1
|
Si L, Guo X, Bera H, Chen Y, Xiu F, Liu P, Zhao C, Abbasi YF, Tang X, Foderà V, Cun D, Yang M. Unleashing the healing potential: Exploring next-generation regenerative protein nanoscaffolds for burn wound recovery. Asian J Pharm Sci 2023; 18:100856. [PMID: 38204470 PMCID: PMC10777420 DOI: 10.1016/j.ajps.2023.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/15/2023] [Accepted: 10/07/2023] [Indexed: 01/12/2024] Open
Abstract
Burn injury is a serious public health problem and scientists are continuously aiming to develop promising biomimetic dressings for effective burn wound management. In this study, a greater efficacy in burn wound healing and the associated mechanisms of α-lactalbumin (ALA) based electrospun nanofibrous scaffolds (ENs) as compared to other regenerative protein scaffolds were established. Bovine serum albumin (BSA), collagen type I (COL), lysozyme (LZM) and ALA were separately blended with poly(ε-caprolactone) (PCL) to fabricate four different composite ENs (LZM/PCL, BSA/PCL, COL/PCL and ALA/PCL ENs). The hydrophilic composite scaffolds exhibited an enhanced wettability and variable mechanical properties. The ALA/PCL ENs demonstrated higher levels of fibroblast proliferation and adhesion than the other composite ENs. As compared to PCL ENs and other composite scaffolds, the ALA/PCL ENs also promoted a better maturity of the regenerative skin tissues and showed a comparable wound healing effect to Collagen spongeⓇ on third-degree burn model. The enhanced wound healing activity of ALA/PCL ENs compared to other ENs could be attributed to their ability to promote serotonin production at wound sites. Collectively, this investigation demonstrated that ALA is a unique protein with a greater potential for burn wound healing as compared to other regenerative proteins when loaded in the nanofibrous scaffolds.
Collapse
Affiliation(s)
- Liangwei Si
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, 713206, India
| | - Yang Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Fangfang Xiu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Peixin Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Chunwei Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Yasir Faraz Abbasi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O, Denmark
| |
Collapse
|
2
|
Singh V, Singh R, Kumar D, Mahdi AA, Tripathi AK. A new variant of the human α-lactalbumin-oleic acid complex as an anticancer agent for chronic myeloid leukemia. J Med Life 2022; 14:620-635. [PMID: 35027964 PMCID: PMC8742887 DOI: 10.25122/jml-2021-0065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder of hematopoietic stem cells. Although there have been advancements in treatment, there is still a need to develop a biotherapeutic agent. A new variant of the human alpha-lactalbumin-oleic acid (HALOA) complex has been synthesized, which showed similarities with SNARE. The native α-LA was treated with EDTA to remove Ca2+ ions confirmed by ICP-OES and Arsenazo III to unfold and attain apo structure. The apo LA was mixed with OA in a specific ratio, leading to HALOA complex formation. The conformational state from native to complex was elucidated by circular dichroism (far; 190–260 nm and near; 260–340 nm UV-CD), which confirmed that the complex consists of a majority of turns and β-sheet structure. SDS-PAGE result showed the masking effect of OA on apo α-LA. In the lane of the complex, there was no band detected. However, 1-anilino-8-naphthalene sulfonate (ANS) dye has shown maximum fluorescence intensity with the complex because of the availability of hydrophobic patches, which was further validated by NMR spectroscopy indicating the masking effect of OA on the apo α-LA. The SNARE behavior of the complex (500 nm) has been confirmed by TEM. This new structural variant complex shows anti-tumor activity on chronic myeloid leukemia by targeting the IL-8, survivin, and induces apoptosis through DNA fragmentation, but not against normal cells. Overall, the formulated complex shows that SNARE-like behavior can be used as a promising anti-tumor agent with lower toxicity and maximum bioavailability.
Collapse
Affiliation(s)
- Vivek Singh
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ranjana Singh
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Anil Kumar Tripathi
- Department of Clinical Hematology, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Nevinsky GA. How Enzymes, Proteins, and Antibodies Recognize Extended DNAs; General Regularities. Int J Mol Sci 2021; 22:1369. [PMID: 33573045 PMCID: PMC7866405 DOI: 10.3390/ijms22031369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
X-ray analysis cannot provide quantitative estimates of the relative contribution of non-specific, specific, strong, and weak contacts of extended DNA molecules to their total affinity for enzymes and proteins. The interaction of different enzymes and proteins with long DNA and RNA at the quantitative molecular level can be successfully analyzed using the method of the stepwise increase in ligand complexity (SILC). The present review summarizes the data on stepwise increase in ligand complexity (SILC) analysis of nucleic acid recognition by various enzymes-replication, restriction, integration, topoisomerization, six different repair enzymes (uracil DNA glycosylase, Fpg protein from Escherichia coli, human 8-oxoguanine-DNA glycosylase, human apurinic/apyrimidinic endonuclease, RecA protein, and DNA-ligase), and five DNA-recognizing proteins (RNA helicase, human lactoferrin, alfa-lactalbumin, human blood albumin, and IgGs against DNA). The relative contributions of structural elements of DNA fragments "covered" by globules of enzymes and proteins to the total affinity of DNA have been evaluated. Thermodynamic and catalytic factors providing discrimination of unspecific and specific DNAs by these enzymes on the stages of primary complex formation following changes in enzymes and DNAs or RNAs conformations and direct processing of the catalysis of the reactions were found. General regularities of recognition of nucleic acid by DNA-dependent enzymes, proteins, and antibodies were established.
Collapse
Affiliation(s)
- Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 63009 Novosibirsk, Russia
| |
Collapse
|
4
|
Guo X, Liu Y, Bera H, Zhang H, Chen Y, Cun D, Foderà V, Yang M. α-Lactalbumin-Based Nanofiber Dressings Improve Burn Wound Healing and Reduce Scarring. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45702-45713. [PMID: 32667794 DOI: 10.1021/acsami.0c05175] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Skin wound especially burn injury is a major threat for public health. One of the pursuits in the current wound healing research is to identify new promising biological materials, which can not only promote tissue repair but also reduce scar formation. In this current study, the potentials of α-lactalbumin (ALA), a tryptophan-rich dietary protein acting as a precursor of neurotransmitter serotonin, to promote the burn wound healing and reduce the scar formation were investigated. The ALA was initially electrospun with polycaprolactone (PCL) to accomplish electrospun nanofibrous mats (ENMs), subsequently assessed for their physicochemical attributes and wound healing efficiency on a burn rat model, and then their healing mechanisms at cellular and molecular levels were explored. The results showed that ALA and PCL were physicochemically compatible in ENMs. The average diameter of various nanofibers was within 183-344 nm. Their wettability and mechanical properties could be readily modulated by adjusting the mass ratios of ALA and PCL from 1/9 to 1/2. The selected ENMs exhibited negligible cytotoxicity and satisfactory adhesion to fibroblasts and promoting the proliferation of the fibroblasts. As compared to pristine PCL based ENMs, the composite scaffolds could accelerate the wound healing process and exhibit effects comparable to a marketed wound dressing over 16 days. Moreover, the ALA/PCL based ENMs could increase the synthesis of type I collagen and decrease the expression of α-smooth muscle actin, conferring that the novel wound dressings could reduce the formation of scars. Collectively, this study demonstrates that the ALA is a promising biological material and could promote the regeneration of burn skins with reduced scar formation, when being loaded on ultrafine fibrous scaffolds, mimicking the structure of the natural extra cellular matrix.
Collapse
Affiliation(s)
- Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Yunen Liu
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, No. 83 Road, Shenhe District, 110016 Shenyang, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Yang Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
5
|
α-Lactalbumin, Amazing Calcium-Binding Protein. Biomolecules 2020; 10:biom10091210. [PMID: 32825311 PMCID: PMC7565966 DOI: 10.3390/biom10091210] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
α-Lactalbumin (α-LA) is a small (Mr 14,200), acidic (pI 4–5), Ca2+-binding protein. α-LA is a regulatory component of lactose synthase enzyme system functioning in the lactating mammary gland. The protein possesses a single strong Ca2+-binding site, which can also bind Mg2+, Mn2+, Na+, K+, and some other metal cations. It contains several distinct Zn2+-binding sites. Physical properties of α-LA strongly depend on the occupation of its metal binding sites by metal ions. In the absence of bound metal ions, α-LA is in the molten globule-like state. The binding of metal ions, and especially of Ca2+, increases stability of α-LA against the action of heat, various denaturing agents and proteases, while the binding of Zn2+ to the Ca2+-loaded protein decreases its stability and causes its aggregation. At pH 2, the protein is in the classical molten globule state. α-LA can associate with membranes at neutral or slightly acidic pH at physiological temperatures. Depending on external conditions, α-LA can form amyloid fibrils, amorphous aggregates, nanoparticles, and nanotubes. Some of these aggregated states of α-LA can be used in practical applications such as drug delivery to tissues and organs. α-LA and some of its fragments possess bactericidal and antiviral activities. Complexes of partially unfolded α-LA with oleic acid are cytotoxic to various tumor and bacterial cells. α-LA in the cytotoxic complexes plays a role of a delivery carrier of cytotoxic fatty acid molecules into tumor and bacterial cells across the cell membrane. Perhaps in the future the complexes of α-LA with oleic acid will be used for development of new anti-cancer drugs.
Collapse
|
6
|
Rath EM, Cheng YY, Pinese M, Sarun KH, Hudson AL, Weir C, Wang YD, Håkansson AP, Howell VM, Liu GJ, Reid G, Knott RB, Duff AP, Church WB. BAMLET kills chemotherapy-resistant mesothelioma cells, holding oleic acid in an activated cytotoxic state. PLoS One 2018; 13:e0203003. [PMID: 30157247 PMCID: PMC6114908 DOI: 10.1371/journal.pone.0203003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma is an aggressive cancer with poor prognosis. Here we have investigated in vitro efficacy of BAMLET and BLAGLET complexes (anti-cancer complexes consisting of oleic acid and bovine α-lactalbumin or β-lactoglobulin respectively) in killing mesothelioma cells, determined BAMLET and BLAGLET structures, and investigated possible biological mechanisms. We performed cell viability assays on 16 mesothelioma cell lines. BAMLET and BLAGLET having increasing oleic acid content inhibited human and rat mesothelioma cell line proliferation at decreasing doses. Most of the non-cancer primary human fibroblasts were more resistant to BAMLET than were human mesothelioma cells. BAMLET showed similar cytotoxicity to cisplatin-resistant, pemetrexed-resistant, vinorelbine-resistant, and parental rat mesothelioma cells, indicating the BAMLET anti-cancer mechanism may be different to drugs currently used to treat mesothelioma. Cisplatin, pemetrexed, gemcitabine, vinorelbine, and BAMLET, did not demonstrate a therapeutic window for mesothelioma compared with immortalised non-cancer mesothelial cells. We demonstrated by quantitative PCR that ATP synthase is downregulated in mesothelioma cells in response to regular dosing with BAMLET. We sought structural insight for BAMLET and BLAGLET activity by performing small angle X-ray scattering, circular dichroism, and scanning electron microscopy. Our results indicate the structural mechanism by which BAMLET and BLAGLET achieve increased cytotoxicity by holding increasing amounts of oleic acid in an active cytotoxic state encapsulated in increasingly unfolded protein. Our structural studies revealed similarity in the molecular structure of the protein components of these two complexes and in their encapsulation of the fatty acid, and differences in the microscopic structure and structural stability. BAMLET forms rounded aggregates and BLAGLET forms long fibre-like aggregates whose aggregation is more stable than that of BAMLET due to intermolecular disulphide bonds. The results reported here indicate that BAMLET and BLAGLET may be effective second-line treatment options for mesothelioma.
Collapse
Affiliation(s)
- Emma M. Rath
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute (ADRI), Concord, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| | - Mark Pinese
- Kinghorn Cancer Centre and Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Kadir H. Sarun
- Asbestos Diseases Research Institute (ADRI), Concord, NSW, Australia
| | - Amanda L. Hudson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Christopher Weir
- Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Yiwei D. Wang
- Burns Research, ANZAC Research Institute, Concord Hospital, University of Sydney, Concord, NSW, Australia
| | | | - Viive M. Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Guo Jun Liu
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, Australia
- Brain and Mind Centre and Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Asbestos Diseases Research Institute (ADRI), Concord, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| | - Robert B. Knott
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, Australia
| | - Anthony P. Duff
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, Australia
| | - W. Bret Church
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Kopeina GS, Prokhorova EA, Lavrik IN, Zhivotovsky B. Alterations in the nucleocytoplasmic transport in apoptosis: Caspases lead the way. Cell Prolif 2018; 51:e12467. [PMID: 29947118 DOI: 10.1111/cpr.12467] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a mode of regulated cell death that is indispensable for the morphogenesis, development and homeostasis of multicellular organisms. Caspases are cysteine-dependent aspartate-specific proteases, which function as initiators and executors of apoptosis. Caspases are cytosolic proteins that can cleave substrates located in different intracellular compartments during apoptosis. Many years ago, the involvement of caspases in the regulation of nuclear changes, a hallmark of apoptosis, was documented. Accumulated data suggest that apoptosis-associated alterations in nucleocytoplasmic transport are also linked to caspase activity. Here, we aim to discuss the current state of knowledge regarding this process. Particular attention will be focused on caspase nuclear entry and their functions in the demolition of the nucleus upon apoptotic stimuli.
Collapse
Affiliation(s)
- Gelina S Kopeina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Inna N Lavrik
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Boris Zhivotovsky
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Soboleva SE, Guschina TA, Nevinsky GA. Human serum and milk albumins are metal-dependent DNases. IUBMB Life 2018; 70:501-510. [PMID: 29601140 DOI: 10.1002/iub.1741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
Abstract
It is known that that human serum albumin (HSA) and alpha-lactalbumin (LA) possess DNA-binding sites. Electrophoretically homogeneous HSA and LA containing no canonical enzymes were isolated from human sera and milk. Here we have analyzed for the first time the possibility of DNA hydrolysis by these proteins. It was shown that HSA possesses metal-dependent DNase activity, while LA cannot hydrolyze DNA. Several rigid criteria have been applied to show that DNase activity is an intrinsic property of HSA from human sera and milk. HSA preparations were inactive after their dialysis against EDTA or in the presence of EDTA, but were activated after addition of several external metal ions: Mn2+ > Mg2+ > Ca2+ . The best activation of HSA preparations was observed in the presence of two metal ions: Mg2+ +Ca2+ > Mn2+ + Ca2+ ≥ Mn2+ + Mg2+ . In contrast to DNases having only one pH optimum, HSA preparations demonstrated two well-pronounced optima at pH 5.7-5.9 and 6.9-7.1 as well as a weak optimum at pH 8.4-8.6. These results demonstrate the diversity of HSA in the DNA hydrolysis at various pHs and in activation by various metal cofactors. Possible reasons for the diversity of HSA preparations are discussed. © 2018 IUBMB Life, 70(6):501-510, 2018.
Collapse
Affiliation(s)
- Svetlana E Soboleva
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave, Novosibirsk, 630090, Russia
| | - Tat'yana A Guschina
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave, Novosibirsk, 630090, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave, Novosibirsk, 630090, Russia
| |
Collapse
|
9
|
Role of Proteins and of Some Bioactive Peptides on the Nutritional Quality of Donkey Milk and Their Impact on Human Health. BEVERAGES 2017. [DOI: 10.3390/beverages3030034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Sharp JA, Brennan AJ, Polekhina G, Ascher DB, Lefevre C, Nicholas KR. Dimeric but not monomeric α-lactalbumin potentiates apoptosis by up regulation of ATF3 and reduction of histone deacetylase activity in primary and immortalised cells. Cell Signal 2017; 33:86-97. [DOI: 10.1016/j.cellsig.2017.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 11/25/2022]
|
11
|
Ahmad AS, Vasiljević N, Carter P, Berney DM, Møller H, Foster CS, Cuzick J, Lorincz AT. A novel DNA methylation score accurately predicts death from prostate cancer in men with low to intermediate clinical risk factors. Oncotarget 2016; 7:71833-71840. [PMID: 27708246 PMCID: PMC5342126 DOI: 10.18632/oncotarget.12377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023] Open
Abstract
Clinically aggressive disease behavior is difficult to predict in men with low to intermediate clinical risk prostate cancer and methylation biomarkers may be a valuable adjunct for assessing the management of these patients. We set to evaluate the utility of DNA methylation to identify high risk disease in men currently considered as low or intermediate risk. DNA was extracted from formalin-fixed paraffin-embedded transurethral prostate resection tissues collected during the years 1990-96 in a watchful-waiting cohort of men in the UK. The primary end point was death of prostate cancer, assessed by reviewing cancer registry records from 2009. Methylation was quantified by pyrosequencing assays for six genes (HSPB1, CCND2, TIG1, DPYS, PITX2, and MAL) with established biomarker value in prostate cancer. A novel prognostic methylation score was developed by multivariate Cox modelling using the six methylation biomarkers in 385 men with low-and-intermediate clinical risk variables and its prognostic value compared to two previously defined clinically-derived risk scores. Methylation score was the most significant variable in univariate and bivariate analysis in men with low-to-intermediate CAPRA risk score. When combined with CAPRA score the hazard ratio was 2.02; 95% confidence interval, 1.40-2.92. For a methylation score sensitivity of 83% the specificity was 44%, while the maximum achieved sensitivity by CAPRA was 68% at a specificity of 44%. The derived methylation score is a strong predictor of aggressive prostate cancer that could have an important role in directing the management of patients with low-to-intermediate risk disease. The estimated areas under the curve (AUC) at 10 years of follow-up were 0.62 (95% CI: 0.51, 0.70) and 0.74 (95% CI: 0.65, 0.82) for CAPRA, and combined (CAPRA + methylation) risk score (CRS) respectively.
Collapse
Affiliation(s)
- Amar S. Ahmad
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Nataša Vasiljević
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Paul Carter
- Centre for Molecular Pathology, Royal Marsden Hospital, Sutton, SM2 5PT, UK
| | - Daniel M Berney
- Molecular Oncology Centre, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Henrik Møller
- King's College London, Cancer Epidemiology and Population Global Health Program, London, SE1 3QD, UK
| | | | - Jack Cuzick
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Attila T. Lorincz
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
12
|
Roy SS, Mukherjee S, Ballard BR, Das SK. Protection Against Dimethylbenz[a] Anthracene-Induced Breast Cancer in Female Rats by α-Lactalbumin. INTERNATIONAL JOURNAL OF CANCER AND ONCOLOGY 2016; 3:1-6. [PMID: 27517093 PMCID: PMC4978184 DOI: 10.15436/2377-0902.16.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Consumption of α-lactalbumin as dietary protein offers a beneficial effect on breast cancer development. Breast cancer was developed by gavage administration of single dose of dimethylbenz(a)anthracene (DMBA) in female rats, maintained on AIN-76A diet with either 20% casein or α-lactalbumin (a component of whey protein). All tumors were detected by palpation. After approximately 130 days of DMBA administration, the animals were euthanized. There was a delay in the development of breast tumor in the α-lactalbumin group in comparison to the casein group. The number of tumors per rat was less in the α-lactalbumin group than that in the casein group at any time point up to 130 days after DMBA administration. Also the incidence of tumors and tumor volume was less in the α-lactalbumin group than those in the casein group. The casein group had a mixture of grade I, grade II and grade III tumors whereas the α-lactalbumin group had mostly grade I tumor. Furthermore, the proliferative index was significantly lower in the α-lactalbumin group than that in the casein group.
Collapse
Affiliation(s)
- Somdutta Sinha Roy
- Department of Biochemistry & Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - Shyamali Mukherjee
- Department of Professional Education, Neurosciences & Pharmacology, Nashville, TN, USA
| | - Billy R Ballard
- Department of Pathology, Meharry Medical College, Nashville, TN, USA
| | - Salil K Das
- Department of Biochemistry & Cancer Biology, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
13
|
Hoque M, Gupta J, Rabbani G, Khan RH, Saleemuddin M. Behaviour of oleic acid-depleted bovine alpha-lactalbumin made LEthal to tumor cells (BAMLET). MOLECULAR BIOSYSTEMS 2016; 12:1871-80. [DOI: 10.1039/c5mb00905g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Oleic acid (OA) complexes of human alpha-lactalbumin (α-LA) and several other proteins are effective in the killing of a variety of tumor cells.
Collapse
Affiliation(s)
- Mehboob Hoque
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Jyoti Gupta
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Gulam Rabbani
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh 202002
- India
| | - M. Saleemuddin
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh 202002
- India
| |
Collapse
|
14
|
The biological activities of protein/oleic acid complexes reside in the fatty acid. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1125-43. [DOI: 10.1016/j.bbapap.2013.02.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/12/2022]
|
15
|
Nakamura T, Aizawa T, Kariya R, Okada S, Demura M, Kawano K, Makabe K, Kuwajima K. Molecular mechanisms of the cytotoxicity of human α-lactalbumin made lethal to tumor cells (HAMLET) and other protein-oleic acid complexes. J Biol Chem 2013; 288:14408-14416. [PMID: 23580643 PMCID: PMC3656296 DOI: 10.1074/jbc.m112.437889] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/10/2013] [Indexed: 01/02/2023] Open
Abstract
Although HAMLET (human α-lactalbumin made lethal to tumor cells), a complex formed by human α-lactalbumin and oleic acid, has a unique apoptotic activity for the selective killing of tumor cells, the molecular mechanisms of expression of the HAMLET activity are not well understood. Therefore, we studied the molecular properties of HAMLET and its goat counterpart, GAMLET (goat α-lactalbumin made lethal to tumor cells), by pulse field gradient NMR and 920-MHz two-dimensional NMR techniques. We also examined the expression of HAMLET-like activities of complexes between oleic acid and other proteins that form a stable molten globule state. We observed that both HAMLET and GAMLET at pH 7.5 were heterogeneous, composed of the native protein, the monomeric molten globule-like state, and the oligomeric species. At pH 2.0 and 50 °C, HAMLET and GAMLET appeared in the monomeric state, and we identified the oleic acid-binding site in the complexes by two-dimensional NMR. Rather surprisingly, the binding site thus identified was markedly different between HAMLET and GAMLET. Furthermore, canine milk lysozyme, apo-myoglobin, and β2-microglobulin all formed the HAMLET-like complex with the anti-tumor activity, when the protein was treated with oleic acid under conditions in which their molten globule states were stable. From these results, we conclude that the protein portion of HAMLET, GAMLET, and the other HAMLET-like protein-oleic acid complexes is not the origin of their cytotoxicity to tumor cells and that the protein portion of these complexes plays a role in the delivery of cytotoxic oleic acid molecules into tumor cells across the cell membrane.
Collapse
Affiliation(s)
- Takashi Nakamura
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo 060-0810, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1, Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1, Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo 060-0810, Japan
| | - Keiichi Kawano
- Faculty of Advanced Life Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo 060-0810, Japan
| | - Koki Makabe
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Kunihiro Kuwajima
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.
| |
Collapse
|
16
|
A systematic analysis of genomic changes in Tg2576 mice. Mol Neurobiol 2012; 47:883-91. [PMID: 23242760 DOI: 10.1007/s12035-012-8384-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by intelligence decline, behavioral disorders and cognitive disability. The purpose of this study was to investigate gene expression in AD, based on published microarray data on Tg2576 mice. Hierarchical Cluster Analysis and Gene Ontology were employed to group genes together on the basis of their product characteristics and annotation data. Genes with prominent alterations were clustered into apoptosis and axon guidance pathways. Based on our findings and those of previous studies, we propose that the mitochondria-mediated apoptotic pathway plays a crucial role in the neuronal loss and synaptic dysfunction associated with AD. Furthermore, based on the findings of Positional Gene Enrichment analysis and Gene Set Enrichment analysis, we propose that the regulation of transcription of AD genes may be an important pathogenic factor in this neurodegenerative disease. Our results highlight the importance of genes that could subsequently be examined for their potential as prognostic markers for AD.
Collapse
|
17
|
Abstract
HAMLET (human α-lactalbumin made lethal to tumour cells) and its related partially unfolded protein-fatty acid complexes are novel biomolecular nanoparticles that possess relatively selective cytotoxic activities towards tumour cells. One of the key characteristics is the requirement for the protein to be partially unfolded, hence endowing native proteins with additional functions in the alternatively folded states. Beginning with the history of its discovery and development, the cellular targets that appear to be strongly correlated with tumour cell death are introduced in the present article.
Collapse
|
18
|
Ho CS J, Rydström A, Trulsson M, Bålfors J, Storm P, Puthia M, Nadeem A, Svanborg C. HAMLET: functional properties and therapeutic potential. Future Oncol 2012; 8:1301-13. [DOI: 10.2217/fon.12.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human α-lactalbumin made lethal to tumor cells (HAMLET) is the first member in a new family of protein–lipid complexes that kills tumor cells with high selectivity. The protein component of HAMLET is α-lactalbumin, which in its native state acts as a substrate specifier in the lactose synthase complex, thereby defining a function essential for the survival of lactating mammals. In addition, α-lactalbumin acquires tumoricidal activity after partial unfolding and binding to oleic acid. The lipid cofactor serves the dual role as a stabilizer of the altered fold of the protein and a coactivator of specific steps in tumor cell death. HAMLET is broadly tumoricidal, suggesting that the complex identifies conserved death pathways suitable for targeting by novel therapies. Sensitivity to HAMLET is defined by oncogene expression including Ras and c-Myc and by glycolytic enzymes. Cellular targets are located in the cytoplasmic membrane, cytoskeleton, mitochondria, proteasomes, lysosomes and nuclei, and specific signaling pathways are rapidly activated, first by interactions of HAMLET with the cell membrane and subsequently after HAMLET internalization. Therapeutic effects of HAMLET have been demonstrated in human skin papillomas and bladder cancers, and HAMLET limits the progression of human glioblastomas, with no evidence of toxicity for normal brain or bladder tissue. These findings open up new avenues for cancer therapy and the understanding of conserved death responses in tumor cells.
Collapse
Affiliation(s)
- James Ho CS
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Anna Rydström
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Maria Trulsson
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Johannes Bålfors
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Petter Storm
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Manoj Puthia
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Aftab Nadeem
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Catharina Svanborg
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| |
Collapse
|
19
|
Hakansson AP, Roche-Hakansson H, Mossberg AK, Svanborg C. Apoptosis-like death in bacteria induced by HAMLET, a human milk lipid-protein complex. PLoS One 2011; 6:e17717. [PMID: 21423701 PMCID: PMC3053380 DOI: 10.1371/journal.pone.0017717] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/11/2011] [Indexed: 11/20/2022] Open
Abstract
Background Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. Methodology/Principal Findings We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Conclusions/Significance Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells.
Collapse
Affiliation(s)
- Anders P Hakansson
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York, United States of America.
| | | | | | | |
Collapse
|
20
|
HAMLET binding to α-actinin facilitates tumor cell detachment. PLoS One 2011; 6:e17179. [PMID: 21408150 PMCID: PMC3050841 DOI: 10.1371/journal.pone.0017179] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/22/2011] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion is tightly regulated by specific molecular interactions and detachment from the extracellular matrix modifies proliferation and survival. HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a protein-lipid complex with tumoricidal activity that also triggers tumor cell detachment in vitro and in vivo, suggesting that molecular interactions defining detachment are perturbed in cancer cells. To identify such interactions, cell membrane extracts were used in Far-western blots and HAMLET was shown to bind α-actinins; major F-actin cross-linking proteins and focal adhesion constituents. Synthetic peptide mapping revealed that HAMLET binds to the N-terminal actin-binding domain as well as the integrin-binding domain of α-actinin-4. By co-immunoprecipitation of extracts from HAMLET-treated cancer cells, an interaction with α-actinin-1 and -4 was observed. Inhibition of α-actinin-1 and α-actinin-4 expression by siRNA transfection increased detachment, while α-actinin-4-GFP over-expression significantly delayed rounding up and detachment of tumor cells in response to HAMLET. In response to HAMLET, adherent tumor cells rounded up and detached, suggesting a loss of the actin cytoskeletal organization. These changes were accompanied by a reduction in β1 integrin staining and a decrease in FAK and ERK1/2 phosphorylation, consistent with a disruption of integrin-dependent cell adhesion signaling. Detachment per se did not increase cell death during the 22 hour experimental period, regardless of α-actinin-4 and α-actinin-1 expression levels but adherent cells with low α-actinin levels showed increased death in response to HAMLET. The results suggest that the interaction between HAMLET and α-actinins promotes tumor cell detachment. As α-actinins also associate with signaling molecules, cytoplasmic domains of transmembrane receptors and ion channels, additional α-actinin-dependent mechanisms are discussed.
Collapse
|
21
|
Mossberg AK, Hun Mok K, Morozova-Roche LA, Svanborg C. Structure and function of human α-lactalbumin made lethal to tumor cells (HAMLET)-type complexes. FEBS J 2010; 277:4614-25. [PMID: 20977665 DOI: 10.1111/j.1742-4658.2010.07890.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human α-lactalbumin made lethal to tumor cells (HAMLET) and equine lysozyme with oleic acid (ELOA) are complexes consisting of protein and fatty acid that exhibit cytotoxic activities, drastically differing from the activity of their respective proteinaceous compounds. Since the discovery of HAMLET in the 1990s, a wealth of information has been accumulated, illuminating the structural, functional and therapeutic properties of protein complexes with oleic acid, which is summarized in this review. In vitro, both HAMLET and ELOA are produced by using ion-exchange columns preconditioned with oleic acid. However, the complex of human α-lactalbumin with oleic acid with the antitumor activity of HAMLET was found to be naturally present in the acidic fraction of human milk, where it was discovered by serendipity. Structural studies have shown that α-lactalbumin in HAMLET and lysozyme in ELOA are partially unfolded, 'molten-globule'-like, thereby rendering the complexes dynamic and in conformational exchange. HAMLET exists in the monomeric form, whereas ELOA mostly exists as oligomers and the fatty acid stoichiometry varies, with HAMLET holding an average of approximately five oleic acid molecules, whereas ELOA contains a considerably larger number (11- 48). Potent tumoricidal activity is found in both HAMLET and ELOA, and HAMLET has also shown strong potential as an antitumor drug in different in vivo animal models and clinical studies. The gain of new, beneficial function upon partial protein unfolding and fatty acid binding is a remarkable phenomenon, and may reflect a significant generic route of functional diversification of proteins via varying their conformational states and associated ligands.
Collapse
Affiliation(s)
- Ann-Kristin Mossberg
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
22
|
Pavet V, Portal MM, Moulin JC, Herbrecht R, Gronemeyer H. Towards novel paradigms for cancer therapy. Oncogene 2010; 30:1-20. [DOI: 10.1038/onc.2010.460] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Spolaore B, Pinato O, Canton M, Zambonin M, Polverino de Laureto P, Fontana A. α-Lactalbumin Forms with Oleic Acid a High Molecular Weight Complex Displaying Cytotoxic Activity. Biochemistry 2010; 49:8658-67. [DOI: 10.1021/bi1012832] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
|
25
|
Aits S, Gustafsson L, Hallgren O, Brest P, Gustafsson M, Trulsson M, Mossberg AK, Simon HU, Mograbi B, Svanborg C. HAMLET (human α-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death. Int J Cancer 2009; 124:1008-19. [DOI: 10.1002/ijc.24076] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Pettersson-Kastberg J, Aits S, Gustafsson L, Mossberg A, Storm P, Trulsson M, Persson F, Mok KH, Svanborg C. Can misfolded proteins be beneficial? The HAMLET case. Ann Med 2009; 41:162-76. [PMID: 18985467 DOI: 10.1080/07853890802502614] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
By changing the three-dimensional structure, a protein can attain new functions, distinct from those of the native protein. Amyloid-forming proteins are one example, in which conformational change may lead to fibril formation and, in many cases, neurodegenerative disease. We have proposed that partial unfolding provides a mechanism to generate new and useful functional variants from a given polypeptide chain. Here we present HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) as an example where partial unfolding and the incorporation of cofactor create a complex with new, beneficial properties. Native alpha-lactalbumin functions as a substrate specifier in lactose synthesis, but when partially unfolded the protein binds oleic acid and forms the tumoricidal HAMLET complex. When the properties of HAMLET were first described they were surprising, as protein folding intermediates and especially amyloid-forming protein intermediates had been regarded as toxic conformations, but since then structural studies have supported functional diversity arising from a change in fold. The properties of HAMLET suggest a mechanism of structure-function variation, which might help the limited number of human protein genes to generate sufficient structural diversity to meet the diverse functional demands of complex organisms.
Collapse
Affiliation(s)
- Jenny Pettersson-Kastberg
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Knyazeva EL, Grishchenko VM, Fadeev RS, Akatov VS, Permyakov SE, Permyakov EA. Who Is Mr. HAMLET? Interaction of Human α-Lactalbumin with Monomeric Oleic Acid. Biochemistry 2008; 47:13127-37. [DOI: 10.1021/bi801423s] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ekaterina L. Knyazeva
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, and Pushchino State University, Pushchino, Moscow Region 142290, Russia
| | - Valery M. Grishchenko
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, and Pushchino State University, Pushchino, Moscow Region 142290, Russia
| | - Roman S. Fadeev
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, and Pushchino State University, Pushchino, Moscow Region 142290, Russia
| | - Vladimir S. Akatov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, and Pushchino State University, Pushchino, Moscow Region 142290, Russia
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, and Pushchino State University, Pushchino, Moscow Region 142290, Russia
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, and Pushchino State University, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
28
|
Albino D, Scaruffi P, Moretti S, Coco S, Truini M, Di Cristofano C, Cavazzana A, Stigliani S, Bonassi S, Tonini GP. Identification of low intratumoral gene expression heterogeneity in neuroblastic tumors by genome-wide expression analysis and game theory. Cancer 2008; 113:1412-22. [DOI: 10.1002/cncr.23720] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Ubol S, Masrinoul P, Chaijaruwanich J, Kalayanarooj S, Charoensirisuthikul T, Kasisith J. Differences in global gene expression in peripheral blood mononuclear cells indicate a significant role of the innate responses in progression of dengue fever but not dengue hemorrhagic fever. J Infect Dis 2008; 197:1459-67. [PMID: 18444802 DOI: 10.1086/587699] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Dengue virus infection causes an array of symptoms ranging from dengue fever (DF) to dengue hemorrhagic fever (DHF). The pathophysiological processes behind these 2 clinical manifestations are unclear. METHOD In the present study, genomewide transcriptomes of peripheral blood mononuclear cells (PBMCs) collected from children with acute-phase DF (i.e., DF PBMCs) or acute-phase DHF (i.e., DHF PBMCs) were compared using microarray analysis. Results of genome screening were validated at the genomic and proteomics levels. RESULTS DHF had stronger influences on the gene expression profile than did DF. Of the affected genes, metabolic gene expression was influenced the most. For the immune response category, 17 genes were more strongly up-regulated in DF PBMCs than in DHF PBMCs. Eight of the these 17 genes were categorized as belonging to the interferon (IFN) system. The up-regulation of IFN-related genes was accompanied by strong expression of CD59, a complement inhibitor. DHF PBMCs expressed genes involved in T and B cell activation, cytokine production, complement activation, and T cell apoptosis more strongly than did DF PBMCs. CONCLUSION We hypothesize that, during DF, genes in the IFN system and complement inhibitor play a role in lowering virus production and reducing tissue damage. In patients with DHF, the dysfunction of immune cells, complement, and cytokines increases viral load and tissue damage.
Collapse
Affiliation(s)
- Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | | | | | | | | | | |
Collapse
|
30
|
Lin IC, Su SL, Kuo CD. Induction of cell death in RAW 264.7 cells by alpha-lactalbumin. Food Chem Toxicol 2008; 46:842-53. [DOI: 10.1016/j.fct.2007.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 09/12/2007] [Accepted: 10/08/2007] [Indexed: 10/22/2022]
|
31
|
Hallgren O, Aits S, Brest P, Gustafsson L, Mossberg AK, Wullt B, Svanborg C. Apoptosis and Tumor Cell Death in Response to HAMLET (Human α-Lactalbumin Made Lethal to Tumor Cells). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 606:217-40. [DOI: 10.1007/978-0-387-74087-4_8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Hallgren O, Gustafsson L, Irjala H, Selivanova G, Orrenius S, Svanborg C. HAMLET triggers apoptosis but tumor cell death is independent of caspases, Bcl-2 and p53. Apoptosis 2006; 11:221-33. [PMID: 16502260 DOI: 10.1007/s10495-006-3607-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
HAMLET (Human alpha-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.
Collapse
Affiliation(s)
- O Hallgren
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Gustafsson L, Hallgren O, Mossberg AK, Pettersson J, Fischer W, Aronsson A, Svanborg C. HAMLET Kills Tumor Cells by Apoptosis: Structure, Cellular Mechanisms, and Therapy. J Nutr 2005; 135:1299-303. [PMID: 15867328 DOI: 10.1093/jn/135.5.1299] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
New cancer treatments should aim to destroy tumor cells without disturbing normal tissue. HAMLET (human alpha-lactalbumin made lethal to tumor cells) offers a new molecular approach to solving this problem, because it induces apoptosis in tumor cells but leaves normal differentiated cells unaffected. After partial unfolding and binding to oleic acid, alpha-lactalbumin forms the HAMLET complex, which enters tumor cells and freezes their metabolic machinery. The cells proceed to fragment their DNA, and they disintegrate with apoptosis-like characteristics. HAMLET kills a wide range of malignant cells in vitro and maintains this activity in vivo in patients with skin papillomas. In addition, HAMLET has striking effects on human glioblastomas in a rat xenograft model. After convection-enhanced delivery, HAMLET diffuses throughout the brain, selectively killing tumor cells and controlling tumor progression without apparent tissue toxicity. HAMLET thus shows great promise as a new therapeutic with the advantage of selectivity for tumor cells and lack of toxicity.
Collapse
Affiliation(s)
- Lotta Gustafsson
- Institute of Laboratory Medicine, Department of Microbiology, Immunology and Glycobiology, Lund University, Sweden
| | | | | | | | | | | | | |
Collapse
|
34
|
De Falco M, Fedele V, Cobellis L, Mastrogiacomo A, Leone S, Giraldi D, De Luca B, Laforgia V, De Luca A. Immunohistochemical distribution of proteins belonging to the receptor-mediated and the mitochondrial apoptotic pathways in human placenta during gestation. Cell Tissue Res 2004; 318:599-608. [PMID: 15578274 DOI: 10.1007/s00441-004-0969-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 07/06/2004] [Indexed: 11/29/2022]
Abstract
The balance between cell death and cell proliferation and its regulation are essential features of many physiological processes and are particularly important in fetal morphogenesis and adult tissue homeostasis. Apoptosis is a type of cell suicide that is activated in two main ways: through a receptor-mediated pathway or through a mitochondrial pathway. We have investigated the immunohistochemical distribution of proteins belonging to these two pathways in human placenta during gestation by comparing their expression levels between the first and third trimester of gestation. In the first trimester, the receptor-mediated pathway prevails over the mitochondrial pathway with a moderate/intense expression of its three components, viz., Fas ligand (FasL), Fas, and caspase-8, and weak positivity of anti-apoptotic FLIP, these proteins being mainly localized in the cytotrophoblast compartment. In the third trimester of gestation, there is an increased expression of mitochondrial pathway proteins, viz., Apaf-1 and caspase-9. We have also investigated the expression level of caspase-3, the primary effector caspase of both pathways, and have observed that it is moderately expressed during gestation, being mainly localized in the cytotrophoblast during the first trimester and in both placental compartments during the third trimester of gestation. Thus, both pathways actively function in human placenta to execute cell death. By means of immunoelectron microscopy, we have further shown that, in human placenta, the two proteins of the mitochondrial pathway together with caspase-3 are localized both in the cytoplasm and in the nucleus. In particular, Apaf-1 and caspase-9 are distributed near to the nuclear envelope suggesting an important role for these two proteins in disrupting the nuclear-cytoplasmic barrier.
Collapse
Affiliation(s)
- M De Falco
- Department of Evolutive and Comparative Biology, University of Naples "Federico II", Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Svensson M, Fast J, Mossberg AK, Düringer C, Gustafsson L, Hallgren O, Brooks CL, Berliner L, Linse S, Svanborg C. Alpha-lactalbumin unfolding is not sufficient to cause apoptosis, but is required for the conversion to HAMLET (human alpha-lactalbumin made lethal to tumor cells). Protein Sci 2004; 12:2794-804. [PMID: 14627739 PMCID: PMC2366987 DOI: 10.1110/ps.0231003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex of human alpha-lactalbumin and oleic acid (C18:1:9 cis) that kills tumor cells by an apoptosis-like mechanism. Previous studies have shown that a conformational change is required to form HAMLET from alpha-lactalbumin, and that a partially unfolded conformation is maintained in the HAMLET complex. This study examined if unfolding of alpha-lactalbumin is sufficient to induce cell death. We used the bovine alpha-lactalbumin Ca(2+) site mutant D87A, which is unable to bind Ca(2+), and thus remains partially unfolded regardless of solvent conditions. The D87A mutant protein was found to be inactive in the apoptosis assay, but could readily be converted to a HAMLET-like complex in the presence of oleic acid. BAMLET (bovine alpha-lactalbumin made lethal to tumor cells) and D87A-BAMLET complexes were both able to kill tumor cells. This activity was independent of the Ca(2+)site, as HAMLET maintained a high affinity for Ca(2+) but D87A-BAMLET was active with no Ca(2+) bound. We conclude that partial unfolding of alpha-lactalbumin is necessary but not sufficient to trigger cell death, and that the activity of HAMLET is defined both by the protein and the lipid cofactor. Furthermore, a functional Ca(2+)-binding site is not required for conversion of alpha-lactalbumin to the active complex or to cause cell death. This suggests that the lipid cofactor stabilizes the altered fold without interfering with the Ca(2+)site.
Collapse
Affiliation(s)
- Malin Svensson
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gustafsson L, Leijonhufvud I, Aronsson A, Mossberg AK, Svanborg C. Treatment of skin papillomas with topical alpha-lactalbumin-oleic acid. N Engl J Med 2004; 350:2663-72. [PMID: 15215482 DOI: 10.1056/nejmoa032454] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND We studied the effect on skin papillomas of topical application of a complex of alpha-lactalbumin and oleic acid (often referred to as human alpha-lactalbumin made lethal to tumor cells [HAMLET]) to establish proof of the principle that alpha-lactalbumin-oleic acid kills transformed cells but not healthy, differentiated cells. METHODS Forty patients with cutaneous papillomas that were resistant to conventional treatment were enrolled in a randomized, placebo-controlled, double-blind study, in which alpha-lactalbumin-oleic acid or saline placebo was applied daily for three weeks and the change in the volume of each lesion was recorded. After this first phase of the study, 34 patients participated in the second phase, an open-label trial of a three-week course of alpha-lactalbumin-oleic acid. Approximately two years after the end of the open-label phase of the study, 38 of the original 40 patients were examined, and long-term follow-up data were obtained. RESULTS In the first phase of the study, the lesion volume was reduced by 75 percent or more in all 20 patients in the alpha-lactalbumin-oleic acid group, and in 88 of 92 papillomas; in the placebo group, a similar effect was evident in only 3 of 20 patients (15 of 74 papillomas) (P<0.001). After the patients in the initial placebo group had been treated with alpha-lactalbumin-oleic acid in the second phase of the study, a median reduction of 82 percent in lesion volume was observed. At follow-up two years after the end of the second phase, all lesions had completely resolved in 83 percent of the patients treated with alpha-lactalbumin-oleic acid, and the time to resolution was shorter in the group originally assigned to receive alpha-lactalbumin-oleic acid than among patients originally in the placebo group (2.4 vs. 9.9 months; P<0.01). No adverse reactions were reported, and there was no difference in the outcomes of treatment between immunocompetent and immunosuppressed patients. CONCLUSIONS Treatment with topical alpha-lactalbumin-oleic acid has a beneficial and lasting effect on skin papillomas.
Collapse
Affiliation(s)
- Lotta Gustafsson
- Institute of Laboratory Medicine, Department of Microbiology, Immunology, and Glycobiology, University of Lund, Lund, Sweden
| | | | | | | | | |
Collapse
|
37
|
Semenkova L, Dudich E, Dudich I, Tokhtamisheva N, Tatulov E, Okruzhnov Y, Garcia-Foncillas J, Palop-Cubillo JA, Korpela T. Alpha-fetoprotein positively regulates cytochrome c-mediated caspase activation and apoptosome complex formation. ACTA ACUST UNITED AC 2003; 270:4388-99. [PMID: 14622304 DOI: 10.1046/j.1432-1033.2003.03836.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous results have shown that the oncoembryonic marker alpha-fetoprotein (AFP) is able to induce apoptosis in tumor cells through activation of caspase 3, bypassing Fas-dependent and tumor necrosis factor receptor-dependent signaling. In this study we further investigate the molecular interactions involved in the AFP-mediated signaling of apoptosis. We show that AFP treatment of tumor cells is accompanied by cytosolic translocation of mitochondrial cytochrome c. In a cell-free system, AFP mediates processing and activation of caspases 3 and 9 by synergistic enhancement of the low-dose cytochrome c-mediated signals. AFP was unable to regulate activity of caspase 3 in cell extracts depleted of cytochrome c or caspase 9. Using high-resolution chromatography, we show that AFP positively regulates cytochrome c/dATP-mediated apoptosome complex formation, enhances recruitment of caspases and Apaf-1 into the complex, and stimulates release of the active caspases 3 and 9 from the apoptosome. By using a direct protein-protein interaction assay, we show that pure human AFP almost completely disrupts the association between processed caspases 3 and 9 and the cellular inhibitor of apoptosis protein (cIAP-2), demonstrating its release from the complex. Our data suggest that AFP may regulate cell death by displacing cIAP-2 from the apoptosome, resulting in promotion of caspase 3 activation and its release from the complex.
Collapse
|
38
|
Svanborg C, Agerstam H, Aronson A, Bjerkvig R, Düringer C, Fischer W, Gustafsson L, Hallgren O, Leijonhuvud I, Linse S, Mossberg AK, Nilsson H, Pettersson J, Svensson M. HAMLET kills tumor cells by an apoptosis-like mechanism--cellular, molecular, and therapeutic aspects. Adv Cancer Res 2003; 88:1-29. [PMID: 12665051 DOI: 10.1016/s0065-230x(03)88302-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex that induces apoptosis-like death in tumor cells, but leaves fully differentiated cells unaffected. This review summarizes the information on the in vivo effects of HAMLET in patients and tumor models on the tumor cell biology, and on the molecular characteristics of the complex. HAMLET limits the progression of human glioblastomas in a xenograft model and removes skin papillomas in patients. This broad anti-tumor activity includes >40 different lymphomas and carcinomas and apoptosis is independent of p53 or bcl-2. In tumor cells HAMLET enters the cytoplasm, translocates to the perinuclear area, and enters the nuclei where it accumulates. HAMLET binds strongly to histones and disrupts the chromatin organization. In the cytoplasm, HAMLET targets ribosomes and activates caspases. The formation of HAMLET relies on the propensity of alpha-lactalbumin to alter its conformation when the strongly bound Ca2+ ion is released and the protein adopts the apo-conformation that exposes a new fatty acid binding site. Oleic acid (C18:1,9 cis) fits this site with high specificity, and stabilizes the altered protein conformation. The results illustrate how protein folding variants may be beneficial, and how their formation in peripheral tissues may depend on the folding change and the availability of the lipid cofactor. One example is the acid pH in the stomach of the breast-fed child that promotes the formation of HAMLET. This mechanism may contribute to the protective effect of breastfeeding against childhood tumors. We propose that HAMLET should be explored as a novel approach to tumor therapy.
Collapse
Affiliation(s)
- Catharina Svanborg
- Institute of Laboratory Medicine, Department of Microbiology, Immunology and Glycobiology, Lund University, 221 00 Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Svensson M, Düringer C, Hallgren O, Mossberg AK, Håkansson A, Linse S, Svanborg C. Hamlet--a complex from human milk that induces apoptosis in tumor cells but spares healthy cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 503:125-32. [PMID: 12026011 DOI: 10.1007/978-1-4615-0559-4_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Malin Svensson
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
40
|
Sciola L, Spano A, Monaco G, Bottone MG, Barni S. Different apoptotic responses and patterns in adhering and floating neoplastic cell cultures: effects of microtubule antagonists. Histochem Cell Biol 2003; 119:77-90. [PMID: 12548408 DOI: 10.1007/s00418-002-0481-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2002] [Indexed: 12/17/2022]
Abstract
The relationship between apoptotic progression and cell cycle perturbation induced by microtubule-destabilising (vinblastine, Colcemid) and -stabilising (taxol) drugs was studied in two mesenchyme-derived neoplastic cell lines, growing as suspension (Jurkat) and monolayer (SGS/3A) culture, by morphocytochemical and biochemical approaches. The same kind of drug induced different effects on the cell kinetics (proliferation, polyploidisation, death) of the two cell lines. In floating cells, the drugs appeared more effective during the S phase, while in adherent cells they were more effective during the G2/M phase. Moreover two distinct neoplasia-associated apoptotic phenotypes emerged: the first pattern was the typical one and was found in cells with a low transition through the S/G2 phase (Jurkat), and the second one was mainly characterised by a cell death derived from micronucleated and mitotic cells, as a consequence of a low transition through the M/G1 phase (SGS/3A). Our data show that the machinery required for the trigger and progression of apoptosis is present in every cell cycle phase, also in conditions of karyological alterations (aneugenic micronucleations). On the other hand, a different sensitivity of the two microtubular components (interphasic network and mitotic spindle) appears to be related to the anchorage-dependence or -independence during the cell growth disturbances after exposure to antimicrotubular drugs.
Collapse
Affiliation(s)
- Luigi Sciola
- Department of Physiological, Biochemical and Cellular Sciences, University of Sassari, Via Muroni 25, 07100 Sassari, Italy.
| | | | | | | | | |
Collapse
|
41
|
Polverino de Laureto P, Frare E, Gottardo R, Fontana A. Molten globule of bovine alpha-lactalbumin at neutral pH induced by heat, trifluoroethanol, and oleic acid: a comparative analysis by circular dichroism spectroscopy and limited proteolysis. Proteins 2002; 49:385-97. [PMID: 12360528 DOI: 10.1002/prot.10234] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The calcium-depleted form of alpha-lactalbumin (alpha-LA) at neutral pH can be induced to adopt a partly folded state or molten globule upon moderate heating, by dissolving the protein in aqueous TFE or by adding oleic acid. This last folding variant of the protein, named HAMLET, can induce apoptosis in tumor cells. The aim of the present work was to unravel from circular dichroism (CD) measurements and proteolysis experiments structural features of the molten globule of apo-alpha-LA at neutral pH. CD spectra revealed that the molten globule of apo-alpha-LA can be obtained upon mild heating at 45 degrees C, as well as at room temperature in the presence of 15% TFE or by adding to the protein solution 7.5 equivalents of oleic acid. Under these various conditions the far- and near-UV CD spectra of apo-alpha-LA are essentially identical to those of the most studied molten globule of alpha-LA at pH 2.0 (A-state). Proteolysis of the 123-residue chain of apo-alpha-LA by proteinase K at 4 degrees C occurs slowly as an all-or-none process leading to small peptides only. At 37 degrees C, proteinase K preferentially cleaves apo-alpha-LA at peptide bonds Ser34-Gly35, Gln39-Ala40, Gln43-Asn44, Phe53-Gln54, and Asn56-Asn57. All these peptide bonds are located at level of the beta-subdomain of the protein (chain region 34-57). Similar sites of preferential cleavage have been observed with the TFE- and oleic acid-induced molten globule of apo-alpha-LA. A protein species given by the N-terminal fragment 1-34 linked via the four disulfide bridges to the C-terminal fragment 54-123 or 57-123 can be isolated from the proteolytic mixture. The results of this study indicate that the same molten globule state of apo-alpha-LA can be obtained at neutral pH under mildly denaturing conditions, as indicated by using a classical spectroscopic technique such as CD and a simple biochemical approach as limited proteolysis. We conclude that the molten globule of alpha-LA maintains a native-like tertiary fold characterized by a rather well-structured alpha-domain and a disordered chain region encompassing the beta-subdomain 34-57 of the protein.
Collapse
|
42
|
Köhler C, Gogvadze V, Håkansson A, Svanborg C, Orrenius S, Zhivotovsky B. A folding variant of human alpha-lactalbumin induces mitochondrial permeability transition in isolated mitochondria. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:186-91. [PMID: 11121120 DOI: 10.1046/j.1432-1327.2001.01870.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A human milk fraction containing multimeric alpha-lactalbumin (MAL) is able to kill cells via apoptosis. MAL is a protein complex of a folding variant of alpha-lactalbumin and lipids. Previous results have shown that upon treatment of transformed cells, MAL localizes to the mitochondria and cytochrome c is released into the cytosol. This is followed by activation of the caspase cascade. In this study, we further investigated the involvement of mitochondria in apoptosis induced by the folding variant of alpha-lactalbumin. Addition of MAL to isolated rat liver mitochondria induced a loss of the mitochondrial membrane potential (Delta Psi(m)), mitochondrial swelling and the release of cytochrome c. These changes were Ca(2+)-dependent and were prevented by cyclosporin A, an inhibitor of mitochondrial permeability transition. MAL also increased the rate of state 4 respiration in isolated mitochondria by exerting an uncoupling effect. This effect was due to the presence of fatty acids in the MAL complex because it was abolished completely by BSA. BSA delayed, but failed to prevent, mitochondrial swelling as well as dissipation of Delta Psi(m), indicating that the fatty acid content of MAL facilitated, rather than caused, these effects. Similar results were obtained with HAMLET (human alpha-lactalbumin made lethal to tumour cells), which is native alpha-lactalbumin converted in vitro to the apoptosis-inducing folding variant of the protein in complex with oleic acid. Our findings demonstrate that a folding variant of alpha-lactalbumin induces mitochondrial permeability transition with subsequent cytochrome c release, which in transformed cells may lead to activation of the caspase cascade and apoptotic death.
Collapse
Affiliation(s)
- C Köhler
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
43
|
Faleiro L, Lazebnik Y. Caspases disrupt the nuclear-cytoplasmic barrier. J Cell Biol 2000; 151:951-9. [PMID: 11085998 PMCID: PMC2174353 DOI: 10.1083/jcb.151.5.951] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Accepted: 10/16/2000] [Indexed: 11/22/2022] Open
Abstract
During apoptosis, caspases, a family of proteases, disassemble a cell by cleaving a set of proteins. Caspase-3 plays a major role in the dissassembly of the nucleus by processing several nuclear substrates. The question is how caspase-3 which is usually cytoplasmic, gains access to its nuclear targets. It was suggested that caspase-3 is actively transported to the nucleus through the nuclear pores. We found that caspase-9, which is activated earlier than caspase-3, directly or indirectly inactivates nuclear transport and increases the diffusion limit of the nuclear pores. This increase allows caspase-3 and other molecules that could not pass through the nuclear pores in living cells to enter or leave the nucleus during apoptosis by diffusion. Hence, caspase-9 contributes to cell disassembly by disrupting the nuclear cytoplasmic barrier.
Collapse
Affiliation(s)
- L Faleiro
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | | |
Collapse
|
44
|
Abstract
Small milk protein alpha-lactalbumin (alpha-LA), a component of lactose synthase, is a simple model Ca(2+) binding protein, which does not belong to the EF-hand proteins, and a classical example of molten globule state. It has a strong Ca(2+) binding site, which binds Mg(2+), Mn(2+), Na(+), and K(+), and several distinct Zn(2+) binding sites. The binding of cations to the Ca(2+) site increases protein stability against action of heat and various denaturing agents, while the binding of Zn(2+) to the Ca(2+)-loaded protein decreases its stability. Functioning of alpha-LA requires its interactions with membranes, proteins, peptides and low molecular weight substrates and products. It was shown that these interactions are modulated by the binding of metal cations. Recently it was found that some folding variants of alpha-LA demonstrate bactericidal activity and some of them cause apoptosis of tumor cells.
Collapse
Affiliation(s)
- E A Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, 142292 Pushchino, Moscow region, Russia.
| | | |
Collapse
|