1
|
Zhigulin AS, Novikova AO, Barygin OI. Mechanisms of NMDA Receptor Inhibition by Biguanide Compounds. Pharmaceuticals (Basel) 2024; 17:1234. [PMID: 39338396 PMCID: PMC11434645 DOI: 10.3390/ph17091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are inhibited by many medicinal drugs. The recent successful repurposing of NMDA receptor antagonists ketamine and dextromethorphan for the treatment of major depressive disorder further enhanced the interest in this field. In this work, we performed a screening for the activity against native NMDA receptors of rat CA1 hippocampal pyramidal neurons among biguanide compounds using the whole-cell patch-clamp method. Antimalarial biguanides proguanil and cycloguanil, as well as hypoglycemic biguanide phenformin, inhibited them in micromolar concentrations, while another hypoglycemic biguanide metformin and antiviral biguanide moroxydine were practically ineffective. IC50 values at -80 mV holding voltage were 3.4 ± 0.6 µM for cycloguanil, 9.0 ± 2.2 µM for proguanil and 13 ± 1 µM for phenformin. The inhibition by all three compounds was not competitive. Cycloguanil acted as an NMDA receptor voltage-dependent trapping channel blocker, while proguanil and phenformin acted as allosteric inhibitors. Our results support the potential clinical repurposing of biguanide compounds for the treatment of neurodegenerative disorders linked to glutamatergic excitotoxicity while also providing a better understanding of structural determinants of NMDA receptor antagonism by biguanides.
Collapse
Affiliation(s)
| | | | - Oleg I. Barygin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.S.Z.); (A.O.N.)
| |
Collapse
|
2
|
Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev 2021; 67:101268. [PMID: 33556548 DOI: 10.1016/j.arr.2021.101268] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of obesity is a major challenge for health policymakers due to its far-reaching effects on population health and potentially overwhelming financial burden on healthcare systems. Obesity is associated with an increased risk of developing acute and chronic diseases, including hypertension, stroke, myocardial infarction, cardiovascular disease, diabetes, and cancer. Interestingly, the metabolic dysregulation associated with obesity is similar to that observed in normal aging, and substantial evidence suggests the potential of obesity to accelerate aging. Therefore, understanding the mechanism of fat tissue dysfunction in obesity could provide insights into the processes that contribute to the metabolic dysfunction associated with the aging process. Here, we review the molecular and cellular mechanisms underlying both obesity and aging, and how obesity and aging can predispose individuals to chronic health complications. The potential of lifestyle and pharmacological interventions to counter obesity and obesity-related pathologies, as well as aging, is also addressed.
Collapse
|
3
|
Svirskiene N, Pampuscenko K, Svirskis G, Borutaite V. Different effects of metformin and phenformin on hypoxia-induced Ca 2+ fluxes in cultured primary neurons. Brain Res 2020; 1750:147151. [PMID: 33039412 DOI: 10.1016/j.brainres.2020.147151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023]
Abstract
Recent evidence suggests that metformin and phenformin may exert beneficial effects against neuronal injury in the ischemic brain, however, the difference of action between these two drugs and the molecular mechanism of such protection is not clear. In this study, we investigated whether mild hypoxia-affected neurons exhibit changes in cytosolic calcium handling and whether metformin and phenformin exert any effect on calcium homeostasis in hypoxia-affected neurons. Cultured primary rat cortical cells were stained with calcium sensitive dye Oregon Green 488 BAPTA-1 AM and spontaneous calcium dependent changes of fluorescence were recorded. Using obtained fluorescence traces we estimated changes in relative amplitude of recorded spontaneous signals, changes in frequency of spontaneous activity, and changes in decay of fluorescence traces. We found that hypoxia caused reduction of the relative signal amplitude, increased the spontaneous activity, and slowed the decay of calcium concentration. After pre-treatment of cells with 0.1-0.5 mM metformin, the relative signal amplitude increased and the frequency of spontaneous signals decreased in hypoxia-affected neurons. However, pre-treatment with 1-25 µM phenformin neither increased the relative signal amplitude nor reduced the frequency of spontaneous signals. The decay of fluorescence traces became faster after application of metformin or phenformin comparing to neurons under hypoxic conditions. These results suggest different action of metformin and phenformin in improvement of Ca2+ homeostasis in hypoxia-affected neurons, which may have different effects on neuronal survival and functions after hypoxia/ischemia.
Collapse
Affiliation(s)
- Natasa Svirskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Katryna Pampuscenko
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gytis Svirskis
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vilmante Borutaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
4
|
Jacob S, Knoll S, Huhn C, Köhler HR, Tisler S, Zwiener C, Triebskorn R. Effects of guanylurea, the transformation product of the antidiabetic drug metformin, on the health of brown trout ( Salmo trutta f. fario). PeerJ 2019; 7:e7289. [PMID: 31338260 PMCID: PMC6626654 DOI: 10.7717/peerj.7289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022] Open
Abstract
Background Guanylurea is the main transformation product of the antidiabetic drug metformin, which is one of the most prescribed pharmaceuticals worldwide. Due to the high rate of microbial degradation of metformin in sewage treatment plants, guanylurea occurs in higher concentrations in surface waters than its parent compound and could therefore affect aquatic wildlife. In this context, data for fish are scarce up to now which made us investigate the health of brown trout (Salmo trutta f. fario) in response to guanylurea. Methods In two experiments, eggs plus developing larvae and juvenile brown trout were exposed to three different concentrations of guanylurea (10, 100 and 1,000 µg/L) and, as a negative control, filtered tap water without this compound. Low internal concentrations were determined. The investigated parameters were mortality, length, weight, condition factor, tissue integrity of the liver and kidney, levels of stress proteins and lipid peroxides, as well as behavioural and developmental endpoints. It was found that guanylurea did not significantly change any of these parameters in the tested concentration range. Results In conclusion, these results do not give rise to concern that guanylurea could negatively affect the health or the development of brown trout under field conditions. Nevertheless, more studies focusing on further parameters and other species are highly needed for a more profound environmental risk assessment of guanylurea.
Collapse
Affiliation(s)
- Stefanie Jacob
- University of Tübingen, Animal Physiological Ecology, Tübingen, Germany
| | - Sarah Knoll
- University of Tübingen, Effect-based Environmental Analysis, Tübingen, Germany
| | - Carolin Huhn
- University of Tübingen, Effect-based Environmental Analysis, Tübingen, Germany
| | - Heinz-R Köhler
- University of Tübingen, Animal Physiological Ecology, Tübingen, Germany
| | - Selina Tisler
- University of Tübingen, Environmental Analytical Chemistry, Tübingen, Germany
| | - Christian Zwiener
- University of Tübingen, Environmental Analytical Chemistry, Tübingen, Germany
| | - Rita Triebskorn
- University of Tübingen, Animal Physiological Ecology, Tübingen, Germany.,Steinbeis Transfer Center for Ecotoxicology and Ecophysiology, Rottenburg, Germany
| |
Collapse
|
5
|
MacDougall G, Anderton RS, Mastaglia FL, Knuckey NW, Meloni BP. Mitochondria and neuroprotection in stroke: Cationic arginine-rich peptides (CARPs) as a novel class of mitochondria-targeted neuroprotective therapeutics. Neurobiol Dis 2018; 121:17-33. [PMID: 30218759 DOI: 10.1016/j.nbd.2018.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/26/2018] [Accepted: 09/11/2018] [Indexed: 01/11/2023] Open
Abstract
Stroke is the second leading cause of death globally and represents a major cause of devastating long-term disability. Despite sustained efforts to develop clinically effective neuroprotective therapies, presently there is no clinically available neuroprotective agent for stroke. As a central mediator of neurodamaging events in stroke, mitochondria are recognised as a critical neuroprotective target, and as such, provide a focus for developing mitochondrial-targeted therapeutics. In recent years, cationic arginine-rich peptides (CARPs) have been identified as a novel class of neuroprotective agent with several demonstrated mechanisms of action, including their ability to target mitochondria and exert positive effects on the organelle. This review provides an overview on neuronal mitochondrial dysfunction in ischaemic stroke pathophysiology and highlights the potential beneficial effects of CARPs on mitochondria in the ischaemic brain following stroke.
Collapse
Affiliation(s)
- Gabriella MacDougall
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; School of Heath Sciences, and Institute for Health Research, The University Notre Dame Australia, Fremantle, Australia.
| | - Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; School of Heath Sciences, and Institute for Health Research, The University Notre Dame Australia, Fremantle, Australia
| | - Frank L Mastaglia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Neville W Knuckey
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Bruno P Meloni
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
6
|
Fatemi I, Amirteimoury M, Shamsizadeh A, Kaeidi A. The effect of metformin on morphine analgesic tolerance and dependence in rats. Res Pharm Sci 2018; 13:316-323. [PMID: 30065764 PMCID: PMC6040165 DOI: 10.4103/1735-5362.235158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Opiate tolerance and dependence is a worldwide public health problem and gives a significant burden to society. The aim of this study was to evaluate the effects of metformin (MET) on development and expression of morphine tolerance and dependence in rats. For induction of tolerance, morphine sulfate was injected (10 mg/kg, twice a day, s.c.) for 7 days. Animals received metformin (5 and 50 mg/kg, orally, daily) during the examination period for assessing the development of morphine tolerance and dependence. In order to evaluate the expression of morphine tolerance and dependence, single doses of MET (5 and 50 mg/kg, orally) were administered on day 7. Tail flick test was performed to assess the induction of morphine tolerance. For evaluation of morphine dependence, naloxone-induced jumping (5 mg/kg, s.c.) was monitored. Our results showed that 7 days coadministration of 50 mg/kg of MET significantly reduced the development of morphine analgesic tolerance versus morphine + saline treated rats (P < 0.001). Treatment with 50 mg/kg MET reduced the incidence and frequency of jumping in naloxone injected animals (P < 0.01). It is notable that single dose administration of MET, did not prevent the expression of analgesic tolerance and physical dependence to morphine. Based on these results, it can be concluded that MET attenuates the development of morphine analgesic tolerance and dependence in rats.
Collapse
Affiliation(s)
- Iman Fatemi
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, I.R. Iran.,Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, I.R. Iran
| | - Morteza Amirteimoury
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, I.R. Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, I.R. Iran.,Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, I.R. Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, I.R. Iran.,Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, I.R. Iran
| |
Collapse
|
7
|
Sun Y, Cheng X, Hu J, Gao Z. The Role of GluN2A in Cerebral Ischemia: Promoting Neuron Death and Survival in the Early Stage and Thereafter. Mol Neurobiol 2017; 55:1208-1216. [DOI: 10.1007/s12035-017-0395-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/09/2017] [Indexed: 01/10/2023]
|
8
|
Elucidation of a novel phenformin derivative on glucose-deprived stress responses in HT-29 cells. Mol Cell Biochem 2016; 419:29-40. [PMID: 27392906 DOI: 10.1007/s11010-016-2747-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/17/2016] [Indexed: 01/23/2023]
Abstract
Recently, we developed a variety of phenformin derivatives as selective antitumor agents. Based on previous findings, this study evaluated a promising compound, 2-(2-chlorophenyl)ethylbiguanide (2-Cl-Phen), on the basis of stress responses in the human colon cancer cell line HT-29 under a serum- and glucose-deprived condition. 2-Cl-Phen triggered morphological changes such as shrinkage and plasma membrane disintegration, as well as a decrease in mitochondrial activity and an increase in LDH leakage. To understand intracellular issues relating to 2-Cl-Phen, this study focused on the expression levels of ER stress-inducible genes and several oncogenic genes. Serum and glucose deprivation significantly induced a variety of ER stress-inducible genes, but a 12-h treatment of 2-Cl-Phen down-regulated expression of several ER stress-related genes, with the exception of GADD153. Interestingly, the expression levels of ATF6α, GRP78, MANF, and CRELD2 mRNA were almost completely decreased by 2-Cl-Phen. This study also observed that a 24-h treatment of 2-Cl-Phen attenuated the expression levels of GRP78, GADD153, and c-Myc protein. The decrease in c-Myc protein occurred before the fluctuation of GRP78 protein, while the expression of c-Myc mRNA showed little change with cotreatment of serum and glucose deprivation with 2-Cl-Phen. To further understand the 2-Cl-Phen-induced down-regulation of ATF6-related genes, this study investigated the stability of ATF6α and GRP78 proteins using NanoLuc-tagged constructs. The expression levels of NanoLuc-tagged ATF6α and GRP78 were significantly down-regulated by 2-Cl-Phen in the presence or absence of the translation inhibitor cycloheximide. Taken together, our novel phenformin derivative 2-Cl-Phen has the unique characteristic of diminishing tumor adaptive responses, especially the expression of ATF6-related genes, as well as that of c-Myc protein, in a transcriptional and posttranscriptional manner under a serum- and glucose-deprived condition. Further characterization of cytotoxic mechanisms related to phenformin derivatives may give new insights into developing additional promising anticancer agents.
Collapse
|
9
|
Zeng L, Wang R, Zhu L, Zhang J. Graphene and CdS nanocomposite: A facile interface for construction of DNA-based electrochemical biosensor and its application to the determination of phenformin. Colloids Surf B Biointerfaces 2013; 110:8-14. [DOI: 10.1016/j.colsurfb.2013.04.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/22/2013] [Accepted: 04/22/2013] [Indexed: 01/30/2023]
|
10
|
Kalonia H, Kumar A. Suppressing inflammatory cascade by cyclo-oxygenase inhibitors attenuates quinolinic acid induced Huntington's disease-like alterations in rats. Life Sci 2011; 88:784-91. [DOI: 10.1016/j.lfs.2011.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/22/2011] [Accepted: 02/16/2011] [Indexed: 12/20/2022]
|
11
|
Lee J, Schriner SE, Wallace DC. Adenine nucleotide translocator 1 deficiency increases resistance of mouse brain and neurons to excitotoxic insults. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:364-70. [PMID: 19366611 PMCID: PMC3245720 DOI: 10.1016/j.bbabio.2009.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 01/19/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
Abstract
The mitochondrial adenine nucleotide translocators (Ant) are bi-functional proteins that transport ADP and ATP across the mitochondrial inner membrane, and regulate the mitochondrial permeability transition pore (mtPTP) which initiates apoptosis. The mouse has three Ant isoforms: Ant1 expressed in heart, muscle, and brain; Ant2 expressed in all tissues but muscle; and Ant4 expressed primarily in testis. Ant1-deficient mice manifest muscle and heart but not brain pathology. Brain Ant1 is induced by stress, while Ant2 is not. Ant1-deficient mice are resistant to death induced by systemic exposure to the brain excitotoxin, kainic acid (KA), and their hippocampal and cortical neurons are significantly more resistant to neuronal death induced by glutamate, KA, and etoposide. The mitochondrial membrane potential of Ant1-deficient brain mitochondria is increased and the mtPTP is more resistance to Ca(++) induced permeability transition. Hence, Ant1-deficiency may protect the brain from excitotoxicity by desensitizing the mtPTP and by blocking the pro-apoptotic induction of Ant1 by stress.
Collapse
Affiliation(s)
- Jaewon Lee
- Center for Molecular and Mitochondrial Medicine and Genetics (MAMMAG) and Departments of Biological Chemistry and Ecology and Evolutionary Biology, University of California at Irvine, Irvine, CA 92697-3940
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Longevity Life Science and Technology Institutes, Pusan National University, Busan 609-735, Korea
| | - Samuel E. Schriner
- Center for Molecular and Mitochondrial Medicine and Genetics (MAMMAG) and Departments of Biological Chemistry and Ecology and Evolutionary Biology, University of California at Irvine, Irvine, CA 92697-3940
| | - Douglas C. Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics (MAMMAG) and Departments of Biological Chemistry and Ecology and Evolutionary Biology, University of California at Irvine, Irvine, CA 92697-3940
| |
Collapse
|
12
|
Relationships between cancer and aging: a multilevel approach. Biogerontology 2009; 10:323-38. [PMID: 19156531 DOI: 10.1007/s10522-008-9209-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/16/2008] [Indexed: 01/25/2023]
Abstract
The incidence of cancer increases with age in humans and in laboratory animals alike. There are different patterns of age-related distribution of tumors in different organs and tissues. Aging may increase or decrease the susceptibility of various tissues to initiation of carcinogenesis and usually facilitates promotion and progression of carcinogenesis. Aging may predispose to cancer in two ways: tissue accumulation of cells in late stages of carcinogenesis and alterations in internal homeostasis, in particular, alterations in immune and endocrine systems. Increased susceptibility to the effects of tumor promoters is found both in aged animals and aged humans, as predicted by the multistage model of carcinogenesis. Aging is associated with a number of events at the molecular, cellular and physiological levels that influence carcinogenesis and subsequent cancer growth. An improved understanding of age-associated variables impacting on the tumor microenvironment, as well as the cancer cells themselves, will result in improved treatment modalities in geriatric oncology.
Collapse
|
13
|
Abstract
BACKGROUND The incidence of cancer increases with age in both humans and laboratory animals. A clear understanding of the causes of the age-related increase in cancer incidence is needed to develop a strategy for primary cancer prevention. METHODS We summarized the data available in the literature and our own experience in hormonal metabolic shifts in organisms and disturbances at tissue and cellular levels observed in natural aging and in different types of carcinogenesis in vivo. RESULTS There are incongruent patterns of age-related distribution of tumors in different organs and tissues. Aging may increase or decrease the susceptibility of various tissues to initiation of carcinogenesis and usually facilitates promotion and progression of carcinogenesis. Aging may predispose to cancer by at least two mechanisms: tissue accumulation of cells in late stages of carcinogenesis and alterations in internal homeostasis, in particular, alterations in immune and endocrine system. Increased susceptibility to the effects of tumor promoters is found in both aged animals and aged humans, as predicted by the multistage model of carcinogenesis. CONCLUSIONS Aging is associated with a number of events at the molecular, cellular and physiologic levels that influence carcinogenesis and subsequent cancer growth. A clearer understanding of these events will help in predicting and treating cancer more effectively.
Collapse
Affiliation(s)
- Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology at N.N.Petrov Research Institute of Oncology, Pesochny-2, St. Petersburg 197758, Russia.
| |
Collapse
|
14
|
Tang SC, Arumugam TV, Cutler RG, Jo DG, Magnus T, Chan SL, Mughal MR, Telljohann RS, Nassar M, Ouyang X, Calderan A, Ruzza P, Guiotto A, Mattson MP. Neuroprotective actions of a histidine analogue in models of ischemic stroke. J Neurochem 2007; 101:729-36. [PMID: 17254011 DOI: 10.1111/j.1471-4159.2006.04412.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Histidine is a naturally occurring amino acid with antioxidant properties, which is present in low amounts in tissues throughout the body. We recently synthesized and characterized histidine analogues related to the natural dipeptide carnosine, which selectively scavenge the toxic lipid peroxidation product 4-hydroxynonenal (HNE). We now report that the histidine analogue histidyl hydrazide is effective in reducing brain damage and improving functional outcome in a mouse model of focal ischemic stroke when administered intravenously at a dose of 20 mg/kg, either 30 min before or 60 min and 3 h after the onset of middle cerebral artery occlusion. The histidine analogue also protected cultured rat primary neurons against death induced by HNE, chemical hypoxia, glucose deprivation, and combined oxygen and glucose deprivation. The histidine analogue prevented neuronal apoptosis as indicated by decreased production of cleaved caspase-3 protein. These findings suggest a therapeutic potential for HNE-scavenging histidine analogues in the treatment of stroke and related neurodegenerative conditions.
Collapse
Affiliation(s)
- Sung-Chun Tang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Caloric restriction remains the only nongenetic intervention that has been consistently and reproducibly shown to extend both average and maximal lifespan in a wide variety of species. If shown to be applicable to human aging, it is unlikely that most people would be able to maintain the 30-40% reduction in food intake apparently required for this intervention. Therefore, an alternative approach is needed. We first proposed the concept of caloric restriction (CR) mimetics in 1998. Since its introduction, this research area has witnessed a significant expansion of interest in academic, government, and private sectors. CR mimetics target alteration of pathways of energy metabolism to potentially mimic the beneficial health-promoting and anti-aging effects of CR without the need to reduce food intake significantly. To date, a number of candidate CR mimetics including glycolytic inhibitors, antioxidants and specific gene-modulators have been investigated and appear to validate the potential of this approach.
Collapse
Affiliation(s)
- Mark A Lane
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | | |
Collapse
|
16
|
Ma TC, Buescher JL, Oatis B, Funk JA, Nash AJ, Carrier RL, Hoyt KR. Metformin therapy in a transgenic mouse model of Huntington's disease. Neurosci Lett 2006; 411:98-103. [PMID: 17110029 DOI: 10.1016/j.neulet.2006.10.039] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 10/25/2006] [Accepted: 10/25/2006] [Indexed: 11/26/2022]
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disease that leads to striatal degeneration and a severe movement disorder. We used a transgenic mouse model of HD (the R6/2 line with approximately 150 glutamine repeats) to test a new therapy for this disease. We treated HD mice with metformin, a widely used anti-diabetes drug, in the drinking water (0, 2 or 5mg/ml) starting at 5 weeks of age. Metformin treatment significantly prolonged the survival time of male HD mice at the 2mg/ml dose (20.1% increase in lifespan) without affecting fasting blood glucose levels. This dose of metformin also decreased hind limb clasping time in 11-week-old mice. The higher dose did not prolong survival, and neither dose of metformin was effective in female HD mice. Collectively, our results suggest that metformin may be worth further investigation in additional HD models.
Collapse
Affiliation(s)
- Thong C Ma
- Division of Pharmacology, The Ohio State University, 412 Riffe Building, 496 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Ingram DK, Zhu M, Mamczarz J, Zou S, Lane MA, Roth GS, deCabo R. Calorie restriction mimetics: an emerging research field. Aging Cell 2006; 5:97-108. [PMID: 16626389 DOI: 10.1111/j.1474-9726.2006.00202.x] [Citation(s) in RCA: 292] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
When considering all possible aging interventions evaluated to date, it is clear that calorie restriction (CR) remains the most robust. Studies in numerous species have demonstrated that reduction of calories 30-50% below ad libitum levels of a nutritious diet can increase lifespan, reduce the incidence and delay the onset of age-related diseases, improve stress resistance, and decelerate functional decline. A current major focus of this research area is whether this nutritional intervention is relevant to human aging. Evidence emerging from studies in rhesus monkeys suggests that their response to CR parallels that observed in rodents. To assess CR effects in humans, clinical trials have been initiated. However, even if results from these studies could eventually substantiate CR as an effective pro-longevity strategy for humans, the utility of this intervention would be hampered because of the degree and length of restriction required. As an alternative strategy, new research has focused on the development of 'CR mimetics'. The objective of this strategy is to identify compounds that mimic CR effects by targeting metabolic and stress response pathways affected by CR, but without actually restricting caloric intake. For example, drugs that inhibit glycolysis (2-deoxyglucose), enhance insulin action (metformin), or affect stress signaling pathways (resveratrol), are being assessed as CR mimetics (CRM). Promising results have emerged from initial studies regarding physiological responses which resemble those observed in CR (e.g. reduced body temperature and plasma insulin) as well as protection against neurotoxicity (e.g. enhanced dopamine action and up-regulated neurotrophic factors). Ultimately, lifespan analyses in addition to expanded toxicity studies must be accomplished to fully assess the potential of any CRM. Nonetheless, this strategy clearly offers a very promising and expanding research endeavor.
Collapse
Affiliation(s)
- Donald K Ingram
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, Pesochny-2, St. Petersburg, Russia
| |
Collapse
|
19
|
Ingram DK, Anson RM, de Cabo R, Mamczarz J, Zhu M, Mattison J, Lane MA, Roth GS. Development of Calorie Restriction Mimetics as a Prolongevity Strategy. Ann N Y Acad Sci 2004; 1019:412-23. [PMID: 15247056 DOI: 10.1196/annals.1297.074] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
By applying calorie restriction (CR) at 30-50% below ad libitum levels, studies in numerous species have reported increased life span, reduced incidence and delayed onset of age-related diseases, improved stress resistance, and decelerated functional decline. Whether this nutritional intervention is relevant to human aging remains to be determined; however, evidence emerging from CR studies in nonhuman primates suggests that response to CR in primates parallels that observed in rodents. To evaluate CR effects in humans, clinical trials have been initiated. Even if evidence could substantiate CR as an effective antiaging strategy for humans, application of this intervention would be problematic due to the degree and length of restriction required. To meet this challenge for potential application of CR, new research to create "caloric restriction mimetics" has emerged. This strategy focuses on identifying compounds that mimic CR effects by targeting metabolic and stress response pathways affected by CR, but without actually restricting caloric intake. Microarray studies show that gene expression profiles of key enzymes in glucose (energy) handling pathways are modified by CR. Drugs that inhibit glycolysis (2-deoxyglucose) or enhance insulin action (metformin) are being assessed as CR mimetics. Promising results have emerged from initial studies regarding physiological responses indicative of CR (reduced body temperature and plasma insulin) as well as protection against neurotoxicity, enhanced dopamine action, and upregulated brain-derived neurotrophic factor. Further life span analyses in addition to expanded toxicity studies must be completed to assess the potential of any CR mimetic, but this strategy now appears to offer a very promising and expanding research field.
Collapse
Affiliation(s)
- Donald K Ingram
- Laboratory of Experimental Gerontology, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Caraci F, Chisari M, Frasca G, Chiechio S, Salomone S, Pinto A, Sortino MA, Bianchi A. Effects of phenformin on the proliferation of human tumor cell lines. Life Sci 2004; 74:643-50. [PMID: 14623034 DOI: 10.1016/j.lfs.2003.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phenformin is a biguanide that has been largely used in the past for its anti-diabetic activity. A large body of evidence suggests additional effects of phenformin including antitumoral activity in different animal models in vivo. Thus, the present study has been conducted in order to elucidate possible mechanisms involved in the antitumoral effects of phenformin. In various tumoral cell lines (SH-SY5Y neuroblastoma and LNCaP prostate adenocarcinoma cells), increasing concentrations of phenformin (50-500 microM) induced a concentration-dependent inhibition of cell proliferation. This effect was not dependent on the ability of the drug to reduce glucose levels and was accompanied by induction of apoptotic cell death as measured by cytofluorometric analysis. In addition, a short-time incubation of SH-SY5Y cells with phenformin induced enhanced and transient expression of the cell cycle inhibitor p21 suggesting that phenformin causes inhibition of cell cycle progression prior to induction of apoptosis. These results demonstrate an activity at the cellular level of phenformin that supports its antitumoral effect observed in vivo.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Pharmaceutical Sciences, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mattson MP, Duan W, Guo Z. Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms. J Neurochem 2003; 84:417-31. [PMID: 12558961 DOI: 10.1046/j.1471-4159.2003.01586.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although all cells in the body require energy to survive and function properly, excessive calorie intake over long time periods can compromise cell function and promote disorders such as cardiovascular disease, type-2 diabetes and cancers. Accordingly, dietary restriction (DR; either caloric restriction or intermittent fasting, with maintained vitamin and mineral intake) can extend lifespan and can increase disease resistance. Recent studies have shown that DR can have profound effects on brain function and vulnerability to injury and disease. DR can protect neurons against degeneration in animal models of Alzheimer's, Parkinson's and Huntington's diseases and stroke. Moreover, DR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which may increase the ability of the brain to resist aging and restore function following injury. Interestingly, increasing the time interval between meals can have beneficial effects on the brain and overall health of mice that are independent of cumulative calorie intake. The beneficial effects of DR, particularly those of intermittent fasting, appear to be the result of a cellular stress response that stimulates the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors such as brain-derived neurotrophic factor (BDNF), protein chaperones such as heat-shock proteins, and mitochondrial uncoupling proteins. Some beneficial effects of DR can be achieved by administering hormones that suppress appetite (leptin and ciliary neurotrophic factor) or by supplementing the diet with 2-deoxy-d-glucose, which may act as a calorie restriction mimetic. The profound influences of the quantity and timing of food intake on neuronal function and vulnerability to disease have revealed novel molecular and cellular mechanisms whereby diet affects the nervous system, and are leading to novel preventative and therapeutic approaches for neurodegenerative disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Gerontology Research Center, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|