1
|
Review on the Role of Host Immune Response in Protection and Immunopathogenesis during Cutaneous Leishmaniasis Infection. J Immunol Res 2020; 2020:2496713. [PMID: 32656269 PMCID: PMC7320295 DOI: 10.1155/2020/2496713] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/02/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is a major public health problem worldwide and spreads to human via the bite of sand flies during blood meal. Following its inoculation, the promastigotes are immediately taken up by phagocytic cells and these leishmania-infected host cells produce proinflammatory cytokines that activate other immune cells and these infected host cells produce more cytokines and reactive nitrogen and oxygen species for efficient control of leishmania infection. Many experimental studies showed that resistance to infection with leishmania paraites is associated with the production of proinflammatory cytokines and activation of CD4+ Th1 response. On the other hand, vulnerability to this parasitic infection is correlated to production of T helper 2 cytokines that facilitate persistence of parasites and disease progression. In addition, some studies have also indicated that CD8+ T cells play a vital role in immune defense through cytokine production and their cytotoxic activity and excessive production of proinflammatory mediators promote amplified recruitment of cells. This could be correlated with excessive inflammatory reaction and ultimately resulted in tissue destruction and development of immunopathogenesis. Thus, there are contradictions regarding the role of immune responses in protection and immunopathogenesis of CL disease. Therefore, the aim of this paper was to review the role of host immune response in protection and its contribution to disease severity for CL infection. In order to obtain more meaningful data regarding the nature of immune response to leishmania, further in-depth studies focused on immune modulation should be conducted to develop better therapeutic strategies.
Collapse
|
2
|
Boussoffara T, Chelif S, Ben Ahmed M, Mokni M, Ben Salah A, Dellagi K, Louzir H. Immunity Against Leishmania major Infection: Parasite-Specific Granzyme B Induction as a Correlate of Protection. Front Cell Infect Microbiol 2018; 8:397. [PMID: 30483482 PMCID: PMC6243638 DOI: 10.3389/fcimb.2018.00397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/22/2018] [Indexed: 11/13/2022] Open
Abstract
Zoonotic cutaneous leishmaniasis (ZCL) caused by Leishmania (L.) major infection is characterized by different clinical presentations which depend in part on the host factors. In attempt to investigate the impact of the host's immune response in the outcome of the disease, we conducted a prospective study of 453 individuals living in endemic foci of L. major transmission in Central Tunisia. Several factors were assessed at the baseline including (i) the presence of typical scars of ZCL, (ii) in vivo hypersensitivity reaction to leishmanin, and (iii) the in vitro release of granzyme B (Grz B) by peripheral blood mononuclear cells (PBMC) in response to stimulation with live L. major promastigotes. After one season of parasite's transmission, repeated clinical examinations allowed us to diagnose the new emerging ZCL cases. Heterogeneity was observed in terms of number of lesions developed by each individual as well as their size and spontaneous outcome, which led us to establish the parameter “severity of the disease.” The efficacy of the presence of typical ZCL scar, the leishmanin skin test (LST) positive reactivity and the high levels of Grz B (≥2 ng/ml), in the protection against the development of ZCL were 29, 15, and 22%, respectively. However, these factors were more efficient against development of intermediate or severe forms of ZCL. Levels of Grz B >2 ng/ml showed the best efficacy of protection (equals to 72.8%) against development of these forms of ZCL. The association of such parameter with the positivity of the LST exhibited a better efficacy (equals to 83.6%). In conclusion, our results support the involvement of Leishmania-specific cytotoxic cellular immune response in host protection against Leishmania-infection. This factor could be of great interest in monitoring the success of vaccination against human leishmaniasis.
Collapse
Affiliation(s)
- Thouraya Boussoffara
- Laboratory of Transmission, Control and Immunobiology of Infections, Pasteur Institute of Tunis, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Sadok Chelif
- Laboratory of Transmission, Control and Immunobiology of Infections, Pasteur Institute of Tunis, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Melika Ben Ahmed
- Laboratory of Transmission, Control and Immunobiology of Infections, Pasteur Institute of Tunis, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Mourad Mokni
- Department of Dermatology, Hospital La Rabta, Tunis, Tunisia
| | - Afif Ben Salah
- Laboratory of Transmission, Control and Immunobiology of Infections, Pasteur Institute of Tunis, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Koussay Dellagi
- Laboratory of Transmission, Control and Immunobiology of Infections, Pasteur Institute of Tunis, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Hechmi Louzir
- Laboratory of Transmission, Control and Immunobiology of Infections, Pasteur Institute of Tunis, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
3
|
Teixeira CR, Santos CDS, Prates DB, Dos Santos RT, Araújo-Santos T, de Souza-Neto SM, Borges VM, Barral-Netto M, Brodskyn CI. Lutzomyia longipalpis Saliva Drives Interleukin-17-Induced Neutrophil Recruitment Favoring Leishmania infantum Infection. Front Microbiol 2018; 9:881. [PMID: 29867796 PMCID: PMC5953329 DOI: 10.3389/fmicb.2018.00881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 11/22/2022] Open
Abstract
During bloodfeeding, the presence of sand fly saliva in the hemorrhagic pool where Leishmania is also inoculated modulates the development of host immune mechanisms creating a favorable environment for disease progression. To date, information obtained through experimental models suggests that sand fly saliva induces cellular recruitment and modulates production of eicosanoids. However, the effect of sand fly saliva in the different steps of the inflammatory response triggered by Leishmania remains undefined. Here we further investigate if interaction of Lutzomyia longipalpis salivary gland sonicate (SGS) with different host cells present during the initial inflammatory events regulate Leishmania infantum infectivity. Initially, we observed that incubation of human peripheral blood mononuclear cells (PBMC) with Lu. longipalpis SGS in the presence of L. infantum significantly increased IL-10 but did not alter expression of IFN-γ and TNF-α by CD4+ T cells induced by the parasite alone. Interestingly, incubation of PBMC with Lu. longipalpis SGS alone or in the presence of L. infantum resulted in increased IL-17 production. The presence of IL-17 is related to neutrophil recruitment and plays an important role at the site of infection. Here, we also observed increased migration of neutrophil using an in vitro chemotactic assay following incubation with supernatants from PBMC stimulated with L. infantum and Lu. longipalpis SGS. Neutrophil migration was abrogated following neutralization of IL-17 with specific antibodies. Moreover, culture of human neutrophils with L. infantum in the presence of Lu. longipalpis SGS promoted neutrophil apoptosis resulting in increased parasite viability. Neutrophils operate as the first line of defense in the early stages of infection and later interact with different cells, such as macrophages. The crosstalk between neutrophils and macrophages is critical to determine the type of specific immune response that will develop. Here, we observed that co-culture of human macrophages with autologous neutrophils previously infected in the presence of Lu. longipalpis SGS resulted in a higher infection rate, accompanied by increased production of TGF-β and PGE2. Our results provide new insight into the contribution of Lu. longipalpis SGS to L. infantum-induced regulation of important inflammatory events, creating a favorable environment for parasite survival inside different host cells.
Collapse
Affiliation(s)
| | | | - Deboraci B Prates
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Ciências da Saúde da Universidade Federal da Bahia, Departamentos de Biomorfologia e Biointeração, Salvador, Brazil
| | | | - Théo Araújo-Santos
- Centro de Ciências Biológicas e Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
| | | | - Valéria M Borges
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Manoel Barral-Netto
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Faculdade de Medicina da Universidade Federal da Bahia, Departamento de Patologia e Medicina Legal, Salvador, Brazil.,Instituto de Investigação em Imunologia, iii-INCT, São Paulo, Brazil
| | - Cláudia I Brodskyn
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Ciências da Saúde da Universidade Federal da Bahia, Departamentos de Biomorfologia e Biointeração, Salvador, Brazil.,Instituto de Investigação em Imunologia, iii-INCT, São Paulo, Brazil
| |
Collapse
|
4
|
Chuang MH, Chang JT, Hsu LJ, Jan MS, Lu FJ. Antitumor Activity of the Chinese Medicine JC-001 Is Mediated by Immunomodulation in a Murine Model of Hepatocellular Carcinoma. Integr Cancer Ther 2017; 16:516-525. [PMID: 27698264 PMCID: PMC5739137 DOI: 10.1177/1534735416664173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/29/2016] [Accepted: 07/11/2016] [Indexed: 01/01/2023] Open
Abstract
JC-001 is a Chinese medicine that has been used to treat liver disease; however, its significance in cancer treatment has not been characterized. In this study, we used an immunocompetent tumor model to characterize the antitumor activity of JC-001. A total of 48 Hepa 1-6 tumor-bearing C57BL/6 mice were randomly grouped into 4 groups and treated with H2O or JC-001 via oral administration. After hepatoma cell lines, including HepG2, Hep3B, SK-Hep-1, and Hepa 1-6, underwent 96 hours of JC-001 treatment, a low cytotoxic effect was observed. In contrast, no direct cytotoxic effect of JC-001 on a normal human liver cell line, THLE-3, was observed under the same incubation conditions. Using a murine tumor model, we found that tumor growth could be inhibited by JC-001 in C57BL/6 mice but not in immunodeficient mice. Histopathological analysis of tumors from C57BL/6 mice revealed immune cell infiltration in tumors from the JC-001-treated group, as observed by hematoxylin and eosin staining; in addition, Ki67, hypoxia-inducible factor-1-α, and high mobility group box 1 expression levels were suppressed in the tumors. Both the coculture assay and murine spleen mRNA quantitative PCR analyses demonstrated that JC-001 could suppress Th17 immunity. Our data suggest that JC-001 is a Chinese medicine with low cytotoxicity that can significantly suppress tumor growth by immune regulation. This herbal remedy has great potential for future clinical application in hepatoma therapy.
Collapse
Affiliation(s)
- Meng-Hsien Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jinghua Tsai Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Chest Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Technology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shiou Jan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung,Taiwan
- Division of Allergy, Immunology and Rheumatology, Department ofInternal Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Fung-Jou Lu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Granzyme-mediated regulation of host defense in the liver in experimental Leishmania donovani infection. Infect Immun 2014; 83:702-12. [PMID: 25452549 DOI: 10.1128/iai.02418-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the livers of susceptible C57BL/6 (B6) mice infected with Leishmania donovani, CD8(+) T cell mechanisms are required for granuloma assembly, macrophage activation, intracellular parasite killing, and self-cure. Since gene expression of perforin and granzymes A and B (GzmA and GzmB), cytolytic proteins linked to CD8(+) cell effector function, was enhanced in infected liver tissue, B6 mice deficient in these granular proteins were used to gauge host defense roles. Neither perforin nor GzmA was required; however, mice deficient in GzmB (GzmB(-/-), GzmB cluster(-/-), and GzmA×B cluster double knockout [DKO] mice) showed both delayed granuloma assembly and initially impaired control of parasite replication. Since these two defects in B6 mice were limited to early-stage infection, innately resistant 129/Sv mice were also tested. In this genetic setting, expression of both innate and subsequent T (Th1) cell-dependent acquired resistance, including the self-cure phenotype, was entirely derailed in GzmA×B cluster DKO mice. These results, in susceptible B6 mice for GzmB and in resistant 129/Sv mice for GzmA and/or the GzmB cluster, point to granzyme-mediated host defense regulation in the liver in experimental visceral leishmaniasis.
Collapse
|
6
|
Seyed N, Taheri T, Vauchy C, Dosset M, Godet Y, Eslamifar A, Sharifi I, Adotevi O, Borg C, Rohrlich PS, Rafati S. Immunogenicity evaluation of a rationally designed polytope construct encoding HLA-A*0201 restricted epitopes derived from Leishmania major related proteins in HLA-A2/DR1 transgenic mice: steps toward polytope vaccine. PLoS One 2014; 9:e108848. [PMID: 25310094 PMCID: PMC4195657 DOI: 10.1371/journal.pone.0108848] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/22/2014] [Indexed: 11/18/2022] Open
Abstract
Background There are several reports demonstrating the role of CD8 T cells against Leishmania species. Therefore peptide vaccine might represent an effective approach to control the infection. We developed a rational polytope-DNA construct encoding immunogenic HLA-A2 restricted peptides and validated the processing and presentation of encoded epitopes in a preclinical mouse model humanized for the MHC-class-I and II. Methods and Findings HLA-A*0201 restricted epitopes from LPG-3, LmSTI-1, CPB and CPC along with H-2Kd restricted peptides, were lined-up together as a polytope string in a DNA construct. Polytope string was rationally designed by harnessing advantages of ubiquitin, spacers and HLA-DR restricted Th1 epitope. Endotoxin free pcDNA plasmid expressing the polytope was inoculated into humanized HLA-DRB1*0101/HLA-A*0201 transgenic mice intramuscularly 4 days after Cardiotoxin priming followed by 2 boosters at one week interval. Mice were sacrificed 10 days after the last booster, and splenocytes were subjected to ex-vivo and in-vitro evaluation of specific IFN-γ production and in-vitro cytotoxicity against individual peptides by ELISpot and standard chromium-51(51Cr) release assay respectively. 4 H-2Kd and 5 HLA-A*0201 restricted peptides were able to induce specific CD8 T cell responses in BALB/C and HLA-A2/DR1 mice respectively. IFN-γ and cytolytic activity together discriminated LPG-3-P1 as dominant, LmSTI-1-P3 and LmSTI-1-P6 as subdominant with both cytolytic activity and IFN-γ production, LmSTI-1-P4 and LPG-3-P5 as subdominant with only IFN-γ production potential. Conclusions Here we described a new DNA-polytope construct for Leishmania vaccination encompassing immunogenic HLA-A2 restricted peptides. Immunogenicity evaluation in HLA-transgenic model confirmed CD8 T cell induction with expected affinities and avidities showing almost efficient processing and presentation of the peptides in relevant preclinical model. Further evaluation will determine the efficacy of this polytope construct protecting against infectious challenge of Leishmania. Fortunately HLA transgenic mice are promising preclinical models helping to speed up immunogenicity analysis in a human related mouse model.
Collapse
Affiliation(s)
- Negar Seyed
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Charline Vauchy
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
| | - Magalie Dosset
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
| | - Yann Godet
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
| | - Ali Eslamifar
- Department of Electron Microscopy and Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Iraj Sharifi
- School of Medicine, Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Olivier Adotevi
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
- CHRU de Besançon, Service d′Oncologie, Besançon, France
| | - Christophe Borg
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
- CHRU de Besançon, Service d′Oncologie, Besançon, France
| | - Pierre Simon Rohrlich
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
- CHRU de Besançon, Service de pédiatrie, Besançon, France
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
- * E-mail:
| |
Collapse
|
7
|
Rafati S, Modabber F. Cutaneous Leishmaniasis in Middle East and North Africa. NEGLECTED TROPICAL DISEASES 2014. [DOI: 10.1007/978-3-7091-1613-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Novais FO, Carvalho LP, Graff JW, Beiting DP, Ruthel G, Roos DS, Betts MR, Goldschmidt MH, Wilson ME, de Oliveira CI, Scott P. Cytotoxic T cells mediate pathology and metastasis in cutaneous leishmaniasis. PLoS Pathog 2013; 9:e1003504. [PMID: 23874205 PMCID: PMC3715507 DOI: 10.1371/journal.ppat.1003504] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/02/2013] [Indexed: 01/05/2023] Open
Abstract
Disease progression in response to infection can be strongly influenced by both pathogen burden and infection-induced immunopathology. While current therapeutics focus on augmenting protective immune responses, identifying therapeutics that reduce infection-induced immunopathology are clearly warranted. Despite the apparent protective role for murine CD8⁺ T cells following infection with the intracellular parasite Leishmania, CD8⁺ T cells have been paradoxically linked to immunopathological responses in human cutaneous leishmaniasis. Transcriptome analysis of lesions from Leishmania braziliensis patients revealed that genes associated with the cytolytic pathway are highly expressed and CD8⁺ T cells from lesions exhibited a cytolytic phenotype. To determine if CD8⁺ T cells play a causal role in disease, we turned to a murine model. These studies revealed that disease progression and metastasis in L. braziliensis infected mice was independent of parasite burden and was instead directly associated with the presence of CD8⁺ T cells. In mice with severe pathology, we visualized CD8⁺ T cell degranulation and lysis of L. braziliensis infected cells. Finally, in contrast to wild-type CD8⁺ T cells, perforin-deficient cells failed to induce disease. Thus, we show for the first time that cytolytic CD8⁺ T cells mediate immunopathology and drive the development of metastatic lesions in cutaneous leishmaniasis.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Brazil
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Disease Progression
- Gene Expression Profiling
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leishmania braziliensis/immunology
- Leishmania braziliensis/isolation & purification
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/parasitology
- Leishmaniasis, Cutaneous/pathology
- Leishmaniasis, Cutaneous/physiopathology
- Leishmaniasis, Diffuse Cutaneous/etiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Skin/immunology
- Skin/parasitology
- Skin/pathology
- Specific Pathogen-Free Organisms
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/parasitology
- T-Lymphocytes, Cytotoxic/pathology
Collapse
Affiliation(s)
- Fernanda O. Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lucas P. Carvalho
- Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais-INCT-DT(CNPq/MCT), Serviço de Imunologia, Hospital Universitario Prof. Edgard Santos, Universidade Federal da Bahia Salvador, Bahia, Brazil
| | - Joel W. Graff
- Iowa City VA Medical Center, Iowa City, Iowa, United States of America
| | - Daniel P. Beiting
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael H. Goldschmidt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mary E. Wilson
- Iowa City VA Medical Center, Iowa City, Iowa, United States of America
| | | | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
9
|
Majumder S, Bhattacharjee S, Paul Chowdhury B, Majumdar S. CXCL10 is critical for the generation of protective CD8 T cell response induced by antigen pulsed CpG-ODN activated dendritic cells. PLoS One 2012; 7:e48727. [PMID: 23144947 PMCID: PMC3492407 DOI: 10.1371/journal.pone.0048727] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/28/2012] [Indexed: 01/01/2023] Open
Abstract
The visceral form of leishmaniasis is the most severe form of the disease and of particular concern due to the emerging problem of HIV/visceral leishmaniasis (VL) co-infection in the tropics. Till date miltefosine, amphotericin B and pentavalent antimony compounds remain the main treatment regimens for leishmaniasis. However, because of severe side effects, there is an urgent need for alternative improved therapies to combat this dreaded disease. In the present study, we have used the murine model of leishmaniasis to evaluate the potential role played by soluble leishmanial antigen (SLA) pulsed-CpG-ODN stimulated dendritic cells (SLA-CpG-DCs) in restricting the intracellular leishmanial growth. We found that mice vaccinated with a single dose of SLA-pulsed DC stimulated by CpG-ODN were protected against a subsequent leishmanial challenge and had a dramatic reduction in parasite burden along with the generation of parasite specific cytotoxic T lymphocytes. Moreover, we demonstrate that the induction of protective immunity conferred by SLA-CpG-DCs depends entirely on the CXC chemokine IFN-γ-inducible protein 10 (CXCL10; IP-10). CXCL10 is directly involved in the generation of a parasite specific CD8+ T cell-mediated immune response. We observed significant reduction of CD8+ T cells in mice depleted of CXCL10 suggesting a direct role of CXCL10 in the generation of CD8+ T cells in SLA-CpG-DCs vaccinated mice. CXCL10 also contributed towards the generation of perforin and granzyme B, two important cytolytic mediators of CD8+ T cells, following SLA-CpG-DCs vaccination. Together, these findings strongly demonstrate that CXCL10 is critical for rendering a protective cellular immunity during SLA-CpG-DC vaccination that confers protection against Leishmania donovani infection.
Collapse
Affiliation(s)
- Saikat Majumder
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata, India
| | - Surajit Bhattacharjee
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata, India
| | - Bidisha Paul Chowdhury
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata, India
| | - Subrata Majumdar
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata, India
- * E-mail:
| |
Collapse
|
10
|
Stäger S, Rafati S. CD8(+) T cells in leishmania infections: friends or foes? Front Immunol 2012; 3:5. [PMID: 22566891 PMCID: PMC3342007 DOI: 10.3389/fimmu.2012.00005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/09/2012] [Indexed: 01/10/2023] Open
Abstract
Host protection against several intracellular pathogens requires the induction of CD8+ T cell responses. CD8+ T cells are potent effector cells that can produce high amounts of pro-inflammatory cytokines and kill infected target cells efficiently. However, a protective role for CD8+ T cells during Leishmania infections is still controversial and largely depends on the infection model. In this review, we discuss the role of CD8+ T cells during various types of Leishmania infections, following vaccination, and as potential immunotherapeutic targets.
Collapse
Affiliation(s)
- Simona Stäger
- Institut National de la Recherche Scientifique, Institut Armand Frappier, Université du Québec Laval, QC, Canada
| | | |
Collapse
|
11
|
Antibiotic resistance free plasmid DNA expressing LACK protein leads towards a protective Th1 response against Leishmania infantum infection. Vaccine 2009; 27:6695-703. [PMID: 19747996 DOI: 10.1016/j.vaccine.2009.08.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/30/2009] [Accepted: 08/26/2009] [Indexed: 11/21/2022]
Abstract
Canine visceral leishmaniasis is a serious public health concern in the Mediterranean basin since dogs are the main Leishmania infantum reservoir. However, there is not a vaccination method in veterinary use in this area, and therefore the development of a vaccine against this parasite is essential for the possible control of the disease. Previous reports have shown the efficacy of heterologous prime-boost vaccination with the pCIneo plasmid and the poxvirus VV (both Western Reserve and MVA strains) expressing L. infantum LACK antigen against canine leishmaniasis. As pCIneo-LACK plasmid contains antibiotic resistance genes, its use as a profilactic method is not recommended. Hence, the antibiotic resistance gene free pORT-LACK plasmid is a more suitable tool for its use as a vaccine. Here we report the protective and immunostimulatory effect of the prime-boost pORT-LACK/MVA-LACK vaccination tested in a canine experimental model. Vaccination induced a reduction in clinical signs and in parasite burden in the liver, an induction of the Leishmania-specific T cell activation, as well as an increase of the expression of Th1 type cytokines in PBMC and target organs.
Collapse
|
12
|
|
13
|
Raveendran Nair P, Rodriguez S, Ramachandran R, Alamo A, Melnick SJ, Escalon E, Garcia PI, Wnuk SF, Ramachandran C. Immune stimulating properties of a novel polysaccharide from the medicinal plant Tinospora cordifolia. Int Immunopharmacol 2005; 4:1645-59. [PMID: 15454117 PMCID: PMC7185674 DOI: 10.1016/j.intimp.2004.07.024] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 07/22/2004] [Indexed: 11/26/2022]
Abstract
An α-d-glucan (RR1) composed of (1→4) linked back bone and (1→6) linked branches with a molecular mass of >550 kDa and exhibiting unique immune stimulating properties is isolated and characterized from the medicinal plant Tinospora cordifolia. This novel polysaccharide is noncytotoxic and nonproliferating to normal lymphocytes as well as tumor cell lines at 0–1000 μg/ml. It activated different subsets of the lymphocytes such as natural killer (NK) cells (331%), T cells (102%), and B cells (39%) at 100 μg/ml concentration. The significant activation of NK cells is associated with the dose-dependent killing of tumor cells by activated normal lymphocytes in a functional assay. Immune activation by RR1 in normal lymphocytes elicited the synthesis of interleukin (IL)-1β (1080 pg/ml), IL-6 (21,833 pg/ml), IL-12 p70 (50.19 pg/ml), IL-12 p40 (918.23 pg/ml), IL-18 (27.47 pg/ml), IFN- γ (90.16 pg/ml), tumor necrosis factor (TNF)-α (2225 pg/ml) and monocyte chemoattractant protein (MCP)-1 (2307 pg/ml) at 100 μg/ml concentration, while it did not induce the production of IL-2, IL-4, IL-10, interferon (IFN)-α and TNF-β. The cytokine profile clearly demonstrates the Th1 pathway of T helper cell differentiation essential for cell mediated immunity, with a self-regulatory mechanism for the control of its overproduction. RR1 also activated the complements in the alternate pathway, demonstrated by a stepwise increase in C3a des Arg components. Incidentally, RR1 stimulation did not produce any oxidative stress or inducible nitric oxide synthase (iNOS) in the lymphocytes or any significant increase in nitric oxide production. The water solubility, high molecular mass, activation of lymphocytes especially NK cells, complement activation, Th1 pathway-associated cytokine profile, together with a low level of nitric oxide synthesis and absence of oxidative stress confer important immunoprotective potential to this novel α-d-glucan.
Collapse
Affiliation(s)
- P.K. Raveendran Nair
- Research Institute, Miami Children's Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, United States
| | - Sonia Rodriguez
- Research Institute, Miami Children's Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, United States
| | - Reshma Ramachandran
- Research Institute, Miami Children's Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, United States
| | - Arturo Alamo
- Research Institute, Miami Children's Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, United States
| | - Steven J. Melnick
- Research Institute, Miami Children's Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, United States
| | - Enrique Escalon
- Research Institute, Miami Children's Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, United States
| | - Pedro I. Garcia
- Department of Chemistry and Biochemistry, Florida International University, University Park, Miami, FL 33156, United States
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry, Florida International University, University Park, Miami, FL 33156, United States
| | - Cheppail Ramachandran
- Research Institute, Miami Children's Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, United States
- Corresponding author. Tel.: +1 305 663 8510; fax: +1 305 669 6452.
| |
Collapse
|
14
|
Strauss-Ayali D, Baneth G, Shor S, Okano F, Jaffe CL. Interleukin-12 augments a Th1-type immune response manifested as lymphocyte proliferation and interferon gamma production in Leishmania infantum-infected dogs. Int J Parasitol 2004; 35:63-73. [PMID: 15619517 DOI: 10.1016/j.ijpara.2004.10.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 10/19/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
The dog is the major reservoir for human visceral leishmaniasis caused by Leishmania infantum. Interleukin-12 is considered to have an essential role in the development of both innate and adaptive immunity to Leishmania spp. and other intracellular pathogens. This study focused on the influence of IL-12 in experimental and natural canine visceral leishmaniasis. Responses of peripheral blood mononuclear cells to IL-12, interleukin-10 and Leishmania soluble antigen were evaluated in L. infantum experimentally infected oligosymptomatic beagles, uninfected beagles, naturally infected polysymptomatic dogs, and their matched uninfected controls. Leishmania soluble antigen induced strong peripheral blood mononuclear cells proliferation both in experimentally infected dogs (median stimulation index [SI]=15.01), and in naturally infected dogs (SI=8.86), but not by cells from the control groups. IL-12 addition further enhanced cell proliferation in naturally (SI=14.95), but not in experimentally infected animals. Peripheral blood mononuclear cells from experimentally infected dogs were able to produce significant amounts of IFN-gamma (3.39 ng/ml) upon LSA stimulation, but no such production was detected in cells from naturally infected or control animals. Interestingly, addition of IL-12 reversed the inhibitory effect of LSA on IFN-gamma production by cells from polysymptomatic naturally infected dogs and the uninfected beagles (4.84 and 7.45 ng/ml, respectively), and further increased IFN-gamma production by peripheral blood mononuclear cells from experimentally infected oligosymptomatic dogs (29.28 ng/ml). IFN-gamma mRNA expression correlated well with IFN-gamma production. Addition of IL-10 to Leishmania soluble antigen stimulated peripheral blood mononuclear cells inhibited proliferation and IFN-gamma production in experimentally infected dogs. Thus, the ability of IL-12 to augment IFN-gamma production by peripheral blood mononuclear cells from dogs with experimental or natural symptomatic canine visceral leishmaniasis makes it a good candidate for cytokine therapy in dogs that are refractory to current therapy.
Collapse
Affiliation(s)
- Dalit Strauss-Ayali
- School of Veterinary Medicine, Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel.
| | | | | | | | | |
Collapse
|
15
|
Rogers KA, Titus RG. THE HUMAN CYTOKINE RESPONSE TO LEISHMANIA MAJOR EARLY AFTER EXPOSURE TO THE PARASITE IN VITRO. J Parasitol 2004; 90:557-63. [PMID: 15270099 DOI: 10.1645/ge-3317] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Leishmaniasis is caused by the protozoan parasite Leishmania spp. In murine leishmaniasis, a T helper cell type-I (Th1) response, characterized by the secretion of interferon (IFN)-gamma is necessary for clearing the infection. whereas a Th2 response, accompanied by the production of interleukin (IL)-5, can exacerbate the disease. Moreover, the early cytokine milieu is thought to play an important role in determining the outcome of infection. In human leishmaniasis little is known about this early cytokine response. Because of this, we cocultured human peripheral blood mononuclear cells (PBMC) with Leishmania major in vitro and measured the production of IFN-gamma, IL-5, and IL-10. We also treated PBMC cultures with various cytokines and neutralizing anticytokines. We found that the principal cytokine produced was IFN-gamma and that its production was regulated by IL-10 and IL-12. In contrast, only low levels of Th2 cytokines such as IL-5 were produced. Therefore, the Th1-Th2 dichotomy that exists in inbred strains of mice does not appear to apply to the response of humans to L. major. Rather, Th2 cytokines may play a role in regulating IFN-gamma production.
Collapse
Affiliation(s)
- Kathleen A Rogers
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1619, USA
| | | |
Collapse
|
16
|
Pompeu MM, Brodskyn C, Teixeira MJ, Clarêncio J, Van Weyenberg J, Coelho IC, Cardoso SA, Barral A, Barral-Netto M. Differences in gamma interferon production in vitro predict the pace of the in vivo response to Leishmania amazonensis in healthy volunteers. Infect Immun 2001; 69:7453-60. [PMID: 11705920 PMCID: PMC98834 DOI: 10.1128/iai.69.12.7453-7460.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The initial encounter of Leishmania cells and cells from the immune system is fundamentally important in the outcome of infection and determines disease development or resistance. We evaluated the anti-Leishmania amazonensis response of naive volunteers by using an in vitro priming (IVP) system and comparing the responses following in vivo vaccination against the same parasite. In vitro stimulation allowed us to distinguish two groups of individuals, those who produced small amounts of gamma interferon (IFN-gamma) (n = 16) (low producers) and those who produced large amounts of this cytokine (n = 16) (high producers). IFN-gamma production was proportional to tumor necrosis factor alpha and interleukin 10 (IL-10) levels but did not correlate with IL-5 production. Volunteers who produced small amounts of IFN-gamma in vitro remained low producers 40 days after vaccination, whereas high producers exhibited increased IFN-gamma production. However, 6 months after vaccination, all individuals tested produced similarly high levels of IFN-gamma upon stimulation of their peripheral blood mononuclear cells with Leishmania promastigotes, indicating that low in vitro producers respond slowly in vivo to vaccination. In high IFN-gamma producers there was an increased frequency of activated CD8(+) T cells both in vitro and in vivo compared to the frequency in low producers, and such cells were positive for IFN-gamma as determined by intracellular staining. Such findings suggest that IVP responses can be used to predict the pace of postvaccination responses of test volunteers. Although all vaccinated individuals eventually have a potent anti-Leishmania cell-mediated immunity (CMI) response, a delay in mounting the CMI response may influence resistance against leishmaniasis.
Collapse
Affiliation(s)
- M M Pompeu
- Centro de Pesquisas Gonçalo Moniz (FIOCRUZ), Salvador, Bahia, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|