted deployment relies on a program of mRNA localization and both repression and activation of translation, all dependent on regulatory elements located primarily in the 3' untranslated region (UTR) of the mRNA. The 3' UTR also mediates the noncoding function of osk, which is essential for progression through oogenesis. Mutations which most strongly disrupt the noncoding function are positioned in a short region (the C region) near the 3' end of the mRNA, in close proximity to elements required for activation of translation. We show that Bicoid Stability Factor (BSF) binds specifically to the C region of the mRNA. Both knockdown of bsf and mutation of BSF binding sites in osk mRNA have the same consequences: Osk expression is largely eliminated late in oogenesis, with both mRNA localization and translation disrupted. Although the C region of the osk 3' UTR is required for the noncoding function, BSF binding does not appear to be essential for that function.
Collapse
Affiliation(s)
- Young Hee Ryu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Paul M Macdonald
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
22
|
Yang J, Aguero T, King ML. The Xenopus Maternal-to-Zygotic Transition from the Perspective of the Germline. Curr Top Dev Biol 2015; 113:271-303. [PMID: 26358876 DOI: 10.1016/bs.ctdb.2015.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Xenopus, the germline is specified by the inheritance of germ-plasm components synthesized at the beginning of oogenesis. Only the cells in the early embryo that receive germ plasm, the primordial germ cells (PGCs), are competent to give rise to the gametes. Thus, germ-plasm components continue the totipotent potential exhibited by the oocyte into the developing embryo at a time when most cells are preprogrammed for somatic differentiation as dictated by localized maternal determinants. When zygotic transcription begins at the mid-blastula transition, the maternally set program for somatic differentiation is realized. At this time, genetic control is ceded to the zygotic genome, and developmental potential gradually becomes more restricted within the primary germ layers. PGCs are a notable exception to this paradigm and remain transcriptionally silent until the late gastrula. How the germ-cell lineage retains full potential while somatic cells become fate restricted is a tale of translational repression, selective degradation of somatic maternal determinants, and delayed activation of zygotic transcription.
Collapse
Affiliation(s)
- Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tristan Aguero
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
23
|
Kanke M, Jambor H, Reich J, Marches B, Gstir R, Ryu YH, Ephrussi A, Macdonald PM. oskar RNA plays multiple noncoding roles to support oogenesis and maintain integrity of the germline/soma distinction. RNA (NEW YORK, N.Y.) 2015; 21:1096-109. [PMID: 25862242 PMCID: PMC4436663 DOI: 10.1261/rna.048298.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/12/2015] [Indexed: 05/05/2023]
Abstract
The Drosophila oskar (osk) mRNA is unusual in that it has both coding and noncoding functions. As an mRNA, osk encodes a protein required for embryonic patterning and germ cell formation. Independent of that function, the absence of osk mRNA disrupts formation of the karyosome and blocks progression through oogenesis. Here we show that loss of osk mRNA also affects the distribution of regulatory proteins, relaxing their association with large RNPs within the germline, and allowing them to accumulate in the somatic follicle cells. This and other noncoding functions of the osk mRNA are mediated by multiple sequence elements with distinct roles. One role, provided by numerous binding sites in two distinct regions of the osk 3' UTR, is to sequester the translational regulator Bruno (Bru), which itself controls translation of osk mRNA. This defines a novel regulatory circuit, with Bru restricting the activity of osk, and osk in turn restricting the activity of Bru. Other functional elements, which do not bind Bru and are positioned close to the 3' end of the RNA, act in the oocyte and are essential. Despite the different roles played by the different types of elements contributing to RNA function, mutation of any leads to accumulation of the germline regulatory factors in the follicle cells.
Collapse
Affiliation(s)
- Matt Kanke
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Helena Jambor
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - John Reich
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Brittany Marches
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Ronald Gstir
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Young Hee Ryu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Paul M Macdonald
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
24
|
Regulatory Roles for Long ncRNA and mRNA. Cancers (Basel) 2013; 5:462-90. [PMID: 24216986 PMCID: PMC3730338 DOI: 10.3390/cancers5020462] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/05/2013] [Accepted: 04/19/2013] [Indexed: 01/31/2023] Open
Abstract
Recent advances in high-throughput sequencing technology have identified the transcription of a much larger portion of the genome than previously anticipated. Especially in the context of cancer it has become clear that aberrant transcription of both protein-coding and long non-coding RNAs (lncRNAs) are frequent events. The current dogma of RNA function describes mRNA to be responsible for the synthesis of proteins, whereas non-coding RNA can have regulatory or epigenetic functions. However, this distinction between protein coding and regulatory ability of transcripts may not be that strict. Here, we review the increasing body of evidence for the existence of multifunctional RNAs that have both protein-coding and trans-regulatory roles. Moreover, we demonstrate that coding transcripts bind to components of the Polycomb Repressor Complex 2 (PRC2) with similar affinities as non-coding transcripts, revealing potential epigenetic regulation by mRNAs. We hypothesize that studies on the regulatory ability of disease-associated mRNAs will form an important new field of research.
Collapse
|
25
|
Nijjar S, Woodland HR. Localisation of RNAs into the germ plasm of vitellogenic Xenopus oocytes. PLoS One 2013; 8:e61847. [PMID: 23626739 PMCID: PMC3633952 DOI: 10.1371/journal.pone.0061847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/14/2013] [Indexed: 11/21/2022] Open
Abstract
We have studied the localisation of mRNAs in full-grown Xenopus laevis oocytes by injecting fluorescent RNAs, followed by confocal microscopy of the oocyte cortex. Concentrating on RNA encoding the Xenopus Nanos homologue, nanos1 (formerly Xcat2), we find that it consistently localised into aggregated germ plasm ribonucleoprotein (RNP) particles, independently of cytoskeletal integrity. This implies that a diffusion/entrapment-mediated mechanism is active, as previously reported for previtellogenic oocytes. Sometimes this was accompanied by localisation into scattered particles of the “late”, Vg1/VegT pathway; occasionally only late pathway localisation was seen. The Xpat RNA behaved in an identical fashion and for neither RNA was the localisation changed by any culture conditions tested. The identity of the labelled RNP aggregates as definitive germ plasm was confirmed by their inclusion of abundant mitochondria and co-localisation with the germ plasm protein Hermes. Further, the nanos1/Hermes RNP particles are interspersed with those containing the germ plasm protein Xpat. These aggregates may be followed into the germ plasm of unfertilized eggs, but with a notable reduction in its quantity, both in terms of injected molecules and endogenous structures. Our results conflict with previous reports that there is no RNA localisation in large oocytes, and that during mid-oogenesis even germ plasm RNAs localise exclusively by the late pathway. We find that in mid oogenesis nanos1 RNA also localises to germ plasm but also by the late pathway. Late pathway RNAs, Vg1 and VegT, also may localise into germ plasm. Our results support the view that mechanistically the two modes of localisation are extremely similar, and that in an injection experiment RNAs might utilise either pathway, the distinction in fates being very subtle and subject to variation. We discuss these results in relation to their biological significance and the results of others.
Collapse
Affiliation(s)
- Sarbjit Nijjar
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Hugh R. Woodland
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Regulation of cell polarity and RNA localization in vertebrate oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:127-85. [PMID: 24016525 DOI: 10.1016/b978-0-12-407694-5.00004-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has long been appreciated that the inheritance of maternal cytoplasmic determinants from different regions of the egg can lead to differential specification of blastomeres during cleavage. Localized RNAs are important determinants of cell fate in eggs and embryos but are also recognized as fundamental regulators of cell structure and function. This chapter summarizes recent molecular and genetic experiments regarding: (1) mechanisms that regulate polarity during different stages of vertebrate oogenesis, (2) pathways that localize presumptive protein and RNA determinants within the polarized oocyte and egg, and (3) how these determinants act in the embryo to determine the ultimate cell fates. Emphasis is placed on studies done in Xenopus, where extensive work has been done in these areas, and comparisons are drawn with fish and mammals. The prospects for future work using in vivo genome manipulation and other postgenomic approaches are also discussed.
Collapse
|
27
|
Blower MD. Molecular insights into intracellular RNA localization. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:1-39. [PMID: 23351709 DOI: 10.1016/b978-0-12-407699-0.00001-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Localization of mRNAs to specific destinations within a cell or an embryo is important for local control of protein synthesis. mRNA localization is well known to function in very large and polarized cells such as neurons, and to facilitate embryonic patterning during early development. However, recent genome-wide studies have revealed that mRNA localization is more widely utilized than previously thought to control gene expression. Not only can transcripts be localized asymmetrically within the cytoplasm, they are often also localized to symmetrically distributed organelles. Recent genetic, cytological, and biochemical studies have begun to provide molecular insight into how cells select RNAs for transport, move them to specific destinations, and control their translation. This chapter will summarize recent insights into the mechanisms and function of RNA localization with a specific emphasis on molecular insights into each step in the mRNA localization process.
Collapse
Affiliation(s)
- Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Wang HW, Fang JS, Kuang X, Miao LY, Wang C, Xia GL, King ML, Zhang J. Activity of long-chain acyl-CoA synthetase is required for maintaining meiotic arrest in Xenopus laevis. Biol Reprod 2012; 87:74. [PMID: 22786823 DOI: 10.1095/biolreprod.112.100511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In most vertebrates, fully grown oocytes are arrested in meiotic prophase I and only resume the cell cycle upon external stimuli, such as hormones. The proper arrest and resumption of the meiotic cycle is critical for reproduction. A Galpha(S) signaling pathway essential for the arrest is conserved in organisms from Xenopus to mouse and human. A previous gene association study implicated that mutations of human ACSL6 may be related to premature ovarian failure. However, functional roles of ACSL6 in human infertility have yet to be reported. In the present study, we found that triacsin C, a potent and specific inhibitor for ACSL, triggers maturation in Xenopus and mouse oocytes in the absence of hormone, suggesting ACSL activity is required for the oocyte arrest. In Xenopus, acsl1b may fulfill a major role in the process, because inhibition of acsl1b by knocking down its RNA results in abnormal acceleration of oocyte maturation. Such abnormally matured eggs cannot support early embryonic development. Moreover, direct inhibition of protein palmitoylation, which lies downstream of ACSLs, also causes oocyte maturation. Furthermore, palmitoylation of Galpha(s), which is essential for its function, is inhibited when the ACSL activity is blocked by triacsin C in Xenopus. Thus, disruption of ACSL activity causes inhibition of the Galpha(s) signaling pathway in the oocytes, which may result in premature ovarian failure in human.
Collapse
Affiliation(s)
- Hua-wei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bentaya S, Ghogomu SM, Vanhomwegen J, Van Campenhout C, Thelie A, Dhainaut M, Bellefroid EJ, Souopgui J. The RNA-binding protein XSeb4R regulates maternal Sox3 at the posttranscriptional level during maternal-zygotic transition in Xenopus. Dev Biol 2012; 363:362-72. [PMID: 22261149 DOI: 10.1016/j.ydbio.2011.12.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/14/2011] [Accepted: 12/23/2011] [Indexed: 01/17/2023]
Abstract
The maternal-zygotic transition (MZT) is an embryonic event that overlaps with and plays key roles in primary germ layer specification in vertebrates. During MZT, maternally supplied mRNAs are degraded while zygotic transcripts are synthesized to either reinforce the already specified cell fate or to trigger new cell identity. Here, we show that forced expression of the RNA-binding protein, XSeb4R, in animal pole blastomeres of Xenopus embryos, inappropriately stabilizes transcripts there, including maternal Sox3. This leads to the impaired ability of the ectodermal progenitors to respond to factors regulating brain patterning and their eventual loss by apoptosis. XSeb4R protein binds specifically to the 3'UTR of Sox3 mRNA. XSeb4R gain-of-function in ectodermal explants reveals increased stability of the maternal Sox3 transcripts, associated with a robust Sox3 protein production. Conversely, whereas XSeb4R depletion abolishes VegT expression, the amount of the maternal Sox3 mRNA is rather increased but without augmentation in the amount of Sox3 protein. Moreover, XSeb4R protein knockdown leads to the modification of the ectoderm-mesoderm boundary, marked by expanded/shifted expression of the mesodermal marker genes such as Xbra and Apod, followed by an expression inhibition of Epi. K., an ectodermal marker. Overall, our data suggest XSeb4R as a novel player in gene expression regulation, acting at the posttranscriptional level during ectoderm specification in Xenopus.
Collapse
Affiliation(s)
- Souhila Bentaya
- Laboratoire de Génétique du Développement, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), rue des Profs. Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kloc M, Dallaire P, Reunov A, Major F. Structural messenger RNA contains cytokeratin polymerization and depolymerization signals. Cell Tissue Res 2011; 346:209-22. [PMID: 21987223 DOI: 10.1007/s00441-011-1255-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/16/2011] [Indexed: 11/24/2022]
Abstract
We have previously shown that VegT mRNA plays a structural (translation-independent) role in the organization of the cytokeratin cytoskeleton in Xenopus oocytes. The depletion of VegT mRNA causes the fragmentation of the cytokeratin network in the vegetal cortex of Xenopus oocytes. This effect can be rescued by the injection of synthetic VegT RNA into the oocyte. Here, we show that the structural function of VegT mRNA in Xenopus oocyte depends on its combinatory signals for the induction or facilitation and for the maintenance of the depolymerization vs. polymerization status of cytokeratin filaments and that the 300-nucleotide fragment of VegT RNA isolated from the context of the entire molecule induces and maintains the depolymerization of cytokeratin filaments when injected into Xenopus oocytes. A computational analysis of three homologous Xenopus VegT mRNAs has revealed the presence, within this 300-nucleotide region, of a conserved base-pairing (hairpin) configuration that might function in RNA/protein interactions.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Department of Surgery, The Methodist Hospital and The Methodist Hospital Research Institute, 6565 Fannin Street, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
31
|
Skirkanich J, Luxardi G, Yang J, Kodjabachian L, Klein PS. An essential role for transcription before the MBT in Xenopus laevis. Dev Biol 2011; 357:478-91. [PMID: 21741375 PMCID: PMC3164747 DOI: 10.1016/j.ydbio.2011.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 05/10/2011] [Accepted: 06/07/2011] [Indexed: 12/12/2022]
Abstract
Most zygotic genes remain transcriptionally silent in Drosophila, Xenopus, and zebrafish embryos through multiple mitotic divisions until the midblastula transition (MBT). Several genes have been identified in each of these organisms that are transcribed before the MBT, but whether precocious expression of specific mRNAs is important for later development has not been examined in detail. Here, we identify a class of protein coding transcripts activated before the MBT by the maternal T-box factor VegT that are components of an established transcriptional regulatory network required for mesendoderm induction in Xenopus laevis, including the Nodal related ligands xnr5, xnr6, and derrière and the transcription factors bix4, and sox17α. Accumulation of phospho-Smad2, a hallmark of active Nodal signaling, at the onset of the MBT requires preMBT transcription and activity of xnr5 and xnr6. Furthermore, preMBT activation of the Nodal pathway is essential for mesendodermal gene expression and patterning of the embryo. Finally, xnr5 and xnr6 can also activate their own expression during cleavage stages, indicating that preMBT transcription contributes to a feed-forward system that allows robust activation of Nodal signaling at the MBT.
Collapse
Affiliation(s)
| | - Guillaume Luxardi
- Institut de Biologie du Développement de Marseille Luminy, CNRS-Université de la Méditerranée, Marseille, France
| | - Jing Yang
- Nationwide Children’s Hospital, Columbus, OH, USA
| | - Laurent Kodjabachian
- Institut de Biologie du Développement de Marseille Luminy, CNRS-Université de la Méditerranée, Marseille, France
| | - Peter S. Klein
- Cell and Molecular Biology Graduate Group
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Cha SW, Tadjuidje E, Wylie C, Heasman J. The roles of maternal Vangl2 and aPKC in Xenopus oocyte and embryo patterning. Development 2011; 138:3989-4000. [PMID: 21813572 DOI: 10.1242/dev.068866] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Xenopus oocyte contains components of both the planar cell polarity and apical-basal polarity pathways, but their roles are not known. Here, we examine the distribution, interactions and functions of the maternal planar cell polarity core protein Vangl2 and the apical-basal complex component aPKC. We show that Vangl2 is distributed in animally enriched islands in the subcortical cytoplasm in full-grown oocytes, where it interacts with a post-Golgi v-SNARE protein, VAMP1, and acetylated microtubules. We find that Vangl2 is required for the stability of VAMP1 as well as for the maintenance of the stable microtubule architecture of the oocyte. We show that Vangl2 interacts with atypical PKC, and that both the acetylated microtubule cytoskeleton and the Vangl2-VAMP1 distribution are dependent on the presence of aPKC. We also demonstrate that aPKC and Vangl2 are required for the cell membrane asymmetry that is established during oocyte maturation, and for the asymmetrical distribution of maternal transcripts for the germ layer and dorsal/ventral determinants VegT and Wnt11. This study demonstrates the interaction and interdependence of Vangl2, VAMP1, aPKC and the stable microtubule cytoskeleton in the oocyte, shows that maternal Vangl2 and aPKC are required for specific oocyte asymmetries and vertebrate embryonic patterning, and points to the usefulness of the oocyte as a model to study the polarity problem.
Collapse
Affiliation(s)
- Sang-Wook Cha
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
33
|
When one is better than two: RNA with dual functions. Biochimie 2010; 93:633-44. [PMID: 21111023 DOI: 10.1016/j.biochi.2010.11.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/17/2010] [Indexed: 11/23/2022]
Abstract
The central dogma of biology, until not long ago, held that genetic information stored on DNA molecules was translated into the final protein products through RNA as intermediate molecules. Then, an additional level of complexity in the regulation of genome expression was added, implicating new classes of RNA molecules called non-coding RNA (ncRNA). These ncRNA are also often referred to as functional RNA in that, although they do not contain the capacity to encode proteins, do have a function as RNA molecules. They have been thus far considered as truly non-coding RNA since no ORF long enough to be considered, nor protein, have been associated with them. However, the recent identification and characterization of bifunctional RNA, i.e. RNA for which both coding capacity and activity as functional RNA have been reported, suggests that a definite categorization of some RNA molecules is far from being straightforward. Indeed, several RNA primarily classified as non-protein-coding RNA has been showed to hold coding capacities and associated peptides. Conversely, mRNA, usually regarded as strictly protein-coding, may act as functional RNA molecules. Here, we describe several examples of these bifunctional RNA that have been already characterized from bacteria to mammals. We also extend this concept to fortuitous acquisition of dual function in pathological conditions and to the recently highlighted duality between information carried by a gene and its pseudogenes counterparts.
Collapse
|
34
|
Abstract
Localized mRNAs found in specific regions of somatic cells, germ cells, and embryos function through their protein translation products in cell polarization and development. Recent studies on Xenopus and Drosophila eggs and various somatic cells showed that some of the localized noncoding and coding RNAs play a structural (translation independent) role in maintaining the integrity of microtubule and microfilament cytoskeleton and/or may function in protein folding or as a scaffold for the assembly of cytoplasmic complexes essential for egg or embryo development. In addition, structural noncoding RNAs within the cell nucleus have been shown to be involved in the organization of chromatin, nuclear bodies, and DNA replication. The fact that some of the RNAs may have previously unforeseen structural functions, will change our view on traditional functions of RNAs and will open new frontiers in the field of RNA studies and therapeutic development.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Methodist Hospital, The Methodist Hospital Research Institute, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
35
|
Hulstrand AM, Schneider PN, Houston DW. The use of antisense oligonucleotides in Xenopus oocytes. Methods 2010; 51:75-81. [PMID: 20045732 DOI: 10.1016/j.ymeth.2009.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Accepted: 12/30/2009] [Indexed: 11/18/2022] Open
Abstract
The ability to manipulate gene expression in Xenopus oocytes and then generate fertilized embryos by transfer into host females has made it possible to rapidly characterize maternal signaling pathways in vertebrate development. Maternal mRNAs in particular can be efficiently depleted using antisense deoxyoligonucleotides (oligos), mediated by endogenous RNase-H activity. Since the microinjection of antisense reagents or mRNAs into eggs after fertilization often fails to affect maternal signaling pathways, mRNA depletion in the Xenopus oocyte is uniquely suited to assessing maternal functions. In this review, we highlight the advantages of using antisense in Xenopus oocytes and describe basic methods for designing and choosing effective oligos. We also summarize the procedures for fertilizing cultured oocytes by host-transfer and interpreting the specificity of antisense effects. Although these methods can be technically demanding, the use of antisense in oocytes can be used to address biological questions that are intractable in other experimental settings.
Collapse
Affiliation(s)
- Alissa M Hulstrand
- The University of Iowa, Department of Biology, 257 BB, Iowa City, IA 52242-1324, USA
| | | | | |
Collapse
|
36
|
|
37
|
Cuykendall TN, Houston DW. Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation. Development 2009; 136:3057-65. [PMID: 19675128 PMCID: PMC2730363 DOI: 10.1242/dev.036855] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2009] [Indexed: 11/20/2022]
Abstract
Specification of the dorsoventral axis in Xenopus depends on rearrangements of the egg vegetal cortex following fertilization, concomitant with activation of Wnt/beta-catenin signaling. How these processes are tied together is not clear, but RNAs localized to the vegetal cortex during oogenesis are known to be essential. Despite their importance, few vegetally localized RNAs have been examined in detail. In this study, we describe the identification of a novel localized mRNA, trim36, and characterize its function through maternal loss-of-function experiments. We find that trim36 is expressed in the germ plasm and encodes a ubiquitin ligase of the Tripartite motif-containing (Trim) family. Depletion of maternal trim36 using antisense oligonucleotides results in ventralized embryos and reduced organizer gene expression. We show that injection of wnt11 mRNA rescues this effect, suggesting that Trim36 functions upstream of Wnt/beta-catenin activation. We further find that vegetal microtubule polymerization and cortical rotation are disrupted in trim36-depleted embryos, in a manner dependent on Trim36 ubiquitin ligase activity. Additionally, these embryos can be rescued by tipping the eggs 90 degrees relative to the animal-vegetal axis. Taken together, our results suggest a role for Trim36 in controlling the stability of proteins regulating microtubule polymerization during cortical rotation, and subsequently axis formation.
Collapse
Affiliation(s)
- Tawny N Cuykendall
- The University of Iowa, Department of Biology, 257 BB, Iowa City, IA 52242, USA
| | | |
Collapse
|
38
|
Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 2009; 23:1494-504. [PMID: 19571179 DOI: 10.1101/gad.1800909] [Citation(s) in RCA: 1862] [Impact Index Per Article: 116.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most of the eukaryotic genome is transcribed, yielding a complex network of transcripts that includes tens of thousands of long noncoding RNAs with little or no protein-coding capacity. Although the vast majority of long noncoding RNAs have yet to be characterized thoroughly, many of these transcripts are unlikely to represent transcriptional "noise" as a significant number have been shown to exhibit cell type-specific expression, localization to subcellular compartments, and association with human diseases. Here, we highlight recent efforts that have identified a myriad of molecular functions for long noncoding RNAs. In some cases, it appears that simply the act of noncoding RNA transcription is sufficient to positively or negatively affect the expression of nearby genes. However, in many cases, the long noncoding RNAs themselves serve key regulatory roles that were assumed previously to be reserved for proteins, such as regulating the activity or localization of proteins and serving as organizational frameworks of subcellular structures. In addition, many long noncoding RNAs are processed to yield small RNAs or, conversely, modulate how other RNAs are processed. It is thus becoming increasingly clear that long noncoding RNAs can function via numerous paradigms and are key regulatory molecules in the cell.
Collapse
Affiliation(s)
- Jeremy E Wilusz
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
39
|
Arthur PK, Claussen M, Koch S, Tarbashevich K, Jahn O, Pieler T. Participation of Xenopus Elr-type proteins in vegetal mRNA localization during oogenesis. J Biol Chem 2009; 284:19982-92. [PMID: 19458392 DOI: 10.1074/jbc.m109.009928] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Directional transport of specific mRNAs is of primary biological relevance. In Xenopus oocytes, mRNA localization to the vegetal pole is important for germ layer formation and germ cell development. Using a biochemical approach, we identified Xenopus Elr-type proteins, homologs of the Hu/ELAV proteins, as novel components of the vegetal mRNA localization machinery. They bind specifically to the localization elements of several different vegetally localizing Xenopus mRNAs, and they are part of one RNP together with other localization proteins, such as Vg1RBP and XStaufen 1. Blocking Elr-type protein binding by either localization element mutagenesis or antisense morpholino oligonucleotide-mediated masking of their target RNA structures, as well as overexpression of wild type and mutant ElrB proteins, interferes with vegetal localization in Xenopus oocytes.
Collapse
Affiliation(s)
- Patrick K Arthur
- Department of Developmental Biochemistry, Göttingen Center for Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Kerr TC, Cuykendall TN, Luettjohann LC, Houston DW. Maternal Tgif1 regulates nodal gene expression in Xenopus. Dev Dyn 2008; 237:2862-73. [PMID: 18816846 DOI: 10.1002/dvdy.21707] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In Xenopus, the maternal transcription factor VegT is necessary and sufficient to initiate the expression of nodal-related genes, which are central to many aspects of early development. However, little is known about regulation of VegT activity. Using maternal loss-of-function experiments, we show that the maternal homeoprotein, Tgif1, antagonizes VegT and plays a central role in anteroposterior patterning by negatively regulating a subset of nodal-related genes. Depletion of Tgif1 causes the anteriorization of embryos and the up-regulation of nodal paralogues nr5 and nr6. Furthermore, Tgif1 inhibits activation of nr5 by VegT in a manner that requires a C-terminal Sin3 corepressor-interacting domain. Tgif1 has been implicated in the transcriptional corepression of transforming growth factor-beta (TGFbeta) and retinoid signaling. However, we show that Tgif1 does not inhibit these pathways in early development. These results identify an essential role for Tgif1 in the control of nodal expression and provide insight into Tgif1 function and mechanisms controlling VegT activity.
Collapse
Affiliation(s)
- Tyler C Kerr
- University of Iowa, Department of Biology, Iowa City, Iowa 52246-1324, USA
| | | | | | | |
Collapse
|
41
|
Souopgui J, Rust B, Vanhomwegen J, Heasman J, Henningfeld KA, Bellefroid E, Pieler T. The RNA-binding protein XSeb4R: a positive regulator of VegT mRNA stability and translation that is required for germ layer formation in Xenopus. Genes Dev 2008; 22:2347-52. [PMID: 18765788 DOI: 10.1101/gad.479808] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
VegT represents a localized maternal determinant essentially required for endoderm formation in Xenopus. Here, we report on the identification of the RNA-binding protein XSeb4R as a positive regulator of VegT. XSeb4R interacts directly with the 3'-untranslated region of VegT mRNA, stabilizes it, and stimulates translation. Ablation of XSeb4R activity results in impairment of endoderm and mesoderm formation, while ectopic expression of XSeb4R in ectodermal cells induces endodermal and mesodermal gene expression. These observations unravel a novel mode of VegT regulation at the post-transcriptional level that is essential for germ layer formation in Xenopus.
Collapse
Affiliation(s)
- Jacob Souopgui
- Laboratoire d'Embryologie Moléculaire, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), B-6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Non-protein-coding sequences increasingly dominate the genomes of multicellular organisms as their complexity increases, in contrast to protein-coding genes, which remain relatively static. Most of the mammalian genome and indeed that of all eukaryotes is expressed in a cell- and tissue-specific manner, and there is mounting evidence that much of this transcription is involved in the regulation of differentiation and development. Different classes of small and large noncoding RNAs (ncRNAs) have been shown to regulate almost every level of gene expression, including the activation and repression of homeotic genes and the targeting of chromatin-remodeling complexes. ncRNAs are involved in developmental processes in both simple and complex eukaryotes, and we illustrate this in the latter by focusing on the animal germline, brain, and eye. While most have yet to be systematically studied, the emerging evidence suggests that there is a vast hidden layer of regulatory ncRNAs that constitutes the majority of the genomic programming of multicellular organisms and plays a major role in controlling the epigenetic trajectories that underlie their ontogeny.
Collapse
|
43
|
Marlow FL, Mullins MC. Bucky ball functions in Balbiani body assembly and animal-vegetal polarity in the oocyte and follicle cell layer in zebrafish. Dev Biol 2008; 321:40-50. [PMID: 18582455 PMCID: PMC2606906 DOI: 10.1016/j.ydbio.2008.05.557] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 05/17/2008] [Accepted: 05/27/2008] [Indexed: 12/19/2022]
Abstract
The Balbiani body is an evolutionarily conserved asymmetric aggregate of organelles that is present in early oocytes of all animals examined, including humans. Although first identified more than 150 years ago, genes acting in the assembly of the Balbiani body have not been identified in a vertebrate. Here we show that the bucky ball gene in the zebrafish is required to assemble this universal aggregate of organelles. In the absence of bucky ball the Balbiani body fails to form, and vegetal mRNAs are not localized in oocytes. In contrast, animal pole localized oocyte markers are expanded into vegetal regions in bucky ball mutants, but patterning within the expanded animal pole remains intact. Interestingly, in bucky ball mutants an excessive number of cells within the somatic follicle cell layer surrounding the oocyte develop as micropylar cells, an animal pole specific cell fate. The single micropyle permits sperm to fertilize the egg in zebrafish. In bucky ball mutants, excess micropyles cause polyspermy. Thus bucky ball provides the first genetic access to Balbiani body formation in a vertebrate. We demonstrate that bucky ball functions during early oogenesis to regulate polarity of the oocyte, future egg and embryo. Finally, the expansion of animal identity in oocytes and somatic follicle cells suggests that somatic cell fate and oocyte polarity are interdependent.
Collapse
Affiliation(s)
- Florence L. Marlow
- University of Pennsylvania School of Medicine, Department of Cell and Developmental Biology, 1211 BRB II, 421 Curie Blvd, Philadelphia, PA 19104-6058
| | - Mary C. Mullins
- University of Pennsylvania School of Medicine, Department of Cell and Developmental Biology, 1211 BRB II, 421 Curie Blvd, Philadelphia, PA 19104-6058
| |
Collapse
|
44
|
Abstract
One of the most significant problems facing developmental biologists who do not work on an organism with well-developed genetics - and even for some who do - is how to inhibit the action of a gene of interest during development so as to learn about its normal biological function. A widely adopted approach is to use antisense technologies, and especially morpholino antisense oligonucleotides. In this article, we review the use of such reagents and present examples of how they have provided insights into developmental mechanisms. We also discuss how the use of morpholinos can lead to misleading results, including off-target effects, and we suggest controls that will allow researchers to interpret morpholino experiments correctly.
Collapse
Affiliation(s)
- Judith S Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | | |
Collapse
|
45
|
Kloc M. Emerging novel functions of RNAs, and binary phenotype? Dev Biol 2008; 317:401-4. [PMID: 18394598 DOI: 10.1016/j.ydbio.2008.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 02/25/2008] [Accepted: 03/04/2008] [Indexed: 10/22/2022]
Abstract
Loss-of-function technology has been one of the most popular knockout tools for the study of gene function in cell and developmental biology. This technology employs two basic approaches for elimination of the protein of interest. The morpholino antisense oligonucleotides approach relies on inhibiting translation of the given protein without degrading the cognate mRNA. The antisense deoxynucleotides and siRNA approach acts via removal of the mRNA template, which then prevents protein translation. In the latest approach, as well as in these genetic knockout approaches that eliminate or alter the level of mRNA transcribed from the gene of interest, the assumption is and always has been that the only relevant function of mRNA is to make a protein, and, thus, the effect of removing mRNA equals the effect of removing its protein function. However, the most recent studies of different biological systems point to completely novel and unexpected functions of the subpopulation of localized RNAs and suggest that, at least in some cases, the normal cell or embryo phenotype is in fact binary i.e. depends not only on the function of the protein but also on the autonomous function of its mRNA.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1000, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Ishibashi H, Matsumura N, Hanafusa H, Matsumoto K, De Robertis E, Kuroda H. Expression of Siamois and Twin in the blastula Chordin/Noggin signaling center is required for brain formation in Xenopus laevis embryos. Mech Dev 2008; 125:58-66. [PMID: 18036787 PMCID: PMC2292103 DOI: 10.1016/j.mod.2007.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 10/04/2007] [Accepted: 10/09/2007] [Indexed: 11/17/2022]
Abstract
The blastula Chordin- and Noggin-expressing (BCNE) center located in the dorsal animal region of the Xenopus blastula embryo contains both prospective anterior neuroectoderm and Spemann organizer precursor cells. Here we show that, contrary to previous reports, the canonical Wnt target homeobox genes, Double knockdown of these genes using antisense morpholinos in Xenopus laevis blocked head formation, reduced the expression of the other BCNE center genes, upregulated Bmp4 expression, and nullified hyperdorsalization by lithium chloride. Moreover, gain- and loss-of-function experiments showed that Siamois and Twin expression is repressed by the vegetal transcription factor VegT. We propose that VegT expression causes maternal beta-Catenin signals to restrict Siamois and Twin expression to the BCNE region. A two-step inhibition of BMP signals by Siamois and Twin-- first by transcriptional repression of Bmp4 and then by activation of the expression of the BMP inhibitors Chordin and Noggin--in the BCNE center is required for head formation.
Collapse
Affiliation(s)
- Hideyuki Ishibashi
- Faculty of Education (Biology), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Noriko Matsumura
- Faculty of Education (Biology), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hiroshi Hanafusa
- Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kunihiro Matsumoto
- Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya 464-8602, Japan
| | - E.M. De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Hiroki Kuroda
- Faculty of Education (Biology), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
47
|
Pérez O, Benítez MS, Nath K, Heasman J, Del Pino EM, Elinson RP. Comparative analysis of Xenopus VegT, the meso-endodermal determinant, identifies an unusual conserved sequence. Differentiation 2007; 75:559-65. [PMID: 17459091 DOI: 10.1111/j.1432-0436.2007.00172.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transcription factor, VegT, is the meso-endodermal determinant in Xenopus laevis. We examined VegT orthologs from several anuran amphibians and the urodele amphibian, the Mexican axolotl. In addition to the conserved T-box, the DNA-binding domain, the orthologs share a conserved 57 amino acid domain at the C-terminal. Most striking is a 17-nucleotide (nt) sequence near the 3' end of the open reading frame. The 17 nts are absolutely conserved among the anurans, whose last common ancestor lived 200 million years ago. As an initial test of the function of the 17 nts, 27 or 49 amino acids, which include the six amino acids coded by the 17 (+1) nts, were deleted from the C-terminal of VegT. These truncated VegT's retained some transcriptional activity, indicating that the 17 nts are not absolutely required for this function. The function of the highly conserved 17 nts is unknown. Two possibilities are that the conserved 17 nts interact with the cytoskeleton or that they are a target for regulation by a microRNA.
Collapse
Affiliation(s)
- Oscar Pérez
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | | | | | | | | |
Collapse
|
48
|
Kloc M, Bilinski S, Dougherty MT. Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: three-dimensional and ultrastructural analysis. Exp Cell Res 2007; 313:1639-51. [PMID: 17376434 PMCID: PMC2613015 DOI: 10.1016/j.yexcr.2007.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/09/2007] [Accepted: 02/09/2007] [Indexed: 11/18/2022]
Abstract
Recent studies discovered a novel structural role of RNA in maintaining the integrity of the mitotic spindle and cellular cytoskeleton. In Xenopus laevis, non-coding Xlsirts and coding VegT RNAs play a structural role in anchoring localized RNAs, maintaining the organization of the cytokeratin cytoskeleton and germinal granules in the oocyte vegetal cortex and in subsequent development of the germline in the embryo. We studied the ultrastructural effects of antisense oligonucleotide driven ablation of Xlsirts and VegT RNAs on the organization of the cytokeratin, germ plasm and other components of the vegetal cortex. We developed a novel method to immunolabel and visualize cytokeratin at the electron microscopy level, which allowed us to reconstruct the ultrastructural organization of the cytokeratin network relative to the components of the vegetal cortex in Xenopus oocytes. The removal of Xlsirts and VegT RNAs not only disrupts the cytokeratin cytoskeleton but also has a profound transcript-specific effect on the anchoring and distribution of germ plasm islands and their germinal granules and the arrangement of yolk platelets within the vegetal cortex. We suggest that the cytokeratin cytoskeleton plays a role in anchoring of germ plasm islands within the vegetal cortex and germinal granules within the germ plasm islands.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
49
|
White JA, Heasman J. Maternal control of pattern formation inXenopus laevis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 310:73-84. [PMID: 17219372 DOI: 10.1002/jez.b.21153] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We review the essential role of maternal factors in pattern formation for Xenopus laevis, focusing on VegT, Vg1, and Wnt11. Results from loss of function experiments demonstrate a clear requirement for these genes in germ layer specification, dorsal-ventral axis formation, and convergence extension. We also discuss these genes in the broader context of metazoan development, exploring whether and how their functions in the X. laevis model organism may or may not be conserved in other species. Wnt11 signaling in particular provides a classic example where understanding context in development is crucial to understanding function. Genomic sequencing, gene expression, and functional screening data that are becoming available in more species are providing invaluable aid to decoding and modeling signaling pathways. More work is needed to develop a comprehensive catalog of the Wnt signaling, T-box, and TGF-beta genes in metazoans both near and far in evolutionary distance. We finally discuss some specific experimental and modeling efforts that will be needed to understand the behavior of these signaling networks in vivo so that we can interpret these critical pathways in an evolutionary framework.
Collapse
Affiliation(s)
- Jody A White
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA.
| | | |
Collapse
|
50
|
Zorn AM, Wells JM. Molecular basis of vertebrate endoderm development. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 259:49-111. [PMID: 17425939 DOI: 10.1016/s0074-7696(06)59002-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The embryonic endoderm gives rise to the epithelial lining of the digestive and respiratory systems and organs such as the thyroid, lungs, liver, gallbladder, and pancreas. Studies in Xenopus, zebrafish, and mice have revealed a conserved molecular pathway controlling vertebrate endoderm development. The TGFbeta/Nodal signaling pathway is at the top of this molecular hierarchy and controls the expression of a number of key transcription factors including Mix-like homeodomain proteins, Gata zinc finger factors, Sox HMG domain proteins, and Fox forkhead factors. Here we review the function of these molecules comparing and contrasting their roles in each model organism. Finally, we will describe how our understanding of the molecular pathway governing endoderm development in embryos is being used to differentiate embryonic stem cells in vitro along endodermal lineages, with the ultimate goal of making therapeutically useful tissue.
Collapse
Affiliation(s)
- Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Research, Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|