1
|
Martínez CI, Iriarte LS, Salas N, Alonso AM, Pruzzo CI, dos Santos Melo T, Pereira-Neves A, de Miguel N, Coceres VM. Prolonged survival of venereal Tritrichomonas foetus parasite in the gastrointestinal tract, bovine fecal extract, and water. Microbiol Spectr 2023; 11:e0042923. [PMID: 37800972 PMCID: PMC10714773 DOI: 10.1128/spectrum.00429-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Nowadays, the routine herd diagnosis is usually performed exclusively on bulls, as they remain permanently infected, and prevention and control of Tritrichomonas foetus transmission are based on identifying infected animals and culling practices. The existence of other forms of transmission and the possible role of pseudocysts or cyst-like structures as resistant forms requires rethinking the current management and control of this parasitic disease in the future in some livestock regions of the world.
Collapse
Affiliation(s)
- Cristian I. Martínez
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Lucrecia S. Iriarte
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Nehuen Salas
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Andrés M. Alonso
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
| | - Cesar I. Pruzzo
- Centro de Diagnóstico e Investigaciones Veterinarias, FCV-UNLP, Chascomús, Argentina
| | - Tuanne dos Santos Melo
- Departamento de Microbiologia, Fiocruz, Instituto Aggeu Magalhães, Recife, Pernambuco, Brazil
| | - Antonio Pereira-Neves
- Departamento de Microbiologia, Fiocruz, Instituto Aggeu Magalhães, Recife, Pernambuco, Brazil
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Veronica M. Coceres
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| |
Collapse
|
2
|
Abstract
BACKGROUND This study was aimed to investigate the associations among Chitinase 3-like 1 (CHI3L1) polymorphisms, asthma and plasma YKL-40 levels in Chinese population. MATERIAL AND METHODS Four CHI3L1 single nucleotide polymorphisms (SNPs) were genotyped. The YKL-40 level in plasma and eosinophil percentage in peripheral blood were quantified. RESULTS A SNP (rs4950928) in the CHI3L1 promoter was associated with elevated plasma YKL-40 levels (p = .02), asthma (p = .042) and lung function (p = .029 to .002) in this Chinese population. Plasma YKL-40 levels were significantly elevated in patients with asthma compared to those in control subjects (p < .05). Plasma YKL-40 levels were significantly correlated with forced expiratory volume per cent (FEV1%) measurements (p < .05). Although plasma YKL-40 levels were decreased after treatment, the correlation with FEV1% still existed. CONCLUSIONS CHI3L1 locus is a risk factor for asthma in Chinese population.
Collapse
Affiliation(s)
- Jinlian Shao
- Department of ICU, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Respiratory Diseases, Nanfang Hospital, Guangzhou, China
| | - Xuexi Yang
- Department of Immunology, Southern Medical University, Guangzhou, China
| | - Dunqiang Ren
- The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Yaling Luo
- Department of Respiratory Diseases, Nanfang Hospital, Guangzhou, China
| | - Wenyan Lai
- Laborwatory of Cardiovascular Diseases, Nanfang Hospital, Guangzhou, China
| |
Collapse
|
3
|
Beri D, Yadav P, Devi HRN, Narayana C, Gadara D, Tatu U. Demonstration and Characterization of Cyst-Like Structures in the Life Cycle of Trichomonas vaginalis. Front Cell Infect Microbiol 2020; 9:430. [PMID: 32010634 PMCID: PMC6972724 DOI: 10.3389/fcimb.2019.00430] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Trichomonas vaginalis is the parasitic protozoan residing in human urogenital tract causing trichomoniasis, which is the leading non-viral sexually transmitted disease. It has cosmopolitan distribution throughout the globe and affects both men and women. Lifecycle of the parasite has been traditionally described as consisting of motile and symptom-causing trophozoites. Chemical and temperature perturbations in trophozoites have been shown to aid conversion to pseudocysts, which is poorly investigated. In the current study, we show the formation of viable cyst-like structures (CLS) in stationary phase of T. vaginalis axenic culture. We used a fluorescent stain called calcofluor white, which specifically binds to chitin and cellulose-containing structures, to score for T. vaginalis CLS. Using flow cytometry, we demonstrated and quantitated the processes of encystation as well as excystation; thus, completing the parasite's lifecycle in vitro without any chemical/temperature alterations. Like cysts from other protozoan parasites such as Entamoeba histolytica and Giardia lamblia, T. vaginalis CLS appeared spherical, immotile, and resistant to osmotic lysis and detergent treatments. Ultrastructure of CLS demonstrated by Transmission Electron Microscopy showed a thick electron-dense deposition along its outer membrane. To probe the physiological role of CLS, we exposed parasites to vaginal pH and observed that trophozoites took this as a cue to convert to CLS. Further, upon co- culturing with cells of cervical origin, CLS rapidly excysted to form trophozoites which abrogated the cervical cell monolayer in a dose-dependent manner. To further corroborate the presence of two distinct forms in T. vaginalis, we performed two-dimensional gel electrophoresis and global, untargeted mass spectrometry to highlight differences in the proteome with trophozoites. Interestingly, CLS remained viable in chlorinated swimming pool water implicating the possibility of its role as environmentally resistant structures involved in non-sexual mode of parasite transmission. Finally, we showed that symptomatic human patient vaginal swabs had both T. vaginalis trophozoites and CLS; thus, highlighting its importance in clinical infections. Overall, our study highlights the plasticity of the pathogen and its rapid adaption when subjected to stressful environmental cues and suggests an important role of CLS in the parasite's life cycle, pathogenesis and transmission.
Collapse
Affiliation(s)
- Divya Beri
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Priya Yadav
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Chinmaya Narayana
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Darshak Gadara
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
4
|
Sialic acid and biology of life: An introduction. SIALIC ACIDS AND SIALOGLYCOCONJUGATES IN THE BIOLOGY OF LIFE, HEALTH AND DISEASE 2020. [PMCID: PMC7153325 DOI: 10.1016/b978-0-12-816126-5.00001-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sialic acids are important molecule with high structural diversity. They are known to occur in higher animals such as Echinoderms, Hemichordata, Cephalochorda, and Vertebrata and also in other animals such as Platyhelminthes, Cephalopoda, and Crustaceae. Plants are known to lack sialic acid. But they are reported to occur in viruses, bacteria, protozoa, and fungi. Deaminated neuraminic acid although occurs in vertebrates and bacteria, is reported to occur in abundance in the lower vertebrates. Sialic acids are mostly located in terminal ends of glycoproteins and glycolipids, capsular and tissue polysialic acids, bacterial lipooligosaccharides/polysaccharides, and in different forms that dictate their role in biology. Sialic acid play important roles in human physiology of cell-cell interaction, communication, cell-cell signaling, carbohydrate-protein interactions, cellular aggregation, development processes, immune reactions, reproduction, and in neurobiology and human diseases in enabling the infection process by bacteria and virus, tumor growth and metastasis, microbiome biology, and pathology. It enables molecular mimicry in pathogens that allows them to escape host immune responses. Recently sialic acid has found role in therapeutics. In this chapter we have highlighted the (i) diversity of sialic acid, (ii) their occurrence in the diverse life forms, (iii) sialylation and disease, and (iv) sialic acid and therapeutics.
Collapse
|
5
|
Leonard G, Labarre A, Milner DS, Monier A, Soanes D, Wideman JG, Maguire F, Stevens S, Sain D, Grau-Bové X, Sebé-Pedrós A, Stajich JE, Paszkiewicz K, Brown MW, Hall N, Wickstead B, Richards TA. Comparative genomic analysis of the 'pseudofungus' Hyphochytrium catenoides. Open Biol 2019; 8:rsob.170184. [PMID: 29321239 PMCID: PMC5795050 DOI: 10.1098/rsob.170184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic microbes have three primary mechanisms for obtaining nutrients and energy: phagotrophy, photosynthesis and osmotrophy. Traits associated with the latter two functions arose independently multiple times in the eukaryotes. The Fungi successfully coupled osmotrophy with filamentous growth, and similar traits are also manifested in the Pseudofungi (oomycetes and hyphochytriomycetes). Both the Fungi and the Pseudofungi encompass a diversity of plant and animal parasites. Genome-sequencing efforts have focused on host-associated microbes (mutualistic symbionts or parasites), providing limited comparisons with free-living relatives. Here we report the first draft genome sequence of a hyphochytriomycete ‘pseudofungus’; Hyphochytrium catenoides. Using phylogenomic approaches, we identify genes of recent viral ancestry, with related viral derived genes also present on the genomes of oomycetes, suggesting a complex history of viral coevolution and integration across the Pseudofungi. H. catenoides has a complex life cycle involving diverse filamentous structures and a flagellated zoospore with a single anterior tinselate flagellum. We use genome comparisons, drug sensitivity analysis and high-throughput culture arrays to investigate the ancestry of oomycete/pseudofungal characteristics, demonstrating that many of the genetic features associated with parasitic traits evolved specifically within the oomycete radiation. Comparative genomics also identified differences in the repertoire of genes associated with filamentous growth between the Fungi and the Pseudofungi, including differences in vesicle trafficking systems, cell-wall synthesis pathways and motor protein repertoire, demonstrating that unique cellular systems underpinned the convergent evolution of filamentous osmotrophic growth in these two eukaryotic groups.
Collapse
Affiliation(s)
- Guy Leonard
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Aurélie Labarre
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - David S Milner
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Adam Monier
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Darren Soanes
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jeremy G Wideman
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Finlay Maguire
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sam Stevens
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Divya Sain
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Xavier Grau-Bové
- Institute of Evolutionary Biology, CSIC-UPF, Barcelona, Catalonia, Spain
| | | | - Jason E Stajich
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92506, USA
| | - Konrad Paszkiewicz
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Neil Hall
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Thomas A Richards
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
6
|
Chitin Prevalence and Function in Bacteria, Fungi and Protists. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:19-59. [DOI: 10.1007/978-981-13-7318-3_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Richards TA, Leonard G, Wideman JG. What Defines the "Kingdom" Fungi? Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0044-2017. [PMID: 28643626 PMCID: PMC11687502 DOI: 10.1128/microbiolspec.funk-0044-2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Indexed: 12/30/2022] Open
Abstract
The application of environmental DNA techniques and increased genome sequencing of microbial diversity, combined with detailed study of cellular characters, has consistently led to the reexamination of our understanding of the tree of life. This has challenged many of the definitions of taxonomic groups, especially higher taxonomic ranks such as eukaryotic kingdoms. The Fungi is an example of a kingdom which, together with the features that define it and the taxa that are grouped within it, has been in a continual state of flux. In this article we aim to summarize multiple lines of data pertinent to understanding the early evolution and definition of the Fungi. These include ongoing cellular and genomic comparisons that, we will argue, have generally undermined all attempts to identify a synapomorphic trait that defines the Fungi. This article will also summarize ongoing work focusing on taxon discovery, combined with phylogenomic analysis, which has identified novel groups that lie proximate/adjacent to the fungal clade-wherever the boundary that defines the Fungi may be. Our hope is that, by summarizing these data in the form of a discussion, we can illustrate the ongoing efforts to understand what drove the evolutionary diversification of fungi.
Collapse
Affiliation(s)
- Thomas A Richards
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada
| | - Guy Leonard
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Jeremy G Wideman
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
8
|
Richards TA, Leonard G, Mahé F, Del Campo J, Romac S, Jones MDM, Maguire F, Dunthorn M, De Vargas C, Massana R, Chambouvet A. Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc Biol Sci 2016; 282:rspb.2015.2243. [PMID: 26582030 PMCID: PMC4685826 DOI: 10.1098/rspb.2015.2243] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal 'OTU clusters' that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments.
Collapse
Affiliation(s)
- Thomas A Richards
- Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity, Toronto, Ontario, Canada M5G 1Z8
| | - Guy Leonard
- Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
| | - Frédéric Mahé
- CNRS, UMR 7144, EPEP-Évolution des Protistes et des Écosystèmes Pélagiques, Station Biologique de Roscoff, Roscoff 29680, France Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Javier Del Campo
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4 Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Sarah Romac
- CNRS, UMR 7144, EPEP-Évolution des Protistes et des Écosystèmes Pélagiques, Station Biologique de Roscoff, Roscoff 29680, France
| | - Meredith D M Jones
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Finlay Maguire
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Micah Dunthorn
- Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Colomban De Vargas
- CNRS, UMR 7144, EPEP-Évolution des Protistes et des Écosystèmes Pélagiques, Station Biologique de Roscoff, Roscoff 29680, France
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Aurélie Chambouvet
- Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
| |
Collapse
|
9
|
Doumecq ML, Soto P, Casalini MB, Gimeno EJ, Barbeito CG, Monteavaro CE. Variation in the saccharide lectin binding pattern from different isolates of Tritrichomonas foetus. Exp Parasitol 2014; 147:48-53. [PMID: 25307686 DOI: 10.1016/j.exppara.2014.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
Tritrichomonas foetus (T. foetus) is the causal agent of bovine tritrichomonosis (BT), a venereal disease that causes significant economic losses in the bovine livestock industry. The structural organization of T. foetus presents a cell membrane, an undulating membrane which extends along the parasite, three anterior flagella and a recurrent posterior flagellum. The interaction between the superficial glycoconjugates of the parasite and the host cell is one of the most relevant pathogenic mechanisms. In the present study, we analyzed the saccharide pattern through lectincytochemistry of the cell membrane, undulating membrane, cytoplasm and flagella of 28 isolates of T. foetus. Lectins that labeled most of the isolates were WGA, Con-A, RCA-I, LCA, GS-II and PHA-E showing the presence of D-mannose, D-glucose, N-acetylglucosamine and sialic acid. On the other hand, no labeling was observed in any of the structures with VVA, STA, LEA, Jacalin, GS-I, SJA, PHA-L, DSA, and weak labeling was observed with DBA, PNA, SBA and UEA I, showing therefore a low expression of N-acetylgalactosamine, L-fucose and galactose. In addition, GS II labeled in a granular pattern when lectincytochemistry was positive, whereas LCA strongly labeled the membranes and weakly the cytoplasms. The labeling variations observed among the isolates analyzed in the present work, could be related to differences in the pathogenic behavior of the isolates.
Collapse
Affiliation(s)
- María Laura Doumecq
- Laboratory of Clinical and Experimental Microbiology, School of Veterinary Sciences, National University of the Center of the Buenos Aires Province, CIVETAN, Campus Universitario, Arroyo Seco s/n, Tandil (7000), Buenos Aires, Argentina.
| | - Pedro Soto
- Laboratory of Clinical and Experimental Microbiology, School of Veterinary Sciences, National University of the Center of the Buenos Aires Province, CIVETAN, Campus Universitario, Arroyo Seco s/n, Tandil (7000), Buenos Aires, Argentina
| | - María Belén Casalini
- Laboratory of Clinical and Experimental Microbiology, School of Veterinary Sciences, National University of the Center of the Buenos Aires Province, CIVETAN, Campus Universitario, Arroyo Seco s/n, Tandil (7000), Buenos Aires, Argentina
| | - Eduardo Juan Gimeno
- Institute of Pathology, School of Veterinary Sciences, National University of La Plata, Calle 60 y 118 La Plata (1900), Buenos Aires, Argentina
| | - Claudio Gustavo Barbeito
- Laboratory of Histology and Embryology, School of Veterinary Sciences, National University of La Plata, Calle 60 y 118 La Plata (1900) Buenos Aires, Argentina; Institute of Pathology, School of Veterinary Sciences, National University of La Plata, Calle 60 y 118 La Plata (1900), Buenos Aires, Argentina
| | - Cristina Esther Monteavaro
- Laboratory of Clinical and Experimental Microbiology, School of Veterinary Sciences, National University of the Center of the Buenos Aires Province, CIVETAN, Campus Universitario, Arroyo Seco s/n, Tandil (7000), Buenos Aires, Argentina
| |
Collapse
|
10
|
Harrington BJ. Staining ofTrichomonas vaginaliswith Fluorescent Brighteners. Lab Med 2013. [DOI: 10.1309/lmj1i1lp9ufejclt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
11
|
Jones MD, Richards TA, Hawksworth DL, Bass D. Validation and justification of the phylum name Cryptomycota phyl. nov. IMA Fungus 2011; 2:173-5. [PMID: 22679602 PMCID: PMC3359815 DOI: 10.5598/imafungus.2011.02.02.08] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 11/02/2011] [Indexed: 12/03/2022] Open
Abstract
The recently proposed new phylum name Cryptomycota phyl. nov. is validly published in order to facilitate its use in future discussions of the ecology, biology, and phylogenetic relationships of the constituent organisms. This name is preferred over the previously tentatively proposed "Rozellida" as new data suggest that the life-style and morphology of Rozella is not representative of the large radiation to which it and other Cryptomycota belong. Furthermore, taxa at higher ranks such as phylum are considered better not based on individual names of included genera, but rather on some special characteristics - in this case the cryptic nature of this group and that they were initially revealed by molecular methods rather than morphological discovery. If the group were later viewed as a member of a different kingdom, the name should be retained to indicate its fungal affinities, as is the practice for other fungal-like protist groups.
Collapse
Affiliation(s)
- Meredith D.M. Jones
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
- Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Thomas A. Richards
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
- Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - David L. Hawksworth
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040 Madrid, Spain; and Department of Botany, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - David Bass
- Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
12
|
Blank CE. An expansion of age constraints for microbial clades that lack a conventional fossil record using phylogenomic dating. J Mol Evol 2011; 73:188-208. [PMID: 22105429 DOI: 10.1007/s00239-011-9467-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 10/24/2011] [Indexed: 01/22/2023]
Abstract
Most microbial taxa lack a conventional microfossil or biomarker record, and so we currently have little information regarding how old most microbial clades and their associated traits are. Building on the previously published oxygen age constraint, two new age constraints are proposed based on the ability of microbial clades to metabolize chitin and aromatic compounds derived from lignin. Using the archaeal domain of life as a test case, phylogenetic analyses, along with published metabolic and genetic data, showed that members of the Halobacteriales and Thermococcales are able to metabolize chitin. Ancestral state reconstruction combined with phylogenetic analysis of the genes underlying chitin degradation predicted that the ancestors of these two groups were also likely able to metabolize chitin or chitin-related compounds. These two clades were therefore assigned a maximum age of 1.0 Ga (when chitin likely first appeared). Similar analyses also predicted that the ancestor to the Sulfolobus solfataricus-Sulfolobus islandicus clade was able to metabolize phenol using catechol dioxygenase, so this clade was assigned a maximum age of 475 Ma. Inferred ages of archaeal clades using relaxed molecular clocks with the new age constraints were consistent with those inferred with the oxygen age constraints. This work expands our current toolkit to include Paleoproterozoic, Neoproterozoic, and Paleozoic age constraints, and should aid in our ability to phylogenetically reconstruct the antiquity of a wide array of microbial clades and their associated morphological and biogeochemical traits, spanning deep geologic time. Such hypotheses-although built upon evolutionary inferences-are fundamentally testable.
Collapse
Affiliation(s)
- Carrine E Blank
- Department of Geosciences, University of Montana, 32 Campus Drive #1296, Missoula, MT 59812-1296, USA.
| |
Collapse
|
13
|
Ober C, Chupp GL. The chitinase and chitinase-like proteins: a review of genetic and functional studies in asthma and immune-mediated diseases. Curr Opin Allergy Clin Immunol 2009; 9:401-8. [PMID: 19644363 PMCID: PMC3018778 DOI: 10.1097/aci.0b013e3283306533] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW The present review provides an overview of the chitinase and chitinase-like proteins, chitotriosidase (CHIT1), YKL-40, and acid mammalian chitinase, and summarizes the genetic studies of asthma and immune-mediated diseases with polymorphisms in the genes encoding these proteins, CHIT1, CHI3L1, and CHIA, respectively. RECENT FINDINGS Polymorphisms in the CHIT1, CHIA, and CHI3L1 genes influence chitotriosidase enzyme activity, acid mammalian chitinase activity, and YKL-40 levels, respectively. Regulatory SNPs in CHI3L1 were also associated with asthma, atopy, and immune-mediated diseases, and nonsynonymous SNPs in CHIA were associated with asthma. No CHIT1 polymorphisms, including a common nonfunctional 24-bp duplication allele, have been associated with asthma. SUMMARY These genes represent novel asthma susceptibility genes. Variations in CHI3L1 and CHIA have been associated with asthma risk. Polymorphisms in CHIT1 have not yet been associated with asthma, but few studies have been reported. Given that chitotriosidase is the major chitinase in the airways and a common nonfunctional allele is present in many populations, additional studies of this gene are warranted. Lastly, studies of all three genes need to be conducted in populations of diverse ancestries.
Collapse
Affiliation(s)
- Carole Ober
- Department of Human Genetics, 920 E. 58 Street, Room 507c, The University of Chicago, Chicago, IL 60636, TEL: 773-834-0735, FAX: 773-834-0505
| | - Geoffrey L. Chupp
- Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, P.O. Box 208057, 300 Cedar St., TAC 441, New Haven, CT 06520, TEL: 203-737-3627, FAX: 203-785-3826
| |
Collapse
|
14
|
Greenwell P, Younes M, Rughooputh S. Purification and analysis of DNases of Tritrichomonas foetus: Evidence that these enzymes are glycoproteins. Int J Parasitol 2008; 38:749-56. [DOI: 10.1016/j.ijpara.2007.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/15/2007] [Accepted: 10/19/2007] [Indexed: 01/23/2023]
|
15
|
Binding of the wheat germ lectin to Cryptococcus neoformans suggests an association of chitinlike structures with yeast budding and capsular glucuronoxylomannan. EUKARYOTIC CELL 2007; 7:602-9. [PMID: 18039942 DOI: 10.1128/ec.00307-07] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The capsule of Cryptococcus neoformans is a complex structure whose assembly requires intermolecular interactions to connect its components into an organized structure. In this study, we demonstrated that the wheat germ agglutinin (WGA), which binds to sialic acids and beta-1,4-N-acetylglucosamine (GlcNAc) oligomers, can also bind to cryptococcal capsular structures. Confocal microscopy demonstrated that these structures form round or hooklike projections linking the capsule to the cell wall, as well as capsule-associated structures during yeast budding. Chemical analysis of capsular extracts by gas chromatography coupled to mass spectrometry and high-pH anion-exchange chromatography suggested that the molecules recognized by WGA were firmly associated with the cell wall. Enzymatic treatment, competition assays, and staining with chemically modified WGA revealed that GlcNAc oligomers, but not sialic acids, were the molecules recognized by the lectin. Accordingly, treatment of C. neoformans cells with chitinase released glucuronoxylomannan (GXM) from the cell surface and reduced the capsule size. Chitinase-treated acapsular cells bound soluble GXM in a modified pattern. These results indicate an association of chitin-derived structures with GXM and budding in C. neoformans, which may represent a new mechanism by which the capsular polysaccharide interacts with the cell wall and is rearranged during replication.
Collapse
|
16
|
Gomes Rocha GC, Nicolich R, Romeiro A, Margis-Pinheiro M, Attias M, Alves-Ferreira M. Effect of Urtica dioica agglutinin and Arabidopsis thaliana Chia4 chitinase on the protozoan Phytomonas françai. FEMS Microbiol Lett 2003; 226:1-7. [PMID: 13129600 DOI: 10.1016/s0378-1097(03)00526-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The genus Phytomonas is responsible for many diseases in different crop plant species. The finding that chitin is an exposed cell surface polysaccharide in Phytomonas françai and the observation that chitinases can inhibit fungal growth raises expectations about the potential effect of plant chitinases on the P. françai cell membrane surface. The plant chitinases Urtica dioica agglutinin (UDA) and Arabidopsis thaliana Chia4 (ATCHIT4) proteins were over-expressed in bacteria and the interaction between these proteins and P. françai surface was analyzed by immunocytochemistry. We showed that UDA and ATCHIT4 proteins can interact with surface-exposed chitin from P. françai.
Collapse
Affiliation(s)
- Graça Celeste Gomes Rocha
- Laboratório de Genética Molecular Vegetal, Instituto de Biologia, Dept. de Genética, Universidade Federal do Rio de Janeiro, Av. Pau Brasil 211, AZ 76, 21944-970, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Loiseau PM, Bories C, Sanon A. The chitinase system from Trichomonas vaginalis as a potential target for antimicrobial therapy of urogenital trichomoniasis. Biomed Pharmacother 2002; 56:503-10. [PMID: 12504272 DOI: 10.1016/s0753-3322(02)00331-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chitinolytic activities in Trichomonas vaginalis membrane extracts were assessed by assays of three enzyme systems: N-acetyl-beta-D-hexosaminidase (NAHase), chitobiosidase and chitotriosidase. N-acetyl-beta-D-hexosaminidase was the enzyme that showed the highest specific activity. After successive subcutaneous inoculations into mice and parasite recovery in culture, the enzyme activities increased significantly with the number of inoculations for up to eight passages. In addition, enzyme activities were maximum at the logarithmic phase of growth. Glycol chitin, a chitinase substrate, enhanced all chitinolytic activities by about 30% and a clear-cut correlation is shown between the capacity for erythrocyte lysis by parasites and NAHase expression. Chitobiosidase and chitotriosidase activities were both inhibited at 58% and 100%, respectively, by allosamidine, a chitinase inhibitor used at 3 microM, whereas NAHase activity was not affected. Seven putative NAHase inhibitors (compounds n, 1-7), ureido and thioureido derivatives of 2-amino-2-deoxy-D-glucose were evaluated and five of them had K(i) values in the range 30-70 microM. The most active compound (compound 6) was functionally competitive with respect to the substrate with a K(i) value of 30 microM. The IC(50) values of the most active compounds on T. vaginalis were in the range 62-85 microM. These results indicate that chitinases of T. vaginalis are involved in pathogenicity and they could be an interesting target for drugs since chitinase inhibitors also inhibit parasite growth.
Collapse
Affiliation(s)
- P M Loiseau
- Chimiothérapie antiparasitaire, UPRES A 8076 CNRS BIOCIS, Université de Paris-Sud, 92290 Châtenay-Malabry cedex, France.
| | | | | |
Collapse
|
18
|
Das S, Stevens T, Castillo C, Villasenõr A, Arredondo H, Reddy K. Lipid metabolism in mucous-dwelling amitochondriate protozoa. Int J Parasitol 2002; 32:655-75. [PMID: 12062485 DOI: 10.1016/s0020-7519(02)00006-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Entamoeba, Giardia, and trichomonads are the prominent members of a group known as 'mucosal parasites'. While Entamoeba and Giardia trophozoites colonise the small intestine, trichomonads inhabit the genitourinary tracts of humans and animals. These protozoa lack mitochondria, well-developed Golgi complexes, and other organelles typical of higher eukaryotes. Nonetheless, they have developed unique metabolic pathways that allow them to survive and multiply in the small intestine and reproductive tracts by scavenging nutrients from the host. Various investigators have shown that these protozoa are unable to synthesise the majority of their own lipids and cholesterol de novo; rather, they depend mostly on supplies from outside sources. Therefore, questions of how they transport and utilise exogenous lipids for metabolic purposes are extremely important. There is evidence suggesting that these parasites can take up the lipids and cholesterol they need from lipoprotein particles present in the host and/or in the growth medium. Studies also support the idea that individual lipid and fatty acid molecules can be transported without the help of lipoproteins. Exogenous phospholipids have been shown to undergo fatty acid remodelling (by deacylation/reacylation reactions), which allows these protozoa to alter lipids, bypassing the synthesis of entirely new phospholipid molecules. In addition, many of these amitochondriates are, however, capable of elongating/desaturating long-chain fatty acids, and assembling novel glycophospholipid molecules. In this review, progress in various aspects of lipid research on these organisms is discussed. Attempts are also made to identify steps of lipid metabolic pathways that can be used to develop chemotherapeutic agents against these and other mucosal parasites.
Collapse
Affiliation(s)
- Siddhartha Das
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Linder M, Winiecka-Krusnell J, Linder E. Use of recombinant cellulose-binding domains of Trichoderma reesei cellulase as a selective immunocytochemical marker for cellulose in protozoa. Appl Environ Microbiol 2002; 68:2503-8. [PMID: 11976127 PMCID: PMC127560 DOI: 10.1128/aem.68.5.2503-2508.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2001] [Accepted: 11/29/2001] [Indexed: 11/20/2022] Open
Abstract
Some unicellular organisms are able to encyst as a protective response to a harmful environment. The cyst wall usually contains chitin as its main structural constituent, but in some cases, as in Acanthamoeba, it consists of cellulose instead. Specific cytochemical differentiation between cellulose and chitin by microscopy has not been possible, due to the similarity of their constituent beta-1,4-linked hexose backbones. Thus, various fluorescent brightening agents and lectins bind to both cellulose and chitin. We have used a recombinant cellulose-binding protein consisting of two cellulose-binding domains (CBDs) from Trichoderma reesei cellulases linked together in combination with monoclonal anticellulase antibodies and anti-mouse immunoglobulin fluorescein conjugate to specifically stain cellulose in the cysts of Acanthamoeba strains for fluorescence microscopy imaging. Staining was observed in ruptured cysts and frozen sections of cysts but not in intact mature cysts. No staining reaction was observed with the chitin-containing cyst walls of Giardia intestinalis, Entamoeba dispar, or Pneumocystis carinii. Thus, the recombinant CBD can be used as a marker to distinguish between cellulose and chitin. Thirteen of 25 environmental or clinical isolates of amoebae reacted in the CBD binding assay. All 13 isolates were identified as Acanthamoeba spp. Five isolates of Hartmannella and seven isolates of Naegleria tested negative in the CBD binding assay. Whether cyst wall cellulose really is a unique property of Acanthamoeba spp. among free-living amoebae, as suggested by our findings, remains to be shown in more extensive studies.
Collapse
|
20
|
Singh BN, BonDurant RH, Campero CM, Corbeil LB. Immunological and biochemical analysis of glycosylated surface antigens and lipophosphoglycan of Tritrichomonas foetus. J Parasitol 2001; 87:770-7. [PMID: 11534640 DOI: 10.1645/0022-3395(2001)087[0770:iabaog]2.0.co;2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Immunoaffinity-purified TF1.17 adhesin antigen was compared biochemically and antigenically to Tritrichomonas foetus (TF) lipophosphoglycan (LPG) and a soluble glycosylated antigen (SGA) released from T. foetus and implicated in pathogenesis and immunity. The monoclonal antibodies (Mabs TF1.15 and TF1.17) specific for a glycosylated TF1.17 antigen were previously shown to prevent adhesion of the T. foetus parasites to bovine vaginal epithelial cells and to mediate killing by bovine complement. SGA was isolated from T. foetus-conditioned buffer and purified by octyl-Sepharose hydrophobic column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of SGA showed a major SGA1 component (approximately 190 kDa) and a minor SGA2 component (50-70 kDa), which migrated close to TF-LPG and TF1.17. The carbohydrate and lipid compositional analyses of affinity-purified TF1.17 and SGA2 by high-performance liquid chromatography (HPLC) and gas-liquid chromatography revealed the presence of monosaccharides and fatty acids as found in TF-LPG. All antigens contained terminal fucose as determined by alpha-fucosidase digestion followed by HPLC. ELISA and western blots were used to further characterize these glycosylated antigens and to analyze their relationships. The Mabs TF1.15 and TF1.17 reacted very strongly to TF-LPG and SGA2. as well as TF1.17 antigen, indicating that these molecules share common epitopes. These Mabs did not react with the SGA1 component either in ELISA and western blot analyses. Also, the monosaccharide composition of SGA1 was very different from the other three antigen, suggesting SGA1 was different from LPG, SGA2 and TF1.17. Although LPG reacted with Mabs to native TF1.17 antigen, LPG did not induce an immune response in cattle with the same route and adjuvant used to produce strong antibody responses to the native antigen. The latter response suggests that the tightly bound peptide present in the immunoaffinity-purified antigen is necessary for induction of a response to (an) epitope(s) in TF-LPG and TF1.17. Furthermore, vaginal fluid from T. foetus-infected heifers and serum from a cow with a T. foetus-associated pyometra recognized both TF1.17 and TF-LPG in western blots. These results suggest that T. foetus LPG and SGA2 are related to TF1.17 antigen, which was previously shown to play an important role in the pathogenesis and host response in bovine trichomoniasis.
Collapse
Affiliation(s)
- B N Singh
- Department of Biochemistry and Molecular Biology, SUNY UpState Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
21
|
Sanon A, Lawrence F, Bories C, Loiseau PM. Purification of N-acetyl-beta-D-hexosaminidase from Trichomonas vaginalis. Exp Parasitol 2001; 97:169-72. [PMID: 11312579 DOI: 10.1006/expr.2001.4599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- A Sanon
- Biologie et Contrôle des Organismes Parasites, UPRES 398, IFR 75, Université de Paris-Sud, 92290 Châtenay-Malabry Cédex, France
| | | | | | | |
Collapse
|
22
|
Abstract
This article compiles the papers dealing with the biochemistry of chitin synthase (CS) published during the last decade, provides up-to-date information on the state of knowledge and understanding of chitin synthesis in vitro, and points out some firmly entrenched ideas and tenets of CS biochemistry that have become of age without hardly ever having been critically re-evaluated. The subject is dealt with under the headings "Components of the CS reaction" (educt, cation requirement and intermediates; product), "Regulation of CS" (cooperativity and allostery; non-allosteric activation or priming of CS; latency), "Concerted action of CS and enzymes of chitinolysis", "Inhibition of CS", "Multiplicity of CSs", and "Structure of CS" (the putative UDPGlcNAc-binding domain of CS; identification of CS polypeptides; glycoconjugation). The prospects are outlined of obtaining a refined three-dimensional (3D) model of the catalytic site of CS for biotechnological applications.
Collapse
Affiliation(s)
- R A Merz
- Department of Plant Biology, University of Zürich, Switzerland
| | | | | | | |
Collapse
|
23
|
Abstract
Trichomonas vaginalis is emerging as a major pathogen of men and women and is associated with serious health consequences. Advances in diagnosis and treatment are presented. The complexity of trichomonad pathogenesis is illustrated in the interaction of this parasite with human cells, tissues and the immune system. It is now becoming evident that the interaction of trichomonads with the host is frequently modulated by environmental signals. The molecular biology of trichomonads is still in its infancy, but analysis of genes, genomic structure and transcriptional mechanisms suggest that trichomonads combine both prokaryotic and eukaryotic features. Evidence for the ancient divergence of trichomonads from other eukaryotic lineages is discussed.
Collapse
Affiliation(s)
- Michael W. Lehker
- aDepartment of Biological Sciences, The University of Texas at El Paso, El Paso, and bDepartment of Microbiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
24
|
Abstract
Tritrichomonas foetus is a parasite of particular veterinary importance causing bovine tritrichomonosis, a sexually transmitted disease leading to infertility and abortion. The present review summarizes the current knowledge on potential mechanisms of pathogenicity of T. foetus, the immunology of host-parasite interaction in bovine tritrichomonosis, and the experimental model systems of this parasitic disease.
Collapse
Affiliation(s)
- R S Felleisen
- Institute of Parasitology, University of Bern, Switzerland
| |
Collapse
|