1
|
Brito AF, Ribeiro M, Abrantes AM, Mamede AC, Laranjo M, Casalta-Lopes JE, Gonçalves AC, Sarmento-Ribeiro AB, Tralhão JG, Botelho MF. New Approach for Treatment of Primary Liver Tumors: The Role of Quercetin. Nutr Cancer 2016; 68:250-66. [PMID: 26943884 DOI: 10.1080/01635581.2016.1145245] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor (PLT), with cholangiocarcinoma (CC) being the second most frequent. Glucose transporter 1 (GLUT-1) expression is increased in PLTs and therefore it is suggested as a therapeutic target. Flavonoids, like quercetin, are GLUT-1 competitive inhibitors and may be considered as potential therapeutic agents for PLTs. The objective of this study was evaluation of quercetin anticancer activity in three human HCC cell lines (HepG2, HuH7, and Hep3B2.1-7) and in a human CC cell line (TFK-1). The possible synergistic effect between quercetin and sorafenib, a nonspecific multikinase inhibitor used in clinical practice in patients with advanced HCC, was also evaluated. It was found that in all the cell lines, quercetin induced inhibition of the metabolic activity and cell death by apoptosis, followed by increase in BAX/BCL-2 ratio. Treatment with quercetin caused DNA damage in HepG2, Hep3B2.1-7, and TFK-1 cell lines. The effect of quercetin appears to be independent of P53. Incubation with quercetin induced an increase in GLUT-1 membrane expression and a consequent reduction in the cytoplasmic fraction, observed as a decrease in (18)F-FDG uptake, indicating a GLUT-1 competitive inhibition. The occurrence of synergy when sorafenib and quercetin were added simultaneously to HCC cell lines was noticed. Thus, the use of quercetin seems to be a promising approach for PLTs through GLUT-1 competitive inhibition.
Collapse
Affiliation(s)
- Ana Filipa Brito
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Marina Ribeiro
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,c Faculty of Sciences and Technology, University of Coimbra , Coimbra , Portugal
| | - Ana Margarida Abrantes
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Ana Catarina Mamede
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,e CICS-UBI, Health Sciences Research Centre, University of Beira Interior , Covilhã , Portugal
| | - Mafalda Laranjo
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - João Eduardo Casalta-Lopes
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Ana Cristina Gonçalves
- b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,f Applied Molecular Biology and Hematology Group, Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Ana Bela Sarmento-Ribeiro
- b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,f Applied Molecular Biology and Hematology Group, Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - José Guilherme Tralhão
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,g Surgical Department , Surgery A, CHUC , Coimbra , Portugal
| | - Maria Filomena Botelho
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| |
Collapse
|
2
|
Carlsen I, Frøkiær J, Nørregaard R. Quercetin attenuates cyclooxygenase-2 expression in response to acute ureteral obstruction. Am J Physiol Renal Physiol 2015; 308:F1297-305. [PMID: 25810437 DOI: 10.1152/ajprenal.00514.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/16/2015] [Indexed: 11/22/2022] Open
Abstract
Unilateral ureteral obstruction (UUO) is associated with increased hydrostatic pressure, inflammation, and oxidative stress in the renal parenchyma. Previous studies have demonstrated marked cyclooxygenase (COX)-2 induction in renal medullary interstitial cells (RMICs) in response to UUO. The aim of the present study was to evaluate the effect of quercetin, a naturally occurring antioxidant, on COX-2 induction in vivo and in vitro. Rats subjected to 24 h of UUO were treated intraperitoneally with quercetin (50 mg·kg(-1)·day(-1)). Quercetin partly prevented COX-2 induction in the renal inner medulla in response to UUO. Moreover, RMICs exposed to conditions associated with obstruction, inflammation (produced by IL-1β), oxidative stress (produced by H2O2), and mechanical stress (produced by stretch) showed increased COX-2 expression. Interestingly, quercetin reduced COX-2 induction in RMICs subjected to stretched. Similarly, PGE2 production was markedly increased in RMICs exposed to stretch and was reversed to control levels by quercetin treatment. Furthermore, stretch-induced phosphorylation of ERK1/2 was blocked by quercetin, and inhibition of ERK1/2 attenuated stretch-induced COX-2 induction in RMICs. These results indicate that quercetin attenuated the induction of COX-2 expression and activity in RMICs exposed to mechanical stress as a consequence of acute UUO and that the MAPK ERK1/2 pathway might be involved in this quercetin-mediated reduction in COX-2.
Collapse
Affiliation(s)
- Inge Carlsen
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Abstract
Food-derived flavonoid quercetin, widely distributed in onions, apples, and tea, is able to inhibit growth of various cancer cells indicating that this compound can be considered as a good candidate for anticancer therapy. Although the exact mechanism of this action is not thoroughly understood, behaving as antioxidant and/or prooxidant as well as modulating different intracellular signalling cascades may all play a certain role. Such inhibitory activity of quercetin has been shown to depend first of all on cell lines and cancer types; however, no comprehensive site-specific analysis of this effect has been published. In this review article, cytotoxicity constants of quercetin measured in various human malignant cell lines of different origin were compiled from literature and a clear cancer selective action was demonstrated. The most sensitive malignant sites for quercetin revealed to be cancers of blood, brain, lung, uterine, and salivary gland as well as melanoma whereas cytotoxic activity was higher in more aggressive cells compared to the slowly growing cells showing that the most harmful cells for the organism are probably targeted. More research is needed to overcome the issues of poor water solubility and relatively low bioavailability of quercetin as the major obstacles limiting its clinical use.
Collapse
|
4
|
Sahin E, Sahin M, Sanlioğlu AD, Gümüslü S. KNK437, a benzylidene lactam compound, sensitises prostate cancer cells to the apoptotic effect of hyperthermia. Int J Hyperthermia 2011; 27:63-73. [PMID: 21204621 DOI: 10.3109/02656736.2010.528139] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hyperthermia is known to serve as a powerful tool in the treatment of prostate cancer which is commonly diagnosed in men. Quercetin and KNK437, Hsp70 inhibitors, play an important role in blocking thermotolerance in some cancer cells. In the present study we investigated the effects of KNK437 and quercetin on the acquisition of thermotolerance and heat-induced apoptosis. Also, it was examined whether the possible mechanism triggering apoptotic pathway included caspase-3 activation in prostate cancer cells. For this purpose, PC-3 and LNCaP cells were treated with hyperthermia following pretreatment with or without KNK437 or quercetin. Thermotolerance was investigated by colony formation assay in these cells, while Hsp70 mRNA levels were measured by real time RT-PCR. Sandwich ELISA was used for detection of Hsp70 protein levels. Apoptosis was detected by flow cytometric annexin V binding assay and by western blot analysis of procaspase-3 and cleaved poly (ADP-ribose) polymerase levels. In our study, KNK437 and quercetin inhibited thermotolerance in a dose-dependent manner in PC-3 cells. KNK437 and quercetin decreased heat-induced accumulation of Hsp70 mRNA and protein in PC-3 and LNCaP cells. KNK437 and quercetin pretreatment enhanced the apoptotic effect of hyperthermia in both cells. We found that KNK437 was more effective than quercetin in inducing apoptotic cell death, activation of caspase-3, and cleavage of PARP in prostate cancer cells. We suggest that KNK437 is a useful agent for enhancing the efficiency of hyperthermic therapy which has less toxic side-effects in prostate cancer.
Collapse
Affiliation(s)
- Emel Sahin
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | | | | | | |
Collapse
|
5
|
Shatalin YV, Shmarev AN. Oxidation of lecithin in the presence of dihydroquercetin and its complex with divalent iron ions. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910010112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Zhan J, Leslie Gunatilaka AA. Selective 4′-O-methylglycosylation of the pentahydroxy-flavonoid quercetin byBeauveria bassianaATCC 7159. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420600792169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Shen J, Zhang W, Wu J, Zhu Y. The synergistic reversal effect of multidrug resistance by quercetin and hyperthermia in doxorubicin-resistant human myelogenous leukemia cells. Int J Hyperthermia 2008; 24:151-9. [PMID: 18283591 DOI: 10.1080/02656730701843109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PURPOSE This study aimed to evaluate the multidrug resistance (MDR) reversal activity of quercetin (Que) in combination with hyperthermia (HT) in human myelogenous leukemia cells K562/A. METHODS The cytotoxicity of Que alone and the effect of Que and HT to doxorubicin (Dox) cytotoxicity were determined using MTT assay in K562 and K562/A cells. K562/A cells was heated with or without Que pretreatment, and the protein and mRNA levels of heat shock protein 70 (HSP70) and P-glycoprotein (P-gp) were determined by flow cytometry (FCM) and RT-PCR, respectively. Intracellular accumulation of Dox, cell cycle and apoptosis were monitored with FCM. RESULTS Que alone inhibited cell growth in a dose-dependent manner in K562 and K562/A cells. Either Que or HT alone had a weak reversal effect on Dox resistance, however, combination HT and Que showed a much more significant reversal effect on Dox resistance (reverse fold 9.49). The elevated protein expression and mRNA level of HSP70 and P-gp in response to HT were inhibited by Que. Pretreatment with Que caused the cells to accumulate Dox 8.3-fold higher than in control cells. In addition, Que induced apoptosis and G2/M arrest in a dose-dependent manner, and the combination of Que and HT was found to have a synergistic effect on apoptosis. CONCLUSIONS Que pretreatment could significantly enhance the MDR reversal activity of HT in resistant cell line, by sensitizing the cell to reversing MDR activity of HT.
Collapse
Affiliation(s)
- Jing Shen
- Affiliated Hospital, Academy of Military Medical Sciences, Beijing, China
| | | | | | | |
Collapse
|
8
|
Kudo M, Ishiwata T, Nakazawa N, Kawahara K, Fujii T, Teduka K, Naito Z. Keratinocyte growth factor-transfection-stimulated adhesion of colorectal cancer cells to extracellular matrices. Exp Mol Pathol 2007; 83:443-52. [PMID: 17706640 DOI: 10.1016/j.yexmp.2007.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 07/06/2007] [Accepted: 07/06/2007] [Indexed: 11/18/2022]
Abstract
The keratinocyte growth factor (KGF) regulates cell growth and behavior in an autocrine or paracrine manner. In colorectal cancer tissues, KGF is expressed in tumor cells and adjacent stromal fibroblasts. We have constructed a KGF-gene-transfected cell line (HCT15-KGF) from a colorectal cancer cell line, HCT-15, that expresses the KGF receptor, and studied the effects of KGF on cell behavior, particularly growth and adhesion to extracellular matrices (ECMs). The amount of KGF secreted from HCT15-KGF was significantly higher than that from a mock-transfected cell line (HCT15-MOCK). The modes of growth of these cell lines were similar. The degree of adhesion of HCT15-KGF to ECMs, including type-IV collagen and fibronectin was higher than that of HCT15-MOCK. The expressions of integrins in both cell lines were not significantly different. However, extracellular-regulated kinase-1 and -2 (ERK1/2) phosphorylation and focal adhesion kinase (FAK) expression that regulate the adhesive functions of integrin families were enhanced in HCT15-KGF. U0126, an inhibitor of the ERK upstream regulator MEK, attenuated the adhesion and spreading of HCT15-KGF cells to type-IV collagen. These results indicate that KGF enhances the adhesion of colorectal cancer cells to type-IV collagen through ERK and FAK signaling pathways.
Collapse
Affiliation(s)
- Mitsuhiro Kudo
- Department of Integrative Oncological Pathology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Polyphenols constitute an important group of phytochemicals that gained increased research attention since it was found that they could affect cancer cell growth. Initial evidence came from epidemiologic studies suggesting that a diet that includes regular consumption of fruits and vegetables (rich in polyphenols) significantly reduces the risk of many cancers. In the present work we briefly review the effects of polyphenols on cancer cell fate, leading towards growth, differentiation and apoptosis. Their action can be attributed not only to their ability to act as antioxidants but also to their ability to interact with basic cellular mechanisms. Such interactions include interference with membrane and intracellular receptors, modulation of signaling cascades, interaction with the basic enzymes involved in tumor promotion and metastasis, interaction with oncogenes and oncoproteins, and, finally, direct or indirect interactions with nucleic acids and nucleoproteins. These actions involve almost the whole spectrum of basic cellular machinery--from the cell membrane to signaling cytoplasmic molecules and to the major nuclear components--and provide insights into their beneficial health effects. In addition, the actions justify the scientific interest in this class of compounds, and provide clues about their possible pharmaceutical exploitation in the field of oncology.
Collapse
Affiliation(s)
- M Kampa
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, P.O. Box 2208, 71003 Heraklion, Greece
| | | | | | | |
Collapse
|
10
|
Suzuki JI, Ogawa M, Maejima Y, Isobe K, Tanaka H, Sagesaka YM, Isobe M. Tea catechins attenuate chronic ventricular remodeling after myocardial ischemia in rats. J Mol Cell Cardiol 2006; 42:432-40. [PMID: 17174976 DOI: 10.1016/j.yjmcc.2006.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 10/15/2006] [Accepted: 10/20/2006] [Indexed: 11/16/2022]
Abstract
Tea catechins have many biological functions; these effects are induced by the suppression of several inflammatory factors. However, the effects of catechins on ventricular remodeling after myocardial ischemia have not been well investigated. To test the hypothesis that catechins can attenuate chronic ventricular remodeling after myocardial ischemia, we performed oral administration of catechins into rat myocardial ischemia models. We analyzed the mechanisms using physiological, pathological and molecular examinations. Although severe myocardial fibrosis with enhancement of inflammatory factors were observed in the non-treated ischemia group on day 28, catechins attenuated these changes with suppressed NF-kappaB and matrix metalloproteinases without systemic adverse effects. Catechins are potent for the suppression of chronic ventricular remodeling after myocardial ischemia because they are critically involved in the suppression of several inflammatory genes.
Collapse
Affiliation(s)
- Jun-ichi Suzuki
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Tytell M, Hooper PL. Heat shock proteins: new keys to the development of cytoprotective therapies. Expert Opin Ther Targets 2005; 5:267-87. [PMID: 15992180 DOI: 10.1517/14728222.5.2.267] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
All cells, from bacterial to human, have a common, intricate response to stress that protects them from injury. Heat shock proteins (Hsps), also known as stress proteins and molecular chaperones, play a central role in protecting cellular homeostatic processes from environmental and physiologic insult by preserving the structure of normal proteins and repairing or removing damaged ones. An understanding of the interplay between Hsps and cell stress tolerance will provide new tools for treatment and drug design that maximise preservation or restoration of health. For example, the increased vulnerability of tissues to injury in some conditions, such as ageing, diabetes mellitus and menopause, or with the use of certain drugs,, such as some antihypertensive medications, is associated with an impaired Hsp response. Additionally, diseases that are associated with tissue oxidation, free radical formation, disorders of protein folding, or inflammation, may be improved therapeutically by elevated expression of Hsps. The accumulation of Hsps, whether induced physiologically, pharmacologically, genetically, or by direct administration of the proteins, is known to protect the organism from a great variety of pathological conditions, including myocardial infarction, stroke, sepsis, viral infection, trauma, neurodegenerative diseases, retinal damage, congestive heart failure, arthritis, sunburn, colitis, gastric ulcer, diabetic complications and transplanted organ failure. Conversely, lowering Hsps in cancer tissues can amplify the effectiveness of chemo- or radiotherapy. Treatments and agents that induce Hsps include hyperthermia, heavy metals (zinc and tin), salicylates, dexamethasone, cocaine, nicotine, alcohol, alpha-adrenergic agonists, PPAR-gamma agonists, bimoclomol, geldanamycin, geranylgeranylacetone and cyclopentenone prostanoids. Compounds that suppress Hsps include quercetin (a bioflavinoid), 15-deoxyspergualin (an immunosuppressive agent) and retinoic acid. Researchers who are cognisant of the Hsp-related effects of these and other agents will be able to use them to develop new therapeutic paradigms.
Collapse
Affiliation(s)
- M Tytell
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
12
|
Takatsume Y, Maeta K, Izawa S, Inoue Y. Enrichment of yeast thioredoxin by green tea extract through activation of Yap1 transcription factor in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:332-337. [PMID: 15656669 DOI: 10.1021/jf048818h] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Thioredoxin (TRX) is an important antioxidant present in all types of organisms. Besides its role as an antioxidant, TRX protects the gastric mucosa due to its antiinflammatory effect. In addition, TRX decreases allergenicity; therefore, the oral administration of TRX is of considerable interest with respect to its clinical use as well as the development of functional foods containing TRX. We have attempted to enrich the cellular TRX content in Saccharomyces cerevisiae, and found that green tea extract (Sunphenon), which is rich in catechins (polyphenols), activates the Yap1 transcription factor, leading to the induction of TRX2, a target of Yap1. Production of yeast TRX was monitored by both a TRX2-lacZ reporter expression assay and Western blotting using an anti-yeast TRX antibody. Maximal production of TRX was achieved in a medium containing 0.1% green tea extract at pH 7.6. We discuss the underlying mechanism by which green tea extract activates Yap1.
Collapse
Affiliation(s)
- Yoshifumi Takatsume
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | |
Collapse
|
13
|
Yáñez J, Vicente V, Alcaraz M, Castillo J, Benavente-García O, Canteras M, Teruel JAL. Cytotoxicity and Antiproliferative Activities of Several Phenolic Compounds Against Three Melanocytes Cell Lines: Relationship Between Structure and Activity. Nutr Cancer 2004; 49:191-9. [PMID: 15489212 DOI: 10.1207/s15327914nc4902_11] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Polyphenolic compounds are widely distributed in the vegetable kingdom and are therefore consumed regularly in the human diet. Epidemiological studies suggest that foods rich in polyphenolic compounds contribute to reducing the risk of cancer. The purpose of our work is to: 1) study the possible cytotoxicity and antiproliferative effects of 13 polyphenolic compounds on 3 cell lines of melanocytes, 2 of melanoma (B16F10 and SK-MEL-1), and 1 of nontransformed melanocytes (Melan-a); and 2) identify the possible relationship between the chemical structure of the tested compounds and their effect on cellular viability. The said polyphenolic compounds corresponded to 8 flavonoids with varying hydroxyl and methoxyl substituents, related structurally through the oxidation state of their flavonoid skeleton, a catechin polymer and 4 phenolic acids. The cytotoxic activity of all the studied compounds was modest or not apparent. The flavonoids luteolin, tangeretin, baicalein, quercetin, and myricetin, and gallic acid showed antiproliferative effects on the tested lines. Our results suggest that a correlation exists between the structural oxidation state and the position, number, and nature of substituents of the polyphenolic compounds studied and their antiproliferative effects.
Collapse
Affiliation(s)
- Josefa Yáñez
- Department of Pathology, Faculty of Medicine, University of Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Martínez C, Yàñez J, Vicente V, Alcaraz M, Benavente-García O, Castillo J, Lorente J, Lozano JA. Effects of several polyhydroxylated flavonoids on the growth of B16F10 melanoma and Melan-a melanocyte cell lines: influence of the sequential oxidation state of the flavonoid skeleton. Melanoma Res 2003; 13:3-9. [PMID: 12569278 DOI: 10.1097/00008390-200302000-00002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The response of B16F10 melanoma and Melan-a melanocyte cell lines to treatment with five polyhydroxylated flavonoids and gallic acid, after 24 and 72 h of exposure, was determined, and the relationship between any antiproliferative effects observed and the chemical structure is discussed. After 24 h, none of the studied compounds showed significant cytotoxic activity in the B16F10 cell line, whereas compounds with an adjacent trihydroxylated substitution pattern did affect the viability of the Melan-a cell line. After 72 h of exposure, myricetin, baicalein and gallic acid significantly inhibited both B16F10 and Melan-a cell cultures, whereas luteolin and quercetin had only a moderate effect. Eriodictyol only had an effect on Melan-a cell viability, which was reduced slightly. These results suggest that the presence of a C2-C3 double bond and three adjacent hydroxyl groups in the flavonoid A- or B-rings confers greater antiproliferative activity to the flavonoid.
Collapse
Affiliation(s)
- C Martínez
- Pathology Department, Faculty of Medicine, University of Murcia, 30100 Espinardo, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Flavonoids are plant pigments that are synthesised from phenylalanine, generally display marvelous colors known from flower petals, mostly emit brilliant fluorescence when they are excited by UV light, and are ubiquitous to green plant cells. The flavonoids are used by botanists for taxonomical classification. They regulate plant growth by inhibition of the exocytosis of the auxin indolyl acetic acid, as well as by induction of gene expression, and they influence other biological cells in numerous ways. Flavonoids inhibit or kill many bacterial strains, inhibit important viral enzymes, such as reverse transcriptase and protease, and destroy some pathogenic protozoans. Yet, their toxicity to animal cells is low. Flavonoids are major functional components of many herbal and insect preparations for medical use, e.g., propolis (bee's glue) and honey, which have been used since ancient times. The daily intake of flavonoids with normal food, especially fruit and vegetables, is 1-2 g. Modern authorised physicians are increasing their use of pure flavonoids to treat many important common diseases, due to their proven ability to inhibit specific enzymes, to simulate some hormones and neurotransmitters, and to scavenge free radicals.
Collapse
Affiliation(s)
- Bent H Havsteen
- Department of Biochemistry, University of Kiel, Olshausenstrasse 40, D-24098, Kiel, Germany.
| |
Collapse
|
16
|
Dobbin CA, Smith NC, Johnson AM. Heat shock protein 70 is a potential virulence factor in murine toxoplasma infection via immunomodulation of host NF-kappa B and nitric oxide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:958-65. [PMID: 12097402 DOI: 10.4049/jimmunol.169.2.958] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We propose that the 70-kDa heat shock protein (HSP70) protects virulent Toxoplasma gondii from the effects of the host by immunomodulation. This hypothesis was tested using quercetin and antisense oligonucleotides targeting the start codon of the virulent T. gondii HSP70 gene. Oligonucleotides were transiently transfected into two virulent (RH, ENT) and two avirulent (ME49, C) strains of T. gondii, significantly reducing HSP70 expression in treated parasites. Virulent parasites with reduced HSP70 expression displayed reduced proliferation in vivo, as measured by the number of tachyzoites present in spleens of infected mice. They also exhibited an enhanced rate of conversion from tachyzoites to bradyzoites in vitro. Our results implicate HSP70 as a means by which virulent strains of T. gondii evade host proinflammatory responses: when RAW 264.7 cells were exposed to parasites with reduced HSP70 expression, differential expression of inducible NO synthase (iNOS) and cell NO production were observed between infections with normal and HSP70-deficient T. gondii. iNOS message levels were significantly increased when host cells were infected with HSP70 reduced virulent tachyzoites and HSP70-related inhibition of iNOS transcription resulted in altered host NO production by virulent T. gondii infection. Virulent parasites expressing reduced levels of HSP70 initiated significantly more NF-kappa B activation in host splenocytes than infections with untreated parasites. Neither proliferative ability nor conversion from tachyzoites to bradyzoites was affected by lack of HSP70 in avirulent strains of T. gondii. Furthermore, avirulent T. gondii strains induced high levels of host iNOS expression and NO production, regardless of HSP70 expression in these parasites, and inhibition of HSP70 had no significant effects on translocation of NF-kappa B to the nucleus. Therefore, the 70-kDa parasite stress protein may be part of an important survival strategy by which virulent strains down-regulate host parasiticidal mechanisms.
Collapse
Affiliation(s)
- Caroline A Dobbin
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
17
|
Rodriguez J, Yáñez J, Vicente V, Alcaraz M, Benavente-García O, Castillo J, Lorente J, Lozano JA. Effects of several flavonoids on the growth of B16F10 and SK-MEL-1 melanoma cell lines: relationship between structure and activity. Melanoma Res 2002; 12:99-107. [PMID: 11930105 DOI: 10.1097/00008390-200204000-00001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although flavonoids seem to be capable of acting at all stages of the carcinogenic process, little information is available on their action in melanoma cell lines. The aim of this study was to assess the response of B16F10 and SK-MEL-1 melanoma cell lines to treatment with six different flavonoids after 24 and 72 h of exposure and to relate the response to their structure. We then compared the findings with those for melphalan treatment. When cultures were treated for 24 h, only slight inhibition at the highest concentrations (25 and 50 microM) of tangeretin and luteolin were observed, whereas melphalan caused a dose-related inhibition of growth at all concentrations. Quercetin, hesperetin, 7,3'-dimethylhesperetin and eriodictyol did not produce any effect at 24 h on B16F10 or SK-MEL-1 cells, results which point to the low toxicity of flavonoids. After 72 h of exposure culture growth was inhibited by 7,3'-dimethylhesperetin at 50 microM, but lower concentrations had no effect. Tangeretin was the most effective of the flavonoids in inhibiting B16F10 and SK-MEL-1 cell growth, showing a clear dose-response curve after 72 h. These results suggest that the absence of the C2-C3 double bond on hydroxylated flavonoids results in a loss of effect on both the cell lines, while the higher activity of tangeretin compared with 7,3'-dimethylhesperetin suggests that the presence of at least three adjacent methoxyl groups confers a more potent antiproliferative effect.
Collapse
Affiliation(s)
- J Rodriguez
- Department of Pathology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cytotoxicity of flavonoids on cancer cell lines. Structure-activity relationship. BIOACTIVE NATURAL PRODUCTS (PART H) 2002. [DOI: 10.1016/s1572-5995(02)80050-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Wu BY, Yu AC. Quercetin inhibits c-fos, heat shock protein, and glial fibrillary acidic protein expression in injured astrocytes. J Neurosci Res 2000; 62:730-6. [PMID: 11104512 DOI: 10.1002/1097-4547(20001201)62:5<730::aid-jnr13>3.0.co;2-k] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Quercetin, a bioflavonoid, is found widely in many kinds of fruits and vegetables. It is known to engage in many bioactivities, such as interfering with of the progress of stress responses to injury. In the present study, we investigated the effects of quercetin on some injury responses in primary cultures of astrocytes. These injury responses included the elevation of c-fos protein, heat shock protein (HSP70), and glial fibrillary acidic protein (GFAP). After heat shock insult, the levels of c-fos protein and HSP70 in astrocytes increased. With quercetin treatment, these proteins were significantly reduced. The inhibition of these injury responses by quercetin in astrocytes indicated a dose dependency, with the highest effect at 100 microM. We have previously established a scratch injury model in a primary culture of astrocytes. In that model, astrocytes responded to the scratch injury by an elevation in their GFAP level and formation of hypertrophic cell processes, which extend into the scratch areas. Quercetin treatment reduced the number of hypertrophic cell processes being extended into the scratch areas. With 100 microM of quercetin, there was a complete inhibition of the formation of the hypertrophic cell process. Western blot analysis for GFAP indicated that quercetin significantly reduced the induction of GFAP in the scratch model. At 100 microM, the total GFAP content in the injured cultures was reduced to a level lower than that of the control. This implied that quercetin might possess an antigliotic property.
Collapse
Affiliation(s)
- B Y Wu
- Shanghai Brain Research Institute and Shanghai Research Center of Life Sciences, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|