1
|
Expression and function of connexin 43 protein in mouse and human retinal pigment epithelial cells as hemichannels and gap junction proteins. Exp Eye Res 2018; 168:128-137. [DOI: 10.1016/j.exer.2018.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 01/08/2023]
|
2
|
Trease AJ, Capuccino JMV, Contreras J, Harris AL, Sorgen PL. Intramolecular signaling in a cardiac connexin: Role of cytoplasmic domain dimerization. J Mol Cell Cardiol 2017; 111:69-80. [PMID: 28754342 DOI: 10.1016/j.yjmcc.2017.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/06/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
Gap junctions, composed of connexins, mediate electrical coupling and impulse propagation in the working myocardium. In the human heart, the spatio-temporal regulation and distinct functional properties of the three dominant connexins (Cx43, Cx45, and Cx40) suggests non-redundant physiological roles for each isoform. There are substantial differences in gating properties, expression, and trafficking among these isoforms, however, little is known about the determinants of these different phenotypes. To gain insight regarding these determinants, we focused on the carboxyl-terminal (CT) domain because of its importance in channel regulation and large degree of sequence divergence among connexin family members. Using in vitro biophysical experiments, we identified a structural feature unique to Cx45: high affinity (KD~100nM) dimerization between CT domains. In this study, we sought to determine if this dimerization occurs in cells and to identify the biological significance of the dimerization. Using a bimolecular fluorescence complementation assay, we demonstrate that the CT domains dimerize at the plasma membrane. By inhibiting CT dimerization with a mutant construct, we show that CT dimerization is necessary for proper Cx45 membrane localization, turnover, phosphorylation status, and binding to protein partners. Furthermore, CT dimerization is needed for normal intercellular communication and hemichannel activity. Altogether, our results demonstrate that CT dimerization is a structural feature important for correct Cx45 function. This study is significant because discovery of how interactions mediated by the CT domains can be modulated would open the door to strategies to ameliorate the pathological effects of altered connexin regulation in the failing heart.
Collapse
Affiliation(s)
- Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Juan M V Capuccino
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Jorge Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Andrew L Harris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
3
|
Kandasamy K, Escue R, Manna J, Adebiyi A, Parthasarathi K. Changes in endothelial connexin 43 expression inversely correlate with microvessel permeability and VE-cadherin expression in endotoxin-challenged lungs. Am J Physiol Lung Cell Mol Physiol 2015; 309:L584-92. [PMID: 26163513 DOI: 10.1152/ajplung.00211.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 07/07/2015] [Indexed: 12/28/2022] Open
Abstract
Endothelial barrier restoration reverses microvessel hyperpermeability and facilitates recovery from lung injury. Because inhibiting connexin 43 (Cx43)-dependent interendothelial communication blunts hyperpermeability in single microvessels, we determined whether endothelial Cx43 levels correlate with changes in microvessel permeability during recovery from lung injury. Toward this, bacterial endotoxin was instilled intratracheally into rat lungs, and at different durations postinstillation the lungs were isolated and blood perfused. Microvessel Cx43 expression was quantified by in situ immunofluorescence and microvessel permeability via a fluorescence method. To supplement the immunofluorescence data, protein levels were determined by immunoblots of lung tissue from endotoxin-instilled rats. Immunofluorescence and immunoblot together revealed that both Cx43 expression and microvessel permeability increased above baseline within a few hours after endotoxin instillation but declined progressively over the next few days. On day 5 postendotoxin, microvessel Cx43 declined to negligible levels, resulting in complete absence of intermicrovessel communication determined by photolytic uncaging of Ca(2+). However, by day 14, both Cx43 expression and microvessel permeability returned to baseline levels. In contrast to Cx43, expression of microvessel vascular endothelial (VE)-cadherin, a critical determinant of vascular barrier integrity, exhibited an inverse trend by initially declining below baseline and then returning to baseline at a longer duration. Knockdown of vascular Cx43 by tail vein injection of Cx43 shRNA increased VE-cadherin expression, suggesting that reduction in Cx43 levels may modulate VE-cadherin levels in lung microvessels. Together, the data suggest that endotoxin challenge initiates interrelated changes in microvessel Cx43, VE-cadherin, and microvessel permeability, with changes in Cx43 temporally leading the other responses.
Collapse
Affiliation(s)
| | | | | | | | - Kaushik Parthasarathi
- Department of Physiology and Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
4
|
Abstract
OBJECTIVES Pancreatic stellate cells (PSCs) play a pivotal role in pancreatic fibrosis associated with chronic pancreatitis and pancreatic cancer. Connexins (Cxs) allow direct intercellular communications as components of gap junction but also play important roles in the regulation of cell proliferation, cell differentiation, and tissue development. We here examined the expression of Cxs and Cx-mediated regulation of cell functions in PSCs. METHODS Human PSCs were isolated from patients undergoing operation for chronic pancreatitis or pancreatic cancer. The expression of Cxs was examined by reverse transcription polymerase chain reaction, Western blotting, and immunofluorescent staining. The roles of Cxs in PSC functions were examined by using carbenoxolone, a broad-spectrum Cx inhibitor, and small interfering RNA for Cx43. RESULTS Human activated PSCs expressed a variety of Cxs including Cx43 both in vitro and in vivo. Carbenoxolone inhibited platelet-derived growth factor-BB-induced proliferation and migration, and type I collagen expression in PSCs. In addition, carbenoxolone inhibited the activation of quiescent PSCs to a myofibroblastlike phenotype. Decreased Cx43 expression by small interfering RNA resulted in decreased proliferation and type I collagen expression. CONCLUSIONS Pancreatic stellate cells expressed a variety of Cxs. Connexins, especially Cx43, might regulate the cell functions and activation of PSCs.
Collapse
|
5
|
Márquez-Rosado L, Solan JL, Dunn CA, Norris RP, Lampe PD. Connexin43 phosphorylation in brain, cardiac, endothelial and epithelial tissues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1985-92. [PMID: 21819962 DOI: 10.1016/j.bbamem.2011.07.028] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/14/2011] [Accepted: 07/19/2011] [Indexed: 11/30/2022]
Abstract
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in essentially all tissues. There are 21 connexin genes in the human genome and different tissues express different connexin genes. Most connexins are known to be phosphoproteins. Phosphorylation can regulate connexin assembly into gap junctions, gap junction turnover and channel gating. Given the importance of gap junctions in development, proliferation and carcinogenesis, regulation of gap junction phosphorylation in response to wounding, hypoxia and other tissue insults is proving to be critical for cellular response and return to homeostasis. Connexin43 (Cx43) is the most widely and highly expressed gap junction protein, both in cell culture models and in humans, thus more research has been done on it and more reagents to it are available. In particular, antibodies that can report Cx43 phosphorylation status have been created allowing temporal examination of specific phosphorylation events in vivo. This review is focused on the use of these antibodies in tissue in situ, predominantly looking at Cx43 phosphorylation in brain, heart, endothelium and epithelium with reference to other connexins where data is available. These data allow us to begin to correlate specific phosphorylation events with changes in cell and tissue function. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
|
6
|
Johansen D, Cruciani V, Sundset R, Ytrehus K, Mikalsen SO. Ischemia Induces Closure of Gap Junctional Channels and Opening of Hemichannels in Heart-derived Cells and Tissue. Cell Physiol Biochem 2011; 28:103-14. [DOI: 10.1159/000331719] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2011] [Indexed: 12/20/2022] Open
|
7
|
Sundset R, Cooper M, Mikalsen SO, Ytrehus K. Ischemic Preconditioning Protects Against Gap Junctional Uncoupling in Cardiac Myofibroblasts. ACTA ACUST UNITED AC 2009; 11:51-66. [PMID: 16247851 DOI: 10.1080/15419060490951772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ischemic preconditioning increases the heart's tolerance to a subsequent longer ischemic period. The purpose of this study was to investigate the role of gap junction communication in simulated preconditioning in cultured neonatal rat cardiac myofibroblasts. Gap junctional intercellular communication was assessed by Lucifer yellow dye transfer. Preconditioning preserved intercellular coupling after prolonged ischemia. An initial reduction in coupling in response to the preconditioning stimulus was also observed. This may protect neighboring cells from damaging substances produced during subsequent regional ischemia in vivo, and may preserve gap junctional communication required for enhanced functional recovery during subsequent reperfusion.
Collapse
Affiliation(s)
- Rune Sundset
- Department of Medical Physiology, Faculty of Medicine, University of Tromsø, Tromsø, Norway.
| | | | | | | |
Collapse
|
8
|
Ey B, Eyking A, Gerken G, Podolsky DK, Cario E. TLR2 mediates gap junctional intercellular communication through connexin-43 in intestinal epithelial barrier injury. J Biol Chem 2009; 284:22332-22343. [PMID: 19528242 DOI: 10.1074/jbc.m901619200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1alpha-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair.
Collapse
Affiliation(s)
- Birgit Ey
- Division of Gastroenterology and Hepatology, University Hospital of Essen, and Medical School, University of Duisburg-Essen, 45147 Essen, Germany
| | - Annette Eyking
- Division of Gastroenterology and Hepatology, University Hospital of Essen, and Medical School, University of Duisburg-Essen, 45147 Essen, Germany
| | - Guido Gerken
- Division of Gastroenterology and Hepatology, University Hospital of Essen, and Medical School, University of Duisburg-Essen, 45147 Essen, Germany
| | - Daniel K Podolsky
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Elke Cario
- Division of Gastroenterology and Hepatology, University Hospital of Essen, and Medical School, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
9
|
Abstract
Vertebrate gap junctions, composed of proteins from the connexin gene family, play critical roles in embryonic development, co-ordinated contraction of excitable cells, tissue homoeostasis, normal cell growth and differentiation. Phosphorylation of connexin43, the most abundant and ubiquitously expressed connexin, has been implicated in the regulation of gap junctional communication at several stages of the connexin 'life cycle', including hemichannel oligomerization, export of the protein to the plasma membrane, hemichannel activity, gap junction assembly, gap junction channel gating and connexin degradation. Consistent with a short (1-5 h) protein half-life, connexin43 phosphorylation is dynamic and changes in response to activation of many different kinases. The present review assesses our current understanding of the effects of phosphorylation on connexin43 structure and function that in turn regulate gap junction biology, with an emphasis on events occurring in heart and skin.
Collapse
|
10
|
Sirnes S, Leithe E, Rivedal E. The detergent resistance of Connexin43 is lost upon TPA or EGF treatment and is an early step in gap junction endocytosis. Biochem Biophys Res Commun 2008; 373:597-601. [PMID: 18601906 DOI: 10.1016/j.bbrc.2008.06.095] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
Abstract
Gap junctions are plasma membrane domains containing channels that directly connect the cytosols of neighbouring cells. Gap junction channels are made of a family of transmembrane proteins called connexins, of which the best studied is Connexin43 (Cx43). MAP kinase-induced phosphorylation of Cx43 has previously been shown to cause inhibition of gap junction channel permeability and increased Cx43 endocytosis. As Cx43 assembles into gap junction plaques, Cx43 acquires detergent resistance. Here we report that the detergent resistance is lost after activation of MAP kinase. Treatment of IAR20 rat liver epithelial cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) or epidermal growth factor (EGF) caused a rapid increase in the solubility of Cx43 in Triton X-100. This process was mediated by MAP kinase and was initiated at the plasma membrane. The data suggest that loss of the detergent resistance of Cx43 is an early step in TPA- and EGF-induced endocytosis of gap junctions.
Collapse
Affiliation(s)
- Solveig Sirnes
- Department of Cancer Prevention, The Norwegian Radium Hospital, Rikshospitalet, Montebello, Oslo, Norway
| | | | | |
Collapse
|
11
|
Sundset R, Ytrehus K, Zhang Y, Saffitz JE, Yamada KA. Repeated simulated ischemia and protection against gap junctional uncoupling. ACTA ACUST UNITED AC 2008; 14:239-49. [PMID: 18163233 DOI: 10.1080/15419060701821149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ischemic preconditioning increases the heart's tolerance to a subsequent longer ischemic period. The aim of this study was to investigate the effect of early and delayed preconditioning on gap junction communication, connexin abundance, and phosphorylation in cultured neonatal rat cardiac myocytes. Prolonged ischemia followed 5 minutes after preconditioning in the early protocol, whereas 20 hours separated preconditioning and prolonged ischemia in the delayed preconditioning protocol. Gap junctional intercellular communication (GJIC) was assessed by Lucifer yellow dye transfer. An initial reduction in communication in response to sublethal ischemia was observed. This may be one mechanism whereby neighboring cells are protected from damaging substances produced during the first phase of subsequent regional ischemia in early preconditioning protocols. With respect to delayed preconditioning, the transient decrease in GJIC disappeared prior to prolonged ischemia, indicating that other mechanisms are responsible for delayed protection. Both early and delayed preconditioning preserved intercellular coupling after prolonged ischemia and this correlated with presence of less connexin43 dephosphorylation assessed by immunoblot.
Collapse
Affiliation(s)
- R Sundset
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | | | |
Collapse
|
12
|
Sosinsky GE, Solan JL, Gaietta GM, Ngan L, Lee GJ, Mackey MR, Lampe PD. The C-terminus of connexin43 adopts different conformations in the Golgi and gap junction as detected with structure-specific antibodies. Biochem J 2007; 408:375-85. [PMID: 17714073 PMCID: PMC2267357 DOI: 10.1042/bj20070550] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 08/13/2007] [Accepted: 08/23/2007] [Indexed: 11/17/2022]
Abstract
The C-terminus of the most abundant and best-studied gap-junction protein, connexin43, contains multiple phosphorylation sites and protein-binding domains that are involved in regulation of connexin trafficking and channel gating. It is well-documented that SDS/PAGE of NRK (normal rat kidney) cell lysates reveals at least three connexin43-specific bands (P0, P1 and P2). P1 and P2 are phosphorylated on multiple, unidentified serine residues and are found primarily in gap-junction plaques. In the present study we prepared monoclonal antibodies against a peptide representing the last 23 residues at the C-terminus of connexin43. Immunofluorescence studies showed that one antibody (designated CT1) bound primarily to connexin43 present in the Golgi apparatus, whereas the other antibody (designated IF1) labelled predominately connexin43 present in gap junctions. CT1 immunoprecipitates predominantly the P0 form whereas IF1 recognized all three bands. Peptide mapping, mutational analysis and protein-protein interaction experiments revealed that unphosphorylated Ser364 and/or Ser365 are critical for CT1 binding. The IF1 paratope binds to residues Pro375-Asp379 and requires Pro375 and Pro377. These proline residues are also necessary for ZO-1 interaction. These studies indicate that the conformation of Ser364/Ser365 is important for intracellular localization, whereas the tertiary structure of Pro375-Asp379 is essential in targeting and regulation of gap junctional connexin43.
Collapse
Key Words
- confocal microscopy
- connexin
- electron microscopy
- gap junction
- membrane protein structure
- phosphorylation
- trafficking
- bfa, brefeldin a
- cx, connexin
- cy5, indodicarbocyanine
- dapi, 4′,6-diamidino-2-phenylindole
- em, electron microscopy
- gst, glutathione transferase
- mdck, madin–darby canine kidney
- nrk, normal rat kidney
- pkc, protein kinase c
- tgn, trans-golgi network
Collapse
Affiliation(s)
- Gina E Sosinsky
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093-0608, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Matsushita S, Kurihara H, Watanabe M, Okada T, Sakai T, Amano A. Alterations of phosphorylation state of connexin 43 during hypoxia and reoxygenation are associated with cardiac function. J Histochem Cytochem 2005; 54:343-53. [PMID: 16314445 DOI: 10.1369/jhc.4a6611.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gap junctions formed by connexins mediate cell-cell communication by electrical and chemical coupling. Recently, it has been shown that alterations in the phosphorylation state of the connexins result in functional alteration of cell-cell communication through gap junctions. Therefore, we focused on the association of alterations of phosphorylation state of connexin 43 (Cx43) with cardiac function in vivo. Rat hearts were transferred to Langendorff apparatus and submitted to hypoxia and then reoxygenated. In the control heart, Cx43 was phosphorylated and located at the intercalated disk. When the hearts were subjected to hypoxia, Cx43 at gap junctions was dephosphorylated and changed its localization to the entire plasma membrane. The area of cardiomyocytes stained with anti-phosphorylated Cx43 antibody was decreased in a time-dependent manner. Immunoblot data supported the decrease of phosphorylated Cx43 during hypoxia. ZO-1 did not change its localization at the intercalated disk during the hypoxic period. We also found that the area occupied by dephosphorylated Cx43 was correlated with the decrease of percent of rate-pressure product. These data indicate that dephosphorylation and redistribution of Cx43 is an early sign of cardiac injury after hypoxia. Detection of dephosphorylated Cx43 may serve as a diagnostic tool for examining ischemic heart disease.
Collapse
Affiliation(s)
- Satoshi Matsushita
- Department of Cardiovascular Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
14
|
King TJ, Lampe PD. Temporal regulation of connexin phosphorylation in embryonic and adult tissues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1719:24-35. [PMID: 16137642 PMCID: PMC1760550 DOI: 10.1016/j.bbamem.2005.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 07/14/2005] [Accepted: 07/25/2005] [Indexed: 10/25/2022]
Abstract
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in tissues and are important in development, tissue/cellular homeostasis, and carcinogenesis. Genome databases indicate that there are at least 20 connexins in the mouse and human. Connexin phosphorylation has been implicated in connexin assembly into gap junctions, gap junction turnover, and cell signaling events that occur in response to tumor promoters and oncogenes. Connexin43 (Cx43), the most widely expressed and abundant gap junction protein, can be phosphorylated at several different serine and tyrosine residues. Here, we focus on the dynamic regulation of Cx43 phosphorylation in tissue and how these regulatory events are affected during development, wound healing, and carcinogenesis. The activation of several kinases, including protein kinase A, protein kinase C, p34cdc2/cyclin B kinase, casein kinase 1, mitogen-activated protein kinase, and pp60src kinase, can lead to the phosphorylation of different residues in the C-terminal region of Cx43. The use of antibodies specific for phosphorylation at defined residues has allowed the examination of specific phosphorylation events both in tissue culture and in vivo. These new antibody tools and those under development will allow us to correlate specific phosphorylation events with changes in connexin function.
Collapse
Affiliation(s)
- Timothy J King
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, M5C800, Box 19024, Seattle, WA 98109, USA
| | | |
Collapse
|
15
|
Tanmahasamut P, Sidell N. Up-regulation of gap junctional intercellular communication and connexin43 expression by retinoic acid in human endometrial stromal cells. J Clin Endocrinol Metab 2005; 90:4151-6. [PMID: 15811935 DOI: 10.1210/jc.2004-0663] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Gap junctions, made up of connexins (Cxs), play fundamental roles in coordinating a number of cellular processes through their ability to directly regulate cell-cell communication. Cx43 is the most widely expressed Cx in the endometrium and is known to be important in a variety of physiological and pathological processes in this tissue. OBJECTIVE In this study, we investigated the ability of the retinoid, all-trans-retinoic acid (RA), to regulate Cx43 expression in human endometrial stromal cells. DESIGN Primary endometrial stromal cells obtained from patients undegoing surgery for infertility workup were treated in vitro with RA and control compounds for different time periods, up to 48 h. Cx43 mRNA and protein levels, protein phosphorylation, and gap junctional intercellular communication (GJIC) were analyzed. RESULTS Treatment of the cells with RA showed a dose-dependent increase in Cx43 expression at both the mRNA and protein levels. In addition, RA induced a relative decrease in the phosphorylated species of Cx43 while causing a corresponding increase in the nonphosphorylated form. Concomitant with these changes, RA-treated cells demonstrated up to a 250% enhancement of GJIC as assessed by dye transfer experiments. Augmentation of GJIC and alterations of Cx43 expression were observed over the same range of RA concentrations. Treatment of cells with the protein kinase C activator 12-O-tetradecanoylphorbol-13-acetate increased the phosphorylated species of Cx43 and correspondingly inhibited GJIC. CONCLUSIONS Phosphorylation of Cx43 is inversely related to GJIC in endometrial stromal cells. Retinoids increase GJIC in endomentrial stromal cells through upregulation of Cx43 expression while inducing a decrease in the phosphorylated species of the protein. The data suggest a novel mechanism by which retinoids can influence endometrial cell biology.
Collapse
Affiliation(s)
- Prasong Tanmahasamut
- Division of Research, Department of Gynecology and Obstetrics, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
16
|
Lahlou H, Fanjul M, Pradayrol L, Susini C, Pyronnet S. Restoration of functional gap junctions through internal ribosome entry site-dependent synthesis of endogenous connexins in density-inhibited cancer cells. Mol Cell Biol 2005; 25:4034-45. [PMID: 15870276 PMCID: PMC1087721 DOI: 10.1128/mcb.25.10.4034-4045.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gap junctions are composed of connexins and are critical for the maintenance of the differentiated state. Consistently, connexin expression is impaired in most cancer cells, and forced expression of connexins following cDNA transfection reverses the tumor phenotype. We have found that the restoration of density inhibition of human pancreatic cancer cells by the antiproliferative somatostatin receptor 2 (sst2) is due to overexpression of endogenous connexins Cx26 and Cx43 and consequent formation of functional gap junctions. Immunoblotting along with protein metabolic labeling and mRNA monitoring revealed that connexin expression is enhanced at the level of translation but is not sensitive to the inhibition of cap-dependent translation initiation. Furthermore, we identified a new internal ribosome entry site (IRES) in the Cx26 mRNA. The activity of Cx26 IRES and that of the previously described Cx43 IRES are enhanced in density-inhibited cells. These data indicate that the restoration of functional gap junctions is likely a critical event in the antiproliferative action of the sst2 receptor. We further suggest that the existence of IRESes in connexin mRNAs permits connexin expression in density-inhibited or differentiated cells, where cap-dependent translation is generally reduced.
Collapse
Affiliation(s)
- Hicham Lahlou
- INSERM U531, Institut Louis Bugnard, CHU Rangueil, TSA 50032, 31059 Toulouse cedex 9, France
| | | | | | | | | |
Collapse
|
17
|
Arnold JM, Phipps MW, Chen J, Phipps J. Cellular sublocalization of Cx43 and the establishment of functional coupling in IMR-32 neuroblastoma cells. Mol Carcinog 2005; 42:159-69. [PMID: 15605363 DOI: 10.1002/mc.20072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuroblastoma (NB) is the most common solid pediatric tumor. IMR-32 cells are a highly malignant human NB cell line with uncontrolled proliferation but with the potential to be differentiated under specific conditions. Preliminary research indicated that connexin 43 (Cx43), the most widespread of the Cx family, is aberrantly located in IMR-32 cells, which renders these cells incapable of gap junction (GJ) intercellular communication. Functioning GJ intercellular communication has been strongly associated with growth control and a decrease in tumorigenicity. 8-br-cAMP, known to initiate the differentiation process in cancer cells, was used to examine changes in Cx43 localization and expression via immunocytochemistry, Western blot analysis, and flow cytometry. Exposure of IMR-32 cells to 8-br-cAMP decreased cell proliferation, restored the abnormally localized Cx43 from around the nucleus to the cell membrane, increased de novo Cx43 protein expression, and appeared to phosphorylate Cx43 on serine (Ser) 255 and Ser262. Forskolin, an activator of cAMP dependent protein kinase (PKA), produced identical results to 8-br-cAMP demonstrating the effect that was not unique to a cAMP analog. The use of a PKA inhibitor further confirmed the specificity of 8-br-cAMP and forskolin's effect on Cx43. The cellular relocation of Cx43, combined with the increased protein expression, established first ever GJ intercellular communication between IMR-32 cells as revealed by scrape loading. These results suggest that the GJ-mediated return of growth control, as a prerequisite for further differentiation, offers a new therapeutic avenue in the treatment of NB.
Collapse
Affiliation(s)
- Jennifer M Arnold
- SIMS, PharmaGap, National Research Council of Canada, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
18
|
Fischer R, Reinehr R, Lu TP, Schönicke A, Warskulat U, Dienes HP, Häussinger D. Intercellular communication via gap junctions in activated rat hepatic stellate cells. Gastroenterology 2005; 128:433-48. [PMID: 15685554 DOI: 10.1053/j.gastro.2004.11.065] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Gap junctional communication was studied in quiescent and activated hepatic stellate cells. METHODS Connexin expression and intercellular dye transfer were studied in rat hepatic stellate cells in culture and in vivo. RESULTS Protein expression of connexin 43 was up-regulated in activated hepatic stellate cells in vivo and in vitro and was mainly localized on the cell surface, whereas connexin 26 was found intracellularly. In contrast to hepatocytes, hepatic stellate cells do not express connexin 32. Confluent hepatic stellate cells in culture communicate via gap junctions, resulting in lucifer yellow transfer and propagation of intracellular calcium signals. Phorbol ester induces a protein kinase C-dependent hyperphosphorylation and degradation of connexin 43 and inhibits intercellular communication on a short-term time scale. At the long-term level, vitamin D(3) , lipopolysaccharide, thyroid hormone T(3), dexamethasone, platelet-derived growth factor, endothelin 1, and interleukin 1beta up-regulate connexin 43 protein and messenger RNA expression and enhance intercellular communication. Slight down-regulation of connexin 43 is observed in response to vitamin A. Connexin 43 induction by endothelin 1 is inhibited by both endothelin A and endothelin B receptor antagonists. In coculture systems, hepatic stellate cells communicate with each other, which is suggestive of a syncytial organization, but no communication was found between hepatic stellate cells and other liver cell types. As shown by immunohistochemistry and electron microscopy, gap junctions are formed between activated hepatic stellate cells in vivo. CONCLUSIONS Gap junctional communication occurs between hepatic stellate cells, is enhanced after activation, and underlies complex regulation by cytokines, hormones, and vitamins.
Collapse
Affiliation(s)
- Richard Fischer
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
McLachlan CS, Jusuf PR, Rummery N, Kummerfeld SK, Hambly B, McGuire MA, Turner V. Tyramide signal amplification enhances the detectable distribution of connexin-43 positive gap junctions across the ventricular wall of the rabbit heart. ACTA ACUST UNITED AC 2004; 66:359-65. [PMID: 14692691 DOI: 10.1679/aohc.66.359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous mapping studies examinig the distribution and pattern of staining for connexin-43 expression (the major ventricular gap junction protein) across the ventricular wall have yielded variable findings. The aim of this study was to determine if variations in the distribution of connexin-43 were due to histochemical detection problems, i.e. cross-linking of antigenic sites as a consequence of aldehyde fixation and/or due to low levels of protein expression within the epicardial or endocardial regions of the heart. Immunoperoxidase staining of connexin-43 using the ABC method was carried out in crosssections of rabbit hearts at the level of the papillary muscle. The following treatments were examined: the antibody (Ab) only, Ab with 1/2 Tyramide Signal Amplification (TSA) or full TSA; antibody with microwave antigen retrieval (AR); Ab + 1/2 TSA + AR and finally Ab + TSA + AR. Under light microscopy and using computerized image analysis the percentages of ventricular cross-sectional transmural staining for the different treatment groups were calculated: Ab amounted to only 55%; Ab + 1/2 TSA 63%; Ab + TSA 78%; Ab + AR 72%; Ab + AR + 1/2 TSA 72% and Ab + AR + TSA 88%. The percentages of transumural connexin-43 staining in both TSA + Ab and Ab + TSA + AR groups when compared to Ab only were significantly greater p < 0.01. The antigenic cross-linking due to aldehyde fixation and low levels expression of connexin-43 are contributing factors that influence the immunohistochemical detection of connexin-43 in the mammalian heart. Methodological enhancement for the detection of connexin-43 in this study was derived primarily from amplification of low background levels of connexin-43 being expressed using the TSA protocol. This is supported by the significant differences encountered when TSA was utilized in the protocol and compared with antibody treatment only.
Collapse
|
20
|
Diestel S, Eckert R, Hülser D, Traub O. Exchange of serine residues 263 and 266 reduces the function of mouse gap junction protein connexin31 and exhibits a dominant-negative effect on the wild-type protein in HeLa cells. Exp Cell Res 2004; 294:446-57. [PMID: 15023533 DOI: 10.1016/j.yexcr.2003.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 11/13/2003] [Indexed: 11/25/2022]
Abstract
To characterize the role of Cx31 phosphorylation, serine residues 263 and 266 (Cx31Delta263,266) or 266 (Cx31Delta266) alone were exchanged for amino acids that cannot be phosphorylated. HeLa cells, which were stably transfected with wild type and the two different mutant Cx31-cDNA constructs, were analyzed for expression, phosphorylation, localization, formation of functional gap junction channels, and degradation of mutant Cx31 protein. Both mutant proteins showed similar reduced phosphorylation levels compared to Cx31 wild type, indicating a pivotal role of serine residue 266 for Cx31 phosphorylation. None of these mutations did interfere with correct intracellular trafficking of gap junction proteins. Pulse chase experiments with the different transfectants revealed an increased turnover of both mutated Cx31 proteins. They showed decreased intercellular communication as shown by dye transfer to neighboring cells and measurement of total conductance (mutant Cx31Delta263,266). Mutated Cx31 protein (Cx31Delta263,266) diminished the function of the Cx31 wild-type protein dependent on the amount of the mutated protein, indicating a dominant-negative effect of the mutated protein in HeLa cells.
Collapse
Affiliation(s)
- Simone Diestel
- Department of Biochemistry, Institute of Animal Anatomy and Physiology, University of Bonn, Bonn 53115, Germany
| | | | | | | |
Collapse
|
21
|
Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 2003; 83:1359-400. [PMID: 14506308 DOI: 10.1152/physrev.00007.2003] [Citation(s) in RCA: 891] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Members of the connexin gene family are integral membrane proteins that form hexamers called connexons. Most cells express two or more connexins. Open connexons found at the nonjunctional plasma membrane connect the cell interior with the extracellular milieu. They have been implicated in physiological functions including paracrine intercellular signaling and in induction of cell death under pathological conditions. Gap junction channels are formed by docking of two connexons and are found at cell-cell appositions. Gap junction channels are responsible for direct intercellular transfer of ions and small molecules including propagation of inositol trisphosphate-dependent calcium waves. They are involved in coordinating the electrical and metabolic responses of heterogeneous cells. New approaches have expanded our knowledge of channel structure and connexin biochemistry (e.g., protein trafficking/assembly, phosphorylation, and interactions with other connexins or other proteins). The physiological role of gap junctions in several tissues has been elucidated by the discovery of mutant connexins associated with genetic diseases and by the generation of mice with targeted ablation of specific connexin genes. The observed phenotypes range from specific tissue dysfunction to embryonic lethality.
Collapse
Affiliation(s)
- Juan C Saez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | | | | | | | | |
Collapse
|
22
|
Cruciani V, Leithe E, Mikalsen SO. Ilimaquinone inhibits gap-junctional communication prior to Golgi fragmentation and block in protein transport. Exp Cell Res 2003; 287:130-42. [PMID: 12799189 DOI: 10.1016/s0014-4827(03)00124-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brefeldin A and ilimaquinone are compounds known to affect Golgi structure and function. In particular, the transport of proteins is blocked either at the level of exit from endoplasmic reticulum (brefeldin) or at cis-Golgi (ilimaquinone). Brefeldin caused a slow decrease in gap-junctional communication and a slow loss of all phosphorylated forms of connexin43 in hamster and rat fibroblasts, while ilimaquinone caused an abrupt decrease in gap-junctional communication and rapid loss of only the slowest migrating phosphorylated connexin43 band (P2). Ilimaquinone caused these effects prior to any significant Golgi fragmentation, especially in hamster fibroblasts. Concurrently, ilimaquinone minimally affected protein secretion, while brefeldin caused an instantaneous decrease. These results show that ilimaquinone inhibits gap-junctional communication in connexin43-expressing cells by a mechanism not dependent on Golgi fragmentation or block in protein transport.
Collapse
Affiliation(s)
- Véronique Cruciani
- Department of Environmental and Occupational Cancer, Institute for Cancer Research, The Norwegian Radium Hospital, N-0310, Oslo, Norway
| | | | | |
Collapse
|
23
|
Solan JL, Fry MD, TenBroek EM, Lampe PD. Connexin43 phosphorylation at S368 is acute during S and G2/M and in response to protein kinase C activation. J Cell Sci 2003; 116:2203-11. [PMID: 12697837 DOI: 10.1242/jcs.00428] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phorbol esters such as 12-O-tetradeconylphorbol-13-acetate (TPA) activate protein kinase C, increase Connexin43 (Cx43) phosphorylation, and decrease cell-cell communication via gap junctions in many cell types. Previous work has implicated protein kinase C (PKC) in the direct phosphorylation of Cx43 at S368, which results in a change in single channel behavior that contributes to a decrease in intercellular communication. We have examined Cx43 phosphorylation in several cell lines with an antibody specific for phosphorylated S368. We show that this antibody detects Cx43 only when it is phosphorylated at S368 and, consistent with previous results, TPA treatment causes a dramatic increase in phosphorylation at S368. However, in some cell types, the increased phosphorylation at S368 did not cause a detectable shift in migration as compared with the nonphosphorylated Cx43. Immunofluorescence showed increased S368 immunolabeling in cytoplasmic and plasma membrane structures in response to TPA. Immunoblot analysis of synchronized cells showed increased phosphorylation at S368 during S and G2/M phases of the cell cycle. S-phase cells contained more total Cx43 but assembled fewer functional gap junctional channels than G0-phase cells. Since M-phase cells also communicate poorly and contain few assembled gap junctions, phosphorylation at S368 appears to be negatively correlated with gap junction assembly. Thus, both gap junctional communication and S368 phosphorylation change during S phase and G2/M, implying that phosphorylation at S368 might play a role in key cell-cycle events.
Collapse
Affiliation(s)
- Joell L Solan
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
24
|
Zahs KR, Kofuji P, Meier C, Dermietzel R. Connexin immunoreactivity in glial cells of the rat retina. J Comp Neurol 2003; 455:531-46. [PMID: 12508325 DOI: 10.1002/cne.10524] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The rat retina contains two types of macroglial cells, Müller cells, radial glial cells that are the principal macroglial cells of vertebrate retinas, and astrocytes associated with the surface vasculature. In addition to the often-described gap-junctional coupling between astrocytes, coupling also occurs between astrocytes and Müller cells. Immunohistochemistry and confocal microscopy were used to identify connexins in the retinas of pigmented rats. Several antibodies directed against connexin43 stained astrocytes, identified using antibodies directed against glial fibrillary acidic protein (GFAP). In addition, two connexin43 antibodies stained Müller cells, identified with antibodies directed against S100 or glutamine synthetase. Connexin30-immunoreactive puncta were confined to the vitreal surface of the retina and colocalized with GFAP-immunoreactive astrocyte processes. Connexin45 immunoreactivity was associated with both astrocytes and Müller cells. We conclude that retinal glial cells express multiple connexins, and the patterns of immunostaining that we observe in this study are consistent with the expression of connexins30, -43, and possibly -45 by astrocytes and the expression of connexins43 and -45 by Müller cells. As gap-junction channels may be formed by both homotypic and heterotypic hemichannels, and the hemichannels may themselves be homomeric or heteromeric, there exists a multitude of possible gap-junction channels that could underlie the homotypic coupling between retinal astrocytes and the heterotypic coupling between astrocytes and Müller cells.
Collapse
Affiliation(s)
- Kathleen R Zahs
- Department of Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
25
|
Cruciani V, Mikalsen SO. Mechanisms involved in responses to the poroxisome proliferator WY-14,643 on gap junctional intercellular communication in V79 hamster fibroblasts. Toxicol Appl Pharmacol 2002; 182:66-75. [PMID: 12127264 DOI: 10.1006/taap.2002.9431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
WY-14,643, a potent hepatic peroxisome proliferator, decreased gap junctional intercellular communication when used at low and intermediate concentrations (1 nM to 10 microM) in the V79 Chinese hamster fibroblast cell line. It did not decrease intercellular communication in early passage Syrian hamster embryo fibroblasts. The mechanism of WY-14,643-induced suppression of intercellular communication was studied by preexposure of V79 cells to inhibitors of protein kinase C, mitogen-activated protein kinases, phosphatidylinositol 3-kinase, or mammalian target-of-rapamycin before addition of WY-14,643. Only protein kinase C, particularly the delta isoform, appeared involved in the inhibition of communication by WY-14,643. Also clofibrate-induced suppression of GJIC in V79 cells appeared to involve protein kinase Cdelta. Furthermore, WY-14,643 did not cause any activation of the mitogen-activated protein kinases p44/42, p38, or Jun N-terminal kinase. When WY-14,643 was used at a higher concentration (100 microM), intercellular communication was increased both in V79 and Syrian hamster embryo cells. This effect was inhibited by preexposure of V79 cells to brefeldin A. Thus, there may be a pool of connexins in the Golgi complex that could be recruited to the plasma membrane upon exposure to high concentrations of WY-14,643.
Collapse
Affiliation(s)
- Véronique Cruciani
- Department of Environmental and Occupational Cancer, Institute for Cancer Research, The Norwegian Radium Hospital, N-0310, Oslo, Norway
| | | |
Collapse
|
26
|
Das Sarma J, Wang F, Koval M. Targeted gap junction protein constructs reveal connexin-specific differences in oligomerization. J Biol Chem 2002; 277:20911-8. [PMID: 11929864 DOI: 10.1074/jbc.m111498200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To define further the mechanisms of gap junction protein (connexin (Cx)) oligomerization without pharmacologic disruption, we have examined the transport and assembly of connexin constructs containing C-terminal di-lysine-based endoplasmic reticulum (ER) (HKKSL) or ER-Golgi intermediate compartment (AKKFF) targeting sequences. By immunofluorescence microscopy, Cx43-HKKSL transiently transfected into HeLa cells showed a predominantly ER localization, although Cx43-AKKFF was localized to the perinuclear region of the cell. Sucrose gradient analysis of Triton X-100-solubilized connexins showed that either Cx43-HKKSL or Cx43-AKKFF expressed alone by HeLa cells was maintained as an apparent monomer. In contrast to Cx43-HKKSL, Cx32-HKKSL was maintained in the ER as stable hexamers, consistent with the notion that Cx32 and Cx43 oligomerization occur in distinct intracellular compartments. Furthermore, Cx43-HKKSL and Cx43-AKKFF inhibited trafficking of Cx43 and Cx46 to the plasma membrane. The inhibitory effect was because of the formation of mixed oligomers between Cx43-HKKSL or Cx43-AKKF and wild type Cx43 or Cx46. Taken together, these results suggest that Cx43-HKKSL and Cx43-AKKFF recirculate through compartments where oligomerization occurs and may be maintained as apparent monomers by a putative Cx43-specific quality control mechanism.
Collapse
Affiliation(s)
- Jayasri Das Sarma
- University of Pennsylvania School of Medicine, Department of Physiology and Institute for Environmental Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
27
|
Faucheux N, Dufresne M, Nagel MD. Organization of cyclic AMP-dependent connexin 43 in Swiss 3T3 cells attached to a cellulose substratum. Biomaterials 2002; 23:413-21. [PMID: 11761161 DOI: 10.1016/s0142-9612(01)00120-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have previously shown that the adenylyl cyclase, which produces cyclic AMP (cAMP) in Swiss 3T3 cells, is activated by their attachment to a cellulose substratum (Cuprophan, CU). This substratum adsorbs vitronectin poorly, prevents cell spreading and causes them to aggregate. By contrast, cells spread out on polystyrene and contain low concentrations of cAMP. We have found that Connexin 43 (Cx 43) gap junction plaques are involved in this cell aggregation. MDL 12330 A, a specific inhibitor of adenylyl cyclase, prevented cell aggregation on CU and abolished Cx 43 channel clustering. But forskolin, a direct activator of adenylyl cyclase, and SBr cAMP, a cell-permeable analogue of cAMP, caused Cx 43 channel clustering in cells attached to polystyrene. Hence, Cx 43 channel clustering is regulated by cAMP in Swiss 3T3 cells. In addition, neither brefeldin A nor monensin (inhibitors of transit through the endoplasmic reticulum and Golgi apparatus), abolished Cx 43 channel clustering in cells aggregated on CU. Thus, the Cx 43 that form clusters in cells attached to CU are not dependent upon the trafficking of Cx 43 from intracellular storage sites, but are probably reorganised from the plasma membrane.
Collapse
Affiliation(s)
- N Faucheux
- Domaine Biomatériaux-Biocompatibilité, UMR CNRS 6600, Umiversité de Technologie de Compiègne, France
| | | | | |
Collapse
|
28
|
Das Sarma J, Meyer RA, Wang F, Abraham V, Lo CW, Koval M. Multimeric connexin interactions prior to the trans-Golgi network. J Cell Sci 2001; 114:4013-24. [PMID: 11739633 DOI: 10.1242/jcs.114.22.4013] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells that express multiple connexins have the capacity to form heteromeric (mixed) gap junction hemichannels. We used a dominant negative connexin construct, consisting of bacterial β-galactosidase fused to the C terminus of connexin43 (Cx43/β-gal), to examine connexin compatibility in NIH 3T3 cells. Cx43/β-gal is retained in a perinuclear compartment and inhibits Cx43 transport to the cell surface. The intracellular connexin pool induced by Cx43/β-gal colocalized with a medial Golgi apparatus marker and was readily disassembled by treatment with brefeldin A. This was unexpected, since previous studies indicated that Cx43 assembly into hexameric hemichannels occurs in the trans-Golgi network (TGN) and is sensitive to brefeldin A. Further analysis by sucrose gradient fractionation showed that Cx43 and Cx43/β-gal were assembled into a subhexameric complex. Cx43/β-gal also specifically interacted with Cx46, but not Cx32, consistent with the ability of Cx43/β-gal to simultaneously inhibit multiple connexins. We confirmed that interactions between Cx43/β-gal and Cx46 reflect the ability of Cx43 and Cx46 to form heteromeric complexes, using HeLa and alveolar epithelial cells, which express both connexins. In contrast, ROS osteoblastic cells, which differentially sort Cx43 and Cx46, did not form Cx43/Cx46 heteromers. Thus, cells have the capacity to regulate whether or not compatible connexins intermix.
Collapse
Affiliation(s)
- J Das Sarma
- Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
29
|
Cruciani V, Husøy T, Mikalsen SO. Pharmacological evidence for system-dependent involvement of protein kinase C isoenzymes in phorbol ester-suppressed gap junctional communication. Exp Cell Res 2001; 268:150-61. [PMID: 11478841 DOI: 10.1006/excr.2001.5275] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several phorbol esters are potent activators of protein kinase C. They down-regulate gap junctional intercellular communication and induce phosphorylation of connexin43, but the sensitivity and extent of responses vary much between systems. We asked whether the total protein kinase C enzyme activity or the protein kinase C isoenzyme constitution was of importance for such variations. Some fibroblastic culture systems were compared. It was concluded that the total protein kinase C enzyme activity did not determine the sensitivity to phorbol esters. Furthermore, the use of isotype-specific inhibitors of protein kinase C indicated that protein kinase C alpha, delta, and epsilon may be involved to different extents in different fibroblastic systems in the response to phorbol esters.
Collapse
Affiliation(s)
- V Cruciani
- Department of Environmental and Occupational Cancer, Institute for Cancer Research, The Norwegian Radium Hospital, N-0310 Oslo, Norway
| | | | | |
Collapse
|
30
|
Husøy T, Cruciani V, Sanner T, Mikalsen SO. Phosphorylation of connexin43 and inhibition of gap junctional communication in 12-O-tetradecanoylphorbol-13-acetate-exposed R6 fibroblasts: minor role of protein kinase C beta I and mu. Carcinogenesis 2001; 22:221-31. [PMID: 11181442 DOI: 10.1093/carcin/22.2.221] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
12-O:-tetradecanoylphorbol-13-acetate (TPA) inhibits gap junctional communication in many cell culture systems, but TPA-induced phosphorylation of the gap junction protein connexin43 (Cx43) varies much between systems. We have here studied whether these responses and their sensitivities can be correlated with total protein kinase C (PKC) enzyme activity and if specific PKC isoenzymes are involved. Rat R6 fibroblasts transfected with the cDNA sequence encoding PKC beta I (R6-PKC3) had a total PKC activity 7- to 16-fold higher than the corresponding control cells (R6-C1), depending on the selection pressure (G418 concentration). Still, R6-PKC3 cells were no more sensitive than R6-C1 cells to TPA-induced down-regulation of communication, except at the highest selection pressure (500 micrograms/ml G418). Thus, total PKC activity does not indicate absolute sensitivity of a cell system to TPA-induced suppression of communication, but within a certain cell system increasing PKC activity may enhance the sensitivity to TPA in this respect. The results also suggest that PKC beta I is of minor importance for TPA-induced regulation of communication. Experiments with the Lilly compound 379196, a PKC beta-specific inhibitor, further supported this conclusion. Except for PKC beta I in R6-PKC3 cells, both cell lines contained the TPA-responsive PKC isoenzymes alpha, delta, epsilon and mu. Long-term treatment with TPA caused strong down-regulation of PKC alpha, delta and epsilon, but little down-regulation of PKC mu. Concurrently, the cells became refractory to repeated exposure to TPA, indicating that PKC mu is of minor importance. Experiments with the general PKC inhibitor GF109203X and the PKC alpha (and beta/gamma) inhibitor Gö6976 suggested that both classical (alpha) and novel PKCs (delta and epsilon) might be involved in TPA-induced suppression of intercellular communication, while phosphorylation of Cx43 may mainly be mediated by PKC alpha in the present systems.
Collapse
Affiliation(s)
- T Husøy
- Department of Environmental and Occupational Cancer, Institute for Cancer Research, The Norwegian Radium Hospital, N-0310 Oslo, Norway
| | | | | | | |
Collapse
|
31
|
Nagy JI, Li WEI. A brain slice model for in vitroanalyses of astrocytic gap junction and connexin43 regulation: actions of ischemia, glutamate and elevated potassium. Eur J Neurosci 2000. [DOI: 10.1111/j.1460-9568.2000.01331.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Nagy JI, Li WEI. A brain slice model for in vitro analyses of astrocytic gap junction and connexin43 regulation: actions of ischemia, glutamate and elevated potassium. Eur J Neurosci 2000. [DOI: 10.1046/j.1460-9568.2000.01331.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kléber AG, Schuessler RB, Saffitz JE. Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 2000; 87:656-62. [PMID: 11029400 DOI: 10.1161/01.res.87.8.656] [Citation(s) in RCA: 351] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electrical uncoupling at gap junctions during acute myocardial ischemia contributes to conduction abnormalities and reentrant arrhythmias. Increased levels of intracellular Ca(2+) and H(+) and accumulation of amphipathic lipid metabolites during ischemia promote uncoupling, but other mechanisms may play a role. We tested the hypothesis that uncoupling induced by acute ischemia is associated with changes in phosphorylation of the major cardiac gap junction protein, connexin43 (Cx43). Adult rat hearts perfused on a Langendorff apparatus were subjected to ischemia or ischemia/reperfusion. Changes in coupling were monitored by measuring whole-tissue resistance. Changes in the amount and distribution of phosphorylated and nonphosphorylated isoforms of Cx43 were measured by immunoblotting and confocal immunofluorescence microscopy using isoform-specific antibodies. In control hearts, virtually all Cx43 identified immunohistochemically at apparent intercellular junctions was phosphorylated. During ischemia, however, Cx43 underwent progressive dephosphorylation with a time course similar to that of electrical uncoupling. The total amount of Cx43 did not change, but progressive reduction in total Cx43 immunofluorescent signal and concomitant accumulation of nonphosphorylated Cx43 signal occurred at sites of intercellular junctions. Functional recovery during reperfusion was associated with increased levels of phosphorylated Cx43. These observations suggest that uncoupling induced by ischemia is associated with dephosphorylation of Cx43, accumulation of nonphosphorylated Cx43 within gap junctions, and translocation of Cx43 from gap junctions into intracellular pools.
Collapse
Affiliation(s)
- M A Beardslee
- Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dahle J, Mikalsen SO, Rivedal E, Steen HB. Gap junctional intercellular communication is not a major mediator in the bystander effect in photodynamic treatment of MDCK II cells. Radiat Res 2000; 154:331-41. [PMID: 10956441 DOI: 10.1667/0033-7587(2000)154[0331:gjicin]2.0.co;2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Photodynamic treatment (PDT) of confluent MDCK II cells resulted in a noticeable clustering of dead cells, consistent with a significant bystander effect. Likewise, PDT of cells in microcolonies resulted in an overabundance of microcolonies that had responded to the treatment as a single unit, that is, in which either all or no cells were dead. Confluent MDCK II cells appeared to communicate via gap junction channels, while cells in microcolonies did not. Monte Carlo simulation models were fitted to the distributions of dead cells in confluent monolayers and in microcolonies. The simulations showed that the degree of the bystander effect was higher in microcolonies than in confluent cells, suggesting that gap junction communication may be involved in the bystander effect. However, when the gap junction hypothesis was tested by treatment of microcolonies with 30 microM dieldrin, an inhibitor of gap junctional intercellular communication, there was no reduction of the bystander effect, indicating that this effect was not mediated by gap junctional intercellular communication. PDT influenced phosphorylation of tyrosine residues in several proteins in the cells. Protein phosphorylation is important in cellular signaling pathways and may be involved in the bystander effect, for example by influencing the mode of cell death.
Collapse
Affiliation(s)
- J Dahle
- Department of Biophysics, Institute of Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
35
|
Li WE, Nagy JI. Activation of fibres in rat sciatic nerve alters phosphorylation state of connexin-43 at astrocytic gap junctions in spinal cord: evidence for junction regulation by neuronal-glial interactions. Neuroscience 2000; 97:113-23. [PMID: 10771343 DOI: 10.1016/s0306-4522(00)00032-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Intercellular communication via gap junction channels composed of connexin-43 is known to be regulated by phosphorylation of this protein. We investigated whether connexin-43 at astrocytic gap junctions is similarly regulated in response to neural activation. The effect of peripheral nerve stimulation on connexin-43 phosphorylation state in the spinal cord of rats was examined with a monoclonal antibody (designated 13-8300) shown previously to recognize selectively a dephosphorylated form of connexin-43. Immunolabelling with 13-8300 was absent in the lumbar spinal cord in control animals, but was induced in the dorsal horn ipsilateral to sciatic nerve electrical stimulation for 15min or 1h at a frequency of 1 or 100Hz. Immunorecognition of connexin-43 by a polyclonal anti-connexin-43 antibody, shown previously to undergo epitope masking under various conditions, was reduced in the dorsal horn on the stimulated side. These responses were abolished by local anaesthetic or tetrodotoxin application proximal to the site of nerve stimulation. Selective electrical stimulation of A-fibres or activation of cutaneous C-fibres by capsaicin evoked labelling with 13-8300 in deep and superficial laminae of the dorsal horn, respectively. Nerve stimulation increased the number of 13-8300-positive astrocytic gap junctions, as well as the levels of dephosphorylated connexin-43 in the dorsal horn on the stimulated side. Sciatic nerve transection produced results similar to those seen after C-fibre activation with capsaicin.Thus, peripheral nerve stimulation evokes astrocytic connexin-43 dephosphorylation in the spinal cord dorsal horn, suggesting that gap junctional coupling between astrocytes in vivo is subject to regulation by neuronal-glial interactions following neural activation.
Collapse
Affiliation(s)
- W E Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Canada
| | | |
Collapse
|
36
|
Li WE, Nagy JI. Connexin43 phosphorylation state and intercellular communication in cultured astrocytes following hypoxia and protein phosphatase inhibition. Eur J Neurosci 2000; 12:2644-50. [PMID: 10947839 DOI: 10.1046/j.1460-9568.2000.00162.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of hypoxia and phosphatase inhibitors on connexin43 (Cx43) phosphorylation state, gap junctional intercellular communication (GJIC) and immunolabelling with anti-Cx43 antibodies were investigated in cultured astrocytes. Astrocytes contained predominantly phosphorylated forms of Cx43 and these underwent dephosphorylation 30 min after hypoxia. This was preceded by a 77% reduction in GJIC 15 min after hypoxia, indicating that reduced GJIC occurs prior to Cx43 dephosphorylation. Hypoxia caused a reduction in punctate immunostaining (epitope masking) at cell-cell contacts with one anti-Cx43 antibody, and increased labelling with another antibody (13-8300) that detects only a dephosphorylated form of Cx43. Inhibition of protein phosphatase (PP)-1 and PP-2A with okadaic acid or calyculin A had little effect on hypoxia-induced Cx43 dephosphorylation. Inhibition of PP-2B (calcineurin) with cyclosporin A or FK506 reduced Cx43 dephosphorylation and junctional uncoupling seen after hypoxia. These results demonstrate that responses of astrocytic Cx43 to hypoxia in vitro are similar to those seen after ischaemia in vivo, and that inhibition of protein phosphatase protects astrocytes from hypoxia-induced Cx43 dephosphorylation and junctional uncoupling. In addition, calcineurin may play a direct role in the regulation of astrocytic GJIC and Cx43 phosphorylation state.
Collapse
Affiliation(s)
- W E Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
37
|
Yao J, Morioka T, Oite T. PDGF regulates gap junction communication and connexin43 phosphorylation by PI 3-kinase in mesangial cells. Kidney Int 2000; 57:1915-26. [PMID: 10792610 DOI: 10.1046/j.1523-1755.2000.00041.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Gap junctional intercellular communication (GJIC) plays an important role in the regulation of cell growth, migration, and differentiation. Ultrastructural and histochemical studies indicate the existence of a high density of gap junctions among mesangial cells (MCs), but little is known about their regulation. Because of the close link between growth and GJIC, we examined how platelet-derived growth factor (PDGF) may affect GJIC in cultured MCs. METHODS MCs were exposed to PDGF in the presence or absence of phosphatidylinositol 3' kinase (PI3K) inhibitors, and GJIC was evaluated by the transfer of Lucifer yellow. The gap junction protein connexin43 (Cx43) was examined by immunohistochemistry, immunoprecipitation, and Western blot. RESULTS The addition of PDGF into MC culture caused a rapid and transient inhibition of GJIC, with maximal inhibition (80%) occurring 15 minutes after PDGF exposure and returning to control levels after 90 minutes. This action of PDGF could be largely prevented by pretreatment of MCs with the PI3K inhibitor LY294002. Immunochemical staining showed that PDGF did not alter the localization and distribution of Cx43. Immunoprecipitation studies demonstrated that PDGF induced a rapid and transient increase of tyrosine phosphorylation of Cx43 protein, which was dose dependent and in accordance with the time course of the disruption of GJIC. PDGF also elicited activation of extracellular signal-regulated kinase (ERK). Using two structurally unrelated PI3K inhibitors, wortmanin and LY294002, both tyrosine phosphorylation of Cx43 and activation of ERK stimulated by PDGF were largely blocked. CONCLUSION These results suggest that PDGF abrogates GJIC function in MCs via the PI3K-dependent signaling pathway. Disruption of GJIC by PDGF could be one mechanism by which PDGF modulates MC behavior. Participation of PI3K in the regulation of GJIC demonstrates the complex coordination of molecular events that accompany MC mitogenesis.
Collapse
Affiliation(s)
- J Yao
- Department of Cellular Physiology, Institute of Nephrology, Niigata University School of Medicine, Niigata, Japan
| | | | | |
Collapse
|