1
|
Rana KMS, Sonoda T, Sato Y, Kondo Y, Ohtsuka S, Kotani T, Ueno D, Tasumi S. De novo transcriptomic analysis to identify candidate genes potentially related to host recognition during infective stage of Caligus fugu (Crustacea: Copepoda). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101433. [PMID: 39914265 DOI: 10.1016/j.cbd.2025.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 03/12/2025]
Abstract
Attachment site recognition for infecting a definite host is crucial for obligate ectoparasites. Caligus fugu, a marine copepod parasite primarily found on pufferfishes, has a unique host-/organ-specificity. The infective stage of the species exclusively infects host fins as the attachment site. However, so far, little is known about the mechanism underlying the specificity of C. fugu. In this study, transcriptomic profiles of the infective first copepodid stage (CI) along with the pre- and a post-infective stage, i.e., second nauplii (NII) and second copepodids (CII), respectively, were investigated. The de novo assembled transcriptome of C. fugu showed that a high number of transcripts showed high homology to those of relative species, Caligus rogercresseyi (94.7 %) and Lepeophtheirus salmonis (91.0 %), suggesting that only a small portion of species-specific genes contribute to interspecific differences, such as host-seeking. Importantly, no gene was noted from the odorant receptors and gustatory receptors families in C. fugu transcripts, similar to L. salmonis genome. Genes related to chemosensing such as the ionotropic glutamate receptors (iGluR) or ionotropic receptors (IRs), viz., GRIA2, GRIA3, GRID2, GRIK2, GRIK3, IR21a, IR25a, IR40a, and IR93a, likely involved in host-seeking, were highly expressed during CI among the three stages. In addition, inositol 1,4,5-triphosphate receptor-associated 2, another potential candidate gene involved in host-seeking, was significantly upregulated in CI compared with that in NII and maintained at the same level in CII. Our present transcriptomic data should offer a foundation for further investigations on various biological aspects, such as the host-/organ-specificity of sea lice.
Collapse
Affiliation(s)
- K M Shakil Rana
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan; Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Takanori Sonoda
- Graduate School of Agriculture, Forestry, and Fisheries, Kagoshima University, Kagoshima, Kagoshima 890-8580, Japan
| | - Yoshiki Sato
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka 431-0214, Japan
| | - Yusuke Kondo
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, 5-8-1 Minato-machi, Takehara, Hiroshima 725-0024, Japan
| | - Susumu Ohtsuka
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, 5-8-1 Minato-machi, Takehara, Hiroshima 725-0024, Japan
| | - Tomonari Kotani
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| | - Daisuke Ueno
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Saga University, Honjo-cho 1, Saga 840-8502, Japan
| | - Satoshi Tasumi
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
| |
Collapse
|
2
|
Stein WD. Orthologs at the Base of the Olfactores Clade. Genes (Basel) 2024; 15:657. [PMID: 38927593 PMCID: PMC11203038 DOI: 10.3390/genes15060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Tunicate orthologs in the human genome comprise just 84 genes of the 19,872 protein-coding genes and 23 of the 16,528 non-coding genes, yet they stand at the base of the Olfactores clade, which radiated to generate thousands of tunicate and vertebrate species. What were the powerful drivers among these genes that enabled this process? Many of these orthologs are present in gene families. We discuss the biological role of each family and the orthologs' quantitative contribution to the family. Most important was the evolution of a second type of cadherin. This, a Type II cadherin, had the property of detaching the cell containing that cadherin from cells that expressed the Type I class. The set of such Type II cadherins could now detach and move away from their Type I neighbours, a process which would eventually evolve into the formation of the neural crest, "the fourth germ layer", providing a wide range of possibilities for further evolutionary invention. A second important contribution were key additions to the broad development of the muscle and nerve protein and visual perception toolkits. These developments in mobility and vision provided the basis for the development of the efficient predatory capabilities of the Vertebrata.
Collapse
Affiliation(s)
- Wilfred D Stein
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
3
|
Constantinou SJ, Duan N, Nagy LM, Chipman AD, Williams TA. Elongation during segmentation shows axial variability, low mitotic rates, and synchronized cell cycle domains in the crustacean, Thamnocephalus platyurus. EvoDevo 2020; 11:1. [PMID: 31988708 PMCID: PMC6969478 DOI: 10.1186/s13227-020-0147-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
Background Segmentation in arthropods typically occurs by sequential addition of segments from a posterior growth zone. However, the amount of tissue required for growth and the cell behaviors producing posterior elongation are sparsely documented. Results Using precisely staged larvae of the crustacean, Thamnocephalus platyurus, we systematically examine cell division patterns and morphometric changes associated with posterior elongation during segmentation. We show that cell division occurs during normal elongation but that cells in the growth zone need only divide ~ 1.5 times to meet growth estimates; correspondingly, direct measures of cell division in the growth zone are low. Morphometric measurements of the growth zone and of newly formed segments suggest tagma-specific features of segment generation. Using methods for detecting two different phases in the cell cycle, we show distinct domains of synchronized cells in the posterior trunk. Borders of cell cycle domains correlate with domains of segmental gene expression, suggesting an intimate link between segment generation and cell cycle regulation. Conclusions Emerging measures of cellular dynamics underlying posterior elongation already show a number of intriguing characteristics that may be widespread among sequentially segmenting arthropods and are likely a source of evolutionary variability. These characteristics include: the low rates of posterior mitosis, the apparently tight regulation of cell cycle at the growth zone/new segment border, and a correlation between changes in elongation and tagma boundaries.
Collapse
Affiliation(s)
- Savvas J Constantinou
- 1Biology Department, Trinity College, Hartford, CT USA.,4Present Address: Department of Integrative Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Nicole Duan
- 1Biology Department, Trinity College, Hartford, CT USA.,5Present Address: Bioinformatics and Quantitative Biosciences, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332 USA
| | - Lisa M Nagy
- 2Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Ariel D Chipman
- 3The Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | | |
Collapse
|
4
|
Yang J, Ortega-Hernández J, Legg DA, Lan T, Hou JB, Zhang XG. Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods. Nat Commun 2018; 9:470. [PMID: 29391458 PMCID: PMC5794847 DOI: 10.1038/s41467-017-02754-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
Euarthropods owe their evolutionary and ecological success to the morphological plasticity of their appendages. Although this variability is partly expressed in the specialization of the protopodite for a feeding function in the post-deutocerebral limbs, the origin of the former structure among Cambrian representatives remains uncertain. Here, we describe Alacaris mirabilis gen. et sp. nov. from the early Cambrian Xiaoshiba Lagerstätte in China, which reveals the proximal organization of fuxianhuiid appendages in exceptional detail. Proximally, the post-deutocerebral limbs possess an antero-posteriorly compressed protopodite with robust spines. The protopodite is attached to an endopod with more than a dozen podomeres, and an oval flap-shaped exopod. The gnathal edges of the protopodites form an axial food groove along the ventral side of the body, indicating a predatory/scavenging autecology. A cladistic analysis indicates that the fuxianhuiid protopodite represents the phylogenetically earliest occurrence of substantial proximal differentiation within stem-group Euarthropoda illuminating the origin of gnathobasic feeding.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China
| | - Javier Ortega-Hernández
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - David A Legg
- Department of Earth, Atmospheric, and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Tian Lan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550003, China
| | - Jin-Bo Hou
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China
| | - Xi-Guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
5
|
Tweedt SM. Gene Regulatory Networks, Homology, and the Early Panarthropod Fossil Record. Integr Comp Biol 2017; 57:477-487. [PMID: 28957522 DOI: 10.1093/icb/icx095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The arthropod body plan is widely believed to have derived from an ancestral form resembling Cambrian-aged fossil lobopodians, and interpretations of morphological and molecular data have long favored this hypothesis. It is possible, however, that appendages and other morphologies observed in extinct and living panarthropods evolved independently. The key to distinguishing between morphological homology and homoplasy lies in the study of developmental gene regulatory networks (GRNs), and specifically, in determining the unique genetic circuits that construct characters. In this study, I discuss character identity and panarthropod appendage evolution within a developmental GRN framework, with a specific focus on potential limb character identity networks ("ChINs"). I summarize recent molecular studies, and argue that current data do not rule out the possibility of independent panarthropod limb evolution. The link between character identity and GRN architecture has broad implications for homology assessment, and this genetic framework offers alternative approaches to fossil character coding, phylogenetic analyses, and future research into the origin of the arthropod body plan.
Collapse
Affiliation(s)
- Sarah M Tweedt
- Department of Geology & Geophysics, Yale University, New Haven, CT 06520-8109, USA
| |
Collapse
|
6
|
Kaji T, Palmer AR. How reversible is development? Contrast between developmentally plastic gain and loss of segments in barnacle feeding legs. Evolution 2017; 71:756-765. [PMID: 28012177 DOI: 10.1111/evo.13152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/17/2016] [Indexed: 01/14/2023]
Abstract
Segmented organisms and structures have fascinated biologists since William Bateson first described homeotic transformation and recognized the fundamental evolutionary significance of segmental organization. On evolutionary time scales, segments may be lost or gained during major morphological transitions. But how segment loss compares to gain on developmental time scales remains mysterious. Here, we examine the ease of reverse development (opposite to normal growth) by comparing developmentally plastic leg segment loss versus gain in individual barnacles transplanted between different water flow conditions. Plastic segment addition occurred rapidly (one to two molts) and exclusively near the limb base. In contrast, developmentally plastic segment loss-the first observation in any arthropod-took much longer (>10 molts) and, remarkably, occurred throughout the leg (23% of losses occurred mid-limb). Segment loss was not a simple reversal of segment addition. Intersegmental membranes fused first, followed by elimination of duplicate tendons and gradual shortening (but not loss) of duplicate setae. Setal loss, in particular, may impose a severe developmental constraint on arthropod segment fusion. This asymmetric developmental potential (time lag of phenotypic response)-plastic segment addition (amplified normal development) is faster and more orderly than segment loss (reverse development)-adds a new dimension to models of developmental plasticity because the cost of making a developmental mistake in one direction will be greater than in the other.
Collapse
Affiliation(s)
- Tomonari Kaji
- Systematics and Evolution Group, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, V0R 1B0, Canada
| | - A Richard Palmer
- Systematics and Evolution Group, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, V0R 1B0, Canada
| |
Collapse
|
7
|
Chen B, Piel WH, Monteiro A. Distal-less homeobox genes of insects and spiders: genomic organization, function, regulation and evolution. INSECT SCIENCE 2016; 23:335-352. [PMID: 26898323 DOI: 10.1111/1744-7917.12327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The Distal-less (Dll) genes are homeodomain transcription factors that are present in most Metazoa and in representatives of all investigated arthropod groups. In Drosophila, the best studied insect, Dll plays an essential role in forming the proximodistal axis of the legs, antennae and analia, and in specifying antennal identity. The initiation of Dll expression in clusters of cells in mid-lateral regions of the Drosophila embryo represents the earliest genetic marker of limbs. Dll genes are involved in the development of the peripheral nervous system and sensitive organs, and they also function as master regulators of black pigmentation in some insect lineages. Here we analyze the complete genomes of six insects, the nematode Caenorhabditis elegans and Homo sapiens, as well as multiple Dll sequences available in databases in order to examine the structure and protein features of these genes. We also review the function, expression, regulation and evolution of arthropod Dll genes with emphasis on insects and spiders.
Collapse
Affiliation(s)
- Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, P.R. China
| | - William H Piel
- Yale-NUS College, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Antónia Monteiro
- Yale-NUS College, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
8
|
Martin A, Serano JM, Jarvis E, Bruce HS, Wang J, Ray S, Barker CA, O'Connell LC, Patel NH. CRISPR/Cas9 Mutagenesis Reveals Versatile Roles of Hox Genes in Crustacean Limb Specification and Evolution. Curr Biol 2015; 26:14-26. [PMID: 26687626 DOI: 10.1016/j.cub.2015.11.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 12/11/2022]
Abstract
Crustaceans possess a diverse array of specialized limbs. Although shifts in Hox gene expression domains have been postulated to play a role in generating this limb diversity, little functional data have been provided to understand the precise roles of Hox genes during crustacean development. We used a combination of CRISPR/Cas9-targeted mutagenesis and RNAi knockdown to decipher the function of the six Hox genes expressed in the developing mouth and trunk of the amphipod Parhyale hawaiensis. These experimentally manipulated animals display specific and striking homeotic transformations. We found that abdominal-A (abd-A) and Abdominal-B (Abd-B) are required for proper posterior patterning, with knockout of Abd-B resulting in an animal with thoracic type legs along what would have been an abdomen, and abd-A disruption generating a simplified body plan characterized by a loss of specialization in both abdominal and thoracic appendages. In the thorax, Ubx is necessary for gill development and for repression of gnathal fate, and Antp dictates claw morphology. In the mouth, Scr and Antp confer the part-gnathal, part-thoracic hybrid identity of the maxilliped, and Scr and Dfd prevent antennal identity in posterior head segments. Our results allow us to define the role Hox genes play in specifying each appendage type in Parhyale, including the modular nature by which some appendages are patterned by Hox gene inputs. In addition, we define how changes in Hox gene expression have generated morphological differences between crustacean species. Finally, we also highlight the utility of CRISPR/Cas9-based somatic mutagenesis in emerging model organisms.
Collapse
Affiliation(s)
- Arnaud Martin
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200 USA
| | - Julia M Serano
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200 USA
| | - Erin Jarvis
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140 USA
| | - Heather S Bruce
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200 USA
| | - Jennifer Wang
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140 USA
| | - Shagnik Ray
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200 USA
| | - Carryn A Barker
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200 USA
| | - Liam C O'Connell
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140 USA
| | - Nipam H Patel
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200 USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140 USA.
| |
Collapse
|
9
|
Smith FW, Angelini DR, Gaudio MS, Jockusch EL. Metamorphic labral axis patterning in the beetle Tribolium castaneum requires multiple upstream, but few downstream, genes in the appendage patterning network. Evol Dev 2014; 16:78-91. [PMID: 24617987 DOI: 10.1111/ede.12066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The arthropod labrum is an anterior appendage-like structure that forms the dorsal side of the preoral cavity. Conflicting interpretations of fossil, nervous system, and developmental data have led to a proliferation of scenarios for labral evolution. The best supported hypothesis is that the labrum is a novel structure that shares development with appendages as a result of co-option. Here, we use RNA interference in the red flour beetle Tribolium castaneum to compare metamorphic patterning of the labrum to previously published data on ventral appendage patterning. As expected under the co-option hypothesis, depletion of several genes resulted in similar defects in the labrum and ventral appendages. These include proximal deletions and proximal-to-distal transformations resulting from depletion of the leg gap genes homothorax and extradenticle, large-scale deletions resulting from depletion of the leg gap gene Distal-less, and smaller distal deletions resulting from knockdown of the EGF ligand Keren. However, depletion of dachshund and many of the genes that function downstream of the leg gap genes in the ventral appendages had either subtle or no effects on labral axis patterning. This pattern of partial similarity suggests that upstream genes act through different downstream targets in the labrum. We also discovered that many appendage axis patterning genes have roles in patterning the epipharyngeal sensillum array, suggesting that they have become integrated into a novel regulatory network. These genes include Notch, Delta, and decapentaplegic, and the transcription factors abrupt, bric à brac, homothorax, extradenticle and the paralogs apterous a and apterous b.
Collapse
Affiliation(s)
- Frank W Smith
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT, 06269-3043, USA
| | | | | | | |
Collapse
|
10
|
Schlosser G, Patthey C, Shimeld SM. The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. Dev Biol 2014; 389:98-119. [PMID: 24491817 DOI: 10.1016/j.ydbio.2014.01.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/12/2022]
Abstract
Cranial placodes are evolutionary innovations of vertebrates. However, they most likely evolved by redeployment, rewiring and diversification of preexisting cell types and patterning mechanisms. In the second part of this review we compare vertebrates with other animal groups to elucidate the evolutionary history of ectodermal patterning. We show that several transcription factors have ancient bilaterian roles in dorsoventral and anteroposterior regionalisation of the ectoderm. Evidence from amphioxus suggests that ancestral chordates then concentrated neurosecretory cells in the anteriormost non-neural ectoderm. This anterior proto-placodal domain subsequently gave rise to the oral siphon primordia in tunicates (with neurosecretory cells being lost) and anterior (adenohypophyseal, olfactory, and lens) placodes of vertebrates. Likewise, tunicate atrial siphon primordia and posterior (otic, lateral line, and epibranchial) placodes of vertebrates probably evolved from a posterior proto-placodal region in the tunicate-vertebrate ancestor. Since both siphon primordia in tunicates give rise to sparse populations of sensory cells, both proto-placodal domains probably also gave rise to some sensory receptors in the tunicate-vertebrate ancestor. However, proper cranial placodes, which give rise to high density arrays of specialised sensory receptors and neurons, evolved from these domains only in the vertebrate lineage. We propose that this may have involved rewiring of the regulatory network upstream and downstream of Six1/2 and Six4/5 transcription factors and their Eya family cofactors. These proteins, which play ancient roles in neuronal differentiation were first recruited to the dorsal non-neural ectoderm in the tunicate-vertebrate ancestor but subsequently probably acquired new target genes in the vertebrate lineage, allowing them to adopt new functions in regulating proliferation and patterning of neuronal progenitors.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Department of Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, University Road, Galway, Ireland.
| | - Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
11
|
Appendage patterning in the primitively wingless hexapods Thermobia domestica (Zygentoma: Lepismatidae) and Folsomia candida (Collembola: Isotomidae). Dev Genes Evol 2013; 223:341-50. [DOI: 10.1007/s00427-013-0449-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022]
|
12
|
Sharma PP, Schwager EE, Giribet G, Jockusch EL, Extavour CG. Distal-lessanddachshundpattern both plesiomorphic and apomorphic structures in chelicerates: RNA interference in the harvestmanPhalangium opilio(Opiliones). Evol Dev 2013; 15:228-42. [DOI: 10.1111/ede.12029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Evelyn E. Schwager
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street, Cambridge, MA 02138; USA
| | | | - Elizabeth L. Jockusch
- Department of Ecology and Evolutionary Biology; University of Connecticut; 75 N. Eagleville Road, Storrs, CT 06269; USA
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street, Cambridge, MA 02138; USA
| |
Collapse
|
13
|
Sharma PP, Schwager EE, Extavour CG, Giribet G. Evolution of the chelicera: adachshunddomain is retained in the deutocerebral appendage of Opiliones (Arthropoda, Chelicerata). Evol Dev 2012; 14:522-33. [DOI: 10.1111/ede.12005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Evelyn E. Schwager
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street; Cambridge; MA 02138; USA
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street; Cambridge; MA 02138; USA
| | | |
Collapse
|
14
|
Winchell CJ, Valencia JE, Jacobs DK. Expression of Distal-less, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria. Dev Genes Evol 2010; 220:275-95. [PMID: 21116826 PMCID: PMC3005117 DOI: 10.1007/s00427-010-0346-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 11/09/2010] [Indexed: 01/11/2023]
Abstract
The similarity in the genetic regulation of arthropod and vertebrate appendage formation has been interpreted as the product of a plesiomorphic gene network that was primitively involved in bilaterian appendage development and co-opted to build appendages (in modern phyla) that are not historically related as structures. Data from lophotrochozoans are needed to clarify the pervasiveness of plesiomorphic appendage-forming mechanisms. We assayed the expression of three arthropod and vertebrate limb gene orthologs, Distal-less (Dll), dachshund (dac), and optomotor blind (omb), in direct-developing juveniles of the polychaete Neanthes arenaceodentata. Parapodial Dll expression marks pre-morphogenetic notopodia and neuropodia, becoming restricted to the bases of notopodial cirri and to ventral portions of neuropodia. In outgrowing cephalic appendages, Dll activity is primarily restricted to proximal domains. Dll expression is also prominent in the brain. dac expression occurs in the brain, nerve cord ganglia, a pair of pharyngeal ganglia, presumed interneurons linking a pair of segmental nerves, and in newly differentiating mesoderm. Domains of omb expression include the brain, nerve cord ganglia, one pair of anterior cirri, presumed precursors of dorsal musculature, and the same pharyngeal ganglia and presumed interneurons that express dac. Contrary to their roles in outgrowing arthropod and vertebrate appendages, Dll, dac, and omb lack comparable expression in Neanthes appendages, implying independent evolution of annelid appendage development. We infer that parapodia and arthropodia are not structurally or mechanistically homologous (but their primordia might be), that Dll's ancestral bilaterian function was in sensory and central nervous system differentiation, and that locomotory appendages possibly evolved from sensory outgrowths.
Collapse
Affiliation(s)
- Christopher J. Winchell
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606 USA
| | - Jonathan E. Valencia
- Division of Biology, California Institute of Technology, 1200 East California Boulevard; MC 156-29, Pasadena, CA 91125 USA
| | - David K. Jacobs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606 USA
| |
Collapse
|
15
|
Lynch VJ, Wagner GP. Revisiting a classic example of transcription factor functional equivalence: are Eyeless and Pax6 functionally equivalent or divergent? JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 316B:93-8. [DOI: 10.1002/jez.b.21373] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 11/07/2022]
|
16
|
Bowsher JH, Nijhout HF. Partial co-option of the appendage patterning pathway in the development of abdominal appendages in the sepsid fly Themira biloba. Dev Genes Evol 2010; 219:577-87. [PMID: 20182886 DOI: 10.1007/s00427-010-0319-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 01/19/2010] [Indexed: 11/24/2022]
Abstract
The abdominal appendages on male Themira biloba (Diptera: Sepsidae) are complex novel structures used during mating. These abdominal appendages superficially resemble the serially homologous insect appendages in that they have a joint and a short segment that can be rotated. Non-genital appendages do not occur in adult pterygote insects, so these abdominal appendages are novel structures with no obvious ancestry. We investigated whether the genes that pattern the serially homologous insect appendages have been co-opted to pattern these novel abdominal appendages. Immunohistochemistry was used to determine the expression patterns of the genes extradenticle (exd), Distal-less (Dll), engrailed (en), Notch, and the Bithorax Complex in the appendages of T. biloba during pupation. The expression patterns of Exd, En, and Notch were consistent with the hypothesis that a portion of the patterning pathway that establishes the coxopodite has been co-opted to pattern the developing abdominal appendages. However, Dll was only expressed in the bristles of the developing appendages and not the proximal-distal axis of the appendage itself. The lack of Dll expression indicates the absence of a distal domain of the appendage suggesting that sepsid abdominal appendages only use genes that normally pattern the base of segmental appendages.
Collapse
Affiliation(s)
- Julia H Bowsher
- Center for Insect Science, University of Arizona, 1007 E. Lowell St., Tucson, AZ 85721, USA.
| | | |
Collapse
|
17
|
Sewell W, Williams T, Cooley J, Terry M, Ho R, Nagy L. Evidence for a novel role for dachshund in patterning the proximal arthropod leg. Dev Genes Evol 2008; 218:293-305. [PMID: 18483814 DOI: 10.1007/s00427-008-0220-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 04/14/2008] [Indexed: 11/24/2022]
Abstract
The branchiopod crustacean Triops longicaudatus has paddlelike thoracic appendages with few joints and multiple marginal lobes. Here, we explore the degree to which the Triops limb is patterned by the same network of genes known to pattern the uniramous, multi-jointed insect appendage. Insect leg patterning proceeds through a process of subdividing the leg into proximal, intermediate, and distal regions by the activity of the transcription factors hth/exd, dac, and Dll. The immature Triops limb is subdivided into large, discrete regional domains (proximal and distal) as defined by nuclear-EXD and DLL. We show that HTH expression in Triops overlaps cell-to-cell with n-EXD expression. In addition, dac is expressed in two domains: (1) adjacent to and partially overlapping the distal Dll domain and (2) along the medial margin of the developing leg. The DAC domain adjacent to the distal Dll domain supports the early establishment of the expected intermediate domain of DAC expression. The medial expression domain resolves over time into a series of reiterated stripes located on the lower side of each medial lobe. Later, this expression pattern correlates with the sclerotized regions associated with limb flexion. We propose that these stripes of DAC expression play a role in forming reiterated medial lobes. Unlike Drosophila, where the proximal distal patterning of the leg is coincident with patterning of reiterated structures (segments), we hypothesize that the patterning in Triops may reflect an ancestral state where the patterning of reiterated medial structures was not coincident with proximodistal limb patterning.
Collapse
Affiliation(s)
- William Sewell
- Department of Molecular and Cellular Biology, University of Arizona, Life Sciences South, 1007 E. Lowell Street, Tucson, AZ 85721, USA
| | | | | | | | | | | |
Collapse
|
18
|
Prpic NM, Telford MJ. Expression of homothorax and extradenticle mRNA in the legs of the crustacean Parhyale hawaiensis: evidence for a reversal of gene expression regulation in the pancrustacean lineage. Dev Genes Evol 2008; 218:333-9. [PMID: 18504609 PMCID: PMC2668558 DOI: 10.1007/s00427-008-0221-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 04/14/2008] [Indexed: 12/04/2022]
Abstract
In Drosophila leg development, the extradenticle (exd) gene is expressed ubiquitously and its co-factor homothorax (hth) is restricted to the proximal leg portion. This condition is conserved in other insect species but is reversed in chelicerates and myriapods. As the region of co-expression does not differ in the two groups and transcripts from both are necessary for function, this difference in expression is likely to be functionally neutral. Here, we report the expression patterns of exd and hth in a crustacean, the amphipod shrimp Parhyale hawaiensis. The patterns in P. hawaiensis are similar to the insect patterns, supporting the close relationship between crustaceans and insects in the taxon Tetraconata. However, mRNA expression of exd in P. hawaiensis is weak in the distal leg parts, thus being intermediate between the complete lack of distal exd expression in chelicerates and myriapods and the strong distal exd expression in insects. Our data suggest that the reversal of the gene expression regulation of hth and exd occurred in the pancrustacean lineage.
Collapse
Affiliation(s)
- Nikola-Michael Prpic
- Department of Developmental Biology, GZMB New Building, Georg-August-University Goettingen, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Maximilian J. Telford
- Department of Biology, Darwin Building, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
19
|
Kreissl S, Uber A, Harzsch S. Muscle precursor cells in the developing limbs of two isopods (Crustacea, Peracarida): an immunohistochemical study using a novel monoclonal antibody against myosin heavy chain. Dev Genes Evol 2008; 218:253-65. [PMID: 18443823 PMCID: PMC2362136 DOI: 10.1007/s00427-008-0216-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 03/20/2008] [Indexed: 11/26/2022]
Abstract
In the hot debate on arthropod relationships, Crustaceans and the morphology of their appendages play a pivotal role. To gain new insights into how arthropod appendages evolved, developmental biologists recently have begun to examine the expression and function of Drosophila appendage genes in Crustaceans. However, cellular aspects of Crustacean limb development such as myogenesis are poorly understood in Crustaceans so that the interpretative context in which to analyse gene functions is still fragmentary. The goal of the present project was to analyse muscle development in Crustacean appendages, and to that end, monoclonal antibodies against arthropod muscle proteins were generated. One of these antibodies recognises certain isoforms of myosin heavy chain and strongly binds to muscle precursor cells in malacostracan Crustacea. We used this antibody to study myogenesis in two isopods, Porcellio scaber and Idotea balthica (Crustacea, Malacostraca, Peracarida), by immunohistochemistry. In these animals, muscles in the limbs originate from single muscle precursor cells, which subsequently grow to form multinucleated muscle precursors. The pattern of primordial muscles in the thoracic limbs was mapped, and results compared to muscle development in other Crustaceans and in insects.
Collapse
Affiliation(s)
- S. Kreissl
- Universität Konstanz, Fakultät für Biologie, Neurobiologie, 78434 Konstanz, Germany
| | - A. Uber
- Universität Konstanz, Fakultät für Biologie, Neurobiologie, 78434 Konstanz, Germany
| | - S. Harzsch
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
20
|
Williams TA. Early Distal-less expression in a developing crustacean limb bud becomes restricted to setal-forming cells. Evol Dev 2008; 10:114-20. [PMID: 18184362 DOI: 10.1111/j.1525-142x.2007.00218.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Distal-less (Dll) plays a well-known role in patterning the distal limb in arthropods. However, in some taxa, its expression even during early limb development is not always limited to the distal limb. Here, I trace the expression of Distal-less in a crustacean (Thamnocephalus platyurus) from the early limb bud to later stages of limb development, a period that includes differentiation of juvenile and adult morphology. During early development, I find two distinct types of DLL expression: one correlated with proximal distal leg patterning and the other restricted to setal-forming cells. Later in development, all the DLL expression is restricted to setal-forming cells. Based on the particular cells expressing DLL, I hypothesize an ancestral role for Dll function in the formation accessory cells of sensilla.
Collapse
Affiliation(s)
- Terri A Williams
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, 165 Prospect St., New Haven, CT 06520, USA.
| |
Collapse
|
21
|
Williams TA. Limb morphogenesis in the branchiopod crustacean, Thamnocephalus platyurus, and the evolution of proximal limb lobes within Anostraca. J ZOOL SYST EVOL RES 2007. [DOI: 10.1111/j.1439-0469.2006.00397.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Williams TA. Structure and development of setae on the thoracic limbs of the anostracan crustacean, Thamnocephalus platyurus. ARTHROPOD STRUCTURE & DEVELOPMENT 2007; 36:63-76. [PMID: 18089088 DOI: 10.1016/j.asd.2006.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Accepted: 08/11/2006] [Indexed: 05/25/2023]
Abstract
Setae are a prominent feature of arthropod limbs. In taxa where the limbs develop during the larval phase, developing setae are an integral part of the developing limb bud and their differentiation cannot easily be separated from the early patterning and formation of the overall limb. Here I describe the morphogenesis and adult setae in a branchiopod crustacean, the anostracan, Thamnocephalus platyurus. The majority of the setae on the limbs are non-innervated plumose setae that are formed from six underlying cells. Because branchiopods are often sampled in comparative studies of limb development, the details of the cellular morphogenesis of their limbs provide a necessary basis for studies of limb patterning.
Collapse
Affiliation(s)
- Terri A Williams
- Department of Ecology and Evolutionary Biology, Yale University, P. O. Box 208106, 165 Prospect St., New Haven, CT 06520, USA.
| |
Collapse
|
23
|
Khila A, Grbić M. Gene silencing in the spider mite Tetranychus urticae: dsRNA and siRNA parental silencing of the Distal-less gene. Dev Genes Evol 2007; 217:241-51. [PMID: 17262226 DOI: 10.1007/s00427-007-0132-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 01/09/2007] [Indexed: 11/24/2022]
Abstract
A major prerequisite to understanding the evolution of developmental programs includes an appreciation of gene function in a comparative context. RNA interference (RNAi) represents a powerful method for reverse genetics analysis of gene function. However, RNAi protocols exist for only a handful of arthropod species. To extend functional analysis in basal arthropods, we developed a RNAi protocol for the two-spotted spider mite Tetranychus urticae focusing on Distal-less (Dll), a conserved gene involved in appendage specification in metazoans. First, we describe limb morphogenesis in T. urticae using confocal and scanning electron microscopy. Second, we examine T. urticae Dll (Tu-Dll) mRNA expression patterns and correlate its expression with appendage development. We then show that fluorescently labeled double-stranded RNA (dsRNA) and short interfering RNA (siRNA) molecules injected into the abdomen of adult females are incorporated into the oviposited eggs, suggesting that dsRNA reagents can be systemically distributed in spider mites. Injection of longer dsRNA as well as siRNA induced canonical limb truncation phenotypes as well as the fusion of leg segments. Our data suggest that Dll plays a conserved role in appendage formation in arthropods and that such conserved genes can serve as reliable starting points for the development of functional protocols in nonmodel organisms.
Collapse
Affiliation(s)
- Abderrahman Khila
- Department of Biology, University of Western Ontario, London, N6A 5B7, Canada
| | | |
Collapse
|
24
|
Ober KA, Jockusch EL. The roles of wingless and decapentaplegic in axis and appendage development in the red flour beetle, Tribolium castaneum. Dev Biol 2006; 294:391-405. [PMID: 16616738 DOI: 10.1016/j.ydbio.2006.02.053] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 11/29/2005] [Accepted: 02/28/2006] [Indexed: 01/09/2023]
Abstract
Axis patterning and appendage development have been well studied in Drosophila melanogaster, a species in which both limb and segment morphogenesis are derived. In Drosophila, positional information from genes important in anteroposterior and dorsoventral axis formation, including wingless (wg) and decapentaplegic (dpp), is required for allocating and patterning the appendage primordia. We used RNA interference to characterize the functions of wg and dpp in the red flour beetle, Tribolium castaneum, which retains more ancestral modes of limb and segment morphogenesis. We also characterized the expression of potential targets of the WG and DPP signaling pathways in these embryos. Tribolium embryos in which dpp had been downregulated had defects in the dorsalmost body wall, but did not appear to have been globally repatterned and had normal appendages. Downregulation of wg led to the loss of segment boundaries, gnathal and thoracic appendages, and lateral head lobes, and to changes in the expression of dpp, Distal-less, and Engrailed. The functions of wg varied along both the anteroposterior and dorsoventral axes of the embryo. Phylogenetic comparisons indicate that the role of WNT signaling in segment boundary formation is evolutionarily old, but that its role in appendage allocation originated in the common ancestor of holometabolous insects.
Collapse
Affiliation(s)
- Karen A Ober
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., U-3043, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
25
|
Angelini DR, Kaufman TC. Insect appendages and comparative ontogenetics. Dev Biol 2005; 286:57-77. [PMID: 16112665 DOI: 10.1016/j.ydbio.2005.07.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 06/23/2005] [Accepted: 07/12/2005] [Indexed: 11/30/2022]
Abstract
It is arguable that the evolutionary and ecological success of insects is due in large part to the versatility of their articulated appendages. Recent advances in our understanding of appendage development in Drosophila melanogaster, as well as functional and expression studies in other insect species have begun to frame the general themes of appendage development in the insects. Here, we review current studies that provide for a comparison of limb developmental mechanisms acting at five levels: (1) the specification of ventral appendage primordia; (2) specification of the limb axes; (3) regulation and interactions of genes expressed in specific domains of the proximal-distal axis, such as Distal-less; (4) the specification of appendage identity; and (5) genetic regulation of appendage allometry.
Collapse
Affiliation(s)
- David R Angelini
- Department of Biology, Indiana University, 1001 E. Third St., Bloomington, IN 47405-7005, USA
| | | |
Collapse
|
26
|
Pueyo JI, Couso JP. Parallels between the proximal-distal development of vertebrate and arthropod appendages: homology without an ancestor? Curr Opin Genet Dev 2005; 15:439-46. [PMID: 15979300 DOI: 10.1016/j.gde.2005.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 06/08/2005] [Indexed: 02/06/2023]
Abstract
Evolutionary studies suggest that the limbs of vertebrates and the appendages of arthropods do not share a common origin. However, recent genetic studies show new similarities in their developmental programmes. These similarities might be caused by the independent recruitment of homologous genes for similar functions or by the conservation of an ancestral proximal-distal development programme. This basic programme might have arisen in an ancestral outgrowth and been independently co-opted in vertebrate and arthropod appendages. It has subsequently diverged in both phyla to fine-pattern the limb and to control phylum-specific cellular events. We suggest that although vertebrate limbs and arthropod appendages are not strictly homologous structures they retain remnants of a common ancestral developmental programme.
Collapse
Affiliation(s)
- Jose Ignacio Pueyo
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | | |
Collapse
|
27
|
Prpic NM, Janssen R, Damen WGM, Tautz D. Evolution of dorsal-ventral axis formation in arthropod appendages: H15 and optomotor-blind/bifid-type T-box genes in the millipede Glomeris marginata (Myriapoda: Diplopoda). Evol Dev 2005; 7:51-7. [PMID: 15642089 DOI: 10.1111/j.1525-142x.2005.05006.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In Drosophila, the T-box genes optomotor-blind (omb) and H15 have been implicated in specifying the development of the dorso-ventral (DV) axis of the appendages. Results from the spider Cupiennius salei have suggested that this DV patterning system may be at least partially conserved. Here we extend the study of the DV patterning genes omb and H15 to a representative of the Myriapoda in order to add to the existing comparative data set and to gain further insight into the evolution of the DV patterning system in arthropod appendages. The omb gene of the millipede Glomeris marginata is expressed on the dorsal side of all appendages including trunk legs, maxillae, mandibles, and antennae. This is similar to what is known from Drosophila and Cupiennius and suggests that the role of omb in instructing dorsal fates is conserved in arthropods. Interestingly, the lobe-shaped portions of the mouthparts do not express omb, indicating that these are ventral components and thus may be homologous to the endites present in the corresponding appendages in insects. Concerning the H15 gene we were able to identify two paralogous genes in Glomeris. Both genes are expressed in the sensory organs of the maxilla and antenna, but only Gm-H15-1 is expressed along the ventral side of the trunk legs. The expression is more extensive than in Cupiennius, but less so than in Drosophila. In addition, no ventral expression domain is present in the maxilla, mandible, and antenna. Because of this, the role of H15 in the determination of ventral fate remains unclear.
Collapse
Affiliation(s)
- Nikola-Michael Prpic
- Department for Evolutionary Genetics, Institute for Genetics, University of Cologne, Weyertal 121, 50931 Köln, Germany
| | | | | | | |
Collapse
|
28
|
Prpic NM. Homologs of wingless and decapentaplegic display a complex and dynamic expression profile during appendage development in the millipede Glomeris marginata (Myriapoda: Diplopoda). Front Zool 2004; 1:6. [PMID: 15679927 PMCID: PMC544938 DOI: 10.1186/1742-9994-1-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 11/24/2004] [Indexed: 11/17/2022] Open
Abstract
Background The Drosophila genes wingless (wg) and decapentaplegic (dpp) comprise the top level of a hierarchical gene cascade involved in proximal-distal (PD) patterning of the legs. It remains unclear, whether this cascade is common to the appendages of all arthropods. Here, wg and dpp are studied in the millipede Glomeris marginata, a representative of the Myriapoda. Results Glomeris wg (Gm-wg) is expressed along the ventral side of the appendages compatible with functioning during the patterning of both the PD and dorsal-ventral (DV) axes. Gm-wg may also be involved in sensory organ formation in the gnathal appendages by inducing the expression of Distal-less (Dll) and H15 in the organ primordia. Expression of Glomeris dpp (Gm-dpp) is found at the tip of the trunk legs as well as weakly along the dorsal side of the legs in early stages. Taking data from other arthropods into account, these results may be interpreted in favor of a conserved mode of WG/DPP signaling. Apart from the main PD axis, many arthropod appendages have additional branches (e.g. endites). It is debated whether these extra branches develop their PD axis via the same mechanism as the main PD axis, or whether branch-specific mechanisms exist. Gene expression in possible endite homologs in Glomeris argues for the latter alternative. Conclusion All available data argue in favor of a conserved role of WG/DPP morphogen gradients in guiding the development of the main PD axis. Additional branches in multibranched (multiramous) appendage types apparently do not utilize the WG/DPP signaling system for their PD development. This further supports recent work on crustaceans and insects, that lead to similar conclusions.
Collapse
Affiliation(s)
- Nikola-Michael Prpic
- Department for Evolutionary Genetics, Institute for Genetics, University of Cologne, Weyertal 121, 50931 Köln, Germany.
| |
Collapse
|
29
|
Giorgianni MW, Patel NH. Patterning of the branched head appendages in Schistocerca americana and Tribolium castaneum. Evol Dev 2004; 6:402-10. [PMID: 15509222 DOI: 10.1111/j.1525-142x.2004.04049.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Much of our understanding of arthropod limb development comes from studies on the leg imaginal disc of Drosophila melanogaster. The fly limb is a relatively simple unbranched (uniramous) structure extending out from the body wall. The molecular basis for this outgrowth involves the overlap of two signaling molecules, Decapentaplegic (Dpp) and Wingless (Wg), to create a single domain of distal outgrowth, clearly depicted by the expression of the Distal-less gene (Dll). The expression of wg and dpp during the development of other arthropod thoracic limbs indicates that these pathways might be conserved across arthropods for uniramous limb development. The appendages of crustaceans and the gnathal appendages of insects, however, exhibit a diverse array of morphologies, ranging from those with no distal elements, such as the mandible, to appendages with multiple distal elements. Examples of the latter group include branched appendages or those that possess multiple lobes; such complex morphologies are seen for many crustacean limbs as well as the maxillary and labial appendages of many insects. It is unclear how, if at all, the known patterning genes for making a uniramous limb might be deployed to generate these diverse appendage forms. Experiments in Drosophila have shown that by forcing ectopic overlaps of Wg and Dpp signaling it is possible to generate artificially branched legs. To test whether naturally branched appendages form in a similar manner, we detailed the expression patterns of wg, dpp, and Dll in the development of the branched gnathal appendages of the grasshopper, Schistocerca americana, and the flour beetle, Tribolium castaneum. We find that the branches of the gnathal appendages are not specified through the redeployment of the Wg-Dpp system for distal outgrowth, but our comparative studies do suggest a role for Dpp in forming furrows between tissues.
Collapse
Affiliation(s)
- Matt W Giorgianni
- Committee on Developmental Biology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
30
|
Jockusch EL, Ober KA. Hypothesis Testing in Evolutionary Developmental Biology: A Case Study from Insect Wings. J Hered 2004; 95:382-96. [PMID: 15388766 DOI: 10.1093/jhered/esh064] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Developmental data have the potential to give novel insights into morphological evolution. Because developmental data are time-consuming to obtain, support for hypotheses often rests on data from only a few distantly related species. Similarities between these distantly related species are parsimoniously inferred to represent ancestral aspects of development. However, with limited taxon sampling, ancestral similarities in developmental patterning can be difficult to distinguish from similarities that result from convergent co-option of developmental networks, which appears to be common in developmental evolution. Using a case study from insect wings, we discuss how these competing explanations for similarity can be evaluated. Two kinds of developmental data have recently been used to support the hypothesis that insect wings evolved by modification of limb branches that were present in ancestral arthropods. This support rests on the assumption that aspects of wing development in Drosophila, including similarities to crustacean epipod patterning, are ancestral for winged insects. Testing this assumption requires comparisons of wing development in Drosophila and other winged insects. Here we review data that bear on this assumption, including new data on the functions of wingless and decapentaplegic during appendage allocation in the red flour beetle Tribolium castaneum.
Collapse
Affiliation(s)
- E L Jockusch
- Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., U-3043, University of Connecticut, Storrs, CT 06269, USA.
| | | |
Collapse
|
31
|
Jockusch EL, Williams TA, Nagy LM. The evolution of patterning of serially homologous appendages in insects. Dev Genes Evol 2004; 214:324-38. [PMID: 15170569 DOI: 10.1007/s00427-004-0412-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 04/29/2004] [Indexed: 10/26/2022]
Abstract
Arthropod bodies are formed by a series of appendage-bearing segments, and appendages have diversified both along the body axis within species and between species. Understanding the developmental basis of this variation is essential for addressing questions about the evolutionary diversification of limbs. We examined the development of serially homologous appendages of two insect species, the beetle Tribolium castaneum and the grasshopper Schistocerca americana. Both species retain aspects of ancestral appendage morphology and development that have been lost in Drosophila, including branched mouthparts and direct development of appendages during embryogenesis. We characterized the expression of four genes important in proximodistal axis development of Drosophila appendages: the secreted signaling factors wingless and decapentaplegic, and the homeodomain transcription factors extradenticle and Distal-less. Our comparisons focus on two aspects of appendage morphology: differentiation of the main axis of serial homologues and the appearance of proximal branches (endites) in the mouthparts. Although Distal-less expression is similar in endites and palps of the mouthparts, the expression of other genes in the endites does not conform to their known roles in axial patterning, leading us to reject the hypothesis that branched insect mouthparts develop by reiteration of the limb patterning network. With the exception of decapentaplegic, patterning of the main appendage axis is generally more similar in direct homologues than in serial homologues. Interestingly, however, phylogenetic comparisons suggest that patterning of serial homologues was more similar in ancestral insects, and thus that the observed developmental differences did not cause the evolutionary divergence in morphology among serial homologues.
Collapse
Affiliation(s)
- Elizabeth L Jockusch
- Department of Ecology and Evolutionary Biology, University of Connecticut, U-3043, 75 N. Eagleville Rd., Storrs, CT 06269, USA.
| | | | | |
Collapse
|
32
|
Angelini DR, Kaufman TC. Functional analyses in the hemipteran Oncopeltus fasciatus reveal conserved and derived aspects of appendage patterning in insects. Dev Biol 2004; 271:306-21. [PMID: 15223336 DOI: 10.1016/j.ydbio.2004.04.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 04/01/2004] [Accepted: 04/01/2004] [Indexed: 10/26/2022]
Abstract
The conservation of expression of appendage patterning genes, particularly Distal-less, has been shown in a wide taxonomic sampling of animals. However, the functional significance of this expression has been tested in only a few organisms. Here we report functional analyses of orthologues of the genes Distal-less, dachshund, and homothorax in the appendages of the milkweed bug Oncopeltus fasciatus (Hemiptera). This hemimetabolous insect has typical legs but highly derived mouthparts. Distal-less, dachshund, and homothorax are conserved in their individual expression patterns and functions in the legs of Oncopeltus, but their functions in other appendages are in some cases divergent. We find that specification of antennal identity does not require wild-type Distal-less activity in Oncopeltus as it does in Drosophila. Additionally, the mouthparts of Oncopeltus show novel patterns of gene expression and function, relative to other insects. Expression of Distal-less in the maxillary stylets of Oncopeltus does not seem necessary for proper development of this appendage, while dachshund and homothorax are crucial for formation of the mandibular and maxillary stylets. These data are used to evaluate hypotheses for the evolution of hemipteran mouthparts and the evolution of developmental mechanisms in insect appendages in general.
Collapse
Affiliation(s)
- David R Angelini
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA
| | | |
Collapse
|
33
|
Prpic NM, Damen WGM. Expression patterns of leg genes in the mouthparts of the spider Cupiennius salei (Chelicerata: Arachnida). Dev Genes Evol 2004; 214:296-302. [PMID: 15014991 DOI: 10.1007/s00427-004-0393-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
The leg genes extradenticle, homothorax, dachshund, and Distal-less define three antagonistic developmental domains in the legs, but not in the antenna, of Drosophila. Here we report the expression patterns of these leg genes in the prosomal appendages of the spider Cupiennius salei. The prosoma of the spider bears six pairs of appendages: a pair of cheliceres, a pair of pedipalps, and four pairs of walking legs. Three types of appendages thus can be distinguished in the spider. We show here that in the pedipalp, the leg-like second prosomal appendage, the patterns are very similar to those in the legs themselves, indicating the presence of three antagonistic developmental domains in both appendage types. In contrast, in the chelicera, the fang-like first prosomal appendage, the patterns are different and there is no evidence for antagonistic domains. Together with data from Drosophila this suggests that leg-shaped morphology of arthropod appendages requires an underlying set of antagonistic developmental domains, whereas other morphologies (e.g. antenna, chelicera) may result from the loss of such antagonistic domains.
Collapse
Affiliation(s)
- Nikola-Michael Prpic
- Institut für Genetik, Universität zu Köln, Weyertal 121, 50931, Cologne, Germany
| | | |
Collapse
|
34
|
Abstract
During development of higher organisms, most patterning events occur in growing tissues. Thus, unraveling the mechanism of how growing tissues are patterned into final morphologies has been an essential subject of developmental biology. Limb or appendage development in both vertebrates and invertebrates has attracted great attention from many researchers for a long time, because they involve almost all developmental processes required for tissue patterning, such as generation of the positional information by morphogen, subdivision of the tissue into distinct parts according to the positional information, localized cell growth and proliferation, and control of adhesivity, movement and shape changes of cells. The Drosophila leg development is a good model system, upon which a substantial amount of knowledge has been accumulated. In this review, the current understanding of the mechanism of Drosophila leg development is described.
Collapse
Affiliation(s)
- Tetsuya Kojima
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
35
|
Possible developmental mechanisms underlying the origin of the crown lineages of arthropods. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/bf02901742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Prpic NM, Tautz D. The expression of the proximodistal axis patterning genes Distal-less and dachshund in the appendages of Glomeris marginata (Myriapoda: Diplopoda) suggests a special role of these genes in patterning the head appendages. Dev Biol 2003; 260:97-112. [PMID: 12885558 DOI: 10.1016/s0012-1606(03)00217-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The genes Distal-less, dachshund, extradenticle, and homothorax have been shown in Drosophila to be among the earliest genes that define positional values along the proximal-distal (PD) axis of the developing legs. In order to study PD axis formation in the appendages of the pill millipede Glomeris marginata, we have isolated homologues of these four genes and have studied their expression patterns. In the trunk legs, there are several differences to Drosophila, but the patterns are nevertheless compatible with a conserved role in defining positional values along the PD axis. However, their role in the head appendages is apparently more complex. Distal-less in the mandible and maxilla is expressed in the forming sensory organs and, thus, does not seem to be involved in PD axis patterning. We could not identify in the mouthparts components that are homologous to the distal parts of the trunk legs and antennnae. Interestingly, there is also a transient premorphogenetic expression of Distal-less in the second antennal and second maxillary segment, although no appendages are eventually formed in these segments. The dachshund gene is apparently involved both in PD patterning as well as in sensory organ development in the antenna, maxilla, and mandible. Strong dachshund expression is specifically correlated with the tooth-like part of the mandible, a feature that is shared with other mandibulate arthropods. homothorax is expressed in the proximal and medial parts of the legs, while extradenticle RNA is only seen in the proximal region. This overlap of expression corresponds to the functional overlap between extradenticle and homothorax in Drosophila.
Collapse
|
37
|
Nielsen C, Martinez P. Patterns of gene expression: homology or homocracy? Dev Genes Evol 2003; 213:149-54. [PMID: 12690454 DOI: 10.1007/s00427-003-0301-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 01/05/2003] [Indexed: 02/03/2023]
Abstract
Numerous papers over the years have stated that the original meaning of the term homology is historical and morphological and denotes organs/structures in two or more species derived from the same structure in their latest common ancestor. However, several more recent papers have extended the use of the term to cover organs/structures which are organised through the expression of homologous genes. This usage has created an ambiguity about the meaning of the term, and we propose to remove this by proposing a new term, homocracy, for organs/structures which are organised through the expression of identical patterning genes. We want to emphasise that the terms homologous and homocratic are not mutually exclusive. Many homologous structures are in all probability homocratic, whereas only a small number of homocratic structures are homologous.
Collapse
Affiliation(s)
- Claus Nielsen
- Zoological Museum, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| | | |
Collapse
|