1
|
Adhikari N, Wu Z, Huang Y, Lan Y, Jiang R. Twist1 Acts Upstream of the Dlx5-Hand2 Pathway to Pattern the Mammalian Jaw. J Dent Res 2025; 104:310-319. [PMID: 39707586 DOI: 10.1177/00220345241291527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024] Open
Abstract
Both the upper and lower jaws develop from cranial neural crest cells (CNCCs) populating the first pharyngeal arch in all gnathostomes. Previous studies showed that the Edn1/Ednra-Dlx5/Dlx6-Hand2 signaling pathway is necessary for lower jaw formation and that ectopic expression of Edn1 or Hand2 throughout the CNCCs partly transformed the upper jaw to lower jaw structures, but the molecular mechanisms regulating upper jaw development remain unclear. Here we show that the basic helix-loop-helix transcription factor Twist1 is required for upper jaw development. Whereas the Twist1fl/fl;Wnt1-Cre mouse embryos, with tissue-specific inactivation of Twist1 in premigratory CNCCs, exhibited aberrantly persistent expression of the key neuroglial lineage regulator Sox10 in the postmigratory CNCCs populating the facial primordia, we found that genetic inactivation of Sox10 did not rescue the defects in CNCC survival and patterning in Twist1fl/fl;Wnt1-Cre embryos. However, analysis of Sox10fl/+;Twist1fl/fl;Wnt1-Cre mice revealed duplicated mandibular structures, including ectopic Meckel's cartilage, in place of the maxilla. Both Sox10fl/+;Twist1fl/fl;Wnt1-Cre and Sox10fl/fl;Twist1fl/fl;Wnt1-Cre embryos exhibited ectopic expression of Dlx5 and Hand2 in the developing maxillary processes at E10.5. Furthermore, we found that Twist1fl/fl;Wnt1-Cre embryos also expressed Dlx5 and Hand2 ectopically in the maxillary domain at E10.5 and subsequently developed Meckel's cartilage-like cartilage rods bilaterally at the maxillary region. However, the expression of Edn1 was unaltered in the developing Twist1fl/fl;Wnt1-Cre embryos, indicating that Twist1 functions in the CNCC-derived facial mesenchyme to regulate the Dlx5-Hand2 pathway without affecting Edn1 expression in the epithelial and mesodermal compartments. We further show that Twist1 represses reporter gene activation driven by the Dlx5/Dlx6 intergenic enhancer known to drive Dlx5/Dlx6 expression in the developing mandibular arch. Together, these data identify a new role of Twist1 in patterning the regional identities of the CNCC-derived facial mesenchyme and provide novel insight into the pathogenic mechanisms underlying TWIST1-related craniofacial developmental disorders.
Collapse
Affiliation(s)
- N Adhikari
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Z Wu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - Y Huang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Graduate Program in Development, Stem Cells, and Regenerative Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Y Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - R Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Romeo DJ, Oral KT, Massenburg BB, Ng JJ, Wu M, Sussman JH, Du S, Bartlett SP, Swanson JW, Taylor JA. Genetic Heterogeneity, Craniofacial Surgical Burden, and Surgical Techniques in Patients With Saethre-Chotzen Syndrome. J Craniofac Surg 2024:00001665-990000000-01781. [PMID: 39058028 DOI: 10.1097/scs.0000000000010348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/03/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE While genotype correlates with phenotype in patients with many forms of syndromic craniosynostosis, the relationship between molecular diagnosis and craniofacial surgical history in patients with Saethre-Chotzen syndrome (SCS) is more variable. This manuscript characterizes that relationship and evaluates operative trends in these patients over the past 3 decades. METHODS Demographic information, molecular diagnosis, and craniofacial surgical history in patients born with SCS between 1989 and 2023 were compared with appropriate statistics, including t tests and analysis of variance. RESULTS Thirty-five patients with SCS were included, and there was no difference in total craniofacial procedures among those with TWIST1 substitutions (2.1 ± 1.6), duplications (3.0 ± 4.2), insertions (3.5 ± 0.7), or deletions (2.4 ± 1.9; P = 0.97). Cranial expansion rates were also similar across all genetic diagnoses (P>0.05), and surgical incidence was similar across patients with unicoronal, bicoronal, and multisuture involvement (P > 0.05). Those with an initial fronto-orbital advancement had a lower incidence of secondary cranial vault procedures compared with those with an initial posterior vault distraction osteogenesis (29% versus 71%, P < 0.05), though this did not control for phenotypic severity. On average, total cranial vault surgical burden (1.35 ± 0.67 versus 1.75 ± 0.46) and cranial expansion surgical burden (1.40 ± 0.68 versus 1.88 ± 0.64) between the fronto-orbital advancement-first and posterior vault distraction osteogenesis-first cohorts were similar (P = 0.11, P = 0.17, respectively). CONCLUSION While SCS is molecularly and phenotypically heterogeneous, genetic diagnosis does not appear associated with rates of craniofacial surgery. Additional prospective study of correlations between genotype, severity of craniofacial manifestations, and treatment algorithms is warranted; but, in the end, it may be that this highly variable form of syndromic craniosynostosis warrants tailored, expectant management.
Collapse
Affiliation(s)
- Dominic J Romeo
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhao R, Moore EL, Gogol MM, Unruh JR, Yu Z, Scott AR, Wang Y, Rajendran NK, Trainor PA. Identification and characterization of intermediate states in mammalian neural crest cell epithelial to mesenchymal transition and delamination. eLife 2024; 13:RP92844. [PMID: 38873887 PMCID: PMC11178358 DOI: 10.7554/elife.92844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a cellular process that converts epithelial cells to mesenchymal cells with migratory potential in developmental and pathological processes. Although originally considered a binary event, EMT in cancer progression involves intermediate states between a fully epithelial and a fully mesenchymal phenotype, which are characterized by distinct combinations of epithelial and mesenchymal markers. This phenomenon has been termed epithelial to mesenchymal plasticity (EMP), however, the intermediate states remain poorly described and it's unclear whether they exist during developmental EMT. Neural crest cells (NCC) are an embryonic progenitor cell population that gives rise to numerous cell types and tissues in vertebrates, and their formation and delamination is a classic example of developmental EMT. However, whether intermediate states also exist during NCC EMT and delamination remains unknown. Through single-cell RNA sequencing of mouse embryos, we identified intermediate NCC states based on their transcriptional signature and then spatially defined their locations in situ in the dorsolateral neuroepithelium. Our results illustrate the importance of cell cycle regulation and functional role for the intermediate stage marker Dlc1 in facilitating mammalian cranial NCC delamination and may provide new insights into mechanisms regulating pathological EMP.
Collapse
Affiliation(s)
- Ruonan Zhao
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Anatomy and Cell Biology, University of Kansas Medical CenterKansas CityUnited States
| | - Emma L Moore
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | - Jay R Unruh
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Zulin Yu
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Allison R Scott
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Yan Wang
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | - Paul A Trainor
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Anatomy and Cell Biology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
4
|
Zhao R, Moore EL, Gogol MM, Unruh JR, Yu Z, Scott A, Wang Y, Rajendran NK, Trainor PA. Identification and characterization of intermediate states in mammalian neural crest cell epithelial to mesenchymal transition and delamination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564204. [PMID: 37961316 PMCID: PMC10634855 DOI: 10.1101/2023.10.26.564204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a cellular process that converts epithelial cells to mesenchymal cells with migratory potential in both developmental and pathological processes. Although originally considered a binary event, EMT in cancer progression involves intermediate states between a fully epithelial and a fully mesenchymal phenotype, which are characterized by distinct combinations of epithelial and mesenchymal markers. This phenomenon has been termed epithelial to mesenchymal plasticity (EMP), however, the intermediate states remain poorly described and it's unclear whether they exist during developmental EMT. Neural crest cells (NCC) are an embryonic progenitor cell population that gives rise to numerous cell types and tissues in vertebrates, and their formation is a classic example of developmental EMT. An important feature of NCC development is their delamination from the neuroepithelium via EMT, following which NCC migrate throughout the embryo and undergo differentiation. NCC delamination shares similar changes in cellular state and structure with cancer cell invasion. However, whether intermediate states also exist during NCC EMT and delamination remains unknown. Through single cell RNA sequencing, we identified intermediate NCC states based on their transcriptional signature and then spatially defined their locations in situ in the dorsolateral neuroepithelium. Our results illustrate the progressive transcriptional and spatial transitions from premigratory to migratory cranial NCC during EMT and delamination. Of note gene expression and trajectory analysis indicate that distinct intermediate populations of NCC delaminate in either S phase or G2/M phase of the cell cycle, and the importance of cell cycle regulation in facilitating mammalian cranial NCC delamination was confirmed through cell cycle inhibition studies. Additionally, transcriptional knockdown revealed a functional role for the intermediate stage marker Dlc1 in regulating NCC delamination and migration. Overall, our work identifying and characterizing the intermediate cellular states, processes, and molecular signals that regulate mammalian NCC EMT and delamination furthers our understanding of developmental EMP and may provide new insights into mechanisms regulating pathological EMP.
Collapse
Affiliation(s)
- Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emma L. Moore
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Jay R. Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Allison Scott
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Yan Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
5
|
Li Q, Jiang Z, Zhang L, Cai S, Cai Z. Auriculocondylar syndrome: Pathogenesis, clinical manifestations and surgical therapies. J Formos Med Assoc 2023; 122:822-842. [PMID: 37208246 DOI: 10.1016/j.jfma.2023.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/09/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023] Open
Abstract
Auriculocondylar syndrome (ARCND) is a genetic and rare craniofacial condition caused by abnormal development of the first and second pharyngeal arches during the embryonic stage and is characterized by peculiar auricular malformations (question mark ears), mandibular condyle hypoplasia, micrognathia and other less-frequent features. GNAI3, PLCB4 and EDN1 have been identified as pathogenic genes in this syndrome so far, all of which are implicated in the EDN1-EDNRA signal pathway. Therefore, ARCND is genetically classified as ARCND1, ARCND2 and ARCND3 based on the mutations in GNAI3, PLCB4 and EDN1, respectively. ARCND is inherited in an autosomal dominant or recessive mode with significant intra- and interfamilial phenotypic variation and incomplete penetrance, rendering its diagnosis difficult and therapies individualized. To raise clinicians' awareness of the rare syndrome, we focused on the currently known pathogenesis, pathogenic genes, clinical manifestations and surgical therapies in this review.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Zhiyuan Jiang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Liyuan Zhang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Siyuan Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Zhen Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| |
Collapse
|
6
|
Wang S, Liu R. Insights into the pleiotropic roles of ZNF703 in cancer. Heliyon 2023; 9:e20140. [PMID: 37810156 PMCID: PMC10559930 DOI: 10.1016/j.heliyon.2023.e20140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Zinc finger proteins (ZNFs) belong to the NET/NLZ protein family. In physiological functions, ZNF703 play significant roles in embryonic development, especially in the nervous system. As an transcription factors with zinc finger domains, abnormal regulation of the ZNF703 protein is associated with enhanced proliferation, invasion, and metastasis as well as drug resistance in many tumors, although mechanisms of action vary depending on the specific tumor microenvironment. ZNF703 lacks a nuclear localization sequence despite its function requiring nuclear DNA binding. The purpose of this review is to summarize the architecture of ZNF703, its roles in tumorigenesis, and tumor progression, as well as future oncology therapeutic prospects, which have implications for understanding tumor susceptibility and progression.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Obstetrics and Gynaecology, Tianjin Central Hospital of Gynecology Obstetrics, No. 156 Nan Kai San Ma Lu, Tianjin, 300000, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300000, China
- Department of Obstetrics and Gynaecology, Nankai University Maternity Hospital, Tianjin, 300000, China
| | - Rong Liu
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
7
|
Bruet E, Amarante-Silva D, Gorojankina T, Creuzet S. The Emerging Roles of the Cephalic Neural Crest in Brain Development and Developmental Encephalopathies. Int J Mol Sci 2023; 24:9844. [PMID: 37372994 DOI: 10.3390/ijms24129844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The neural crest, a unique cell population originating from the primitive neural field, has a multi-systemic and structural contribution to vertebrate development. At the cephalic level, the neural crest generates most of the skeletal tissues encasing the developing forebrain and provides the prosencephalon with functional vasculature and meninges. Over the last decade, we have demonstrated that the cephalic neural crest (CNC) exerts an autonomous and prominent control on the development of the forebrain and sense organs. The present paper reviews the primary mechanisms by which CNC can orchestrate vertebrate encephalization. Demonstrating the role of the CNC as an exogenous source of patterning for the forebrain provides a novel conceptual framework with profound implications for understanding neurodevelopment. From a biomedical standpoint, these data suggest that the spectrum of neurocristopathies is broader than expected and that some neurological disorders may stem from CNC dysfunctions.
Collapse
Affiliation(s)
- Emmanuel Bruet
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| | - Diego Amarante-Silva
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| | - Tatiana Gorojankina
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| | - Sophie Creuzet
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| |
Collapse
|
8
|
Bertol JW, Johnston S, Ahmed R, Xie VK, Hubka KM, Cruz L, Nitschke L, Stetsiv M, Goering JP, Nistor P, Lowell S, Hoskens H, Claes P, Weinberg SM, Saadi I, Farach-Carson MC, Fakhouri WD. TWIST1 interacts with β/δ-catenins during neural tube development and regulates fate transition in cranial neural crest cells. Development 2022; 149:dev200068. [PMID: 35781329 PMCID: PMC9440756 DOI: 10.1242/dev.200068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/30/2022] [Indexed: 08/10/2023]
Abstract
Cell fate determination is a necessary and tightly regulated process for producing different cell types and structures during development. Cranial neural crest cells (CNCCs) are unique to vertebrate embryos and emerge from the neural plate borders into multiple cell lineages that differentiate into bone, cartilage, neurons and glial cells. We have previously reported that Irf6 genetically interacts with Twist1 during CNCC-derived tissue formation. Here, we have investigated the mechanistic role of Twist1 and Irf6 at early stages of craniofacial development. Our data indicate that TWIST1 is expressed in endocytic vesicles at the apical surface and interacts with β/δ-catenins during neural tube closure, and Irf6 is involved in defining neural fold borders by restricting AP2α expression. Twist1 suppresses Irf6 and other epithelial genes in CNCCs during the epithelial-to-mesenchymal transition (EMT) process and cell migration. Conversely, a loss of Twist1 leads to a sustained expression of epithelial and cell adhesion markers in migratory CNCCs. Disruption of TWIST1 phosphorylation in vivo leads to epidermal blebbing, edema, neural tube defects and CNCC-derived structural abnormalities. Altogether, this study describes a previously uncharacterized function of mammalian Twist1 and Irf6 in the neural tube and CNCCs, and provides new target genes for Twist1 that are involved in cytoskeletal remodeling.
Collapse
Affiliation(s)
- Jessica W. Bertol
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Shelby Johnston
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Rabia Ahmed
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Victoria K. Xie
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Kelsea M. Hubka
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Lissette Cruz
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Larissa Nitschke
- Department of Pathology and Immunology,Baylor College of Medicine, Houston, TX 77030, USA
| | - Marta Stetsiv
- Department of Anatomy and Cell Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jeremy P. Goering
- Department of Anatomy and Cell Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Paul Nistor
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh EH16 4UU, UK
| | - Hanne Hoskens
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven 3001, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven 3000, Belgium
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven 3001, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven 3000, Belgium
- Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15219
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Irfan Saadi
- Department of Anatomy and Cell Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mary C. Farach-Carson
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Walid D. Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
9
|
On the evolutionary origins and regionalization of the neural crest. Semin Cell Dev Biol 2022; 138:28-35. [PMID: 35787974 DOI: 10.1016/j.semcdb.2022.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/19/2022] [Accepted: 06/19/2022] [Indexed: 11/22/2022]
Abstract
The neural crest is a vertebrate-specific embryonic stem cell population that gives rise to a vast array of cell types throughout the animal body plan. These cells are first born at the edges of the central nervous system, from which they migrate extensively and differentiate into multiple cellular derivatives. Given the unique set of structures these cells comprise, the origin of the neural crest is thought to have important implications for the evolution and diversification of the vertebrate clade. In jawed vertebrates, neural crest cells exist as distinct subpopulations along the anterior-posterior axis. These subpopulations differ in terms of their respective differentiation potential and cellular derivatives. Thus, the modern neural crest is characterized as multipotent, migratory, and regionally segregated throughout the embryo. Here, we retrace the evolutionary origins of the neural crest, from the appearance of conserved regulatory circuitry in basal chordates to the emergence of neural crest subpopulations in higher vertebrates. Finally, we discuss a stepwise trajectory by which these cells may have arisen and diversified throughout vertebrate evolution.
Collapse
|
10
|
Zhao R, Trainor PA. Epithelial to mesenchymal transition during mammalian neural crest cell delamination. Semin Cell Dev Biol 2022; 138:54-67. [PMID: 35277330 DOI: 10.1016/j.semcdb.2022.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/18/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a well-defined cellular process that was discovered in chicken embryos and described as "epithelial to mesenchymal transformation" [1]. During EMT, epithelial cells lose their epithelial features and acquire mesenchymal character with migratory potential. EMT has subsequently been shown to be essential for both developmental and pathological processes including embryo morphogenesis, wound healing, tissue fibrosis and cancer [2]. During the past 5 years, interest and study of EMT especially in cancer biology have increased exponentially due to the implied role of EMT in multiple aspects of malignancy such as cell invasion, survival, stemness, metastasis, therapeutic resistance and tumor heterogeneity [3]. Since the process of EMT in embryogenesis and cancer progression shares similar phenotypic changes, core transcription factors and molecular mechanisms, it has been proposed that the initiation and development of carcinoma could be attributed to abnormal activation of EMT factors usually required for normal embryo development. Therefore, developmental EMT mechanisms, whose timing, location, and tissue origin are strictly regulated, could prove useful for uncovering new insights into the phenotypic changes and corresponding gene regulatory control of EMT under pathological conditions. In this review, we initially provide an overview of the phenotypic and molecular mechanisms involved in EMT and discuss the newly emerging concept of epithelial to mesenchymal plasticity (EMP). Then we focus on our current knowledge of a classic developmental EMT event, neural crest cell (NCC) delamination, highlighting key differences in our understanding of NCC EMT between mammalian and non-mammalian species. Lastly, we highlight available tools and future directions to advance our understanding of mammalian NCC EMT.
Collapse
Affiliation(s)
- Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
11
|
Single-cell transcriptomic analysis of zebrafish cranial neural crest reveals spatiotemporal regulation of lineage decisions during development. Cell Rep 2021; 37:110140. [PMID: 34936864 PMCID: PMC8741273 DOI: 10.1016/j.celrep.2021.110140] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/28/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Neural crest (NC) cells migrate throughout vertebrate embryos to give rise to a huge variety of cell types, but when and where lineages emerge and their regulation remain unclear. We have performed single-cell RNA sequencing (RNA-seq) of cranial NC cells from the first pharyngeal arch in zebrafish over several stages during migration. Computational analysis combining pseudotime and real-time data reveals that these NC cells first adopt a transitional state, becoming specified mid-migration, with the first lineage decisions being skeletal and pigment, followed by neural and glial progenitors. In addition, by computationally integrating these data with RNA-seq data from a transgenic Wnt reporter line, we identify gene cohorts with similar temporal responses to Wnts during migration and show that one, Atp6ap2, is required for melanocyte differentiation. Together, our results show that cranial NC cell lineages arise progressively and uncover a series of spatially restricted cell interactions likely to regulate such cell-fate decisions. Tatarakis et al. provide a single-cell transcriptomic timeline of cranial neural crest (NC) development in zebrafish and address long-standing questions surrounding the integration of NC cell migration and lineage specification. They find that lineages are specified mid-migration. These fate decisions correspond to shifts in Wnt signaling, and lineages rapidly segregate.
Collapse
|
12
|
Romanelli Tavares VL, Guimarães-Ramos SL, Zhou Y, Masotti C, Ezquina S, Moreira DDP, Buermans H, Freitas RS, Den Dunnen JT, Twigg SRF, Passos-Bueno MR. New locus underlying auriculocondylar syndrome (ARCND): 430 kb duplication involving TWIST1 regulatory elements. J Med Genet 2021; 59:895-905. [PMID: 34750192 PMCID: PMC9411924 DOI: 10.1136/jmedgenet-2021-107825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022]
Abstract
Background Auriculocondylar syndrome (ARCND) is a rare genetic disease that affects structures derived from the first and second pharyngeal arches, mainly resulting in micrognathia and auricular malformations. To date, pathogenic variants have been identified in three genes involved in the EDN1-DLX5/6 pathway (PLCB4, GNAI3 and EDN1) and some cases remain unsolved. Here we studied a large unsolved four-generation family. Methods We performed linkage analysis, resequencing and Capture-C to investigate the causative variant of this family. To test the pathogenicity of the CNV found, we modelled the disease in patient craniofacial progenitor cells, including induced pluripotent cell (iPSC)-derived neural crest and mesenchymal cells. Results This study highlights a fourth locus causative of ARCND, represented by a tandem duplication of 430 kb in a candidate region on chromosome 7 defined by linkage analysis. This duplication segregates with the disease in the family (LOD score=2.88) and includes HDAC9, which is located over 200 kb telomeric to the top candidate gene TWIST1. Notably, Capture-C analysis revealed multiple cis interactions between the TWIST1 promoter and possible regulatory elements within the duplicated region. Modelling of the disease revealed an increased expression of HDAC9 and its neighbouring gene, TWIST1, in neural crest cells. We also identified decreased migration of iPSC-derived neural crest cells together with dysregulation of osteogenic differentiation in iPSC-affected mesenchymal stem cells. Conclusion Our findings support the hypothesis that the 430 kb duplication is causative of the ARCND phenotype in this family and that deregulation of TWIST1 expression during craniofacial development can contribute to the phenotype.
Collapse
Affiliation(s)
| | | | - Yan Zhou
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Cibele Masotti
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil.,Molecular Oncology Center, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Suzana Ezquina
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil.,Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Danielle de Paula Moreira
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil
| | - Henk Buermans
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Renato S Freitas
- Centro de Atendimento Integral ao Fissurado Lábio Palatal, Curitiba, Brazil
| | - Johan T Den Dunnen
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Maria Rita Passos-Bueno
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil
| |
Collapse
|
13
|
Epithelial Mesenchymal Transition and its transcription factors. Biosci Rep 2021; 42:230017. [PMID: 34708244 PMCID: PMC8703024 DOI: 10.1042/bsr20211754] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial–mesenchymal transition or EMT is an extremely dynamic process involved in conversion of epithelial cells into mesenchymal cells, stimulated by an ensemble of signaling pathways, leading to change in cellular morphology, suppression of epithelial characters and acquisition of properties such as enhanced cell motility and invasiveness, reduced cell death by apoptosis, resistance to chemotherapeutic drugs etc. Significantly, EMT has been found to play a crucial role during embryonic development, tissue fibrosis and would healing, as well as during cancer metastasis. Over the years, work from various laboratories have identified a rather large number of transcription factors (TFs) including the master regulators of EMT, with the ability to regulate the EMT process directly. In this review, we put together these EMT TFs and discussed their role in the process. We have also tried to focus on their mechanism of action, their interdependency, and the large regulatory network they form. Subsequently, it has become clear that the composition and structure of the transcriptional regulatory network behind EMT probably varies based upon various physiological and pathological contexts, or even in a cell/tissue type-dependent manner.
Collapse
|
14
|
Fan X, Loebel DAF, Bildsoe H, Wilkie EE, Qin J, Wang J, Tam PPL. Tissue interactions, cell signaling and transcriptional control in the cranial mesoderm during craniofacial development. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.1.74] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractThe cranial neural crest and the cranial mesoderm are the source of tissues from which the bone and cartilage of the skull, face and jaws are constructed. The development of the cranial mesoderm is not well studied, which is inconsistent with its importance in craniofacial morphogenesis as a source of precursor tissue of the chondrocranium, muscles, vasculature and connective tissues, mechanical support for tissue morphogenesis, and the signaling activity that mediate interactions with the cranial neural crest. Phenotypic analysis of conditional knockout mouse mutants, complemented by the transcriptome analysis of differentially enriched genes in the cranial mesoderm and cranial neural crest, have identified signaling pathways that may mediate cross-talk between the two tissues. In the cranial mesenchyme, Bmp4 is expressed in the mesoderm cells while its signaling activity could impact on both the mesoderm and the neural crest cells. In contrast, Fgf8 is predominantly expressed in the cranial neural crest cells and it influences skeletal development and myogenesis in the cranial mesoderm. WNT signaling, which emanates from the cranial neural crest cells, interacts with BMP and FGF signaling in monitoring the switch between tissue progenitor expansion and differentiation. The transcription factor Twist1, a critical molecular regulator of many aspects of craniofacial development, coordinates the activity of the above pathways in cranial mesoderm and cranial neural crest tissue compartments.
Collapse
Affiliation(s)
- Xiaochen Fan
- Embryology Unit, Children's Medical Research Institute, Westmead NSW 2145, Australia
| | - David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Westmead NSW 2145, Australia
| | - Heidi Bildsoe
- Embryology Unit, Children's Medical Research Institute, Westmead NSW 2145, Australia
| | - Emilie E Wilkie
- Embryology Unit, Children's Medical Research Institute, Westmead NSW 2145, Australia
- Bioinformatics Group, Children's Medical Research Institute, Westmead NSW 2145, Australia
| | - Jing Qin
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Junwen Wang
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, and Department of Biomedical Informatics, Arizona State University, Scottsdale AZ 85259, USA
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Westmead NSW 2145, Australia
- School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Parmar B, Verma U, Khaire K, Danes D, Balakrishnan S. Inhibition of Cyclooxygenase-2 Alters Craniofacial Patterning during Early Embryonic Development of Chick. J Dev Biol 2021; 9:16. [PMID: 33922791 PMCID: PMC8167724 DOI: 10.3390/jdb9020016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
A recent study from our lab revealed that the inhibition of cyclooxygenase-2 (COX-2) exclusively reduces the level of PGE2 (Prostaglandin E2) among prostanoids and hampers the normal development of several structures, strikingly the cranial vault, in chick embryos. In order to unearth the mechanism behind the deviant development of cranial features, the expression pattern of various factors that are known to influence cranial neural crest cell (CNCC) migration was checked in chick embryos after inhibiting COX-2 activity using etoricoxib. The compromised level of cell adhesion molecules and their upstream regulators, namely CDH1 (E-cadherin), CDH2 (N-cadherin), MSX1 (Msh homeobox 1), and TGF-β (Transforming growth factor beta), observed in the etoricoxib-treated embryos indicate that COX-2, through its downstream effector PGE2, regulates the expression of these factors perhaps to aid the migration of CNCCs. The histological features and levels of FoxD3 (Forkhead box D3), as well as PCNA (Proliferating cell nuclear antigen), further consolidate the role of COX-2 in the migration and survival of CNCCs in developing embryos. The results of the current study indicate that COX-2 plays a pivotal role in orchestrating craniofacial structures perhaps by modulating CNCC proliferation and migration during the embryonic development of chicks.
Collapse
Affiliation(s)
| | | | | | | | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat 390002, India; (B.P.); (U.V.); (K.K.); (D.D.)
| |
Collapse
|
16
|
Flach H, Basten T, Schreiner C, Dietmann P, Greco S, Nies L, Roßmanith N, Walter S, Kühl M, Kühl SJ. Retinol binding protein 1 affects Xenopus anterior neural development via all-trans retinoic acid signaling. Dev Dyn 2021; 250:1096-1112. [PMID: 33570783 DOI: 10.1002/dvdy.313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Retinol binding protein 1 (Rbp1) acts as an intracellular regulator of vitamin A metabolism and retinoid transport. In mice, Rbp1 deficiency decreases the capacity of hepatic stellate cells to take up all-trans retinol and sustain retinyl ester stores. Furthermore, Rbp1 is crucial for visual capacity. Although the function of Rbp1 has been studied in the mature eye, its role during early anterior neural development has not yet been investigated in detail. RESULTS We showed that rbp1 is expressed in the eye, anterior neural crest cells (NCCs) and prosencephalon of the South African clawed frog Xenopus laevis. Rbp1 knockdown led to defects in eye formation, including microphthalmia and disorganized retinal lamination, and to disturbed induction and differentiation of the eye field, as shown by decreased rax and pax6 expression. Furthermore, it resulted in reduced rax expression in the prosencephalon and affected cranial cartilage. Rbp1 inhibition also interfered with neural crest induction and migration, as shown by twist and slug. Moreover, it led to a significant reduction of the all-trans retinoic acid target gene pitx2 in NCC-derived periocular mesenchyme. The Rbp1 knockdown phenotypes were rescued by pitx2 RNA co-injection. CONCLUSION Rbp1 is crucial for the development of the anterior neural tissue.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Thomas Basten
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Corinna Schreiner
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Sara Greco
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Lea Nies
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Nathalie Roßmanith
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Svenja Walter
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
17
|
Fan X, Masamsetti VP, Sun JQ, Engholm-Keller K, Osteil P, Studdert J, Graham ME, Fossat N, Tam PP. TWIST1 and chromatin regulatory proteins interact to guide neural crest cell differentiation. eLife 2021; 10:62873. [PMID: 33554859 PMCID: PMC7968925 DOI: 10.7554/elife.62873] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Protein interaction is critical molecular regulatory activity underlining cellular functions and precise cell fate choices. Using TWIST1 BioID-proximity-labeling and network propagation analyses, we discovered and characterized a TWIST-chromatin regulatory module (TWIST1-CRM) in the neural crest cells (NCC). Combinatorial perturbation of core members of TWIST1-CRM: TWIST1, CHD7, CHD8, and WHSC1 in cell models and mouse embryos revealed that loss of the function of the regulatory module resulted in abnormal differentiation of NCCs and compromised craniofacial tissue patterning. Following NCC delamination, low level of TWIST1-CRM activity is instrumental to stabilize the early NCC signatures and migratory potential by repressing the neural stem cell programs. High level of TWIST1 module activity at later phases commits the cells to the ectomesenchyme. Our study further revealed the functional interdependency of TWIST1 and potential neurocristopathy factors in NCC development. Shaping the head and face during development relies on a complex ballet of molecular signals that orchestrates the movement and specialization of various groups of cells. In animals with a backbone for example, neural crest cells (NCCs for short) can march long distances from the developing spine to become some of the tissues that form the skull and cartilage but also the pigment cells and nervous system. NCCs mature into specific cell types thanks to a complex array of factors which trigger a precise sequence of binary fate decisions at the right time and place. Amongst these factors, the protein TWIST1 can set up a cascade of genetic events that control how NCCs will ultimately form tissues in the head. To do so, the TWIST1 protein interacts with many other molecular actors, many of which are still unknown. To find some of these partners, Fan et al. studied TWIST1 in the NCCs of mice and cells grown in the lab. The experiments showed that TWIST1 interacted with CHD7, CHD8 and WHSC1, three proteins that help to switch genes on and off, and which contribute to NCCs moving across the head during development. Further work by Fan et al. then revealed that together, these molecular actors are critical for NCCs to form cells that will form facial bones and cartilage, as opposed to becoming neurons. This result helps to show that there is a trade-off between NCCs forming the face or being part of the nervous system. One in three babies born with a birth defect shows anomalies of the head and face: understanding the exact mechanisms by which NCCs contribute to these structures may help to better predict risks for parents, or to develop new approaches for treatment.
Collapse
Affiliation(s)
- Xiaochen Fan
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia.,The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - V Pragathi Masamsetti
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Jane Qj Sun
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Kasper Engholm-Keller
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Pierre Osteil
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Joshua Studdert
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Mark E Graham
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia.,The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - Patrick Pl Tam
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia.,The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| |
Collapse
|
18
|
Soto J, Ding X, Wang A, Li S. Neural crest-like stem cells for tissue regeneration. Stem Cells Transl Med 2021; 10:681-693. [PMID: 33533168 PMCID: PMC8046096 DOI: 10.1002/sctm.20-0361] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Neural crest stem cells (NCSCs) are a transient population of cells that arise during early vertebrate development and harbor stem cell properties, such as self‐renewal and multipotency. These cells form at the interface of non‐neuronal ectoderm and neural tube and undergo extensive migration whereupon they contribute to a diverse array of cell and tissue derivatives, ranging from craniofacial tissues to cells of the peripheral nervous system. Neural crest‐like stem cells (NCLSCs) can be derived from pluripotent stem cells, placental tissues, adult tissues, and somatic cell reprogramming. NCLSCs have a differentiation capability similar to NCSCs, and possess great potential for regenerative medicine applications. In this review, we present recent developments on the various approaches to derive NCLSCs and the therapeutic application of these cells for tissue regeneration.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| | - Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, People's Republic of China
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA.,Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
19
|
Deal KK, Rosebrock JC, Eeds AM, DeKeyser JML, Musser MA, Ireland SJ, May-Zhang AA, Buehler DP, Southard-Smith EM. Sox10-cre BAC transgenes reveal temporal restriction of mesenchymal cranial neural crest and identify glandular Sox10 expression. Dev Biol 2020; 471:119-137. [PMID: 33316258 DOI: 10.1016/j.ydbio.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Diversity of neural crest derivatives has been studied with a variety of approaches during embryonic development. In mammals Cre-LoxP lineage tracing is a robust means to fate map neural crest relying on cre driven from regulatory elements of early neural crest genes. Sox10 is an essential transcription factor for normal neural crest development. A variety of efforts have been made to label neural crest derivatives using partial Sox10 regulatory elements to drive cre expression. To date published Sox10-cre lines have focused primarily on lineage tracing in specific tissues or during early fetal development. We describe two new Sox10-cre BAC transgenes, constitutive (cre) and inducible (cre/ERT2), that contain the complete repertoire of Sox10 regulatory elements. We present a thorough expression profile of each, identifying a few novel sites of Sox10 expression not captured by other neural crest cre drivers. Comparative mapping of expression patterns between the Sox10-cre and Sox10-cre/ERT2 transgenes identified a narrow temporal window in which Sox10 expression is present in mesenchymal derivatives prior to becoming restricted to neural elements during embryogenesis. In more caudal structures, such as the intestine and lower urinary tract, our Sox10-cre BAC transgene appears to be more efficient in labeling neural crest-derived cell types than Wnt1-cre. The analysis reveals consistent expression of Sox10 in non-neural crest derived glandular epithelium, including salivary, mammary, and urethral glands of adult mice. These Sox10-cre and Sox10-cre/ERT2 transgenic lines are verified tools that will enable refined temporal and cell-type specific lineage analysis of neural crest derivatives as well as glandular tissues that rely on Sox10 for proper development and function.
Collapse
Affiliation(s)
- Karen K Deal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer C Rosebrock
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela M Eeds
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jean-Marc L DeKeyser
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Present address: Northwestern University, Dept. of Pharmacology, USA
| | - Melissa A Musser
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Present address: Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Sara J Ireland
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Aaron A May-Zhang
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dennis P Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
20
|
Transcription Factors of the bHLH Family Delineate Vertebrate Landmarks in the Nervous System of a Simple Chordate. Genes (Basel) 2020; 11:genes11111262. [PMID: 33114624 PMCID: PMC7693978 DOI: 10.3390/genes11111262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tunicates are marine invertebrates whose tadpole-like larvae feature a highly simplified version of the chordate body plan. Similar to their distant vertebrate relatives, tunicate larvae develop a regionalized central nervous system and form distinct neural structures, which include a rostral sensory vesicle, a motor ganglion, and a caudal nerve cord. The sensory vesicle contains a photoreceptive complex and a statocyst, and based on the comparable expression patterns of evolutionarily conserved marker genes, it is believed to include proto-hypothalamic and proto-retinal territories. The evolutionarily conserved molecular fingerprints of these landmarks of the vertebrate brain consist of genes encoding for different transcription factors, and of the gene batteries that they control, and include several members of the bHLH family. Here we review the complement of bHLH genes present in the streamlined genome of the tunicate Ciona robusta and their current classification, and summarize recent studies on proneural bHLH transcription factors and their expression territories. We discuss the possible roles of bHLH genes in establishing the molecular compartmentalization of the enticing nervous system of this unassuming chordate.
Collapse
|
21
|
Rocha M, Beiriger A, Kushkowski EE, Miyashita T, Singh N, Venkataraman V, Prince VE. From head to tail: regionalization of the neural crest. Development 2020; 147:dev193888. [PMID: 33106325 PMCID: PMC7648597 DOI: 10.1242/dev.193888] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neural crest is regionalized along the anteroposterior axis, as demonstrated by foundational lineage-tracing experiments that showed the restricted developmental potential of neural crest cells originating in the head. Here, we explore how recent studies of experimental embryology, genetic circuits and stem cell differentiation have shaped our understanding of the mechanisms that establish axial-specific populations of neural crest cells. Additionally, we evaluate how comparative, anatomical and genomic approaches have informed our current understanding of the evolution of the neural crest and its contribution to the vertebrate body.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Anastasia Beiriger
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Elaine E Kushkowski
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Tetsuto Miyashita
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
- Canadian Museum of Nature, Ottawa, ON K1P 6P4, Canada
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Vishruth Venkataraman
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
22
|
Siismets EM, Hatch NE. Cranial Neural Crest Cells and Their Role in the Pathogenesis of Craniofacial Anomalies and Coronal Craniosynostosis. J Dev Biol 2020; 8:jdb8030018. [PMID: 32916911 PMCID: PMC7558351 DOI: 10.3390/jdb8030018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
Craniofacial anomalies are among the most common of birth defects. The pathogenesis of craniofacial anomalies frequently involves defects in the migration, proliferation, and fate of neural crest cells destined for the craniofacial skeleton. Genetic mutations causing deficient cranial neural crest migration and proliferation can result in Treacher Collins syndrome, Pierre Robin sequence, and cleft palate. Defects in post-migratory neural crest cells can result in pre- or post-ossification defects in the developing craniofacial skeleton and craniosynostosis (premature fusion of cranial bones/cranial sutures). The coronal suture is the most frequently fused suture in craniosynostosis syndromes. It exists as a biological boundary between the neural crest-derived frontal bone and paraxial mesoderm-derived parietal bone. The objective of this review is to frame our current understanding of neural crest cells in craniofacial development, craniofacial anomalies, and the pathogenesis of coronal craniosynostosis. We will also discuss novel approaches for advancing our knowledge and developing prevention and/or treatment strategies for craniofacial tissue regeneration and craniosynostosis.
Collapse
Affiliation(s)
- Erica M. Siismets
- Oral Health Sciences PhD Program, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA;
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Correspondence: ; Tel.: +1-734-647-6567
| |
Collapse
|
23
|
Panoutsopoulos AA, De Crescenzo AH, Lee A, Lu AM, Ross AP, Borodinsky LN, Marcucio R, Trainor PA, Zarbalis KS. Pak1ip1 Loss-of-Function Leads to Cell Cycle Arrest, Loss of Neural Crest Cells, and Craniofacial Abnormalities. Front Cell Dev Biol 2020; 8:510063. [PMID: 32984348 PMCID: PMC7490522 DOI: 10.3389/fcell.2020.510063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
Neural crest cells (NCCs) comprise a transient progenitor cell population of neuroepithelial origin that contributes to a variety of cell types throughout vertebrate embryos including most mesenchymal cells of the cranial and facial structures. Consequently, abnormal NCC development underlies a variety of craniofacial defects including orofacial clefts, which constitute some of the most common birth defects. We previously reported the generation of manta ray (mray) mice that carry a loss-of-function allele of the gene encoding the preribosomal factor Pak1ip1. Here we describe cranioskeletal abnormalities in homozygous mray mutants that arise from a loss of NCCs after their specification. Our results show that the localized loss of cranial NCCs in the developing frontonasal prominences is caused by cell cycle arrest and cell death. In addition, and consistent with deficits in ribosome biosynthesis, homozygous mray mutants display decreased protein biosynthesis, further linking Pak1ip1 to a role in ribosome biogenesis.
Collapse
Affiliation(s)
- Alexios A Panoutsopoulos
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California, Sacramento, CA, United States
| | - Angelo Harlan De Crescenzo
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California, Sacramento, CA, United States
| | - Albert Lee
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California, Sacramento, CA, United States
| | - Amelia MacKenzie Lu
- David B. Falk College of Sport and Human Dynamics - Department of Public Health, Syracuse University, Syracuse, NY, United States
| | - Adam P Ross
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California, Sacramento, CA, United States
| | - Laura N Borodinsky
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California, Sacramento, CA, United States.,Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Ralph Marcucio
- Department of Orthopedic Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, School of Medicine, The University of Kansas Medical Center, Kansas, KS, United States
| | - Konstantinos S Zarbalis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California, Sacramento, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
24
|
TWIST1 Homodimers and Heterodimers Orchestrate Lineage-Specific Differentiation. Mol Cell Biol 2020; 40:MCB.00663-19. [PMID: 32179550 DOI: 10.1128/mcb.00663-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/27/2020] [Indexed: 01/09/2023] Open
Abstract
The extensive array of basic helix-loop-helix (bHLH) transcription factors and their combinations as dimers underpin the diversity of molecular function required for cell type specification during embryogenesis. The bHLH factor TWIST1 plays pleiotropic roles during development. However, which combinations of TWIST1 dimers are involved and what impact each dimer imposes on the gene regulation network controlled by TWIST1 remain elusive. In this work, proteomic profiling of human TWIST1-expressing cell lines and transcriptome analysis of mouse cranial mesenchyme have revealed that TWIST1 homodimers and heterodimers with TCF3, TCF4, and TCF12 E-proteins are the predominant dimer combinations. Disease-causing mutations in TWIST1 can impact dimer formation or shift the balance of different types of TWIST1 dimers in the cell, which may underpin the defective differentiation of the craniofacial mesenchyme. Functional analyses of the loss and gain of TWIST1-E-protein dimer activity have revealed previously unappreciated roles in guiding lineage differentiation of embryonic stem cells: TWIST1-E-protein heterodimers activate the differentiation of mesoderm and neural crest cells, which is accompanied by the epithelial-to-mesenchymal transition. At the same time, TWIST1 homodimers maintain the stem cells in a progenitor state and block entry to the endoderm lineage.
Collapse
|
25
|
Zhao Y, Louie KW, Tingle CF, Sha C, Heisel CJ, Unsworth SP, Kish PE, Kahana A. Twist3 is required for dedifferentiation during extraocular muscle regeneration in adult zebrafish. PLoS One 2020; 15:e0231963. [PMID: 32320444 PMCID: PMC7176127 DOI: 10.1371/journal.pone.0231963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/05/2020] [Indexed: 12/18/2022] Open
Abstract
Severely damaged adult zebrafish extraocular muscles (EOMs) regenerate through dedifferentiation of residual myocytes involving a muscle-to-mesenchyme transition. Members of the Twist family of basic helix-loop-helix transcription factors (TFs) are key regulators of the epithelial-mesenchymal transition (EMT) and are also involved in craniofacial development in humans and animal models. During zebrafish embryogenesis, twist family members (twist1a, twist1b, twist2, and twist3) function to regulate craniofacial skeletal development. Because of their roles as master regulators of stem cell biology, we hypothesized that twist TFs regulate adult EOM repair and regeneration. In this study, utilizing an adult zebrafish EOM regeneration model, we demonstrate that inhibiting twist3 function using translation-blocking morpholino oligonucleotides (MOs) impairs muscle regeneration by reducing myocyte dedifferentiation and proliferation in the regenerating muscle. This supports our hypothesis that twist TFs are involved in the early steps of dedifferentiation and highlights the importance of twist3 during EOM regeneration.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ke’ale W. Louie
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christina F. Tingle
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cuilee Sha
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Curtis J. Heisel
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shelby P. Unsworth
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Phillip E. Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alon Kahana
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
26
|
Francou A, Anderson KV. The Epithelial-to-Mesenchymal Transition (EMT) in Development and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019; 4:197-220. [PMID: 34113749 DOI: 10.1146/annurev-cancerbio-030518-055425] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epithelial-to-mesenchymal transitions (EMTs) are complex cellular processes where cells undergo dramatic changes in signaling, transcriptional programming, and cell shape, while directing the exit of cells from the epithelium and promoting migratory properties of the resulting mesenchyme. EMTs are essential for morphogenesis during development and are also a critical step in cancer progression and metastasis formation. Here we provide an overview of the molecular regulation of the EMT process during embryo development, focusing on chick and mouse gastrulation and neural crest development. We go on to describe how EMT regulators participate in the progression of pancreatic and breast cancer in mouse models, and discuss the parallels with developmental EMTs and how these help to understand cancer EMTs. We also highlight the differences between EMTs in tumor and in development to arrive at a broader view of cancer EMT. We conclude by discussing how further advances in the field will rely on in vivo dynamic imaging of the cellular events of EMT.
Collapse
Affiliation(s)
- Alexandre Francou
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY 10065 USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY 10065 USA
| |
Collapse
|
27
|
Lenzini S, Devine D, Shin JW. Leveraging Biomaterial Mechanics to Improve Pluripotent Stem Cell Applications for Tissue Engineering. Front Bioeng Biotechnol 2019; 7:260. [PMID: 31649928 PMCID: PMC6795675 DOI: 10.3389/fbioe.2019.00260] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/26/2019] [Indexed: 12/31/2022] Open
Abstract
A primary goal in tissue engineering is to develop functional tissues by recapitulating salient features of complex biological systems that exhibit a diverse range of physical forces. Induced pluripotent stem cells (iPSCs) are promising autologous cell sources to execute these developmental programs and their functions; however, cells require an extracellular environment where they will sense and respond to mechanical forces. Thus, understanding the biophysical relationships between stem cells and their extracellular environments will improve the ability to design complex biological systems through tissue engineering. This article first describes how the mechanical properties of the environment are important determinants of developmental processes, and then further details how biomaterials can be designed to precisely control the mechanics of cell-matrix interactions in order to study and define their reprogramming, self-renewal, differentiation, and morphogenesis. Finally, a perspective is presented on how insights from the mechanics of cell-matrix interactions can be leveraged to control pluripotent stem cells for tissue engineering applications.
Collapse
Affiliation(s)
- Stephen Lenzini
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Daniel Devine
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Jae-Won Shin
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
28
|
Cheung M, Tai A, Lu PJ, Cheah KS. Acquisition of multipotent and migratory neural crest cells in vertebrate evolution. Curr Opin Genet Dev 2019; 57:84-90. [PMID: 31470291 DOI: 10.1016/j.gde.2019.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/19/2022]
Abstract
The emergence of multipotent and migratory neural crest (NC) cells defines a key evolutionary transition from invertebrates to vertebrates. Studies in vertebrates have identified a complex gene regulatory network that governs sequential stages of NC ontogeny. Comparative analysis has revealed extensive conservation of the overall architecture of the NC gene regulatory network between jawless and jawed vertebrates. Among invertebrates, urochordates express putative NC gene homologs in the neural plate border region, but these NC-like cells do not have migratory capacity, whereas cephalochordates contain no NC cells but its genome contains most homologs of vertebrate NC genes. Whether the absence of migratory NC cells in invertebrates is due to differences in enhancer elements or an intrinsic limitation in potency remains unclear. We provide a brief overview of mechanisms that might explain how ancestral NC-like cells acquired the multipotency and migratory capacity seen in vertebrates.
Collapse
Affiliation(s)
- Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Andrew Tai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Peter Jianning Lu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kathryn Se Cheah
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
29
|
Khuong TM, Wang QP, Manion J, Oyston LJ, Lau MT, Towler H, Lin YQ, Neely GG. Nerve injury drives a heightened state of vigilance and neuropathic sensitization in Drosophila. SCIENCE ADVANCES 2019; 5:eaaw4099. [PMID: 31309148 PMCID: PMC6620091 DOI: 10.1126/sciadv.aaw4099] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Injury can lead to devastating and often untreatable chronic pain. While acute pain perception (nociception) evolved more than 500 million years ago, virtually nothing is known about the molecular origin of chronic pain. Here we provide the first evidence that nerve injury leads to chronic neuropathic sensitization in insects. Mechanistically, peripheral nerve injury triggers a loss of central inhibition that drives escape circuit plasticity and neuropathic allodynia. At the molecular level, excitotoxic signaling within GABAergic (γ-aminobutyric acid) neurons required the acetylcholine receptor nAChRα1 and led to caspase-dependent death of GABAergic neurons. Conversely, disruption of GABA signaling was sufficient to trigger allodynia without injury. Last, we identified the conserved transcription factor twist as a critical downstream regulator driving GABAergic cell death and neuropathic allodynia. Together, we define how injury leads to allodynia in insects, and describe a primordial precursor to neuropathic pain may have been advantageous, protecting animals after serious injury.
Collapse
Affiliation(s)
- Thang M. Khuong
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Qiao-Ping Wang
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - John Manion
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Lisa J. Oyston
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Man-Tat Lau
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Harry Towler
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Yong Qi Lin
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - G. Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
- Genome Editing Initiative, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
30
|
Non-redundant functions of EMT transcription factors. Nat Cell Biol 2019; 21:102-112. [PMID: 30602760 DOI: 10.1038/s41556-018-0196-y] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial embryonic programme that is executed by various EMT transcription factors (EMT-TFs) and is aberrantly activated in cancer and other diseases. However, the causal role of EMT and EMT-TFs in different disease processes, especially cancer and metastasis, continues to be debated. In this Review, we identify and describe specific, non-redundant functions of the different EMT-TFs and discuss the reasons that may underlie disputes about EMT in cancer.
Collapse
|
31
|
Kindberg AA, Bush JO. Cellular organization and boundary formation in craniofacial development. Genesis 2019; 57:e23271. [PMID: 30548771 PMCID: PMC6503678 DOI: 10.1002/dvg.23271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022]
Abstract
Craniofacial morphogenesis is a highly dynamic process that requires changes in the behaviors and physical properties of cells in order to achieve the proper organization of different craniofacial structures. Boundary formation is a critical process in cellular organization, patterning, and ultimately tissue separation. There are several recurring cellular mechanisms through which boundary formation and cellular organization occur including, transcriptional patterning, cell segregation, cell adhesion and migratory guidance. Disruption of normal boundary formation has dramatic morphological consequences, and can result in human craniofacial congenital anomalies. In this review we discuss boundary formation during craniofacial development, specifically focusing on the cellular behaviors and mechanisms underlying the self-organizing properties that are critical for craniofacial morphogenesis.
Collapse
Affiliation(s)
- Abigail A. Kindberg
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O. Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
32
|
Wan Y, Lantz B, Cusack BJ, Szabo-Rogers HL. Prickle1 regulates differentiation of frontal bone osteoblasts. Sci Rep 2018; 8:18021. [PMID: 30575813 PMCID: PMC6303328 DOI: 10.1038/s41598-018-36742-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/27/2018] [Indexed: 11/08/2022] Open
Abstract
Enlarged fontanelles and smaller frontal bones result in a mechanically compromised skull. Both phenotypes could develop from defective migration and differentiation of osteoblasts in the skull bone primordia. The Wnt/Planar cell polarity (Wnt/PCP) signaling pathway regulates cell migration and movement in other tissues and led us to test the role of Prickle1, a core component of the Wnt/PCP pathway, in the skull. For these studies, we used the missense allele of Prickle1 named Prickle1Beetlejuice (Prickle1Bj). The Prickle1Bj/Bj mutants are microcephalic and develop enlarged fontanelles between insufficient frontal bones, while the parietal bones are normal. Prickle1Bj/Bj mutants have several other craniofacial defects including a midline cleft lip, incompletely penetrant cleft palate, and decreased proximal-distal growth of the head. We observed decreased Wnt/β-catenin and Hedgehog signaling in the frontal bone condensations of the Prickle1Bj/Bj mutants. Surprisingly, the smaller frontal bones do not result from defects in cell proliferation or death, but rather significantly delayed differentiation and decreased expression of migratory markers in the frontal bone osteoblast precursors. Our data suggests that Prickle1 protein function contributes to both the migration and differentiation of osteoblast precursors in the frontal bone.
Collapse
Affiliation(s)
- Yong Wan
- Center for Craniofacial Regeneration, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brandi Lantz
- Center for Craniofacial Regeneration, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian J Cusack
- Center for Craniofacial Regeneration, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heather L Szabo-Rogers
- Center for Craniofacial Regeneration, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
DeLaurier A. Evolution and development of the fish jaw skeleton. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e337. [PMID: 30378758 DOI: 10.1002/wdev.337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
The evolution of the jaw represents a key innovation in driving the diversification of vertebrate body plans and behavior. The pharyngeal apparatus originated as gill bars separated by slits in chordate ancestors to vertebrates. Later, with the acquisition of neural crest, pharyngeal arches gave rise to branchial basket cartilages in jawless vertebrates (agnathans), and later bone and cartilage of the jaw, jaw support, and gills of jawed vertebrates (gnathostomes). Major events in the evolution of jaw structure from agnathans to gnathostomes include axial regionalization of pharyngeal elements and formation of a jaw joint. Hox genes specify the anterior-posterior identity of arches, and edn1, dlx, hand2, Jag1b-Notch2 signaling, and Nr2f factors specify dorsal-ventral identity. The formation of a jaw joint, an important step in the transition from an un-jointed pharynx in agnathans to a hinged jaw in gnathostomes involves interaction between nkx3.2, hand2, and barx1 factors. Major events in jaw patterning between fishes and reptiles include changes to elements of the second pharyngeal arch, including a loss of opercular and branchiostegal ray bones and transformation of the hyomandibula into the stapes. Further changes occurred between reptiles and mammals, including the transformation of the articular and quadrate elements of the jaw joint into the malleus and incus of the middle ear. Fossils of transitional jaw phenotypes can be analyzed from a developmental perspective, and there exists potential to use genetic manipulation techniques in extant taxa to test hypotheses about the evolution of jaw patterning in ancient vertebrates. This article is categorized under: Comparative Development and Evolution > Evolutionary Novelties Early Embryonic Development > Development to the Basic Body Plan Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- April DeLaurier
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina
| |
Collapse
|
34
|
Sibbritt T, Ip CK, Khoo P, Wilkie E, Jones V, Sun JQJ, Shen JX, Peng G, Han JJ, Jing N, Osteil P, Ramialison M, Tam PPL, Fossat N. A gene regulatory network anchored by LIM homeobox 1 for embryonic head development. Genesis 2018; 56:e23246. [DOI: 10.1002/dvg.23246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Tennille Sibbritt
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- School of Medical Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Chi K. Ip
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Poh‐Lynn Khoo
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Emilie Wilkie
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- Bioinformatics Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Vanessa Jones
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Jane Q. J. Sun
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Joanne X. Shen
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Guangdun Peng
- State Key Laboratory of Cell Biology Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai China
| | - Jing‐Dong J. Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences‐Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai China
| | - Naihe Jing
- State Key Laboratory of Cell Biology Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai China
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Pierre Osteil
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- School of Medical Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute Monash University Melbourne Victoria Australia
| | - Patrick P. L. Tam
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- School of Medical Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- School of Medical Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| |
Collapse
|
35
|
Insights into the Etiology of Mammalian Neural Tube Closure Defects from Developmental, Genetic and Evolutionary Studies. J Dev Biol 2018; 6:jdb6030022. [PMID: 30134561 PMCID: PMC6162505 DOI: 10.3390/jdb6030022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
The human neural tube defects (NTD), anencephaly, spina bifida and craniorachischisis, originate from a failure of the embryonic neural tube to close. Human NTD are relatively common and both complex and heterogeneous in genetic origin, but the genetic variants and developmental mechanisms are largely unknown. Here we review the numerous studies, mainly in mice, of normal neural tube closure, the mechanisms of failure caused by specific gene mutations, and the evolution of the vertebrate cranial neural tube and its genetic processes, seeking insights into the etiology of human NTD. We find evidence of many regions along the anterior–posterior axis each differing in some aspect of neural tube closure—morphology, cell behavior, specific genes required—and conclude that the etiology of NTD is likely to be partly specific to the anterior–posterior location of the defect and also genetically heterogeneous. We revisit the hypotheses explaining the excess of females among cranial NTD cases in mice and humans and new developments in understanding the role of the folate pathway in NTD. Finally, we demonstrate that evidence from mouse mutants strongly supports the search for digenic or oligogenic etiology in human NTD of all types.
Collapse
|
36
|
Flach H, Krieg J, Hoffmeister M, Dietmann P, Reusch A, Wischmann L, Kernl B, Riegger R, Oess S, Kühl SJ. Nosip functions during vertebrate eye and cranial cartilage development. Dev Dyn 2018; 247:1070-1082. [PMID: 30055071 DOI: 10.1002/dvdy.24659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/01/2018] [Accepted: 07/13/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The nitric oxide synthase interacting protein (Nosip) has been associated with diverse human diseases including psychological disorders. In line, early neurogenesis of mouse and Xenopus is impaired upon Nosip deficiency. Nosip knockout mice show craniofacial defects and the down-regulation of Nosip in the mouse and Xenopus leads to microcephaly. Until now, the exact underlying molecular mechanisms of these malformations were still unknown. RESULTS Here, we show that nosip is expressed in the developing ocular system as well as the anterior neural crest cells of Xenopus laevis. Furthermore, Nosip inhibition causes severe defects in eye formation in the mouse and Xenopus. Retinal lamination as well as dorso-ventral patterning of the retina were affected in Nosip-depleted Xenopus embryos. Marker gene analysis using rax, pax6 and otx2 reveals an interference with the eye field induction and differentiation. A closer look on Nosip-deficient Xenopus embryos furthermore reveals disrupted cranial cartilage structures and an inhibition of anterior neural crest cell induction and migration shown by twist, snai2, and egr2. Moreover, foxc1 as downstream factor of retinoic acid signalling is affected upon Nosip deficiency. CONCLUSIONS Nosip is a crucial factor for the development of anterior neural tissue such the eyes and neural crest cells. Developmental Dynamics 247:1070-1082, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Julia Krieg
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Meike Hoffmeister
- Institute of Biochemistry II, Goethe University, Frankfurt Medical School, Frankfurt/Main, Germany.,Institute of Biochemistry, Brandenburg Medical School (MHB) Theodor Fontane, Neuruppin, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Adrian Reusch
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Lisa Wischmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Bianka Kernl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Ricarda Riegger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Stefanie Oess
- Institute of Biochemistry II, Goethe University, Frankfurt Medical School, Frankfurt/Main, Germany.,Institute of Biochemistry, Brandenburg Medical School (MHB) Theodor Fontane, Neuruppin, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
37
|
York JR, Yuan T, Lakiza O, McCauley DW. An ancestral role for Semaphorin3F-Neuropilin signaling in patterning neural crest within the new vertebrate head. Development 2018; 145:dev.164780. [PMID: 29980564 DOI: 10.1242/dev.164780] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022]
Abstract
The origin of the vertebrate head is one of the great unresolved issues in vertebrate evolutionary developmental biology. Although many of the novelties in the vertebrate head and pharynx derive from the neural crest, it is still unknown how early vertebrates patterned the neural crest within the ancestral body plan they inherited from invertebrate chordates. Here, using a basal vertebrate, the sea lamprey, we show that homologs of Semaphorin3F (Sema3F) ligand and its Neuropilin (Nrp) receptors show complementary and dynamic patterns of expression that correlate with key periods of neural crest development (migration and patterning of cranial neural crest-derived structures). Using CRISPR/Cas9-mediated mutagenesis, we demonstrate that lamprey Sema3F is essential for patterning of neural crest-derived melanocytes, cranial ganglia and the head skeleton, but is not required for neural crest migration or patterning of trunk neural crest derivatives. Based on comparisons with jawed vertebrates, our results suggest that the deployment of Nrp-Sema3F signaling, along with other intercellular guidance cues, was pivotal in allowing early vertebrates to organize and pattern cranial neural crest cells into many of the hallmark structures that define the vertebrate head.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Tian Yuan
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Olga Lakiza
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - David W McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| |
Collapse
|
38
|
Thulabandu V, Chen D, Atit RP. Dermal fibroblast in cutaneous development and healing. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29244903 DOI: 10.1002/wdev.307] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/27/2017] [Accepted: 10/07/2017] [Indexed: 01/09/2023]
Abstract
The skin is the largest organ of the body and is composed of two layers: the overlying epidermis and the underlying dermis. The dermal fibroblasts originate from distinct locations of the embryo and contain the positional identity and patterning information in the skin. The dermal fibroblast progenitors differentiate into various cell types that are fated to perform specific functions such as hair follicle initiation and scar formation during wound healing. Recent studies have revealed the heterogeneity and plasticity of dermal fibroblasts within skin, which has implications for skin disease and tissue engineering. The objective of this review is to frame our current understanding and provide new insights on the origin and differentiation of dermal fibroblasts and their function during cutaneous development and healing. WIREs Dev Biol 2018, 7:e307. doi: 10.1002/wdev.307 This article is categorized under: Birth Defects > Organ Anomalies Signaling Pathways > Cell Fate Signaling Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Venkata Thulabandu
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Demeng Chen
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
39
|
Ren H, Wang G, Jiang J, Li J, Fu L, Liu L, Li N, Zhao J, Sun X, Zhang L, Zhang H, Zhou P. Comparative transcriptome and histological analyses provide insights into the prenatal skin pigmentation in goat ( Capra hircus). Physiol Genomics 2017; 49:703-711. [PMID: 28972038 DOI: 10.1152/physiolgenomics.00072.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/31/2017] [Accepted: 09/29/2017] [Indexed: 11/22/2022] Open
Abstract
The Youzhou dark goat is a natural mutant with dark skin over the whole body including the visible mucous membranes. In the present study, we characterized 100-day-old fetal skin at the histomorphological and transcriptomic levels in dark-skinned (Youzhou dark goat) and white-skinned (Yudong white goat) goats with deep RNA sequencing, quantitative PCR, and histological methods. Histological analysis indicated that there were marked differences in both melanin distribution and epidermal ultrastructure between the hyperpigmented and normal skin in two breeds of goat. Subsequent analyses suggested that a presumed structure variation (duplication or insertion) in ASIP might be responsible for its lower expression in the hyperpigmented skin (Youzhou dark goat) by determining the distribution of melanocytes across the body at early development stage. Analyses for genes with differential expression between the dark-skinned and white-skinned goats indicated the network composed of ASIP-MC1R, ECM-receptor interaction, and MAPK signaling might play crucial roles in the determination of skin pigmentation in fetal goats. Moreover, we also identified 1,616 novel transcripts in goat skin by RNA sequencing, which may represent two distinct groups of transcript based on their characteristics. Our findings contribute to the understanding of the characteristics of global gene expression in early-stage skin pigmentation and development and describe an animal model for human diseases associated with pigmentation.
Collapse
Affiliation(s)
- Hangxing Ren
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, China; and
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, China; and
| | - Jing Jiang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, China; and
| | - Jie Li
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, China; and
| | - Lin Fu
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, China; and
| | - Liangjia Liu
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, China; and
| | - Nianfu Li
- Youyang Animal Husbandry Bureau, Youyang, Chongqing, China
| | - Jinhong Zhao
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, China; and
| | - Xiaoyan Sun
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, China; and
| | - Li Zhang
- Youyang Animal Husbandry Bureau, Youyang, Chongqing, China
| | - Haiyan Zhang
- Youyang Animal Husbandry Bureau, Youyang, Chongqing, China
| | - Peng Zhou
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, China; and
| |
Collapse
|
40
|
Taneyhill LA, Schiffmacher AT. Should I stay or should I go? Cadherin function and regulation in the neural crest. Genesis 2017; 55. [PMID: 28253541 DOI: 10.1002/dvg.23028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
Our increasing comprehension of neural crest cell development has reciprocally advanced our understanding of cadherin expression, regulation, and function. As a transient population of multipotent stem cells that significantly contribute to the vertebrate body plan, neural crest cells undergo a variety of transformative processes and exhibit many cellular behaviors, including epithelial-to-mesenchymal transition (EMT), motility, collective cell migration, and differentiation. Multiple studies have elucidated regulatory and mechanistic details of specific cadherins during neural crest cell development in a highly contextual manner. Collectively, these results reveal that gradual changes within neural crest cells are accompanied by often times subtle, yet important, alterations in cadherin expression and function. The primary focus of this review is to coalesce recent data on cadherins in neural crest cells, from their specification to their emergence as motile cells soon after EMT, and to highlight the complexities of cadherin expression beyond our current perceptions, including the hypothesis that the neural crest EMT is a transition involving a predominantly singular cadherin switch. Further advancements in genetic approaches and molecular techniques will provide greater opportunities to integrate data from various model systems in order to distinguish unique or overlapping functions of cadherins expressed at any point throughout the ontogeny of the neural crest.
Collapse
Affiliation(s)
- Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, 20742
| | - Andrew T Schiffmacher
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
41
|
Galler KM, Yasue A, Cavender AC, Bialek P, Karsenty G, D'Souza RN. A Novel Role for Twist-1 in Pulp Homeostasis. J Dent Res 2016; 86:951-5. [PMID: 17890670 DOI: 10.1177/154405910708601007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanisms that maintain the equilibrium of odontoblast progenitor cells in dental pulp are unknown. Here we tested whether homeostasis in dental pulp is modulated by Twist-1, a nuclear protein that partners with Runx2 during osteoblast differentiation. Our analysis of Twist-1(+/−) mice revealed phenotypic changes that involved an earlier onset of dentin matrix formation, increased alkaline phosphatase activity, and pulp stones within the pulp. RT-PCR analyses revealed Twist-1 expression in several adult organs, including pulp. Decreased levels of Twist-1 led to higher levels of type I collagen and Dspp gene expression in perivascular cells associated with the pulp stones. In mice heterozygous for both Twist-1 and Runx2 inactivation, the phenotype of pulp stones appeared completely rescued. These findings suggest that Twist-1 plays a key role in restraining odontoblast differentiation, thus maintaining homeostasis in dental pulp. Furthermore, Twist-1 functions in dental pulp are dependent on its interaction with Runx2.
Collapse
Affiliation(s)
- K M Galler
- Department of Biomedical Sciences, Texas A&M University Health Science Center, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Siddaraju V Boregowda
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, USA
| | - Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, USA
| |
Collapse
|
43
|
Bildsoe H, Fan X, Wilkie EE, Ashoti A, Jones VJ, Power M, Qin J, Wang J, Tam PP, Loebel DA. Transcriptional targets of TWIST1 in the cranial mesoderm regulate cell-matrix interactions and mesenchyme maintenance. Dev Biol 2016; 418:189-203. [DOI: 10.1016/j.ydbio.2016.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
|
44
|
Sozen B, Pehlivanoglu S, Demir N. Differential expression pattern of Twist1 in mouse preimplantation embryos suggests its multiple roles during early development. J Assist Reprod Genet 2016; 33:1533-1540. [PMID: 27544279 DOI: 10.1007/s10815-016-0794-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/11/2016] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The purpose of the present study is to understand Twist-related protein 1 (Twist1) spatiotemporal expression patterns and functions during early embryo development. METHODS We performed whole-mount double immunofluorescence staining and reverse transcription (RT)-PCR analysis of the Twist1 protein and gene throughout the preimplantation development in mice. RESULTS We determined that after compaction, the expression of Twist1 becomes developmentally differentiated and targeted in the inner cells of embryos. In blastocysts at E4.5, uniform staining of the inner cell mass was apparent, and it had been gradually translocated to the nucleus of hatched embryonic cells at E4.75. Furthermore, the effect of potential regulators of Twist on its expression level during blastocyst development was also sought. Accordingly, Twist1 expression appeared to be upregulated in both mRNA and protein level following culture of embryos in the presence of high glucose. CONCLUSIONS Our study revealed the dynamic Twist localization within the early stage of embryo. The results are discussed in terms of potential roles of Twist1 in the processes of lineage segregation, hatching, and implantation in post-compaction embryos and in blastocysts.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Histology and Embryology, School of Medicine, Akdeniz University Campus, 07070, Antalya, Turkey
| | - Suray Pehlivanoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, 42090, Konya, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, School of Medicine, Akdeniz University Campus, 07070, Antalya, Turkey.
| |
Collapse
|
45
|
Szabo-Rogers H, Yakob W, Liu KJ. Frontal Bone Insufficiency in Gsk3β Mutant Mice. PLoS One 2016; 11:e0149604. [PMID: 26886780 PMCID: PMC4757545 DOI: 10.1371/journal.pone.0149604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 02/03/2016] [Indexed: 12/17/2022] Open
Abstract
The development of the mammalian skull is a complex process that requires multiple tissue interactions and a balance of growth and differentiation. Disrupting this balance can lead to changes in the shape and size of skull bones, which can have serious clinical implications. For example, insufficient ossification of the bony elements leads to enlarged anterior fontanelles and reduced mechanical protection of the brain. In this report, we find that loss of Gsk3β leads to a fully penetrant reduction of frontal bone size and subsequent enlarged frontal fontanelle. In the absence of Gsk3β the frontal bone primordium undergoes increased cell death and reduced proliferation with a concomitant increase in Fgfr2-IIIc and Twist1 expression. This leads to a smaller condensation and premature differentiation. This phenotype appears to be Wnt-independent and is not rescued by decreasing the genetic dose of β-catenin/Ctnnb1. Taken together, our work defines a novel role for Gsk3β in skull development.
Collapse
Affiliation(s)
- Heather Szabo-Rogers
- Craniofacial Development and Stem Cell Biology, Floor 27, Tower Wing, Guy’s Campus, King’s College London, London, United Kingdom SE1 9RT
| | - Wardati Yakob
- Craniofacial Development and Stem Cell Biology, Floor 27, Tower Wing, Guy’s Campus, King’s College London, London, United Kingdom SE1 9RT
| | - Karen J. Liu
- Craniofacial Development and Stem Cell Biology, Floor 27, Tower Wing, Guy’s Campus, King’s College London, London, United Kingdom SE1 9RT
- * E-mail:
| |
Collapse
|
46
|
Tam PPL, Fossat N, Wilkie E, Loebel DAF, Ip CK, Ramialison M. Formation of the Embryonic Head in the Mouse: Attributes of a Gene Regulatory Network. Curr Top Dev Biol 2016; 117:497-521. [PMID: 26969997 DOI: 10.1016/bs.ctdb.2015.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The embryonic head is the first major body part to be constructed during embryogenesis. The allocation and the assembly of the progenitor tissues, which start at gastrulation, are accompanied by the spatiotemporal activity of transcription factors and signaling pathways that drives lineage specification, germ layer formation, and cell/tissue movement. The morphogenesis, regionalization, and patterning of the brain and craniofacial structures rely on the function of LIM-domain, homeodomain, and basic helix-loop-helix transcription factors. These factors constitute the central nodes of a gene regulatory network (GRN) which encompasses and intersects with signaling pathways involved with head formation. It is predicted that the functional output of this "head GRN" impacts on cellular function and cell-cell interactions that are essential for lineage differentiation and tissue modeling, which are key processes underpinning the formation of the head.
Collapse
Affiliation(s)
- Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| | - Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Emilie Wilkie
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Bioinformatics Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Chi Kin Ip
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; Systems Biology Institute Australia, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
47
|
Macrì S, Simula L, Pellarin I, Pegoraro S, Onorati M, Sgarra R, Manfioletti G, Vignali R. Hmga2 is required for neural crest cell specification in Xenopus laevis. Dev Biol 2016; 411:25-37. [PMID: 26806704 DOI: 10.1016/j.ydbio.2016.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/23/2015] [Accepted: 01/20/2016] [Indexed: 12/12/2022]
Abstract
HMGA proteins are small nuclear proteins that bind DNA by conserved AT-hook motifs, modify chromatin architecture and assist in gene expression. Two HMGAs (HMGA1 and HMGA2), encoded by distinct genes, exist in mammals and are highly expressed during embryogenesis or reactivated in tumour progression. We here addressed the in vivo role of Xenopus hmga2 in the neural crest cells (NCCs). We show that hmga2 is required for normal NCC specification and development. hmga2 knockdown leads to severe disruption of major skeletal derivatives of anterior NCCs. We show that, within the NCC genetic network, hmga2 acts downstream of msx1, and is required for msx1, pax3 and snail2 activities, thus participating at different levels of the network. Because of hmga2 early effects in NCC specification, the subsequent epithelial-mesenchymal transition (EMT) and migration of NCCs towards the branchial pouches are also compromised. Strictly paralleling results on embryos, interfering with Hmga2 in a breast cancer cell model for EMT leads to molecular effects largely consistent with those observed on NCCs. These data indicate that Hmga2 is recruited in key molecular events that are shared by both NCCs and tumour cells.
Collapse
Affiliation(s)
- Simone Macrì
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università degli Studi di Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy
| | - Luca Simula
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università degli Studi di Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy
| | - Ilenia Pellarin
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via Giorgieri 5, 34127 Trieste, Italy
| | - Silvia Pegoraro
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via Giorgieri 5, 34127 Trieste, Italy
| | - Marco Onorati
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università degli Studi di Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy
| | - Riccardo Sgarra
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via Giorgieri 5, 34127 Trieste, Italy
| | - Guidalberto Manfioletti
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via Giorgieri 5, 34127 Trieste, Italy
| | - Robert Vignali
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università degli Studi di Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy.
| |
Collapse
|
48
|
Sakamoto A, Akiyama Y, Shimada S, Zhu WG, Yuasa Y, Tanaka S. DNA Methylation in the Exon 1 Region and Complex Regulation of Twist1 Expression in Gastric Cancer Cells. PLoS One 2015; 10:e0145630. [PMID: 26695186 PMCID: PMC4687923 DOI: 10.1371/journal.pone.0145630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/06/2015] [Indexed: 02/06/2023] Open
Abstract
Twist1 overexpression is frequently observed in various cancers including gastric cancer (GC). Although DNA methylation of the Twist1 gene has been reported in cancer cells, the mechanisms underlying transcriptional activation remain uncertain. In this study, we first examined epigenetic alterations of the Twist1 using Twist1 transcription-positive and -negative cell lines that are derived from our established diffuse-type GC mouse model. Treatment with a DNA demethylation agent 5-aza-dC re-activated Twist1 expression in Twist1 expression-negative GC cells. According to methylation-specific PCR and bisulfite sequencing analysis, methylation at the CpG-rich region within Twist1 coding exon 1, rather than its promoter region, was tightly linked to transcriptional silencing of the Twist1 expression in mouse GC cells. Chromatin immunoprecipitation assays revealed that active histone mark H3K4me3 was enriched in Twist1 expression-positive cells, and inactive histone mark H3K9me3 was enriched in Twist1 expression-negative cells. The expression levels of Suv39h1 and Suv39h2, histone methyltransferases for H3K9me3, were inversely correlated with Twist1 expression, and knockdown of Suv39h1 or Suv39h2 induced Twist1 expression. Moreover, Sp1 transcription factor bound to the exon 1 CpG-rich region in Twist1 expression-positive cell lines, and Twist1 expression was diminished by mithramycin, which that interferes with Sp1 binding to CpG-rich regulatory sequences. Our studies suggested that the Twist1 transcription in GC cells might be regulated through potential cooperation of DNA methylation, histone modification in complex with Sp1 binding to CpG-rich regions within the exon 1 region.
Collapse
Affiliation(s)
- Ayuna Sakamoto
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
49
|
Goodnough LH, Dinuoscio GJ, Atit RP. Twist1 contributes to cranial bone initiation and dermal condensation by maintaining Wnt signaling responsiveness. Dev Dyn 2015; 245:144-56. [PMID: 26677825 DOI: 10.1002/dvdy.24367] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Specification of cranial bone and dermal fibroblast progenitors in the supraorbital arch mesenchyme is Wnt/β-catenin signaling-dependent. The mechanism underlying how these cells interpret instructive signaling cues and differentiate into these two lineages is unclear. Twist1 is a target of the Wnt/β-catenin signaling pathway and is expressed in cranial bone and dermal lineages. RESULTS Here, we show that onset of Twist1 expression in the mouse cranial mesenchyme is dependent on ectodermal Wnts and mesenchymal β-catenin activity. Conditional deletion of Twist1 in the supraorbital arch mesenchyme leads to cranial bone agenesis and hypoplastic dermis, as well as craniofacial malformation of eyes and palate. Twist1 is preferentially required for cranial bone lineage commitment by maintaining Wnt responsiveness. In the conditional absence of Twist1, the cranial dermis fails to condense and expand apically leading to extensive cranial dermal hypoplasia with few and undifferentiated hair follicles. CONCLUSIONS Thus, Twist1, a target of canonical Wnt/β-catenin signaling, also functions to maintain Wnt responsiveness and is a key effector for cranial bone fate selection and dermal condensation.
Collapse
Affiliation(s)
- L Henry Goodnough
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Gregg J Dinuoscio
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio.,Department of Dermatology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
50
|
Gou Y, Zhang T, Xu J. Transcription Factors in Craniofacial Development: From Receptor Signaling to Transcriptional and Epigenetic Regulation. Curr Top Dev Biol 2015; 115:377-410. [PMID: 26589933 DOI: 10.1016/bs.ctdb.2015.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Craniofacial morphogenesis is driven by spatial-temporal terrains of gene expression, which give rise to stereotypical pattern formation. Transcription factors are key cellular components that control these gene expressions. They are information hubs that integrate inputs from extracellular factors and environmental cues, direct epigenetic modifications, and define transcriptional status. These activities allow transcription factors to confer specificity and potency to transcription regulation during development.
Collapse
Affiliation(s)
- Yongchao Gou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA
| | - Tingwei Zhang
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA; State Key Laboratory of Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Xu
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA.
| |
Collapse
|