1
|
Zhang H, Li D, Zheng W, Hua J, Chen Z, Xu W, Zhu J, Wang Y, Chen X, Chen H, Guo L, Yuan Q, Zhou L, Shan L. Enhancing Cartilage Repair in Osteoarthritis Using Platelet Lysates and Arthroscopic Microfracture. Drug Des Devel Ther 2025; 19:3827-3843. [PMID: 40386186 PMCID: PMC12085145 DOI: 10.2147/dddt.s502935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/18/2025] [Indexed: 05/20/2025] Open
Abstract
Background Osteoarthritis (OA) is the most prevalent joint degenerative disease. MF is considered as a first-line treatment for OA. In the long term, the cartilage tissue regenerated after MF is fibrocartilage. In this study, we examine whether combined treatment of MF and Platelet lysate (PL) can inhibit promotion of cartilage repair and antifibrosis. Methods OA rat model established by the modified Hulth method. Rat PL injected into treated knee joints after MF surgery. The expression levels of metabolic and fibrosis molecules (Col2, Mmp13, Col1, Col3, α-SMA, and Ctgf) of chondrocytes were examined by immunohistochemistry. Cell immunofluorescence was used to assess bone marrow MSCs (BMSCs) proliferation. Transwell assays evaluated BMSCs migration, and qPCR and Western blot analyzed the mechanisms of PL. Moreover, a retrospective analysis was conducted to determine the clinical efficacy and safety of the combined treatment of MF and PL on OA patients. Results In vivo data showed that the combined treatment of MF and PL significantly alleviated joint pain, protected chondrocytes and inhibited synovial fibrosis on OA rats, as was confirmed by upregulation of Collagen II and downregulation of Mmp13, Col1, Col3, α-SMA, and Ctgf. Such anti-OA and antifibrosis effects of the combined treatment of MF and PL were superior to MF alone. In vitro data showed that PL induced cellular chondrogenic differentiation and migration of BMSCs, suggesting that PL facilitated stem cell homing to the cartilage injury sites and promoted cartilage repair and regeneration. Furthermore, the clinical data showed significant improvements of pain reduction and cartilage repair in OA patients. Conclusion This study demonstrated the anti-OA and antifibrosis effects of the combination of MF and PL, providing a promising synergistic therapeutic option for the treatment of OA.
Collapse
Affiliation(s)
- Haiyan Zhang
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Dipeng Li
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Wei Zheng
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiaqing Hua
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zuxiang Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
| | - Wenting Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
| | - Jianing Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yue Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaotian Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Huixin Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Le Guo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Qiang Yuan
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Li Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
| | - Letian Shan
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Zhou J, Wang G, Zhou Y, Lin X, Zhao Z, Xue Y, An Y, Shao H, Wang Y, Hou S, Wang L, Fan Y. Bioinspired Lipid Nanoparticles with Prolonged Cartilage Retention Boost Regeneration in Early Osteoarthritis and Large Cartilage Defects. ACS NANO 2025; 19:13654-13672. [PMID: 40184476 DOI: 10.1021/acsnano.4c13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Osteoarthritis (OA) leads to the progressive degeneration of articular cartilage, yet there is currently no effective treatment available for both the early and late stages of osteoarthritis. Cartilage regeneration requires the action and prolonged retention of multiple drugs at injured sites to recruit endogenous cells and facilitate cartilage formation. Here, we propose a cartilage-binding-peptide-modified lipid nanoparticle as a drug carrier to achieve sustained release of protein (TGF-β3) and small molecular drugs (KGN) for one month. Through systematic screening of multiple peptides targeting collagen II or chondrocytes, we identify a decorin-derived-peptide-modified lipid nanoparticle with precise targeting and prolonged retention capability in cartilage. Improved nanoparticle stability, high drug loading, and sustainable dual-drug release are achieved through interbilayer cross-linking of adjacent lipid bilayers within multilamellar vesicles. In a surgical model of rat OA, the nanoparticle loading with TGF-β3 and KGN protects injured cartilage from degeneration progression. For severe cartilage injury (full-thickness defects) in a rabbit model, the nanoparticle facilitates the regeneration of high-quality hyaline-like cartilage, which is a rare achievement in full-thickness cartilage regeneration through nanoparticle-based drug delivery. This work presents a strategy for the rational design of bioinspired cartilage-binding peptide-modified lipid-based drug carriers to promote hyaline-like cartilage regeneration.
Collapse
Affiliation(s)
- Jin Zhou
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Guanhuier Wang
- Department of Plastic and Reconstructive Surgery, Peking University Third Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing 100191, China
| | - Yue Zhou
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
| | - Zhenmin Zhao
- Department of Plastic and Reconstructive Surgery, Peking University Third Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing 100191, China
| | - Yumeng Xue
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yang An
- Department of Plastic and Reconstructive Surgery, Peking University Third Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing 100191, China
| | - Hui Shao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ying Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Sen Hou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Lizhen Wang
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Shelest A, Alaburda A, Vaiciuleviciute R, Uzieliene I, Bialaglovyte P, Bernotiene E. The Effect of TGF-β3 and IL-1β on L-Type Voltage-Operated Calcium Channels and Calcium Ion Homeostasis in Osteoarthritic Chondrocytes and Human Bone Marrow-Derived Mesenchymal Stem Cells During Chondrogenesis. Pharmaceutics 2025; 17:343. [PMID: 40143007 PMCID: PMC11945166 DOI: 10.3390/pharmaceutics17030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Transforming growth factor-β (TGF-β) and interleukin 1β (IL-1β) are key regulators of the chondrogenic differentiation, physiology and pathology of cartilage tissue, with TGF-β promoting chondrogenesis and matrix formation, while IL-1β exerts catabolic effects, inhibiting chondrogenesis and contributing to cartilage degradation. Both cytokines alter the intracellular calcium ion (iCa2+) levels; however, the exact pathways are not known. Objectives: This study aimed to evaluate the impact of TGF-β3 and IL-1β on calcium homeostasis in human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and chondrocytes during chondrogenesis. Results: TGF-β3 increased iCa2+ levels in both hBM-MSCs and chondrocytes. Furthermore, TGF-β3 increased the functional activity of L-type voltage-operated calcium channels (L-VOCCs) in hBM-MSCs but not in chondrocytes. TGF-β3 and IL-1β reduced L-VOCCs subunit CaV1.2 (CACNA1C) gene expression in chondrocytes. In hBM-MSCs, TGF-β3 and IL-1β increased SERCA pump (ATP2A2) gene expression, while in chondrocytes, this effect was observed only with TGF-β3. Conclusions: TGF-β3 increases iCa2+ both in osteoarthritic chondrocytes and hBM-MSCs during chondrogenesis. In hBM-MSCs, TGF-β3-mediated elevation in iCa2+ is related to the increased functional activity of L-VOCCs. IL-1β does not change iCa2+ in osteoarthritic chondrocytes and hBM-MSCs; however, it initiates the mechanisms leading to further downregulation of iCa2+ in both types of cells. The differential and cell-specific roles of TGF-β3 and IL-1β in the calcium homeostasis of osteoarthritic chondrocytes and hBM-MSCs during chondrogenesis may provide a new insight into future strategies for cartilage repair and osteoarthritis treatment.
Collapse
Affiliation(s)
- Anastasiia Shelest
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Aidas Alaburda
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (I.U.); (P.B.); (E.B.)
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (I.U.); (P.B.); (E.B.)
| | - Paulina Bialaglovyte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (I.U.); (P.B.); (E.B.)
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (I.U.); (P.B.); (E.B.)
- VilniusTech Faculty of Fundamental Sciences, Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| |
Collapse
|
4
|
Pitts J, Hänsch R, Roger Y, Hoffmann A, Menzel H. 3D Porous Polycaprolactone with Chitosan-Graft-PCL Modified Surface for In Situ Tissue Engineering. Polymers (Basel) 2025; 17:383. [PMID: 39940585 PMCID: PMC11820431 DOI: 10.3390/polym17030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Tissue engineering has emerged as a promising approach for improved regeneration of native tissue and could increase the quality of life of many patients. However, the treatment of injured tissue transitions is still in its early stages, relying primarily on a purely physical approach in medical surgery. A biodegradable implant with a modified surface that is capable of biological active protein delivery via a nanoparticulate release system could advance the field of musculoskeletal disorder treatments enormously. In this study, interconnected 3D macroporous scaffolds based on Polycaprolactone (PCL) were fabricated in a successive process of blending, annealing and leaching. Blending with varying parts of Polyethylene oxide (PEO), NaCl and (powdered) sucrose and altering processing conditions yielded scaffolds with a huge variety of morphologies. The resulting unmodified hydrophobic scaffolds were modified using two graft polymers (CS-g-PCLx) with x = 29 and 56 (x = PCL units per chitosan unit). Due to the chitosan backbone hydrophilicity was increased and a platform for a versatile nanoparticulate release system was introduced. The graft polymers were synthesized via ring opening polymerization (ROP) of ε-Caprolactone using hydroxy groups of the chitosan backbone as initiators (grafting from). The suspected impact on biocompatibility of the modification was investigated by in vitro cell testing. In addition, the CS-g-PCL modification opened up the possibility of Layer by Layer (LbL) coating with alginate (ALG) and TGF-β3-loaded chitosan tripolyphosphate (CS-TGF-β3-TPP) nanoparticles. The subsequent release study showed promising amounts of growth factor released regarding successful in vitro cell differentiation and therefore could have a possible therapeutic impact.
Collapse
Affiliation(s)
- Johannes Pitts
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Robert Hänsch
- Institute of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Yvonne Roger
- Hannover Medical School, Department of Orthopaedic Surgery, Biological Basics for Biohybrid Implants, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Andrea Hoffmann
- Hannover Medical School, Department of Orthopaedic Surgery, Biological Basics for Biohybrid Implants, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany
| |
Collapse
|
5
|
Cieśla J, Tomsia M. Differentiation of stem cells into chondrocytes and their potential clinical application in cartilage regeneration. Histochem Cell Biol 2025; 163:27. [PMID: 39863760 DOI: 10.1007/s00418-025-02356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Cartilage diseases and injuries are considered difficult to treat owing to the low regenerative capacity of this tissue. Using stem cells (SCs) is one of the potential methods of treating cartilage defects and creating functional cartilage models for transplants. Their ability to proliferate and to generate functional chondrocytes, a natural tissue environment, and extracellular cartilage matrix, makes SCs a new opportunity for patients with articular injuries or incurable diseases, such as osteoarthritis (OA). The review summarizes the most important scientific reports on biology and mechanisms of SC-derived chondrogenesis and sources of SCs for chondrogenic purposes. Additionally, it focuses on the genetic mechanisms, microRNA (miRNA) regulation, and epigenetic processes steering the chondrogenic differentiation of SCs. It also describes the attempts to create functional cartilage with tissue engineering using growth factors and scaffolds. Finally, it presents the challenges that researchers will have to face in the future to effectuate SC differentiation methods into clinical practice for treating cartilage diseases.
Collapse
Affiliation(s)
- Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.
| |
Collapse
|
6
|
Reutter S, Kern J, Jakob Y, Rotter N, Gvaramia D. Small spheroids for head and neck cartilage tissue engineering. Sci Rep 2024; 14:32114. [PMID: 39738737 PMCID: PMC11686322 DOI: 10.1038/s41598-024-83847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
The demand for cartilage reconstruction in the head and neck region arises frequently due to trauma, malignancies, and hereditary diseases. Traditional tissue engineering produces cartilage from a small biopsy by combining biomaterials and expanded cells. However, this top-down approach is associated with several limitations, including the non-uniform distribution of cells, lack of physiological cell-cell and cell-matrix interactions, and compromised mechanical properties and tissue architecture. The capacity of cells to aggregate into microtissues enables an alternative bottom-up approach to producing cartilage with or without further scaffolding support. Here we explored the optimal conditions for obtaining small spheroids from head and neck cartilage tissues. We used chondrocytes (CCs) and chondroprogenitors (CPCs) isolated from auricular and nasoseptal cartilage to prepare spheroids using ultra-low attachment (ULA) plates or micromass cultures. Different cell densities were tested to estimate the minimal cell number required for optimal spheroid formation. Furthermore, we evaluated the influence of key chondrogenic cytokines, such as transforming growth factor (TGF)-β, connective tissue growth factor (CTGF), and insulin-like growth factor (IGF)-1, on spheroid morphology and the production of cartilage extracellular matrix (ECM) components. Spheroids expressing cartilage markers were formed with 2.5 × 104 cells in a commercially available chondrogenic differentiation medium on ULA plates but not in conventional micromass cultures. Differences were seen in auricular and nasal spheroids with respect to growth patterns and response to cytokine composition. Auricular spheroids were larger and showed size increase in culture, whereas nasal aggregates tended to shrink. Cytokines differentially influenced spheroid growth, and ECM structure and composition. Under all tested conditions, both spheroid types generated one or more cartilage ECM components, including elastin, which was also found in nasal spheroids despite their hyaline origin. Our results suggest that spheroid cultures can offer a viable approach to generating mature cartilage tissue without a biomaterial scaffold. Furthermore, nasal CCs and CPCs can be used to generate elastic cartilage. The findings of the study provide technical insights toward the goal of obtaining cartilage microtissues that can be potentially used for reconstructive procedures of HNC cartilage defects.
Collapse
Affiliation(s)
- Sven Reutter
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Clinic Mannheim, University of Heidelberg, Mannheim, Germany
| | - Johann Kern
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Clinic Mannheim, University of Heidelberg, Mannheim, Germany
| | - Yvonne Jakob
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Clinic Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Clinic Mannheim, University of Heidelberg, Mannheim, Germany
| | - David Gvaramia
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Otorhinolaryngology, Head and Neck Surgery, University Clinic Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
7
|
Zhao Z, Wang P, Li Z, Wei X, Li S, Lu X, Dai S, Huang B, Man Z, Li W. Targeted lipid nanoparticles distributed in hydrogel treat osteoarthritis by modulating cholesterol metabolism and promoting endogenous cartilage regeneration. J Nanobiotechnology 2024; 22:786. [PMID: 39707367 DOI: 10.1186/s12951-024-02965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/31/2024] [Indexed: 12/23/2024] Open
Abstract
Osteoarthritis (OA) is the most common disease in aging joints and has characteristics of cartilage destruction and inflammation. It is currently considered a metabolic disease, and the CH25H-CYP7B1-RORα axis of cholesterol metabolism in chondrocytes plays a crucial catabolic regulatory role in its pathogenesis. Targeting of this axis in chondrocytes may provide a therapeutic approach for OA treatment. Here, in this study, we propose to use a combination of stem cell-recruiting hydrogels and lipid nanoparticles (LNPs) that modulate cholesterol metabolism to jointly promote a regenerative microenvironment. Specifically, we first developed an injectable, bioactive hydrogel composed of self-assembling peptide nanofibers that recruits endogenous synovial stem cells (SMSCs) and promotes their chondrogenic differentiation. At the same time, LNPs that regulate cholesterol metabolism are incorporated into the hydrogel and slowly released, thereby improving the inflammatory environment of OA. Enhancements were noted in the inflammatory conditions associated with OA, alongside the successful attraction of mesenchymal stem cells (MSCs) from the synovial membrane. These cells were then observed to differentiate into chondrocytes, contributing to effective cartilage restoration and chondrocyte regeneration, thereby offering a promising approach for OA treatment. In summary, this approach provides a feasible siRNA-based therapeutic option, offering a potential nonsurgical solution for treatment of OA.
Collapse
Affiliation(s)
- Zhibo Zhao
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Peng Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Ziyang Li
- Department of Sports Medicine & Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xingchen Wei
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Shishuo Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaoqing Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Shimin Dai
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Benzhao Huang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China.
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.
- College of Sports Medicine and Rehabilitation, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, People's Republic of China.
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250062, People's Republic of China.
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China.
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.
- College of Sports Medicine and Rehabilitation, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
8
|
Zou S, Xu G, Zheng Z, Chen T, Huang Y. Repair of Osteochondral Defect with Acellular Cartilage Matrix and Thermosensitive Hydrogel Scaffold. Tissue Eng Part A 2024. [PMID: 39636733 DOI: 10.1089/ten.tea.2024.0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
In the present study, acellular cartilage matrix (ACM) was modified with poly-l-lysine/hyaluronic acid (PLL/HA) multilayers via detergent-enzyme chemical digestion and layer-by-layer self-assembly technology. This modified ACM was then loaded with Transforming Growth Factor Beta 3 (TGF-β3) and incorporated into a thermosensitive hydrogel (TH) to create a HA/PLL-ACM/TH composite scaffold with sustained-release function. This study aimed to evaluate the efficacy of this novel composite scaffold in promoting chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and facilitating osteochondral defect repair. In vitro, isolated, and cultured rat BMSCs were inoculated in equal amounts into TH, ACM/TH, and HA/PLL-ACM/TH groups, with or without TGF-β3 supplementation, for 21 days. Western blot (WB) analysis and immunofluorescence staining were employed to assess the expression levels of collagen II, aggrecan, and SOX-9. In vivo, osteochondral defect was created in the Sprague-Dawley rat trochlea using microdrilling. TH, ACM/TH, and HA/PLL-ACM/TH scaffolds, with or without TGF-β3, were implanted into the defect. After 6 weeks, the repairs were evaluated macroscopically, using Micro computed tomography (micro-CT), histological analysis, and immunohistochemistry. The results demonstrated that the HA/PLL-ACM/TH scaffold loaded with TGF-β3 significantly upregulated the expression of collagen II, aggrecan, and SOX-9 compared with the control and other experimental groups. Furthermore, at 6 weeks postsurgery, the HA/PLL-ACM/TH group loaded with TGF-β3 exhibited superior tissue formation on the joint surface, as confirmed by micro-CT and histological evidence, indicating improved osteochondral repair. These findings suggest that the HA/PLL-ACM/TH scaffold loaded with TGF-β3 holds promise as a therapeutic strategy for osteochondral defect and offers a novel approach for utilizing acellular cartilage microfilaments.
Collapse
Affiliation(s)
- Shengtao Zou
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guochao Xu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhenyu Zheng
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Tianming Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yixing Huang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Tymińska A, Karska N, Skoniecka A, Zawrzykraj M, Banach-Kopeć A, Mania S, Zieliński J, Kondej K, Gurzawska-Comis K, Skowron PM, Tylingo R, Rodziewicz-Motowidło S, Pikuła M. A novel chitosan-peptide system for cartilage tissue engineering with adipose-derived stromal cells. Biomed Pharmacother 2024; 181:117683. [PMID: 39561590 DOI: 10.1016/j.biopha.2024.117683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
The natural healing process of cartilage injuries often fails to fully restore the tissue's biological and mechanical functions. Cartilage grafts are costly and require surgical intervention, often associated with complications such as intraoperative infection and rejection by the recipient due to ischemia. Novel tissue engineering technologies aim to ideally fill the cartilage defect to prevent disease progression or regenerate damaged tissue. Despite many studies on designing biocompatible composites to stimulate chondrogenesis, only few focus on peptides and carriers that promote stem cell proliferation or differentiation to promote healing. Our research aimed to design a carbohydrate chitosan-based biomaterial to stimulate stem cells into the chondrogenesis pathway. Our strategy was to combine chitosan with a novel peptide (UG28) that sequence was based on the copin protein. The construct stimulated human adipose-derived stem cells (AD-SCs) cells to undergo chondrogenic differentiation. Chitosan 75/500 allows AD-SCs to grow and has no harmful effects on the cells. The combination of UG28 peptide with the chitosan composite offers promising properties for cell differentiation, indicating its potential for clinical applications in cartilage regeneration.
Collapse
Affiliation(s)
- Agata Tymińska
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Department of Anatomy, Faculty of Medicine, Medical University of Gdańsk, Gdańsk 80-211, Poland.
| | - Natalia Karska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Aneta Skoniecka
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Department of Anatomy, Faculty of Medicine, Medical University of Gdańsk, Gdańsk 80-211, Poland
| | - Małgorzata Zawrzykraj
- Division of Clinical Anatomy, Department of Anatomy, Medical University of Gdańsk, 80-211, Poland
| | - Adrianna Banach-Kopeć
- Department of Chemistry, Technology and Biotechnology of Food Gdańsk University of Technology, Gdańsk 80-233, Poland
| | - Szymon Mania
- Department of Chemistry, Technology and Biotechnology of Food Gdańsk University of Technology, Gdańsk 80-233, Poland
| | - Jacek Zieliński
- Department of Oncologic Surgery, Medical University of Gdańsk, Gdańsk 80-214, Poland
| | - Karolina Kondej
- Department of Plastic Surgery, Medical University of Gdańsk, Gdańsk 80-214, Poland
| | - Katarzyna Gurzawska-Comis
- Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, Aarhus C DK-8000, Denmark
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
| | - Robert Tylingo
- Department of Chemistry, Technology and Biotechnology of Food Gdańsk University of Technology, Gdańsk 80-233, Poland
| | | | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Department of Anatomy, Faculty of Medicine, Medical University of Gdańsk, Gdańsk 80-211, Poland.
| |
Collapse
|
10
|
Llewellyn J, Baratam R, Culig L, Beerman I. Cellular stress and epigenetic regulation in adult stem cells. Life Sci Alliance 2024; 7:e202302083. [PMID: 39348938 PMCID: PMC11443024 DOI: 10.26508/lsa.202302083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Stem cells are a unique class of cells that possess the ability to differentiate and self-renew, enabling them to repair and replenish tissues. To protect and maintain the potential of stem cells, the cells and the environment surrounding these cells (stem cell niche) are highly responsive and tightly regulated. However, various stresses can affect the stem cells and their niches. These stresses are both systemic and cellular and can arise from intrinsic or extrinsic factors which would have strong implications on overall aging and certain disease states. Therefore, understanding the breadth of drivers, namely epigenetic alterations, involved in cellular stress is important for the development of interventions aimed at maintaining healthy stem cells and tissue homeostasis. In this review, we summarize published findings of epigenetic responses to replicative, oxidative, mechanical, and inflammatory stress on various types of adult stem cells.
Collapse
Affiliation(s)
- Joey Llewellyn
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rithvik Baratam
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Luka Culig
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
11
|
Wang T, Kim SY, Peng Y, Zheng J, Layne MD, Murphy-Ullrich JE, Albro MB. Autoinduction-Based Quantification of In Situ TGF-β Activity in Native and Engineered Cartilage. Tissue Eng Part C Methods 2024; 30:522-532. [PMID: 39311474 DOI: 10.1089/ten.tec.2024.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Transforming growth factor beta (TGF-β) is a potent growth factor that regulates the homeostasis of native cartilage and is administered as an anabolic supplement for engineered cartilage growth. The quantification of TGF-β activity in live tissues in situ remains a significant challenge, as conventional activity assessments (e.g., Western blotting of intracellular signaling molecules or reporter cell assays) are unable to measure absolute levels of TGF-β activity in three-dimensional tissues. In this study, we develop a quantification platform established on TGF-β's autoinduction response, whereby active TGF-β (aTGF-β) signaling in cells induces their biosynthesis and secretion of new TGF-β in its latent form (LTGF-β). As such, cell-secreted LTGF-β can serve as a robust, non-destructive, label-free biomarker for quantifying in situ activity of TGF-β in live cartilage tissues. Here, we detect LTGF-β1 secretion levels for bovine native tissue explants and engineered tissue constructs treated with varying doses of media-supplemented aTGF-β3 using an isoform-specific ELISA. We demonstrate that: 1) LTGF-β secretion levels increase proportionally to aTGF-β exposure, reaching 7.4- and 6.6-fold increases in native and engineered cartilage, respectively; 2) synthesized LTGF-β exhibits low retention in both native and engineered cartilage tissue; and 3) secreted LTGF-β is stable in conditioned media for 2 weeks, thus enabling a reliable biological standard curve between LTGF-β secretion and exposed TGF-β activity. Accordingly, we perform quantifications of TGF-β activity in bovine native cartilage, demonstrating up to 0.59 ng/mL in response to physiological dynamic loading. We further quantify the in situ TGF-β activity in aTGF-β-conjugated scaffolds for engineered tissue, which exhibits 1.81 ng/mL of TGF-β activity as a result of a nominal 3 μg/mL loading dose. Overall, cell-secreted LTGF-β can serve as a robust biomarker to quantify in situ activity of TGF-β in live cartilage tissue and can be potentially applied for a wide range of applications, including multiple tissue types and tissue engineering platforms with different cell populations and scaffolds.
Collapse
Affiliation(s)
- Tianbai Wang
- Division of Materials Science & Engineering, Boston University, Boston, Massachusetts, USA
| | - Sung Yeon Kim
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | - Yifan Peng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Jane Zheng
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Matthew D Layne
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | | | - Michael B Albro
- Division of Materials Science & Engineering, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Ao R, Liang W, Wang Z, Li Q, Pan X, Zhen Y, An Y. Delivery Strategies of Growth Factors in Cartilage Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39345121 DOI: 10.1089/ten.teb.2024.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cartilage plays an important role in supporting soft tissues, reducing joint friction, and distributing pressure. However, its self-repair capacity is limited due to the lack of blood vessels, nerves, and lymphatic systems. Tissue engineering offers a potential solution to promote cartilage regeneration by combining scaffolds, seed cells, and growth factors. Among these, growth factors play a critical role in regulating cell proliferation, differentiation, and extracellular matrix remodeling. However, their instability, susceptibility to degradation and potential side effects limit their effectiveness. This article reviews the main growth factors used in cartilage tissue engineering and their delivery strategies, including affinity-based delivery, carrier-assisted delivery, stimuli-responsive delivery, spatial structure-based delivery, and cell system-based delivery. Each method shows unique advantages in enhancing the delivery efficiency and specificity of growth factors but also faces challenges such as cost, biocompatibility, and safety. Future research needs to further optimize these strategies to achieve more efficient, safe, and economical delivery of growth factors, thereby advancing the clinical application of cartilage tissue engineering.
Collapse
Affiliation(s)
- Rigele Ao
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191China
| | - Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191China
| | - Zimo Wang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191China
| | - Qiaoyu Li
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191China
| | - Xingyi Pan
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191China
| |
Collapse
|
13
|
Duranti C, Bagni G, Iorio J, Colasurdo R, Devescovi V, Arcangeli A. Effects of Germanium embedded fabric on the chondrogenic differentiation of adipose derived stem cells. Tissue Cell 2024; 90:102507. [PMID: 39128191 DOI: 10.1016/j.tice.2024.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Osteoarthritis (OA) is a clinical state which is identified by the degeneration of articular cartilage. OA is a common condition (>500 millions of people affected worldwide), whose frequency is anticipated to continue to rise (> 110 % increase worldwide since 2019). The treatment for early-stage OA is based on a combination of therapeutic approaches, which can include regenerative medicine based on Adipose Derived Stem Cells (ADSCs). Germanium embedded Incrediwear® functional Cred40 fabric has been shown to have positive effects on OA clinically and is envisaged to give encouraging effects also on tissue regeneration. Still, the biological mechanisms underlying this therapeutic modality have not yet been fully defined. We tested the hypothesis that Germanium-embedded Incrediwear® functional Cred40 fabric could enhance chondrogenic differentiation. To this purpose, we applied Incrediwear® to human adipose-derived stem cells (hADSCs) induced to chondrogenic differentiation in vitro. Chondrogenic markers (ACAN, SOX9, RUNX2, COL2A1, COL10A1) were quantified following 21 days of treatment. We also assessed extracellular matrix (ECM) deposition (specifically Collagen and glycosaminoglycans (GAGs)) using Alcian Blue and Sirius Red staining. Here, we provide pilot data to demonstrate that Germanium-embedded Incrediwear® functional Cred40 fabric can enhance hADSCs chondrogenic differentiation and maturity and potentially induce events of cartilage regeneration.
Collapse
Affiliation(s)
- Claudia Duranti
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Firenze 50134, Italy; MCK Therapeutics Srl, Via Ciliegiole 98, Pistoia, Italy
| | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Firenze 50134, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Firenze 50134, Italy
| | - Rossella Colasurdo
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Firenze 50134, Italy
| | - Valentina Devescovi
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Firenze 50134, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Firenze 50134, Italy; MCK Therapeutics Srl, Via Ciliegiole 98, Pistoia, Italy.
| |
Collapse
|
14
|
Shi X, Chen H, Yang H, Xue S, Li Y, Fang X, Ding C, Zhu Z. Aptamer-Modified Tetrahedral Framework Nucleic Acid Synergized with TGF-β3 to Promote Cartilage Protection in Osteoarthritis by Enhancing Chondrogenic Differentiation of MSCs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50484-50496. [PMID: 39282962 DOI: 10.1021/acsami.4c12159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Characterized by progressive and irreversible degeneration of the articular cartilage (AC), osteoarthritis (OA) is the most common chronic joint disease, and there is no cure for OA at present. Recent studies suggest that enhancing the recruitment of endogenous mesenchymal stem cells (MSCs) to damaged cartilage is a promising therapeutic strategy for cartilage repair. Tetrahedral framework nucleic acid (tFNA) is a novel DNA nanomaterial and has shown great potential in the field of biomedical science. Transforming growth factor-beta 3 (TGF-β3), a vital member of the highly conserved TGF-β superfamily, is considered to induce chondrogenesis. A 66-base DNA aptamer named HM69 is reported to identify and recruit MSCs. In this study, aptamer HM69-modified tFNAs were successfully self-assembled and used to load TGF-β3 when the disulfide bonds combined. We confirmed the successful synthesis of the final composition, HM69-tFNA@TGF-β3 (HTT), by PAGE, dynamic light scattering, and atomic force microscopy. The results of in vitro experiments showed that HTT effectively induced MSC proliferation, migration, and chondrogenic differentiation. In addition, HTT-treated MSCs were shown to protect the OA chondrocytes. In DMM mice, the injection of HTT improved the therapeutic outcome of mouse pain symptoms and AC degeneration. In conclusion, this study innovatively used the disulfide bonds combined with TGF-β3 and tFNA, and an additional sequence HM69 was loaded on tFNA for the better-targeted recruitment of MSCs. HTT demonstrated its role in promoting the chondrogenesis of MSCs and cartilage protection, indicating that it might be promising for OA therapy.
Collapse
Affiliation(s)
- Xiaorui Shi
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Haowei Chen
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hao Yang
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Song Xue
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yang Li
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaofeng Fang
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Royal North Shore Hospital and Sydney Musculoskeletal Health, Kolling Institute, University of Sydney, Sydney 2065, Australia
| |
Collapse
|
15
|
Wu YQ, Wang J. Sequential release of transforming growth factor β1 and fibroblast growth factor 2 from nanofibrous scaffolds induces cartilage differentiation of mouse adipose-derived stem cells. Biointerphases 2024; 19:041002. [PMID: 39051723 DOI: 10.1116/6.0003687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Once damaged, cartilage has poor intrinsic capacity to repair itself. Current cartilage repair strategies cannot restore the damaged tissue sufficiently. It is hypothesized that biomimetic scaffolds, which can recapitulate important properties of the cartilage extracellular matrix, play a beneficial role in supporting cell behaviors such as growth, cartilage differentiation, and integration with native cartilage, ultimately facilitating tissue recovery. Adipose-derived stem cells regenerated cartilage upon the sequential release of transforming growth factor β1(TGFβ1) and fibroblast growth factor 2(FGF2) using a nanofibrous scaffold, in order to get the recovery of functional cartilage. Experiments in vitro have demonstrated that the release sequence of growth factors FGF2 to TGFβ1 is the most essential to promote adipose-derived stem cells into chondrocytes that then synthesize collagen II. Mouse subcutaneous implantation indicated that the treatment sequence of FGF2 to TGFβ1 was able to significantly induce multiple increase in cartilage regeneration in vivo. This result demonstrates that the group treated with FGF2 to TGFβ1 released from a nanofibrous scaffold provides a good strategy for cartilage regeneration by making a favorable microenvironment for cell growth and cartilage regeneration.
Collapse
Affiliation(s)
- Yun-Qi Wu
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Jun Wang
- Department of Gastroenterology, Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
16
|
Farahani PK. Application of Tissue Engineering and Biomaterials in Nose Surgery. JPRAS Open 2024; 40:262-272. [PMID: 38708386 PMCID: PMC11067003 DOI: 10.1016/j.jpra.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 05/07/2024] Open
Abstract
Surgery of the nose involves a series of operations that are directed at restoring the nasal anatomy and physiology. The extent or degree of reconstruction needed is dependent on the appearance-based requirement of the patients and the procedure exploited for the correction such that nasal airflow is preserved. Standard surgical approach includes the use of autologous tissue or implantation alloplastic bio or synthetic/fabricated construct materials to correct the defects. Over the years, tissue engineering has been proven to be a promising technique for reconstructing tissue and organ defects, including the nose. Recently, there has been keen interest in fabricating new tissues and organ scaffolds using 3D printing technology with good control over the micro-architecture and excellent interior architecture suitable for cell seeding. Unviability of the tissue and harvest-associated complications have increased the need for the investigation of tissue engineering based methods for nasal reconstruction using biomaterials, stem cells, and growth factors combined with 3D bioprinting. However, there are only a handful of studies vis-à-vis the application of cartilage tissue engineering, stem cells, and growth factors for the purpose. This review provides highlights about the available studies based on the application of stem cells, biomaterials, and growth factors for nasal reconstruction surgery, as there is limited recent information on the use of these entities in nasal surgeries.
Collapse
|
17
|
Foltz L, Avabhrath N, Lanchy JM, Levy T, Possemato A, Ariss M, Peterson B, Grimes M. Craniofacial chondrogenesis in organoids from human stem cell-derived neural crest cells. iScience 2024; 27:109585. [PMID: 38623327 PMCID: PMC11016914 DOI: 10.1016/j.isci.2024.109585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Knowledge of cell signaling pathways that drive human neural crest differentiation into craniofacial chondrocytes is incomplete, yet essential for using stem cells to regenerate craniomaxillofacial structures. To accelerate translational progress, we developed a differentiation protocol that generated self-organizing craniofacial cartilage organoids from human embryonic stem cell-derived neural crest stem cells. Histological staining of cartilage organoids revealed tissue architecture and staining typical of elastic cartilage. Protein and post-translational modification (PTM) mass spectrometry and snRNA-seq data showed that chondrocyte organoids expressed robust levels of cartilage extracellular matrix (ECM) components: many collagens, aggrecan, perlecan, proteoglycans, and elastic fibers. We identified two populations of chondroprogenitor cells, mesenchyme cells and nascent chondrocytes, and the growth factors involved in paracrine signaling between them. We show that ECM components secreted by chondrocytes not only create a structurally resilient matrix that defines cartilage, but also play a pivotal autocrine cell signaling role in determining chondrocyte fate.
Collapse
Affiliation(s)
- Lauren Foltz
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Nagashree Avabhrath
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Tyler Levy
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Majd Ariss
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Mark Grimes
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
18
|
Zhang Y, Wen J, Lai R, Zhang J, Li K, Zhang Y, Liu A, Bai X. Rheb1 is required for limb growth through regulating chondrogenesis in growth plate. Cell Tissue Res 2024; 395:261-269. [PMID: 38253890 PMCID: PMC10904423 DOI: 10.1007/s00441-024-03861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Ras homology enriched in the brain (Rheb) is well established as a critical regulator of cell proliferation and differentiation in response to growth factors and nutrients. However, the role of Rheb1 in limb development remains unknown. Here, we found that Rheb1 was dynamically expressed during the proliferation and differentiation of chondrocytes in the growth plate. Given that Prrx1+ limb-bud-like mesenchymal cells are the source of limb chondrocytes and are essential for endochondral ossification, we conditionally deleted Rheb1 using Prrx1-Cre and found a limb dwarfism in Prrx1-Cre; Rheb1fl/fl mice. Normalized to growth plate height, the conditional knockout (cKO) mice exhibited a significant decrease in column count of proliferative zones which was increased in hypertrophic zones resulting in decreased growth plate size, indicating abnormal endochondral ossification. Interestingly, although Rheb1 deletion profoundly inhibited the transcription factor Sox9 in limb cartilage; levels of runx2 and collagen type 2 were both increased. These novel findings highlight the essential role of Rheb1 in limb growth and indicate a complex regulation of Rheb1 in chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jiaxin Wen
- School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Ruijun Lai
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jiahuan Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| | - Kai Li
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yue Zhang
- School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| | - Anling Liu
- School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| | - Xiaochun Bai
- School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
19
|
Tarapongpun T, Onlamoon N, Tabu K, Chuthapisith S, Taga T. The optimized priming effect of FGF-1 and FGF-2 enhances preadipocyte lineage commitment in human adipose-derived mesenchymal stem cells. Genes Cells 2024; 29:231-253. [PMID: 38253356 DOI: 10.1111/gtc.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
The cell-assisted lipotransfer technique, integrating adipose-derived mesenchymal stem cells (ADMSCs), has transformed lipofilling, enhancing fat graft viability. However, the multipotent nature of ADMSCs poses challenges. To improve safety and graft vitality and to reduce unwanted lineage differentiation, this study refines the methodology by priming ADMSCs into preadipocytes-unipotent, self-renewing cells. We explored the impact of fibroblast growth factor-1 (FGF-1), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF), either alone or in combination, on primary human ADMSCs during the proliferative phase. FGF-2 emerged as a robust stimulator of cell proliferation, preserving stemness markers, especially when combined with EGF. Conversely, FGF-1, while not significantly affecting cell growth, influenced cell morphology, transitioning cells to a rounded shape with reduced CD34 expression. Furthermore, co-priming with FGF-1 and FGF-2 enhanced adipogenic potential, limiting osteogenic and chondrogenic tendencies, and possibly promoting preadipocyte commitment. These preadipocytes exhibited unique features: rounded morphology, reduced CD34, decreased preadipocyte factor 1 (Pref-1), and elevated C/EBPα and PPARγ, alongside sustained stemness markers (CD73, CD90, CD105). Mechanistically, FGF-1 and FGF-2 activated key adipogenic transcription factors-C/EBPα and PPARγ-while inhibiting GATA3 and Notch3, which are adipogenesis inhibitors. These findings hold the potential to advance innovative strategies for ADMSC-mediated lipofilling procedures.
Collapse
Affiliation(s)
- Tanakorn Tarapongpun
- Division of Head Neck and Breast Surgery, Faculty of Medicine Siriraj Hospital, Department of Surgery, Mahidol University, Bangkok, Thailand
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nattawat Onlamoon
- Department of Research, Faculty of Medicine Siriraj Hospital, Siriraj Research Group in Immunobiology and Therapeutic Sciences, Mahidol University, Bangkok, Thailand
| | - Kouichi Tabu
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Suebwong Chuthapisith
- Division of Head Neck and Breast Surgery, Faculty of Medicine Siriraj Hospital, Department of Surgery, Mahidol University, Bangkok, Thailand
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
20
|
Lammi MJ, Qu C. Regulation of Oxygen Tension as a Strategy to Control Chondrocytic Phenotype for Cartilage Tissue Engineering and Regeneration. Bioengineering (Basel) 2024; 11:211. [PMID: 38534484 DOI: 10.3390/bioengineering11030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Cartilage defects and osteoarthritis are health problems which are major burdens on health care systems globally, especially in aging populations. Cartilage is a vulnerable tissue, which generally faces a progressive degenerative process when injured. This makes it the 11th most common cause of global disability. Conservative methods are used to treat the initial phases of the illness, while orthopedic management is the method used for more progressed phases. These include, for instance, arthroscopic shaving, microfracturing and mosaicplasty, and joint replacement as the final treatment. Cell-based implantation methods have also been developed. Despite reports of successful treatments, they often suffer from the non-optimal nature of chondrocyte phenotype in the repair tissue. Thus, improved strategies to control the phenotype of the regenerating cells are needed. Avascular tissue cartilage relies on diffusion for nutrients acquisition and the removal of metabolic waste products. A low oxygen content is also present in cartilage, and the chondrocytes are, in fact, well adapted to it. Therefore, this raises an idea that the regulation of oxygen tension could be a strategy to control the chondrocyte phenotype expression, important in cartilage tissue for regenerative purposes. This narrative review discusses the aspects related to oxygen tension in the metabolism and regulation of articular and growth plate chondrocytes and progenitor cell phenotypes, and the role of some microenvironmental factors as regulators of chondrocytes.
Collapse
Affiliation(s)
- Mikko J Lammi
- Department of Medical and Translational Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Chengjuan Qu
- Department of Odontology, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
21
|
Bauer B, Emonts C, Pitts J, Buhl EM, Eschweiler J, Hänsch R, Betsch M, Gries T, Menzel H. Topographically and Chemically Enhanced Textile Polycaprolactone Scaffolds for Tendon and Ligament Tissue Engineering. Polymers (Basel) 2024; 16:488. [PMID: 38399866 PMCID: PMC10893359 DOI: 10.3390/polym16040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The use of tissue engineering to address the shortcomings of current procedures for tendons and ligaments is promising, but it requires a suitable scaffold that meets various mechanical, degradation-related, scalability-related, and biological requirements. Macroporous textile scaffolds made from appropriate fiber material have the potential to fulfill the first three requirements. This study aimed to investigate the biocompatibility, sterilizability, and functionalizability of a multilayer braided scaffold. These macroporous scaffolds with dimensions similar to those of the human anterior cruciate ligament consist of fibers with appropriate tensile strength and degradation behavior melt-spun from Polycaprolactone (PCL). Two different cross-sectional geometries resulting in significantly different specific surface areas and morphologies were used at the fiber level, and a Chitosan-graft-PCL (CS-g-PCL) surface modification was applied to the melt-spun substrates for the first time. All scaffolds elicited a positive cell response, and the CS-g-PCL modification provided a platform for incorporating functionalization agents such as drug delivery systems for growth factors, which were successfully released in therapeutically effective quantities. The fiber geometry was found to be a variable that could be manipulated to control the amount released. Therefore, scaled, surface-modified textile scaffolds are a versatile technology that can successfully address the complex requirements of tissue engineering for ligaments and tendons, as well as other structures.
Collapse
Affiliation(s)
- Benedict Bauer
- Institut für Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074 Aachen, Germany; (C.E.)
| | - Caroline Emonts
- Institut für Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074 Aachen, Germany; (C.E.)
| | - Johannes Pitts
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany
| | - Eva Miriam Buhl
- Institute of Pathology, Electron Microscopy Facility, RWTH University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jörg Eschweiler
- Department of Trauma and Reconstructive Surgery, BG Hospital Bergmannstrost, Merseburgerstr. 165, 06112 Halle (Saale), Germany;
- Department of Trauma and Reconstructive Surgery, University Hospital Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Robert Hänsch
- Institute of Plant Biology, Braunschweig University of Technology, Humboldtstraße 1, 38106 Braunschweig, Germany
| | - Marcel Betsch
- Department of Orthopaedics and Trauma Surgery, University Hospital Erlangen, Krankenhausstr. 12, 91054 Erlangen, Germany
| | - Thomas Gries
- Institut für Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074 Aachen, Germany; (C.E.)
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
22
|
Asadian M, Tomasina C, Onyshchenko Y, Chan KV, Norouzi M, Zonderland J, Camarero-Espinosa S, Morent R, De Geyter N, Moroni L. The role of plasma-induced surface chemistry on polycaprolactone nanofibers to direct chondrogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2024; 112:210-230. [PMID: 37706337 DOI: 10.1002/jbm.a.37607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Bone marrow-derived mesenchymal stromal cells (BMSCs) are extensively being utilized for cartilage regeneration owing to their excellent differentiation potential and availability. However, controlled differentiation of BMSCs towards cartilaginous phenotypes to heal full-thickness cartilage defects remains challenging. This study investigates how different surface properties induced by either coating deposition or biomolecules immobilization onto nanofibers (NFs) could affect BMSCs chondro-inductive behavior. Accordingly, electrospun poly(ε-caprolactone) (PCL) NFs were exposed to two surface modification strategies based on medium-pressure plasma technology. The first strategy is plasma polymerization, in which cyclopropylamine (CPA) or acrylic acid (AcAc) monomers were plasma polymerized to obtain amine- or carboxylic acid-rich NFs, respectively. The second strategy uses a combination of CPA plasma polymerization and a post-chemical technique to immobilize chondroitin sulfate (CS) onto the NFs. These modifications could affect surface roughness, hydrophilicity, and chemical composition while preserving the NFs' nano-morphology. The results of long-term BMSCs culture in both basic and chondrogenic media proved that the surface modifications modulated BMSCs chondrogenic differentiation. Indeed, the incorporation of polar groups by different modification strategies had a positive impact on the cell proliferation rate, production of the glycosaminoglycan matrix, and expression of extracellular matrix proteins (collagen I and collagen II). The chondro-inductive behavior of the samples was highly dependent on the nature of the introduced polar functional groups. Among all samples, carboxylic acid-rich NFs promoted chondrogenesis by higher expression of aggrecan, Sox9, and collagen II with downregulation of hypertrophic markers. Hence, this approach showed an intrinsic potential to have a non-hypertrophic chondrogenic cell phenotype.
Collapse
Affiliation(s)
- Mahtab Asadian
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Ghent, Belgium
- Prometheus Division of Skeletal Tissue Engineering, Department of Materials Science, KU Leuven University, Leuven, Belgium
| | - Clarissa Tomasina
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, The Netherlands
| | - Yuliia Onyshchenko
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Ghent, Belgium
| | - Ke Vin Chan
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Ghent, Belgium
| | - Mohammad Norouzi
- Department of Pharmacology, University of Montreal, Montreal, Québec, Canada
| | - Jip Zonderland
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, The Netherlands
| | - Sandra Camarero-Espinosa
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, The Netherlands
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72, Donostia/San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Euskadi Pl. 5, Bilbao, Spain
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Ghent, Belgium
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
23
|
Sundermann J, Sydow S, Burmeister L, Hoffmann A, Menzel H, Bunjes H. Spatially and Temporally Controllable BMP-2 and TGF-β 3 Double Release From Polycaprolactone Fiber Scaffolds via Chitosan-Based Polyelectrolyte Coatings. ACS Biomater Sci Eng 2024; 10:89-98. [PMID: 35622002 DOI: 10.1021/acsbiomaterials.1c01585] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Temporally and spatially controlled growth factor release from a polycaprolactone fiber mat, which also provides a matrix for directional cell colonization and infiltration, could be a promising regenerative approach for degenerated tendon-bone junctions. For this purpose, polycaprolactone fiber mats were coated with tailored chitosan-based nanogels to bind and release the growth factors bone morphogenetic protein 2 (BMP-2) and transforming growth factor-β3 (TGF-β3), respectively. In this work we provide meaningful in vitro data for the understanding of the drug delivery performance and sterilizability of novel implant prototypes in order to lay the foundation for in vivo testing. ELISA-based in vitro release studies were used to investigate the spatial and temporal control of release, as well as the influence of radiation sterilization on protein activity and release behavior. Layer-by-layer coatings based on BMP-2-containing chitosan tripolyphosphate nanogel particles and negatively charged alginate showed a good sustainment of BMP-2 release from chemically modified polycaprolactone fiber mats. Release control improved with increasing layer numbers. The approach of controlling the release via a barrier of cross-linked chitosan azide proved less promising. By using a simple, partial immersion-based dip-coating process, it was possible to apply opposing gradients of the growth factors BMP-2 and TGF-β3. Final radiation sterilization of the growth factor-loaded implant prototypes resulted in a radiation dose-correlated degradation of the growth factors, which could be prevented by lyophilization into protective matrices. For the manufacture of sterile implants, the growth factor loading step must probably be carried out under aseptic conditions. The layer-by-layer coated implant prototypes provided sustained release from opposing gradients of the growth factors BMP-2 and TGF-β3 and thus represent a promising approach for the restoration of tendon-bone defects.
Collapse
Affiliation(s)
- Julius Sundermann
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, Mendelssohnstraβe 1, 38106 Braunschweig, Germany
| | - Steffen Sydow
- Technische Universität Braunschweig, Institut für Technische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Laura Burmeister
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, Stadtfelddamm 34, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Andrea Hoffmann
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, Stadtfelddamm 34, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Henning Menzel
- Technische Universität Braunschweig, Institut für Technische Chemie, Hagenring 30, 38106 Braunschweig, Germany
- Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Straβe 35a, 38106 Braunschweig, Germany
| | - Heike Bunjes
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, Mendelssohnstraβe 1, 38106 Braunschweig, Germany
- Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Straβe 35a, 38106 Braunschweig, Germany
| |
Collapse
|
24
|
Shao R, Suo J, Zhang Z, Kong M, Ma Y, Wen Y, Liu M, Zhuang L, Ge K, Bi Q, Zhang C, Zou W. H3K36 methyltransferase NSD1 protects against osteoarthritis through regulating chondrocyte differentiation and cartilage homeostasis. Cell Death Differ 2024; 31:106-118. [PMID: 38012390 PMCID: PMC10781997 DOI: 10.1038/s41418-023-01244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common joint diseases, there are no effective disease-modifying drugs, and the pathological mechanisms of OA need further investigation. Here, we show that H3K36 methylations were decreased in senescent chondrocytes and age-related osteoarthritic cartilage. Prrx1-Cre inducible H3.3K36M transgenic mice showed articular cartilage destruction and osteophyte formation. Conditional knockout Nsd1Prrx1-Cre mice, but not Nsd2Prrx1-Cre or Setd2Prrx1-Cre mice, replicated the phenotype of K36M/+; Prrx1-Cre mice. Immunostaining results showed decreased anabolic and increased catabolic activities in Nsd1Prrx1-Cre mice, along with decreased chondrogenic differentiation. Transcriptome and ChIP-seq data revealed that Osr2 was a key factor affected by Nsd1. Intra-articular delivery of Osr2 adenovirus effectively improved the homeostasis of articular cartilage in Nsd1Prrx1-Cre mice. In human osteoarthritic cartilages, both mRNA and protein levels of NSD1 and OSR2 were decreased. Our results indicate that NSD1-induced H3K36 methylations and OSR2 expression play important roles in articular cartilage homeostasis and OA. Targeting H3K36 methylation and OSR2 would be a novel strategy for OA treatment.
Collapse
Affiliation(s)
- Rui Shao
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinlong Suo
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhong Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mingxiang Kong
- Department of Orthopedics, Rehabilitation center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Yiyang Ma
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yang Wen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengxue Liu
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lenan Zhuang
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Qing Bi
- Department of Orthopedics, Rehabilitation center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Changqing Zhang
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
25
|
Okoro PD, Frayssinet A, De Oliveira S, Rouquier L, Miklosic G, D'Este M, Potier E, Hélary C. Combining biomimetic collagen/hyaluronan hydrogels with discogenic growth factors promotes mesenchymal stroma cell differentiation into Nucleus Pulposus like cells. Biomater Sci 2023; 11:7768-7783. [PMID: 37870786 DOI: 10.1039/d3bm01025b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Based on stem cell injection into degenerated Nucleus Pulposus (NP), novel treatments for intervertebral disc (IVD) regeneration were disappointing because of cell leakage or inappropriate cell differentiation. In this study, we hypothesized that mesenchymal stromal cells encapsulated within injectable hydrogels possessing adequate physico-chemical properties would differentiate into NP like cells. Composite hydrogels consisting of type I collagen and tyramine-substituted hyaluronic acid (THA) were prepared to mimic the NP physico-chemical properties. Human bone marrow derived mesenchymal stromal cells (BM-MSCs) were encapsulated within hydrogels and cultivated in proliferation medium (supplemented with 10% fetal bovine serum) or differentiation medium (supplemented with GDF5 and TGFβ1) over 28 days. Unlike pure collagen, collagen/THA composite hydrogels were stable over 28 days in culture. In proliferation medium, the cell viability within pure collagen hydrogels was high, whereas that in composite and pure THA hydrogels was lower due to the weaker cell adhesion. Nonetheless, BM-MSCs proliferated in all hydrogels. In composite hydrogels, cells exhibited a rounded morphology similar to NP cells. The differentiation medium did not impact the hydrogel stability and cell morphology but negatively impacted the cell viability in pure collagen hydrogels. A high THA content within hydrogels promoted the gene expression of NP markers such as collagen II, aggrecan, SOX9 and cytokeratin 18 at day 28. The differentiation medium potentialized this effect with an earlier and higher expression of these NP markers. Taken together, these results show that the physico-chemical properties of collagen/THA composite hydrogels and GDF5/TGFβ1 act in synergy to promote the differentiation of BM-MSCs into NP like cells.
Collapse
Affiliation(s)
- Prince David Okoro
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, UMR 7574, F-75005, Paris, France.
| | - Antoine Frayssinet
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, UMR 7574, F-75005, Paris, France.
| | - Stéphanie De Oliveira
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, UMR 7574, F-75005, Paris, France.
| | - Léa Rouquier
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, F-75010 Paris, France
| | - Gregor Miklosic
- AO Research Institute Davos (ARI), Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Matteo D'Este
- AO Research Institute Davos (ARI), Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Esther Potier
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, F-75010 Paris, France
| | - Christophe Hélary
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, UMR 7574, F-75005, Paris, France.
| |
Collapse
|
26
|
Gardner OFW, Zhang Y, Khan IM. BMP9 is a potent inducer of chondrogenesis, volumetric expansion and collagen type II accumulation in bovine auricular cartilage chondroprogenitors. PLoS One 2023; 18:e0294761. [PMID: 37992123 PMCID: PMC10664884 DOI: 10.1371/journal.pone.0294761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Reconstruction of the outer ear currently requires harvesting of cartilage from the posterior of the auricle or ribs leading to pain and donor site morbidity. An alternative source for auricular reconstruction is in vitro tissue engineered cartilage using stem/progenitor cells. Several candidate cell-types have been studied with tissue-specific auricular cartilage progenitor cells (AuCPC) of particular interest. Whilst chondrogenic differentiation of competent stem cells using growth factor TGFβ1 produces cartilage this tissue is frequently fibrocartilaginous and lacks the morphological features of hyaline cartilage. Recent work has shown that growth factor BMP9 is a potent chondrogenic and morphogenetic factor for articular cartilage progenitor cells, and we hypothesised that this property extends to cartilage-derived progenitors from other tissues. In this study we show monoclonal populations of AuCPCs from immature and mature bovine cartilage cultured with BMP9 produced cartilage pellets have 3-5-fold greater surface area in sections than those grown with TGFβ1. Increased volumetric growth using BMP9 was due to greater sGAG deposition in immature pellets and significantly greater collagen accumulation in both immature and mature progenitor pellets. Polarised light microscopy and immunohistochemical analyses revealed that the organisation of collagen fibrils within pellets is an important factor in the growth of pellets. Additionally, chondrocytes in BMP9 stimulated cell pellets had larger lacunae and were more evenly dispersed throughout the extracellular matrix. Interestingly, BMP9 tended to normalise the response of immature AuCPC monoclonal cell lines to differentiation cues whereas cells exhibited more variation under TGFβ1. In conclusion, BMP9 appears to be a potent inducer of chondrogenesis and volumetric growth for AuCPCs a property that can be exploited for tissue engineering strategies for reconstructive surgery though with the caveat of negligible elastin production following 21-day treatment with either growth factor.
Collapse
Affiliation(s)
- Oliver F. W. Gardner
- Stem Cells & Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, England, United Kingdom
| | - Yadan Zhang
- Faculty of Medicine, Health & Life Science, Swansea University Medical School, Wales, United Kingdom
| | - Ilyas M. Khan
- Faculty of Medicine, Health & Life Science, Swansea University Medical School, Wales, United Kingdom
| |
Collapse
|
27
|
de Silva L, Longoni A, Staubli F, Nurmohamed S, Duits A, Rosenberg AJWP, Gawlitta D. Bone Regeneration in a Large Animal Model Featuring a Modular Off-the-Shelf Soft Callus Mimetic. Adv Healthc Mater 2023; 12:e2301717. [PMID: 37580174 PMCID: PMC11468236 DOI: 10.1002/adhm.202301717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Implantation of engineered cartilage with soft callus features triggers remodeling to bone tissue via endochondral bone regeneration (EBR). Thus far, EBR has not progressed to the level of large animals on the axis of clinical translation. Herein, the feasibility of EBR is aimed for a critical-sized defect in a large animal model. Chondrogenesis is first induced in goat-derived multipotent mesenchymal stromal cells (MSCs) by fine-tuning the cellular differentiation process. Through a unique devitalization process, two off-the-shelf constructs aimed to recapitulate the different stages of the transient cartilaginous soft callus template in EBR are generated. To evaluate bone regeneration, the materials are implanted in an adapted bilateral iliac crest defect model in goats, featuring a novel titanium star-shaped spacer. After 3 months, the group at the more advanced differentiation stage shows remarkable regenerative capacity, with comparable amounts of bone regeneration as the autograft group. In contrast, while the biomaterial mimicking the earlier stages of chondrogenesis shows improved regeneration compared to the negative controls, this is subpar compared to the more advanced material. Concluding, EBR is attainable in large animals with a soft callus mimetic material that leads to fast conversion into centimeter-scale bone, which prospects successful implementation in the human clinics.
Collapse
Affiliation(s)
- Leanne de Silva
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
- Regenerative Medicine Center UtrechtUtrechtCT3584The Netherlands
| | - Alessia Longoni
- Regenerative Medicine Center UtrechtUtrechtCT3584The Netherlands
- Department of OrthopedicsUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
| | - Flurina Staubli
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
- Regenerative Medicine Center UtrechtUtrechtCT3584The Netherlands
| | - Silke Nurmohamed
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
| | - Anneli Duits
- Regenerative Medicine Center UtrechtUtrechtCT3584The Netherlands
- Department of OrthopedicsUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
| | - Antoine J. W. P. Rosenberg
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
- Regenerative Medicine Center UtrechtUtrechtCT3584The Netherlands
| |
Collapse
|
28
|
Vinikoor T, Dzidotor GK, Le TT, Liu Y, Kan HM, Barui S, Chorsi MT, Curry EJ, Reinhardt E, Wang H, Singh P, Merriman MA, D'Orio E, Park J, Xiao S, Chapman JH, Lin F, Truong CS, Prasadh S, Chuba L, Killoh S, Lee SW, Wu Q, Chidambaram RM, Lo KWH, Laurencin CT, Nguyen TD. Injectable and biodegradable piezoelectric hydrogel for osteoarthritis treatment. Nat Commun 2023; 14:6257. [PMID: 37802985 PMCID: PMC10558537 DOI: 10.1038/s41467-023-41594-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023] Open
Abstract
Osteoarthritis affects millions of people worldwide but current treatments using analgesics or anti-inflammatory drugs only alleviate symptoms of this disease. Here, we present an injectable, biodegradable piezoelectric hydrogel, made of short electrospun poly-L-lactic acid nanofibers embedded inside a collagen matrix, which can be injected into the joints and self-produce localized electrical cues under ultrasound activation to drive cartilage healing. In vitro, data shows that the piezoelectric hydrogel with ultrasound can enhance cell migration and induce stem cells to secrete TGF-β1, which promotes chondrogenesis. In vivo, the rabbits with osteochondral critical-size defects receiving the ultrasound-activated piezoelectric hydrogel show increased subchondral bone formation, improved hyaline-cartilage structure, and good mechanical properties, close to healthy native cartilage. This piezoelectric hydrogel is not only useful for cartilage healing but also potentially applicable to other tissue regeneration, offering a significant impact on the field of regenerative tissue engineering.
Collapse
Affiliation(s)
- Tra Vinikoor
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Godwin K Dzidotor
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Thinh T Le
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Yang Liu
- Center of Digital Dentistry/Department of Prosthodontics/Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing, 100081, PR China
| | - Ho-Man Kan
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Srimanta Barui
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Meysam T Chorsi
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Eli J Curry
- Eli Lilly and Company, 450 Kendall Street, Cambridge, MA, 02142, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Emily Reinhardt
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Unit 3089, Storrs, CT, 06269, USA
| | - Hanzhang Wang
- Pathology and Laboratory Medicine, University of Connecticut Health Center, 63 Farmington Avenue, Farmington, CT, 06030, USA
| | - Parbeen Singh
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Marc A Merriman
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Ethan D'Orio
- Department of Advanced Manufacturing for Energy Systems Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Jinyoung Park
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Shuyang Xiao
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, 25 King Hill Road, Unit 3136, Storrs, CT, 06269-3136, USA
| | - James H Chapman
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Feng Lin
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Cao-Sang Truong
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Lisa Chuba
- Center for Comparative Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Shaelyn Killoh
- Center for Comparative Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Seok-Woo Lee
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, 25 King Hill Road, Unit 3136, Storrs, CT, 06269-3136, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Qian Wu
- Pathology and Laboratory Medicine, University of Connecticut Health Center, 63 Farmington Avenue, Farmington, CT, 06030, USA
| | - Ramaswamy M Chidambaram
- Center for Comparative Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Kevin W H Lo
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Cato T Laurencin
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, 06030, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, 25 King Hill Road, Unit 3136, Storrs, CT, 06269-3136, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery University of Connecticut Health, Farmington, CT, 06030, USA
| | - Thanh D Nguyen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
29
|
Zhang Z, Zhao S, Sun Z, Zhai C, Xia J, Wen C, Zhang Y, Zhang Y. Enhancement of the therapeutic efficacy of mesenchymal stem cell-derived exosomes in osteoarthritis. Cell Mol Biol Lett 2023; 28:75. [PMID: 37770821 PMCID: PMC10540339 DOI: 10.1186/s11658-023-00485-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Osteoarthritis (OA), a common joint disorder with articular cartilage degradation as the main pathological change, is the major source of pain and disability worldwide. Despite current treatments, the overall treatment outcome is unsatisfactory. Thus, patients with severe OA often require joint replacement surgery. In recent years, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option for preclinical and clinical palliation of OA. MSC-derived exosomes (MSC-Exos) carrying bioactive molecules of the parental cells, including non-coding RNAs (ncRNAs) and proteins, have demonstrated a significant impact on the modulation of various physiological behaviors of cells in the joint cavity, making them promising candidates for cell-free therapy for OA. This review provides a comprehensive overview of the biosynthesis and composition of MSC-Exos and their mechanisms of action in OA. We also discussed the potential of MSC-Exos as a therapeutic tool for modulating intercellular communication in OA. Additionally, we explored bioengineering approaches to enhance MSC-Exos' therapeutic potential, which may help to overcome challenges and achieve clinically meaningful OA therapies.
Collapse
Affiliation(s)
- Zehao Zhang
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Sheng Zhao
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Zhaofeng Sun
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Chuanxing Zhai
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| | - Yuge Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| |
Collapse
|
30
|
Wen Y, Chen Y, Wu W, Zhang H, Peng Z, Yao X, Zhang X, Jiang W, Liao Y, Xie Y, Shen X, Sun H, Hu J, Liu H, Chen X, Chen J, Ouyang H. Hyperplastic Human Macromass Cartilage for Joint Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301833. [PMID: 37395375 PMCID: PMC10502860 DOI: 10.1002/advs.202301833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/07/2023] [Indexed: 07/04/2023]
Abstract
Cartilage damage affects millions of people worldwide. Tissue engineering strategies hold the promise to provide off-the-shelf cartilage analogs for tissue transplantation in cartilage repair. However, current strategies hardly generate sufficient grafts, as tissues cannot maintain size growth and cartilaginous phenotypes simultaneously. Herein, a step-wise strategy is developed for fabricating expandable human macromass cartilage (macro-cartilage) in a 3D condition by employing human polydactyly chondrocytes and a screen-defined serum-free customized culture (CC). CC-induced chondrocytes demonstrate improved cell plasticity, expressing chondrogenic biomarkers after a 14.59-times expansion. Crucially, CC-chondrocytes form large-size cartilage tissues with average diameters of 3.25 ± 0.05 mm, exhibiting abundant homogenous matrix and intact structure without a necrotic core. Compared with typical culture, the cell yield in CC increases 2.57 times, and the expression of cartilage marker collagen type II increases 4.70 times. Transcriptomics reveal that this step-wise culture drives a proliferation-to-differentiation process through an intermediate plastic stage, and CC-chondrocytes undergo a chondral lineage-specific differentiation with an activated metabolism. Animal studies show that CC macro-cartilage maintains a hyaline-like cartilage phenotype in vivo and significantly promotes the healing of large cartilage defects. Overall, an efficient expansion of human macro-cartilage with superior regenerative plasticity is achieved, providing a promising strategy for joint regeneration.
Collapse
|
31
|
Tsou HK, Wu CH, Chan LY, Kataoka K, Itokazu N, Tsuzuki M, Hu H, Zhuo GY, Itaka K, Lin CY. Administration of mRNA-Nanomedicine-Augmented Calvarial Defect Healing via Endochondral Ossification. Pharmaceutics 2023; 15:1965. [PMID: 37514151 PMCID: PMC10383176 DOI: 10.3390/pharmaceutics15071965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Large-area craniofacial defects remain a challenge for orthopaedists, hastening the need to develop a facile and safe tissue engineering strategy; osteoconductive material and a combination of optimal growth factors and microenvironment should be considered. Faced with the unmet need, we propose that abundant cytokines and chemokines can be secreted from the bone defect, provoking the infiltration of endogenous stem cells to assist bone regeneration. We can provide a potent mRNA medicine cocktail to promptly initiate the formation of bone templates, osteogenesis, and subsequent bone matrix deposition via endochondral ossification, which may retard rapid fibroblast infiltration and prevent the formation of atrophic non-union. We explored the mutual interaction of BMP2 and TGFβ3 mRNA, both potent chondrogenic factors, on inducing endochondral ossification; examined the influence of in vitro the transcribed polyA tail length on mRNA stability; prepared mRNA nanomedicine using a PEGylated polyaspartamide block copolymer loaded in a gelatin sponge and grafted in a critical-sized calvarial defect; and evaluated bone regeneration using histological and μCT examination. The BMP2 and TGFβ3 composite mRNA nanomedicine resulted in over 10-fold new bone volume (BV) regeneration in 8 weeks than the BMP2 mRNA nanomedicine administration alone, demonstrating that the TGFβ3 mRNA nanomedicine synergistically enhances the bone's formation capability, which is induced by BMP2 mRNA nanomedicine. Our data demonstrated that mRNA-medicine-mediated endochondral ossification provides an alternative cell-free tissue engineering methodology for guiding craniofacial defect healing.
Collapse
Affiliation(s)
- Hsi-Kai Tsou
- Functional Neurosurgery Division, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County 35664, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- College of Health, National Taichung University of Science and Technology, Taichung 40303, Taiwan
| | - Cheng-Hsin Wu
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.W.); (L.Y.C.); (H.H.); (G.-Y.Z.)
| | - Long Yi Chan
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.W.); (L.Y.C.); (H.H.); (G.-Y.Z.)
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan;
| | - Nanae Itokazu
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama 362-0806, Japan; (N.I.); (M.T.)
| | - Minoru Tsuzuki
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama 362-0806, Japan; (N.I.); (M.T.)
| | - Hsuan Hu
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.W.); (L.Y.C.); (H.H.); (G.-Y.Z.)
| | - Guan-Yu Zhuo
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.W.); (L.Y.C.); (H.H.); (G.-Y.Z.)
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterial and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan;
| | - Chin-Yu Lin
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan; (C.-H.W.); (L.Y.C.); (H.H.); (G.-Y.Z.)
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
32
|
Gianakos AL, Kennedy JG. Rethinking Cartilage Lesions of the Ankle: An Update on the Role of Biologic Adjuvants. J Am Acad Orthop Surg 2023; 31:701-707. [PMID: 37026780 DOI: 10.5435/jaaos-d-22-01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Osteochondral lesions of the talus are common injuries in the ankle joint often resulting in early-onset osteoarthritis if left untreated. The avascular nature of articular cartilage limits healing capacity; therefore, surgical strategies are typically used in the treatment of these injuries. These treatments often result in the production of fibrocartilage rather than the native hyaline cartilage, which has decreased mechanical and tribological properties. Strategies to improve the ability of fibrocartilage to be more hyaline-like and thus more mechanically robust have been widely investigated. Biologic augmentation, including concentrated bone marrow aspirate, platelet-rich plasma, hyaluronic acid, and micronized adipose tissue, has been used in the augmentation of cartilage healing, with studies demonstrating promise. This article provides an overview and update on the various biologic adjuvants used in the treatment of cartilage injuries in the ankle joint.
Collapse
Affiliation(s)
- Arianna L Gianakos
- From the Department of Orthopaedic Surgery, NYU Langone Health, New York, NY (Gianakos and Kennedy), and the Department of Orthopaedic Surgery, Yale Medicine, Orthopaedics, and Rehabilitation, New Haven, CT (Gianakos)
| | | |
Collapse
|
33
|
Shigley C, Trivedi J, Meghani O, Owens BD, Jayasuriya CT. Suppressing Chondrocyte Hypertrophy to Build Better Cartilage. Bioengineering (Basel) 2023; 10:741. [PMID: 37370672 DOI: 10.3390/bioengineering10060741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Current clinical strategies for restoring cartilage defects do not adequately consider taking the necessary steps to prevent the formation of hypertrophic tissue at injury sites. Chondrocyte hypertrophy inevitably causes both macroscopic and microscopic level changes in cartilage, resulting in adverse long-term outcomes following attempted restoration. Repairing/restoring articular cartilage while minimizing the risk of hypertrophic neo tissue formation represents an unmet clinical challenge. Previous investigations have extensively identified and characterized the biological mechanisms that regulate cartilage hypertrophy with preclinical studies now beginning to leverage this knowledge to help build better cartilage. In this comprehensive article, we will provide a summary of these biological mechanisms and systematically review the most cutting-edge strategies for circumventing this pathological hallmark of osteoarthritis.
Collapse
Affiliation(s)
- Christian Shigley
- The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Jay Trivedi
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Ozair Meghani
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Brett D Owens
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
- Division of Sports Surgery, Department of Orthopaedic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
34
|
Jiang Y, Tuan RS. Bioactivity of human adult stem cells and functional relevance of stem cell-derived extracellular matrix in chondrogenesis. Stem Cell Res Ther 2023; 14:160. [PMID: 37316923 DOI: 10.1186/s13287-023-03392-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Autologous chondrocyte implantation (ACI) has been used to treat articular cartilage defects for over two decades. Adult stem cells have been proposed as a solution to inadequate donor cell numbers often encountered in ACI. Multipotent stem/progenitor cells isolated from adipose, bone marrow, and cartilage are the most promising cell therapy candidates. However, different essential growth factors are required to induce these tissue-specific stem cells to initiate chondrogenic differentiation and subsequent deposition of extracellular matrix (ECM) to form cartilage-like tissue. Upon transplantation into cartilage defects in vivo, the levels of growth factors in the host tissue are likely to be inadequate to support chondrogenesis of these cells in situ. The contribution of stem/progenitor cells to cartilage repair and the quality of ECM produced by the implanted cells required for cartilage repair remain largely unknown. Here, we evaluated the bioactivity and chondrogenic induction ability of the ECM produced by different adult stem cells. METHODS Adult stem/progenitor cells were isolated from human adipose (hADSCs), bone marrow (hBMSCs), and articular cartilage (hCDPCs) and cultured for 14 days in monolayer in mesenchymal stromal cell (MSC)-ECM induction medium to allow matrix deposition and cell sheet formation. The cell sheets were then decellularized, and the protein composition of the decellularized ECM (dECM) was analyzed by BCA assay, SDS-PAGE, and immunoblotting for fibronectin (FN), collagen types I (COL1) and III (COL3). The chondrogenic induction ability of the dECM was examined by seeding undifferentiated hBMSCs onto the respective freeze-dried solid dECM followed by culturing in serum-free medium for 7 days. The expression levels of chondrogenic genes SOX9, COL2, AGN, and CD44 were analyzed by q-PCR. RESULTS hADSCs, hBMSCs, and hCDPCs generated different ECM protein profiles and exhibited significantly different chondrogenic effects. hADSCs produced 20-60% more proteins than hBMSCs and hCDPCs and showed a fibrillar-like ECM pattern (FNhigh, COL1high). hCDPCs produced more COL3 and deposited less FN and COL1 than the other cell types. The dECM derived from hBMSCs and hCDPCs induced spontaneous chondrogenic gene expression in hBMSCs. CONCLUSIONS These findings provide new insights on application of adult stem cells and stem cell-derived ECM to enhance cartilage regeneration.
Collapse
Affiliation(s)
- Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China.
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China.
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
35
|
Berten-Schunk L, Roger Y, Bunjes H, Hoffmann A. Release of TGF-β 3 from Surface-Modified PCL Fiber Mats Triggers a Dose-Dependent Chondrogenic Differentiation of Human Mesenchymal Stromal Cells. Pharmaceutics 2023; 15:pharmaceutics15041303. [PMID: 37111788 PMCID: PMC10146193 DOI: 10.3390/pharmaceutics15041303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The design of implants for tissue transitions remains a major scientific challenge. This is due to gradients in characteristics that need to be restored. The rotator cuff in the shoulder, with its direct osteo-tendinous junction (enthesis), is a prime example of such a transition. Our approach towards an optimized implant for entheses is based on electrospun fiber mats of poly(ε-caprolactone) (PCL) as biodegradable scaffold material, loaded with biologically active factors. Chitosan/tripolyphosphate (CS/TPP) nanoparticles were used to load transforming growth factor-β3 (TGF-β3) with increasing loading concentrations for the regeneration of the cartilage zone within direct entheses. Release experiments were performed, and the concentration of TGF-β3 in the release medium was determined by ELISA. Chondrogenic differentiation of human mesenchymal stromal cells (MSCs) was analyzed in the presence of released TGF-β3. The amount of released TGF-β3 increased with the use of higher loading concentrations. This correlated with larger cell pellets and an increase in chondrogenic marker genes (SOX9, COL2A1, COMP). These data were further supported by an increase in the glycosaminoglycan (GAG)-to-DNA ratio of the cell pellets. The results demonstrate an increase in the total release of TGF-β3 by loading higher concentrations to the implant, which led to the desired biological effect.
Collapse
Affiliation(s)
- Leonie Berten-Schunk
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, 38106 Braunschweig, Germany
| | - Yvonne Roger
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Heike Bunjes
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, 38106 Braunschweig, Germany
- Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), 38106 Braunschweig, Germany
| | - Andrea Hoffmann
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| |
Collapse
|
36
|
Azam MT, Butler JJ, Duenes ML, McAllister TW, Walls RC, Gianakos AL, Kennedy JG. Advances in Cartilage Repair. Orthop Clin North Am 2023; 54:227-236. [PMID: 36894294 DOI: 10.1016/j.ocl.2022.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Osteochondral lesions of the ankle joint are typically associated with a traumatic etiology and present with ankle pain and swelling. Conservative management yields unsatisfactory results because of the poor healing capacity of the articular cartilage. Smaller lesions (<100 mm2 or <10 mm) can be treated with less invasive procedures such as arthroscopic debridement, anterograde drilling, scaffold-based therapies, and augmentation with biological adjuvants. For patients with large lesions (>100 mm2 or >10 mm), cystic lesions, uncontained lesions, or patients who have failed prior bone marrow stimulation, management with autologous osteochondral transplantation is indicated.
Collapse
Affiliation(s)
- Mohammad T Azam
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, 171 Delancey Street, New York, NY 10002, USA
| | - James J Butler
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, 171 Delancey Street, New York, NY 10002, USA
| | - Matthew L Duenes
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, 171 Delancey Street, New York, NY 10002, USA
| | - Thomas W McAllister
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, 171 Delancey Street, New York, NY 10002, USA; University of Cambrdige School of Clinical Medicine, Box 111 Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Raymond C Walls
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, 171 Delancey Street, New York, NY 10002, USA
| | - Arianna L Gianakos
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, 171 Delancey Street, New York, NY 10002, USA
| | - John G Kennedy
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, 171 Delancey Street, New York, NY 10002, USA.
| |
Collapse
|
37
|
Arangath A, Duffy N, Alexandrov S, James S, Neuhaus K, Murphy M, Leahy M. Nanosensitive optical coherence tomography for detecting structural changes in stem cells. BIOMEDICAL OPTICS EXPRESS 2023; 14:1411-1427. [PMID: 37078060 PMCID: PMC10110307 DOI: 10.1364/boe.485082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/04/2023] [Accepted: 02/19/2023] [Indexed: 05/03/2023]
Abstract
Mesenchymal stromal cells (MSCs) are adult stem cells that have been widely investigated for their potential to regenerate damaged and diseased tissues. Multiple pre-clinical studies and clinical trials have demonstrated a therapeutic response following treatment with MSCs for various pathologies, including cardiovascular, neurological and orthopaedic diseases. The ability to functionally track cells following administration in vivo is pivotal to further elucidating the mechanism of action and safety profile of these cells. Effective monitoring of MSCs and MSC-derived microvesicles requires an imaging modality capable of providing both quantitative and qualitative readouts. Nanosensitive optical coherence tomography (nsOCT) is a recently developed technique that detects nanoscale structural changes within samples. In this study, we demonstrate for the first time, the capability of nsOCT to image MSC pellets following labelling with different concentrations of dual plasmonic gold nanostars. We show that the mean spatial period of MSC pellets increases following the labelling with increasing concentrations of nanostars. Additionally, with the help of extra time points and a more comprehensive analysis, we further improved the understanding of the MSC pellet chondrogenesis model. Despite the limited penetration depth (similar to conventional OCT), the nsOCT is highly sensitive in detecting structural alterations at the nanoscale, which may provide crucial functional information about cell therapies and their modes of action.
Collapse
Affiliation(s)
- Anand Arangath
- Tissue Optics and Microcirculation Imaging Facility, Physics, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Niamh Duffy
- Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - Sergey Alexandrov
- Tissue Optics and Microcirculation Imaging Facility, Physics, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Soorya James
- Tissue Optics and Microcirculation Imaging Facility, Physics, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Kai Neuhaus
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mary Murphy
- Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - Martin Leahy
- Tissue Optics and Microcirculation Imaging Facility, Physics, School of Natural Sciences, University of Galway, Galway, Ireland
- The Institute of Photonic Sciences (ICFO), Barcelona, Spain
| |
Collapse
|
38
|
Li DX, Ma Z, Szojka ARA, Lan X, Kunze M, Mulet-Sierra A, Westover L, Adesida AB. Non-hypertrophic chondrogenesis of mesenchymal stem cells through mechano-hypoxia programing. J Tissue Eng 2023; 14:20417314231172574. [PMID: 37216035 PMCID: PMC10192798 DOI: 10.1177/20417314231172574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/09/2023] [Indexed: 05/24/2023] Open
Abstract
Cartilage tissue engineering aims to generate functional replacements to treat cartilage defects from damage and osteoarthritis. Human bone marrow-derived mesenchymal stem cells (hBM-MSC) are a promising cell source for making cartilage, but current differentiation protocols require the supplementation of growth factors like TGF-β1 or -β3. This can lead to undesirable hypertrophic differentiation of hBM-MSC that progress to bone. We have found previously that exposing engineered human meniscus tissues to physiologically relevant conditions of the knee (mechanical loading and hypoxia; hence, mechano-hypoxia conditioning) increased the gene expression of hyaline cartilage markers, SOX9 and COL2A1, inhibited hypertrophic marker COL10A1, and promoted bulk mechanical property development. Adding further to this protocol, we hypothesize that combined mechano-hypoxia conditioning with TGF-β3 growth factor withdrawal will promote stable, non-hypertrophic chondrogenesis of hBM-MSC embedded in an HA-hydrogel. We found that the combined treatment upregulated many cartilage matrix- and development-related markers while suppressing many hypertrophic- and bone development-related markers. Tissue level assessments with biochemical assays, immunofluorescence, and histochemical staining confirmed the gene expression data. Further, mechanical property development in the dynamic compression treatment shows promise toward generating functional engineered cartilage through more optimized and longer culture conditions. In summary, this study introduced a novel protocol to differentiate hBM-MSC into stable, cartilage-forming cells.
Collapse
Affiliation(s)
- David Xinzheyang Li
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Civil and Environmental
Engineering, Faculty of Engineering, AB, University of Alberta, Edmonton, AB,
Canada
| | - Zhiyao Ma
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alexander RA Szojka
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xiaoyi Lan
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Civil and Environmental
Engineering, Faculty of Engineering, AB, University of Alberta, Edmonton, AB,
Canada
| | - Melanie Kunze
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lindsey Westover
- Department of Mechanical Engineering,
Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Adetola B Adesida
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
39
|
Haq-Siddiqi NA, Britton D, Kim Montclare J. Protein-engineered biomaterials for cartilage therapeutics and repair. Adv Drug Deliv Rev 2023; 192:114647. [PMID: 36509172 DOI: 10.1016/j.addr.2022.114647] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cartilage degeneration and injury are major causes of pain and disability that effect millions, and yet treatment options for conditions like osteoarthritis (OA) continue to be mainly palliative or involve complete replacement of injured joints. Several biomaterial strategies have been explored to address cartilage repair either by the delivery of therapeutics or as support for tissue repair, however the complex structure of cartilage tissue, its mechanical needs, and lack of regenerative capacity have hindered this goal. Recent advances in synthetic biology have opened new possibilities for engineered proteins to address these unique needs. Engineered protein and peptide-based materials benefit from inherent biocompatibility and nearly unlimited tunability as they utilize the body's natural building blocks to fabricate a variety of supramolecular structures. The pathophysiology and needs of OA cartilage are presented here, along with an overview of the current state of the art and next steps for protein-engineered repair strategies for cartilage.
Collapse
Affiliation(s)
- Nada A Haq-Siddiqi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States; Department of Chemistry, New York University, New York 10003, United States; Department of Radiology, New York University Grossman School of Medicine, New York 10016, United States; Department of Biomaterials, NYU College of Dentistry, New York, NY 10010, United States; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States.
| |
Collapse
|
40
|
Matthews EZ, Lanham S, White K, Kyriazi ME, Alexaki K, El-Sagheer AH, Brown T, Kanaras AG, J West J, MacArthur BD, Stumpf PS, Oreffo ROC. Single-cell RNA-sequence analysis of human bone marrow reveals new targets for isolation of skeletal stem cells using spherical nucleic acids. J Tissue Eng 2023; 14:20417314231169375. [PMID: 37216034 PMCID: PMC10192814 DOI: 10.1177/20417314231169375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 05/24/2023] Open
Abstract
There is a wealth of data indicating human bone marrow contains skeletal stem cells (SSC) with the capacity for osteogenic, chondrogenic and adipogenic differentiation. However, current methods to isolate SSCs are restricted by the lack of a defined marker, limiting understanding of SSC fate, immunophenotype, function and clinical application. The current study applied single-cell RNA-sequencing to profile human adult bone marrow populations from 11 donors and identified novel targets for SSC enrichment. Spherical nucleic acids were used to detect these mRNA targets in SSCs. This methodology was able to rapidly isolate potential SSCs found at a frequency of <1 in 1,000,000 in human bone marrow, with the capacity for tri-lineage differentiation in vitro and ectopic bone formation in vivo. The current studies detail the development of a platform to advance SSC enrichment from human bone marrow, offering an invaluable resource for further SSC characterisation, with significant therapeutic impact therein.
Collapse
Affiliation(s)
- Elloise Z Matthews
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
| | - Stuart Lanham
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Cancer Sciences, Faculty of Medicine,
University of Southampton, Southampton, UK
| | - Kate White
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
| | - Maria-Eleni Kyriazi
- College of Engineering and Technology,
American University of the Middle East, Kuwait
| | - Konstantina Alexaki
- Physics and Astronomy, Faculty of
Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Afaf H El-Sagheer
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford, Oxford, UK
- Chemistry Branch, Department of Science
and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez,
Egypt
| | - Tom Brown
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford, Oxford, UK
| | - Antonios G Kanaras
- Physics and Astronomy, Faculty of
Physical Sciences and Engineering, University of Southampton, Southampton, UK
- Institute for Life Sciences, University
of Southampton, Southampton, UK
| | - Jonathan J West
- Cancer Sciences, Faculty of Medicine,
University of Southampton, Southampton, UK
- Physics and Astronomy, Faculty of
Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Ben D MacArthur
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University
of Southampton, Southampton, UK
- Mathematical Sciences, University of
Southampton, Southampton, UK
| | - Patrick S Stumpf
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Joint Research Center for Computational
Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Richard OC Oreffo
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University
of Southampton, Southampton, UK
- College of Biomedical Engineering,
China Medical University, Taichung, Taiwan
| |
Collapse
|
41
|
Gutierrez RA, Fonseca VC, Darling EM. Chondrogenesis of Adipose-Derived Stem Cells Using an Arrayed Spheroid Format. Cell Mol Bioeng 2022; 15:587-597. [PMID: 36531862 PMCID: PMC9751248 DOI: 10.1007/s12195-022-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2022] Open
Abstract
Objective The chondrogenic response of adipose-derived stem cells (ASCs) is often assessed using 3D micromass protocols that use upwards of hundreds of thousands of cells. Scaling these systems up for high-throughput testing is technically challenging and wasteful given the necessary cell numbers and reagent volumes. However, adopting microscale spheroid cultures for this purpose shows promise. Spheroid systems work with only thousands of cells and microliters of medium. Methods Molded agarose microwells were fabricated using 2% w/v molten agarose and then equilibrated in medium prior to introducing cells. ASCs were seeded at 50, 500, 5k cells/microwell; 5k, 50k, cells/well plate; and 50k and 250k cells/15 mL centrifuge tube to compare chondrogenic responses across spheroid and micromass sizes. Cells were cultured in control or chondrogenic induction media. ASCs coalesced into spheroids/pellets and were cultured at 37 °C and 5% CO2 for 21 days with media changes every other day. Results All culture conditions supported growth of ASCs and formation of viable cell spheroids/micromasses. More robust growth was observed in chondrogenic conditions. Sulfated glycosaminoglycans and collagen II, molecules characteristics of chondrogenesis, were prevalent in both 5000-cell spheroids and 250,000-cell micromasses. Deposition of collagen I, characteristic of fibrocartilage, was more prevalent in the large micromasses than small spheroids. Conclusions Chondrogenic differentiation was consistently induced using high-throughput spheroid formats, particularly when seeding at cell densities of 5000 cells/spheroid. This opens possibilities for highly arrayed experiments investigating tissue repair and remodeling during or after exposure to drugs, toxins, or other chemicals. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00746-8.
Collapse
Affiliation(s)
- Robert A. Gutierrez
- Center for Biomedical Engineering, Brown University, Box G-B397, Providence, RI 02912 USA
| | - Vera C. Fonseca
- Department of Pathology and Laboratory Medicine, Providence, USA
| | - Eric M. Darling
- Center for Biomedical Engineering, Brown University, Box G-B397, Providence, RI 02912 USA
- Department of Pathology and Laboratory Medicine, Providence, USA
- School of Engineering, Brown University, Providence, USA
- Department of Orthopaedics, Brown University, Providence, USA
| |
Collapse
|
42
|
Carballo-Pedrares N, Sanjurjo-Rodriguez C, Señarís J, Díaz-Prado S, Rey-Rico A. Chondrogenic Differentiation of Human Mesenchymal Stem Cells via SOX9 Delivery in Cationic Niosomes. Pharmaceutics 2022; 14:2327. [PMID: 36365145 PMCID: PMC9693355 DOI: 10.3390/pharmaceutics14112327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 07/27/2023] Open
Abstract
Gene transfer to mesenchymal stem cells constitutes a powerful approach to promote their differentiation into the appropriate cartilage phenotype. Although viral vectors represent gold standard vehicles, because of their high efficiency, their use is precluded by important concerns including an elevated immunogenicity and the possibility of insertional mutagenesis. Therefore, the development of new and efficient non-viral vectors is under active investigation. In the present study, we developed new non-viral carriers based on niosomes to promote the effective chondrogenesis of human MSCs. Two different niosome formulations were prepared by varying their composition on non-ionic surfactant, polysorbate 80 solely (P80), or combined with poloxamer 407 (P80PX). The best niosome formulation was proven to transfer a plasmid, encoding for the potent chondrogenic transcription factor SOX9 in hMSC aggregate cultures. Transfection of hMSC aggregates via nioplexes resulted in an increased chondrogenic differentiation with reduced hypertrophy. These results highlight the potential of niosome formulations for gene therapy approaches focused on cartilage repair.
Collapse
Affiliation(s)
- Natalia Carballo-Pedrares
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, As Carballeiras, s/n. Campus de Elviña, 15071 A Coruña, Spain
| | - Clara Sanjurjo-Rodriguez
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, As Carballeiras, s/n. Campus de Elviña, 15071 A Coruña, Spain
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Spain
| | - Jose Señarís
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Spain
| | - Silvia Díaz-Prado
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, As Carballeiras, s/n. Campus de Elviña, 15071 A Coruña, Spain
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Spain
| | - Ana Rey-Rico
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, As Carballeiras, s/n. Campus de Elviña, 15071 A Coruña, Spain
| |
Collapse
|
43
|
The Effect of Human Bone Marrow Mesenchymal Stem Cell-Derived Exosomes on Cartilage Repair in Rabbits. Stem Cells Int 2022; 2022:5760107. [PMID: 36117721 PMCID: PMC9477595 DOI: 10.1155/2022/5760107] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have shown chondroprotective effects in cartilage repair. However, side effects caused by MSC treatment limit their application in clinic. As a cell-free therapy, MSC-derived exosomes (EXOs) have attracted much more attention in recent years. In the present study, we prepared EXOs from human bone marrow mesenchymal stem cells (hBMSCs) and examined their therapeutic potentials in cartilage repair. Our results showed that the prepared extracellular vesicles exhibit classical features of EXOs, such as cup-like shape, around 100 nm diameter, positive protein markers (CD81, TSG101, and Flotillin 1), and ability of internalization. In primary chondrocytes, the treatment of hBMSC-EXOs markedly increases cell viability and proliferation in a dose-dependent manner. Moreover, wound healing assay showed that hBMSC-EXOs accelerate cell migration in primary chondrocytes. JC-1 staining revealed that the mitochondrial membrane potential was enhanced by hBMSC-EXOs, indicating cell apoptosis was decreased in the presence of hBMSC-EXOs. In rabbits with articular cartilage defects, local administration with hBMSC-EXOs facilitates cartilage regeneration as evidenced by gross view and hematoxylin-eosin (H&E) and Saf-O/Fast Green staining. In addition, the International Cartilage Repair Society (ICRS) score was increased by the application of hBMSC-EXOs. Overall, our data indicate that the treatment with hBMSC-EXOs is a suitable cell-free therapy for treating cartilage defects, and these benefits are likely due to improved cell proliferation and migration in chondrocytes.
Collapse
|
44
|
Miceli M, Maruotti GM, Sarno L, Carbone L, Guida M, Pelagalli A. Preliminary Characterization of the Epigenetic Modulation in the Human Mesenchymal Stem Cells during Chondrogenic Process. Int J Mol Sci 2022; 23:9870. [PMID: 36077266 PMCID: PMC9456537 DOI: 10.3390/ijms23179870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Regenerative medicine represents a growing hot topic in biomedical sciences, aiming at setting out novel therapeutic strategies to repair or regenerate damaged tissues and organs. For this perspective, human mesenchymal stem cells (hMSCs) play a key role in tissue regeneration, having the potential to differentiate into many cell types, including chondrocytes. Accordingly, in the last few years, researchers have focused on several in vitro strategies to optimize hMSC differentiation protocols, including those relying on epigenetic manipulations that, in turn, lead to the modulation of gene expression patterns. Therefore, in the present study, we investigated the role of the class II histone deacetylase (HDAC) inhibitor, MC1568, in the hMSCs-derived chondrogenesis. The hMSCs we used for this work were the hMSCs obtained from the amniotic fluid, given their greater differentiation capacity. Our preliminary data documented that MC1568 drove both the improvement and acceleration of hMSCs chondrogenic differentiation in vitro, since the differentiation process in MC1568-treated cells took place in about seven days, much less than that normally observed, namely 21 days. Collectively, these preliminary data might shed light on the validity of such a new differentiative protocol, in order to better assess the potential role of the epigenetic modulation in the process of the hypertrophic cartilage formation, which represents the starting point for endochondral ossification.
Collapse
Affiliation(s)
- Marco Miceli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Giuseppe Maria Maruotti
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Laura Sarno
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Luigi Carbone
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Maurizio Guida
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
45
|
Kim JG, Rim YA, Ju JH. The Role of Transforming Growth Factor Beta in Joint Homeostasis and Cartilage Regeneration. Tissue Eng Part C Methods 2022; 28:570-587. [PMID: 35331016 DOI: 10.1089/ten.tec.2022.0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) is an important regulator of joint homeostasis, of which dysregulation is closely associated with the development of osteoarthritis (OA). In normal conditions, its biological functions in a joint environment are joint protective, but it can be dramatically altered in different contexts, making its therapeutic application a challenge. However, with the deeper insights into the TGF-β functions, it has been proven that TGF-β augments cartilage regeneration by chondrocytes, and differentiates both the precursor cells of chondrocytes and stem cells into cartilage-generating chondrocytes. Following documentation of the therapeutic efficacy of chondrocytes augmented by TGF-β in the last decade, there is an ongoing phase III clinical trial examining the therapeutic efficacy of a mixture of allogeneic chondrocytes and TGF-β-overexpressing cells. To prepare cartilage-restoring chondrocytes from induced pluripotent stem cells (iPSCs), the stem cells are differentiated mainly using TGF-β with some other growth factors. Of note, clinical trials evaluating the therapeutic efficacy of iPSCs for OA are scheduled this year. Mesenchymal stromal stem cells (MSCs) have inherent limitations in that they differentiate into the osteochondral pathway, resulting in the production of poor-quality cartilage. Despite the established essential role of TGF-β in chondrogenic differentiation of MSCs, whether the coordinated use of TGF-β in MSC-based therapy for degenerated cartilage is effective is unknown. We herein reviewed the general characteristics and mechanism of action of TGF-β in a joint environment. Furthermore, we discussed the core interaction of TGF-β with principal cells of OA cell-based therapies, the chondrocytes, MSCs, and iPSCs. Impact Statement Transforming growth factor-beta (TGF-β) has been widely used as a core regulator to improve or formulate therapeutic regenerative cells for degenerative joints. It differentiates stem cells into chondrocytes and improves the chondrogenic potential of differentiated chondrocytes. Herein, we discussed the overall characteristics of TGF-β and reviewed the comprehension and utilization of TGF-β in cell-based therapy for degenerative joint disease.
Collapse
Affiliation(s)
- Jung Gon Kim
- Division of Rheumatology, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
46
|
Venkatesan JK, Schmitt G, Speicher-Mentges S, Orth P, Madry H, Cucchiarini M. Effects of rAAV-mediated overexpression of bone morphogenetic protein 3 (BMP-3) on the chondrogenic fate of human bone marrow-derived mesenchymal stromal cells. Hum Gene Ther 2022; 33:950-958. [PMID: 35722904 DOI: 10.1089/hum.2022.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Implantation of genetically modified chondrogenically competent human bone marrow-derived mesenchymal stromal cells (hMSCs) is an attractive strategy to improve cartilage repair. The goal of this study was to examine the potential benefits of transferring a sequence coding for the bone morphogenetic protein 3 (BMP-3) that modulates bone and cartilage formation, using recombinant adeno-associated virus (rAAV) vectors on the chondroreparative activities of hMSCs. Undifferentiated and chondrogenically induced primary human MSCs were treated with an rAAV-hBMP-3 construct to evaluate its effects on the proliferative, metabolic, and chondrogenic activities of the cells compared with control (reporter rAAV-lacZ vector) condition. Effective BMP-3 expression was noted both in undifferentiated and chondrogenically differentiated cells in the presence of rAAV-hBMP-3 relative to rAAV-lacZ, stimulating cell proliferation and extracellular matrix (proteoglycans, type-II collagen) deposition together with higher levels of chondrogenic SOX9 expression. rAAV-hBMP-3 also advantageously decreased terminal differentiation, hypertrophy, and osteogenesis (type-I/-X collagen and alkaline phosphatase expression), with reduced levels of osteoblast-related RUNX-2 transcription factor and β-catenin (osteodifferentiation mediator) and enhanced PTHrP expression (inhibitor of hypertrophic maturation, calcification, and bone formation). This study shows the advantage of modifying hMSCs with rAAV-hBMP-3 to trigger adapted chondroreparative activities as a source of improved cells for transplantation protocols in cartilage defects.
Collapse
Affiliation(s)
- Jagadeesh Kumar Venkatesan
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Saarland, Germany;
| | - Gertrud Schmitt
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Saarland, Germany;
| | - Susanne Speicher-Mentges
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Saarland, Germany;
| | - Patrick Orth
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Saarland, Germany;
| | - Henning Madry
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Saarland, Germany;
| | - Magali Cucchiarini
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Germany, 66421;
| |
Collapse
|
47
|
Dong X, Askinas C, Kim J, Sherman JE, Bonassar LJ, Spector J. Efficient engineering of human auricular cartilage through mesenchymal stem cell chaperoning. J Tissue Eng Regen Med 2022; 16:825-835. [PMID: 35689509 DOI: 10.1002/term.3332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 01/08/2023]
Abstract
A major challenge to the clinical translation of tissue-engineered ear scaffolds for ear reconstruction is the limited auricular chondrocyte (hAuC) yield available from patients. Starting with a relatively small number of chondrocytes in culture results in dedifferentiation and loss of phenotype with subsequent expansion. To significantly decrease the number of chondrocytes required for human elastic cartilage engineering, we co-cultured human mesenchymal stem cells (hMSCs) with HAuCs to promote healthy elastic cartilage formation. HAuCs along with human bone marrow-derived hMSCs were encapsulated into 1% Type I collagen at 25 million/mL total cell density with different ratios (HAuCs/hMSCs: 10/90, 25/75, 50/50) and then injected into customized 3D-printed polylactic acid (PLA) ridged external scaffolds, which simulate the shape of the auricular helical rim, and implanted subcutaneously in nude rats for 1, 3 and 6 months. The explanted constructs demonstrated near complete volume preservation and topography maintenance of the ridged "helical" feature after 6 months with all ratios. Cartilaginous appearing tissue formed within scaffolds by 3 months, verified by histologic analysis demonstrating mature elastic cartilage within the constructs with chondrocytes seen in lacunae within a Type II collagen and proteoglycan-enriched matrix, and surrounded by a neoperichondrial external layer. Compressive mechanical properties comparable to human elastic cartilage were achieved after 6 months. Co-implantation of hAuCs and hMSCs in collagen within an external scaffold efficiently produced shaped human elastic cartilage without volume loss even when hAuC comprised only 10% of the implanted cell population, marking a crucial step toward the clinical translation of auricular tissue engineering.
Collapse
Affiliation(s)
- Xue Dong
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Carly Askinas
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Jongkil Kim
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - John E Sherman
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Lawrence J Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Jason Spector
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA.,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
48
|
O'Shea DG, Curtin CM, O'Brien FJ. Articulation inspired by nature: a review of biomimetic and biologically active 3D printed scaffolds for cartilage tissue engineering. Biomater Sci 2022; 10:2462-2483. [PMID: 35355029 PMCID: PMC9113059 DOI: 10.1039/d1bm01540k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
Abstract
In the human body, articular cartilage facilitates the frictionless movement of synovial joints. However, due to its avascular and aneural nature, it has a limited ability to self-repair when damaged due to injury or wear and tear over time. Current surgical treatment options for cartilage defects often lead to the formation of fibrous, non-durable tissue and thus a new solution is required. Nature is the best innovator and so recent advances in the field of tissue engineering have aimed to recreate the microenvironment of native articular cartilage using biomaterial scaffolds. However, the inability to mirror the complexity of native tissue has hindered the clinical translation of many products thus far. Fortunately, the advent of 3D printing has provided a potential solution. 3D printed scaffolds, fabricated using biomimetic biomaterials, can be designed to mimic the complex zonal architecture and composition of articular cartilage. The bioinks used to fabricate these scaffolds can also be further functionalised with cells and/or bioactive factors or gene therapeutics to mirror the cellular composition of the native tissue. Thus, this review investigates how the architecture and composition of native articular cartilage is inspiring the design of biomimetic bioinks for 3D printing of scaffolds for cartilage repair. Subsequently, we discuss how these 3D printed scaffolds can be further functionalised with cells and bioactive factors, as well as looking at future prospects in this field.
Collapse
Affiliation(s)
- Donagh G O'Shea
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
49
|
LncRNA HOTTIP facilitates osteogenic differentiation in bone marrow mesenchymal stem cells and induces angiogenesis via interacting with TAF15 to stabilize DLX2. Exp Cell Res 2022; 417:113226. [DOI: 10.1016/j.yexcr.2022.113226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
|
50
|
Ultra-Low Electromagnetic Fields Application on In Vitro Cartilage Regeneration: A Pilot Study to Improve Treatment of Osteoarticular Diseases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extremely low-frequency and low-intensity electromagnetic fields show positive effects on the treatment of several osteoarticular diseases, such as osteoarthritis, and are currently applied in the clinical setting with promising results on tissue regeneration. However, the biological mechanisms underlying the beneficial effects triggered by this type of physical stimulation still need to be deciphered. We tested the hypothesis that ultra-low complex electromagnetic fields stimulation using an innovative medical device could enhance chondrogenesis in human adipose-derived stem cells (ADSCs), and analyzed its biological effects. Chondrogenic lineage markers, like ACAN, SOX9, RUNX2, COL2A1, and COL10A1, were evaluated after 21 days of treatment. Thus far, we have provided preliminary evidence that a dedicated pattern of ultra-weak complex electromagnetic sequences emitted by a cutting-edge technology can promote cartilage regeneration, inducing the chondrogenic differentiation and maturity of ADSCs.
Collapse
|