1
|
Gomes MT, Palasiewicz K, Gadiyar V, Lahey K, Calianese D, Birge RB, Ucker DS. Phosphatidylserine externalization by apoptotic cells is dispensable for specific recognition leading to innate apoptotic immune responses. J Biol Chem 2022; 298:102034. [PMID: 35588784 PMCID: PMC9234239 DOI: 10.1016/j.jbc.2022.102034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Surface determinants newly expressed by apoptotic cells that are involved in triggering potent immunosuppressive responses, referred to as “innate apoptotic immunity (IAI)” have not been characterized fully. It is widely assumed, often implicitly, that phosphatidylserine, a phospholipid normally cloistered in the inner leaflet of cells and externalized specifically during apoptosis, is involved in triggering IAI, just as it plays an essential role in the phagocytic recognition of apoptotic cells. It is notable, however, that the triggering of IAI in responder cells is not dependent on the engulfment of apoptotic cells by those responders. Contact between the responder and the apoptotic target, on the other hand, is necessary to elicit IAI. Previously, we demonstrated that exposure of protease-sensitive determinants on the apoptotic cell surface are essential for initiating IAI responses; exposed glycolytic enzyme molecules were implicated in particular. Here, we report our analysis of the involvement of externalized phosphatidylserine in triggering IAI. To analyze the role of phosphatidylserine, we employed a panel of target cells that either externalized phosphatidylserine constitutively, independently of apoptosis, or did not, as well as their WT parental cells that externalized the phospholipid in an apoptosis-dependent manner. We found that the externalization of phosphatidylserine, which can be fully uncoupled from apoptosis, is neither sufficient nor necessary to trigger the profound immunomodulatory effects of IAI. These results reinforce the view that apoptotic immunomodulation and phagocytosis are dissociable and further underscore the significance of protein determinants localized to the cell surface during apoptosis in triggering innate apoptotic immunity.
Collapse
Affiliation(s)
- Marta T Gomes
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Karol Palasiewicz
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Kevin Lahey
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - David Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - David S Ucker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
2
|
Pattabiraman G, Palasiewicz K, Visvabharathy L, Freitag NE, Ucker DS. Apoptotic cells enhance pathogenesis of Listeria monocytogenes. Microb Pathog 2017; 105:218-225. [DOI: 10.1016/j.micpath.2017.02.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/14/2022]
|
3
|
Mutation of the Theiler's virus leader protein zinc-finger domain impairs apoptotic activity in murine macrophages. Virus Res 2013; 177:222-5. [PMID: 24036175 DOI: 10.1016/j.virusres.2013.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 01/01/2023]
Abstract
The Theiler's murine encephalomyelitis virus (TMEV) leader (L) protein zinc-finger domain was mutated to study its role in cell death in infection of the murine macrophage cell line M1-D, revealing that an intact zinc-finger domain is required for full apoptotic activity. A functional L zinc-finger domain was also required for activation of p38 MAPK that results in phosphorylation and activation of p53, and in turn, alteration of the conformation of the anti-apoptotic proteins Puma and Mcl-1, leading to the release of pro-apoptotic Bax and apoptosis through the intrinsic pathway. TMEV infection also inhibits host protein synthesis, a stress shown by others to induce apoptosis. Since inhibition of host protein synthesis follows rather than precedes activation of MKK3/6 and p38, it seems less likely that it triggers apoptosis in infected cells. Finally, we showed that the levels of reactive oxygen species following infection were consistent with apoptotic rather than necrotic cell death. Thus, these experiments support an important role for the TMEV L protein zinc-finger domain in apoptosis in an infected murine macrophage line.
Collapse
|
4
|
Ucker DS, Jain MR, Pattabiraman G, Palasiewicz K, Birge RB, Li H. Externalized glycolytic enzymes are novel, conserved, and early biomarkers of apoptosis. J Biol Chem 2012; 287:10325-10343. [PMID: 22262862 DOI: 10.1074/jbc.m111.314971] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The intriguing cell biology of apoptotic cell death results in the externalization of numerous autoantigens on the apoptotic cell surface, including protein determinants for specific recognition, linked to immune responses. Apoptotic cells are recognized by phagocytes and trigger an active immunosuppressive response ("innate apoptotic immunity" (IAI)) even in the absence of engulfment. IAI is responsible for the lack of inflammation associated normally with the clearance of apoptotic cells; its failure also has been linked to inflammatory and autoimmune pathology, including systemic lupus erythematosus and rheumatic diseases. Apoptotic recognition determinants underlying IAI have yet to be identified definitively; we argue that these molecules are surface-exposed (during apoptotic cell death), ubiquitously expressed, protease-sensitive, evolutionarily conserved, and resident normally in viable cells (SUPER). Using independent and unbiased quantitative proteomic approaches to characterize apoptotic cell surface proteins and identify candidate SUPER determinants, we made the surprising discovery that components of the glycolytic pathway are enriched on the apoptotic cell surface. Our data demonstrate that glycolytic enzyme externalization is a common and early aspect of cell death in different cell types triggered to die with distinct suicidal stimuli. Exposed glycolytic enzyme molecules meet the criteria for IAI-associated SUPER determinants. In addition, our characterization of the apoptosis-specific externalization of glycolytic enzyme molecules may provide insight into the significance of previously reported cases of plasminogen binding to α-enolase on mammalian cells, as well as mechanisms by which commensal bacteria and pathogens maintain immune privilege.
Collapse
Affiliation(s)
- David S Ucker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612 and.
| | - Mohit Raja Jain
- Center for Advanced Proteomics Research, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214; Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214
| | - Goutham Pattabiraman
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612 and
| | - Karol Palasiewicz
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612 and
| | - Raymond B Birge
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214
| | - Hong Li
- Center for Advanced Proteomics Research, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214; Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214.
| |
Collapse
|
5
|
Expression of apoptotic genes in immature and in vitro matured equine oocytes and cumulus cells. ZYGOTE 2011; 21:279-85. [PMID: 21933470 DOI: 10.1017/s0967199411000554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The gene expression of Bax, Bcl-2, survivin and p53, following in vitro maturation of equine oocytes, was compared in morphologically distinct oocytes and cumulus cells. Cumulus-oocyte complexes (COC) were harvested and divided into two groups: G1 - morphologically healthy cells; and G2 - less viable cells or cells with some degree of atresia. Total RNA was isolated from both immature and in vitro matured COC and real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to quantify gene expression. Our results showed there was significantly higher expression of survivin (P < 0.05) and lower expression of p53 (P < 0.01) in oocytes compared with cumulus cells in G1. No significant difference in gene expression was observed following in vitro maturation or in COC derived from G1 and G2. However, expression of the Bax gene was significantly higher in cumulus cells from G1 (P < 0.02).
Collapse
|
6
|
Packard BZ, Komoriya A. A method in enzymology for measuring hydrolytic activities in live cell environments. Methods Enzymol 2008; 450:1-19. [PMID: 19152853 DOI: 10.1016/s0076-6879(08)03401-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The capability of determining the physiologic role(s) of cellular enzymes requires probes with access to all intracellular and extracellular environments. Importantly, reporter molecules must be able to cross not only the plasma membrane but also enter organelles inside live cells without disturbing the physiologic integrity of the system under study. Additionally, each enzyme must recognize a probe by the same linear and conformational characteristics as it would a physiologic substrate or inhibitor. This chapter focuses on the design and use of cell- and tissue-permeable fluorogenic protease substrates. Their applications, which are far-reaching, include measurements for apoptosis, cytotoxicity, inflammation, cancer metastasis, and viral infections such as HIV. Recently, substitution of amino acids with nucleotides in the probe backbone has allowed measurements of nuclease activities and hybridization of oligonucleotides inside live cells and an example thereof is presented.
Collapse
|
7
|
Wijewickrama GT, Albanese A, Kim YJ, Oh YS, Murray PS, Takayanagi R, Tobe T, Masuda S, Murakami M, Kudo I, Ucker DS, Murray D, Cho W. Unique Membrane Interaction Mode of Group IIF Phospholipase A2. J Biol Chem 2006; 281:32741-54. [PMID: 16931517 DOI: 10.1074/jbc.m606311200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms by which secretory phospholipases A(2) (PLA(2)s) exert cellular effects are not fully understood. Group IIF PLA(2) (gIIFPLA(2)) is a structurally unique secretory PLA(2) with a long C-terminal extension. Homology modeling suggests that the membrane-binding surface of this acidic PLA(2) contains hydrophobic residues clustered near the C-terminal extension. Vesicle leakage and monolayer penetration measurements showed that gIIFPLA(2) had a unique ability to penetrate and disrupt compactly packed monolayers and bilayers whose lipid composition recapitulates that of the outer plasma membrane of mammalian cells. Fluorescence imaging showed that gIIFPLA(2) could also readily enter and deform plasma membrane-mimicking giant unilamellar vesicles. Mutation analysis indicates that hydrophobic residues (Tyr(115), Phe(116), Val(118), and Tyr(119)) near the C-terminal extension are responsible for these activities. When gIIFPLA(2) was exogenously added to HEK293 cells, it initially bound to the plasma membrane and then rapidly entered the cells in an endocytosis-independent manner, but the cell entry did not lead to a significant degree of phospholipid hydrolysis. GIIFPLA(2) mRNA was detected endogenously in human CD4(+) helper T cells after in vitro stimulation and exogenously added gIIFPLA(2) inhibited the proliferation of a T cell line, which was not seen with group IIA PLA(2). Collectively, these data suggest that unique membrane-binding properties of gIIFPLA(2) may confer special functionality on this secretory PLA(2) under certain physiological conditions.
Collapse
Affiliation(s)
- Gihani T Wijewickrama
- Department of Chemistry (M/C 111), University of Illinois, 845 West Taylor Street, Chicago, IL 60607, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cvetanovic M, Mitchell JE, Patel V, Avner BS, Su Y, van der Saag PT, Witte PL, Fiore S, Levine JS, Ucker DS. Specific recognition of apoptotic cells reveals a ubiquitous and unconventional innate immunity. J Biol Chem 2006; 281:20055-67. [PMID: 16707494 DOI: 10.1074/jbc.m603920200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purpose of physiological cell death is the noninflammatory clearance of cells that have become inappropriate or nonfunctional. Consistent with this function, the recognition of apoptotic cells by professional phagocytes, including macrophages and dendritic cells, triggers a set of potent anti-inflammatory responses manifest on multiple levels. The immediate-early inhibition of proinflammatory cytokine gene transcription in the phagocyte is a proximate consequence of recognition of the apoptotic corpse, independent of subsequent engulfment and soluble factor involvement. Here, we show that recognition is linked to a characteristic signature of responses, including MAPK signaling events and the ablation of proinflammatory transcription and cytokine secretion. Specific recognition and response occurs without regard to the origin (species, tissue type, or suicidal stimulus) of the apoptotic cell and does not involve Toll-like receptor signaling. These features mark this as an innate immunity fundamentally distinct from the discrimination of "self" versus "other" considered to be the hallmark of conventional immunity. This profound unconventional innate immune discrimination of effete from live cells is as ubiquitous as apoptotic cell death itself, manifest by professional and nonprofessional phagocytes and nonphagocytic cell types alike. Innate apoptotic immunity provides an intrinsic anti-inflammatory circuit that attenuates proinflammatory responses dynamically and may act systemically as a powerful physiological regulator of immunity.
Collapse
Affiliation(s)
- Marija Cvetanovic
- Department of Microbiology and Immunology, Section of Nephrology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mitchell JE, Cvetanovic M, Tibrewal N, Patel V, Colamonici OR, Li MO, Flavell RA, Levine JS, Birge RB, Ucker DS. The presumptive phosphatidylserine receptor is dispensable for innate anti-inflammatory recognition and clearance of apoptotic cells. J Biol Chem 2005; 281:5718-25. [PMID: 16317002 DOI: 10.1074/jbc.m509775200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of the presumptive phosphatidylserine receptor (PSR) in the recognition and engulfment of apoptotic cells, and the antiinflammatory response they exert, has been of great interest. Genetic deficiency of PSR in the mouse is lethal perinatally, and results to date have been ambiguous with regard to the phagocytic and inflammatory phenotypes associated with that deficiency. Recently, we found that the specific functional recognition of apoptotic cells is a ubiquitous property of virtually all cell types, including mouse embryo fibroblasts, and reflects an innate immunity that discriminates live from effete cells. Taking advantage of this property of fibroblasts, we generated, PSR(+/+), PSR(+/-), and PSR(-/-) fibroblast cell lines to examine definitively the involvement of PSR in apoptotic recognition and inflammatory modulation. Our data demonstrate that PSR-deficient cells are fully competent to recognize, engulf, and respond to apoptotic cells. Signal transduction in the responder cells, including the activation of Akt and Rac1, is unimpaired in the absence of PSR. We confirm as well that PSR is localized predominantly to the nucleus. However, it does not play a role in pro-inflammatory transcription or in the anti-inflammatory modulation of that transcriptional response triggered by apoptotic cells. We conclude that PSR is not involved generally in either specific innate recognition or engulfment of apoptotic cells.
Collapse
Affiliation(s)
- Justin E Mitchell
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 South Wolcott, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Suy S, Mitchell JB, Samuni A, Mueller S, Kasid U. Nitroxide tempo, a small molecule, induces apoptosis in prostate carcinoma cells and suppresses tumor growth in athymic mice. Cancer 2005; 103:1302-13. [PMID: 15685617 DOI: 10.1002/cncr.20898] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND In previous studies, nitroxide tempo (2, 2, 6, 6-tetramethyl-piperidine-1-oxyl), a small molecule, induced cell death in cancer cells. The current study examined the antineoplastic properties of tempo in the human hormone-dependent/hormone-independent prostate carcinoma models (LNCaP, DU-145, and PC-3). METHODS The apoptotic effects of tempo were examined by the flow cytometric analysis of cells labeled with fluorescein isothiocyanate-conjugated annexin-V, and by electron microscopy. Enzymatic assays were performed to measure the activities of 2 cysteine proteases, i.e., caspase-9 and caspase-3, in tempo-treated cells. The effects of tempo on cell proliferation and on cell cycle distribution profiles were measured by the flow cytometric assay using immunofluorescent staining of incorporated 5'-bromo-2'-deoxyuridine (BrdU) coupled with 7-amino-actinomycin D (7-AAD) staining of total DNA. The number of proliferating cells was also determined independently by enzyme-linked immunosorbent assay using chemiluminescent detection of incorporated BrdU. Subcutaneous growth of human prostate carcinoma in athymic mice was monitored after intratumoral administration of tempo into tumor-bearing mice. In addition, cell viability assays were performed to compare the cytotoxic effect of a combination of doxorubicin or mitoxantrone and tempo with single agents. RESULTS Tempo treatment of prostate carcinoma cells caused a significant increase in the number of apoptotic cells compared with control groups (tempo, 2.5 mM, 24 hours: DU-145, approximately 3.4-fold; PC-3, approximately 6-7-fold; tempo 1 mM, 24 hours: LNCaP, approximately 12-fold). Tempo-induced loss of cell viability was blocked partially or completely after pretreatment of cells with actinomycin-D or cycloheximide, suggesting a de novo macromolecule synthesis-dependent mechanism of cell death. Electron microscopy revealed aggregation and marginalization of chromatin in the nuclei of a large number of tempo-treated LNCaP cells. Tempo treatment of LNCaP cells resulted in enhanced activities of caspase-9 (tempo, 5 mM, 15 hours: approximately 2-fold) and caspase-3 (tempo, 2.5 mM, 24 hours: approximately 12-fold). Tempo treatment also led to an enhanced number of cells in G2/M phase of the cell cycle (tempo, 5.0 mM, 24 hours: DU-145, approximately 1.6-fold; PC-3, approximately 1.5-fold; LNCaP, approximately 5.3-fold), and decreased BrdU incorporation indicative of a decline in the number of proliferating cells (tempo, 2.5 mM, 24 or 48 hours; DU-145, approximately 2-3-fold; PC-3, approximately 1.2-fold; LNCaP, approximately 5-10-fold). Administration of tempo into LNCaP tumor-bearing mice resulted in a significant inhibition of tumor growth (percent initial tumor volume [Day 30, n = 4]: vehicle, 845.35 +/- 272.83; tempo, 9.72 +/- 9.72; tempo vs. vehicle, P < 0.02). In hormone-refractory prostate carcinoma cells, a combination of relatively low doses of tempo and doxorubicin or mitoxantrone caused enhanced cytotoxicity as compared with single agents. CONCLUSIONS These data demonstrated that nitroxide tempo induced apoptosis and activated a caspase-mediated signaling pathway in prostate carcinoma cells. Tempo treatment also caused cell cycle arrest in G2/M phase and decreased the number of proliferating cells (S phase). Tempo treatment of tumor-bearing mice led to inhibition of tumor growth, suggesting that tempo is a novel member of the small-molecule family of antineoplastic agents.
Collapse
Affiliation(s)
- Simeng Suy
- Department of Radiation Medicine, Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
11
|
Dewitte-Orr SJ, Zorzitto JR, Sutton LP, Bols NC. Preferential induction of apoptosis in the rainbow trout macrophage cell line, RTS11, by actinomycin D, cycloheximide and double stranded RNA. FISH & SHELLFISH IMMUNOLOGY 2005; 18:279-295. [PMID: 15561559 DOI: 10.1016/j.fsi.2004.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 08/02/2004] [Indexed: 05/24/2023]
Abstract
The rainbow trout macrophage cell line RTS11 was found to be considerably more sensitive than rainbow trout fibroblast (RTG-2) and Chinook salmon epithelial (CHSE-214) cell lines to killing by macromolecular synthesis inhibitors, actinomycin D (AMD) and cycloheximide (CHX), a synthetic double stranded RNA (dsRNA), polyinosinic:polycytidylic acid (poly IC), and combinations of poly IC with AMD or CHX. Exposures of 24-30 h to AMD or CHX alone killed RTS11, but not CHSE-214 and RTG-2, in basal medium, L-15, with or without fetal bovine serum (FBS) supplementation. A two-week exposure to poly IC killed RTS11 in L-15, whereas RTG-2 and CHSE-214 remained viable. At concentrations that caused very little or no cell death, CHX or AMD pretreatments or co-treatments sensitized RTS11 to poly IC, causing death within 30 h. In all cases death was by apoptosis as judged by two criteria. H33258 staining revealed a fragmented nuclear morphology, and genomic degradation into oligonucleosomal fragments was seen with agarose gel electrophoresis. With AMD- or CHX-induced death, killing seemed caspase-independent as the pan caspase inhibitor, z-VAD-fmk, failed to block killing. By contrast, z-VAD-fmk almost completely abrogated killing by co-treatments of poly IC and low concentrations of AMD or CHX, suggesting caspase dependence. Killing by both types of treatments was blocked by 2 aminopurine (2-AP), which suggests the involvement of dsRNA-dependent protein kinase (PKR). The sensitizing of RTS11 to poly IC killing by AMD or CHX could be explained by a decrease in the level of a short-lived anti-apoptotic protein(s) and/or by the triggering of a ribotoxic stress.
Collapse
Affiliation(s)
- S J Dewitte-Orr
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | | | | | |
Collapse
|
12
|
Abstract
Programmed cell death is a major component of both normal development and disease. The roles of cell death during either embryogenesis or pathogenesis, the signals that modulate this event, and the mechanisms of cell demise are the major subjects that drive research in this field. Increasing evidence obtained both in vitro and in vivo supports the hypothesis that a variety of cell death programs may be triggered in distinct circumstances. Contrary to the view that caspase-mediated apoptosis represents the standard programmed cell death, recent studies indicate that an apoptotic morphology can be produced independent of caspases, that autophagic execution pathways of cell death may be engaged without either the involvement of caspases or morphological signs of apoptosis, and that even the necrotic morphology of cell death may be consistently produced in some cases, including certain plants. Alternative cell death programs may imply novel therapeutic targets, with important consequences for attempts to treat diseases associated with disregulated programmed cell death.
Collapse
|
13
|
Cvetanovic M, Ucker DS. Innate immune discrimination of apoptotic cells: repression of proinflammatory macrophage transcription is coupled directly to specific recognition. THE JOURNAL OF IMMUNOLOGY 2004; 172:880-9. [PMID: 14707059 DOI: 10.4049/jimmunol.172.2.880] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Physiological cell death is a process the purpose of which is the elimination of functionally inappropriate cells in a manner that does not elicit an inflammatory response. We have shown previously that the ability of apoptotic corpses to be recognized by macrophages and to modulate the proinflammatory responses of those cells represents paradoxically a gain-of-function acquired during the physiological cell death process. Cells that die pathologically (that is, necrotic vs apoptotic corpses) also are recognized by macrophages but do not down-regulate macrophage inflammatory responses; the recognition of these two classes of native dying cells occurs via distinct and noncompeting mechanisms. We have examined the apoptotic modulation of proinflammatory cytokine gene transcription in macrophages (by real-time RT-PCR analysis) and the corresponding modulation of transcriptional activators (by transcriptional reporter analyses). Our data demonstrate that apoptotic cells target the proinflammatory transcriptional machinery of macrophages with which they interact, without apparent effect on proximal steps of Toll-like receptor signaling. The modulatory activity of the corpse is manifest as an immediate-early inhibition of proinflammatory cytokine gene transcription, and is exerted directly upon binding to the macrophage, independent of subsequent engulfment and soluble factor involvement. Recognition and inflammatory modulation represent key elements of an innate immune response that discriminates live from effete cells, and without regard to self.
Collapse
Affiliation(s)
- Marija Cvetanovic
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 South Walcott, Chicago, IL 60612, USA
| | | |
Collapse
|
14
|
Guimarães CA, Benchimol M, Amarante-Mendes GP, Linden R. Alternative programs of cell death in developing retinal tissue. J Biol Chem 2003; 278:41938-46. [PMID: 12917395 DOI: 10.1074/jbc.m306547200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined cell death in developing retinal tissue, following inhibition of protein synthesis, which kills undifferentiated post-mitotic cells. Ultrastructural features were found of both apoptosis and autophagy. Only approximately half of the degenerating cells were either terminal dUTP nick-end labeling (TUNEL)-positive or reacted with antibodies specific for activated caspases-3 or -9. Bongkrekic acid completely inhibited any appearance of cell death, whereas inhibitors of autophagy, caspases-9 or -3, prevented only TUNEL-positive cell death. Interestingly, inhibition of caspase-6 blocked TUNEL-negative cell death. Simultaneous inhibition of caspases-9 and -6 prevented cell death almost completely, but degeneration dependent on autophagy/caspase-9 still occurred under inhibition of both caspases-3 and -6. Thus, inhibition of protein synthesis induces in the developing retina various post-translational, mitochondria-dependent pathways of cell death. Autophagy precedes sequential activation of caspases-9 and -3, and DNA fragmentation, whereas, in parallel, caspase-6 leads to a TUNEL-negative form of cell death. Additional mechanisms of cell death may be engaged upon selective caspase inhibition.
Collapse
Affiliation(s)
- Cinthya A Guimarães
- Instituto de Biofísica, Universidade Federal do Rio de Janeiro, CCS bloco G, Cidade Universitária, 21949-900 Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
15
|
Lukovic D, Komoriya A, Packard BZ, Ucker DS. Caspase activity is not sufficient to execute cell death. Exp Cell Res 2003; 289:384-95. [PMID: 14499640 DOI: 10.1016/s0014-4827(03)00289-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Molecular studies of the physiological cell death process have focused attention on the role of effector caspases as critical common elements of the lethal mechanism. Diverse death signals act afferently via distinct signaling pathways to activate these resident proenzyme molecules post-translationally. Whether this molecular convergence represents the mechanistic point of irreversible commitment to cell death has not been established. That a number of caspase substrates are proteins that serve important roles in cellular homeostasis has led to the view that the acquisition of this activity must be the determinative step in cell death. Observations that caspases serve in a regulatory role to catalyze the appearance of new activities involved in orderly cellular dissolution challenge this model of death as a simple process of proteolytic destruction. We found previously that caspase-dependent nuclear cyclin dependent kinase 2 (Cdk2) activity appears to be necessary for cell death. Employing direct cytofluorimetric analyses of intracellular caspase activity and colony forming assays, we now show that transient blockade of caspase-dependent Cdk2 activity confers long-lived sparing from death on cells otherwise triggered to die and fully replete with caspase activity. These data demonstrate that caspases, while necessary for apoptosis, are not sufficient to exert lethality. Caspase activation per se does not represent an irreversible point of commitment to physiological cell death.
Collapse
Affiliation(s)
- Dunja Lukovic
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
16
|
Campos CBL, Bédard PA, Linden R. Selective involvement of the PI3K/PKB/bad pathway in retinal cell death. JOURNAL OF NEUROBIOLOGY 2003; 56:171-7. [PMID: 12838582 DOI: 10.1002/neu.10234] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The phosphoinositide-3-kinase (PI3K)/protein kinase B (PKB)/Bad signal transduction pathway is engaged in the control of apoptosis in many different cell types, particularly through phosphorylation of the Bcl-2 family protein Bad. We examined the involvement of this pathway in the control of programmed cell death in the retina of developing rats. PKB is constitutively phosphorylated in retinal tissue in vitro, whereas Bad was dephosphorylated both in Ser112 and Ser136. Cell death induced by either the PI3K inhibitor LY294002, or the general kinase inhibitor 2-aminopurine, were followed by PKB dephosphorylation, but PKB was not modulated during cell death induced by the protein synthesis inhibitor anisomycin. Treatment of retinal tissue cultures with forskolin, which increases intracellular levels of cAMP, partially blocked apoptosis induced by both anisomycin and 2-aminopurine, but not by LY294002, whereas forskolin invariably induced phosphorylation of Bad on both Ser112 and Ser136. The data suggest that Bad may be engaged in survival pathways in the immature retina, but pathways other than PI3K/PKB/Bad, and phosphorylation sites other than Ser112 and Ser136 in the Bad protein control cell survival in retinal tissue.
Collapse
Affiliation(s)
- Claudia B L Campos
- Instituto de Biofísica da UFRJ, CCS, bloco G, Cidade Universitaria, Rio de Janeiro, RJ, Brasil 21949-900
| | | | | |
Collapse
|
17
|
Petrs-Silva H, de Freitas FG, Linden R, Chiarini LB. Early nuclear exclusion of the transcription factor max is associated with retinal ganglion cell death independent of caspase activity. J Cell Physiol 2003; 198:179-87. [PMID: 14603520 DOI: 10.1002/jcp.10404] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We examined the behavior of the transcription factor Max during retrograde neuronal degeneration of retinal ganglion cells. Using immunohistochemistry, we found a progressive redistribution of full-length Max from the nucleus to the cytoplasm and dendrites of the ganglion cells following axon damage. Then, the axotomized cells lose all their content of Max, while undergoing nuclear pyknosis and apoptotic cell death. After treatment of retinal explants with either anisomycin or thapsigargin, the rate of nuclear exclusion of Max accompanied the rate of cell death as modulated by either drug. Treatment with a pan-caspase inhibitor abolished both TUNEL staining and immunoreactivity for activated caspase-3, but did not affect the subcellular redistribution of Max immunoreactivity after axotomy. The data show that nuclear exclusion of the transcription factor Max is an early event, which precedes and is independent of the activation of caspases, during apoptotic cell death in the central nervous system.
Collapse
Affiliation(s)
- Hilda Petrs-Silva
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|