1
|
Gonzalez-Ceron L, Dema B, Palomeque-Culebro OL, Santillan-Valenzuela F, Montoya A, Reyes-Sandoval A. Plasmodium vivax MSP1-42 kD Variant Proteins Detected Naturally Induced IgG Antibodies in Patients Regardless of the Infecting Parasite Phenotype in Mesoamerica. Life (Basel) 2023; 13:life13030704. [PMID: 36983859 PMCID: PMC10058798 DOI: 10.3390/life13030704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Background: The serological tests using blood stage antigens might be helpful for detecting recent exposure to Plasmodium parasites, and seroepidemiological studies would aid in the elimination of malaria. This work produced recombinant proteins of PvMSP142 variants and evaluated their capacity to detect IgG antibodies in symptomatic patients from Mesoamerica. Methods: Three variant Pvmsp142 genes were cloned in the pHL-sec plasmid, expressed in the Expi293F™ eukaryotic system, and the recombinant proteins were purified by affinity chromatography. Using an ELISA, 174 plasma or eluted samples from patients infected with different P. vivax haplotypes were evaluated against PvMSP142 proteins and to a native blood stage antigen (NBSA). Results: The antibody IgG OD values toward PvMSP142 variants (v88, v21, and v274) were heterogeneous (n = 178; median = 0.84 IQR 0.28–1.64). The correlation of IgG levels among all proteins was very high (spearman’s rho = 0.96–0.98; p < 0.0001), but was lower between them and the NBSA (rho = 0.771; p < 0.0001). In only a few samples, higher reactivity to the homologous protein was evident. Patients with a past infection who were seropositive had higher IgG levels and lower parasitemia levels than those who did not (p < 0.0001). Conclusions: The PvMSP142 variants were similarly efficient in detecting specific IgG antibodies in P. vivax patients from Mesoamerica, regardless of the infecting parasite’s haplotype, and might be good candidates for malaria surveillance and epidemiological studies in the region.
Collapse
Affiliation(s)
- Lilia Gonzalez-Ceron
- Regional Centre of Public Health Research, National Institute for Public Health Research, Tapachula 30700, Mexico
- Correspondence: (L.G.-C.); (A.R.-S.); Tel.: +52-9626262219 (L.G.-C.); +52-5557296000 (A.R.-S.)
| | - Barbara Dema
- Pandemic Science Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Olga L. Palomeque-Culebro
- Regional Centre of Public Health Research, National Institute for Public Health Research, Tapachula 30700, Mexico
| | - Frida Santillan-Valenzuela
- Regional Centre of Public Health Research, National Institute for Public Health Research, Tapachula 30700, Mexico
| | - Alberto Montoya
- Parasitology Department, National Centre for Diagnosis Reference, Ministry of Health, Managua 11165, Nicaragua
| | - Arturo Reyes-Sandoval
- Instituto Politécnico Nacional (IPN), Unidad Adolfo López Mateos, Av. Luis Enrique Erro s/n., Mexico City 07738, Mexico
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA), Unidad Morelos, Instituto Politécnico Nacional (IPN), Boulevard de la Tecnología, 1036 Z-1, P 2/2, Atlacholoaya 62790, Mexico
- Correspondence: (L.G.-C.); (A.R.-S.); Tel.: +52-9626262219 (L.G.-C.); +52-5557296000 (A.R.-S.)
| |
Collapse
|
2
|
Tjondro HC, Loke I, Chatterjee S, Thaysen-Andersen M. Human protein paucimannosylation: cues from the eukaryotic kingdoms. Biol Rev Camb Philos Soc 2019; 94:2068-2100. [PMID: 31410980 DOI: 10.1111/brv.12548] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022]
Abstract
Paucimannosidic proteins (PMPs) are bioactive glycoproteins carrying truncated α- or β-mannosyl-terminating asparagine (N)-linked glycans widely reported across the eukaryotic domain. Our understanding of human PMPs remains limited, despite findings documenting their existence and association with human disease glycobiology. This review comprehensively surveys the structures, biosynthetic routes and functions of PMPs across the eukaryotic kingdoms with the aim of synthesising an improved understanding on the role of protein paucimannosylation in human health and diseases. Convincing biochemical, glycoanalytical and biological data detail a vast structural heterogeneity and fascinating tissue- and subcellular-specific expression of PMPs within invertebrates and plants, often comprising multi-α1,3/6-fucosylation and β1,2-xylosylation amongst other glycan modifications and non-glycan substitutions e.g. O-methylation. Vertebrates and protists express less-heterogeneous PMPs typically only comprising variable core fucosylation of bi- and trimannosylchitobiose core glycans. In particular, the Manα1,6Manβ1,4GlcNAc(α1,6Fuc)β1,4GlcNAcβAsn glycan (M2F) decorates various human neutrophil proteins reportedly displaying bioactivity and structural integrity demonstrating that they are not degradation products. Less-truncated paucimannosidic glycans (e.g. M3F) are characteristic glycosylation features of proteins expressed by human cancer and stem cells. Concertedly, these observations suggest the involvement of human PMPs in processes related to innate immunity, tumorigenesis and cellular differentiation. The absence of human PMPs in diverse bodily fluids studied under many (patho)physiological conditions suggests extravascular residence and points to localised functions of PMPs in peripheral tissues. Absence of PMPs in Fungi indicates that paucimannosylation is common, but not universally conserved, in eukaryotes. Relative to human PMPs, the expression of PMPs in plants, invertebrates and protists is more tissue-wide and constitutive yet, similar to their human counterparts, PMP expression remains regulated by the physiology of the producing organism and PMPs evidently serve essential functions in development, cell-cell communication and host-pathogen/symbiont interactions. In most PMP-producing organisms, including humans, the N-acetyl-β-hexosaminidase isoenzymes and linkage-specific α-mannosidases are glycoside hydrolases critical for generating PMPs via N-acetylglucosaminyltransferase I (GnT-I)-dependent and GnT-I-independent truncation pathways. However, the identity and structure of many species-specific PMPs in eukaryotes, their biosynthetic routes, strong tissue- and development-specific expression, and diverse functions are still elusive. Deep exploration of these PMP features involving, for example, the characterisation of endogenous PMP-recognising lectins across a variety of healthy and N-acetyl-β-hexosaminidase-deficient human tissue types and identification of microbial adhesins reactive to human PMPs, are amongst the many tasks required for enhanced insight into the glycobiology of human PMPs. In conclusion, the literature supports the notion that PMPs are significant, yet still heavily under-studied biomolecules in human glycobiology that serve essential functions and create structural heterogeneity not dissimilar to other human N-glycoprotein types. Human PMPs should therefore be recognised as bioactive glycoproteins that are distinctly different from the canonical N-glycoprotein classes and which warrant a more dedicated focus in glycobiological research.
Collapse
Affiliation(s)
- Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Ian Loke
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
3
|
Samuelson J, Robbins PW. Effects of N-glycan precursor length diversity on quality control of protein folding and on protein glycosylation. Semin Cell Dev Biol 2014; 41:121-8. [PMID: 25475176 DOI: 10.1016/j.semcdb.2014.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 01/24/2023]
Abstract
Asparagine-linked glycans (N-glycans) of medically important protists have much to tell us about the evolution of N-glycosylation and of N-glycan-dependent quality control (N-glycan QC) of protein folding in the endoplasmic reticulum. While host N-glycans are built upon a dolichol-pyrophosphate-linked precursor with 14 sugars (Glc3Man9GlcNAc2), protist N-glycan precursors vary from Glc3Man9GlcNAc2 (Acanthamoeba) to Man9GlcNAc2 (Trypanosoma) to Glc3Man5GlcNAc2 (Toxoplasma) to Man5GlcNAc2 (Entamoeba, Trichomonas, and Eimeria) to GlcNAc2 (Plasmodium and Giardia) to zero (Theileria). As related organisms have differing N-glycan lengths (e.g. Toxoplasma, Eimeria, Plasmodium, and Theileria), the present N-glycan variation is based upon secondary loss of Alg genes, which encode enzymes that add sugars to the N-glycan precursor. An N-glycan precursor with Man5GlcNAc2 is necessary but not sufficient for N-glycan QC, which is predicted by the presence of the UDP-glucose:glucosyltransferase (UGGT) plus calreticulin and/or calnexin. As many parasites lack glucose in their N-glycan precursor, UGGT product may be identified by inhibition of glucosidase II. The presence of an armless calnexin in Toxoplasma suggests secondary loss of N-glycan QC from coccidia. Positive selection for N-glycan sites occurs in secreted proteins of organisms with N-glycan QC and is based upon an increased likelihood of threonine but not serine in the +2 position versus asparagine. In contrast, there appears to be selection against N-glycan length in Plasmodium and N-glycan site density in Toxoplasma. Finally, there is suggestive evidence for N-glycan-dependent ERAD in Trichomonas, which glycosylates and degrades the exogenous reporter mutant carboxypeptidase Y (CPY*).
Collapse
Affiliation(s)
- John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, 72 East Concord St, Evans 425, Boston, MA 02118, USA.
| | - Phillips W Robbins
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, 72 East Concord St, Evans 425, Boston, MA 02118, USA.
| |
Collapse
|
4
|
Chaubey S, Grover M, Tatu U. Endoplasmic reticulum stress triggers gametocytogenesis in the malaria parasite. J Biol Chem 2014; 289:16662-74. [PMID: 24755215 DOI: 10.1074/jbc.m114.551549] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The malaria parasite experiences a significant amount of redox stress during its growth in human erythrocytes and heavily relies on secretory functions for pathogenesis. Most certainly, the parasite is equipped with machinery to tackle perturbations in the secretory pathway, like the unfolded protein response pathway in higher eukaryotes. Our bioinformatics analysis revealed the complete absence of genes involved in the canonical unfolded protein response pathway in Plasmodium falciparum. Accordingly, the parasite was unable to up-regulate endoplasmic reticulum (ER) chaperones or ER-associated degradation in response to DTT-mediated ER stress. Global profiling of gene expression upon DTT treatment revealed a network of AP2 transcription factors and their targets being activated. The overall outcome was up-regulation of genes involved in protein export and the sexual stage of the parasite life cycle culminating in gametocytogenesis. Our results suggest that the malaria parasite uses ER stress as a cue to switch to the transmissible sexual stages.
Collapse
Affiliation(s)
- Shweta Chaubey
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Manish Grover
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Utpal Tatu
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
5
|
Larkin A, Imperiali B. The expanding horizons of asparagine-linked glycosylation. Biochemistry 2011; 50:4411-26. [PMID: 21506607 DOI: 10.1021/bi200346n] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Asparagine-linked glycosylation involves the sequential assembly of an oligosaccharide onto a polyisoprenyl donor, followed by the en bloc transfer of the glycan to particular asparagine residues within acceptor proteins. These N-linked glycans play a critical role in a wide variety of biological processes, such as protein folding, cellular targeting and motility, and the immune response. In the past decade, research in the field of N-linked glycosylation has achieved major advances, including the discovery of new carbohydrate modifications, the biochemical characterization of the enzymes involved in glycan assembly, and the determination of the biological impact of these glycans on target proteins. It is now firmly established that this enzyme-catalyzed modification occurs in all three domains of life. However, despite similarities in the overall logic of N-linked glycoprotein biosynthesis among the three kingdoms, the structures of the appended glycans are markedly different and thus influence the functions of elaborated proteins in various ways. Though nearly all eukaryotes produce the same nascent tetradecasaccharide (Glc(3)Man(9)GlcNAc(2)), heterogeneity is introduced into this glycan structure after it is transferred to the protein through a complex series of glycosyl trimming and addition steps. In contrast, bacteria and archaea display diversity within their N-linked glycan structures through the use of unique monosaccharide building blocks during the assembly process. In this review, recent progress toward gaining a deeper biochemical understanding of this modification across all three kingdoms will be summarized. In addition, a brief overview of the role of N-linked glycosylation in viruses will also be presented.
Collapse
Affiliation(s)
- Angelyn Larkin
- Department of Chemistry Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
6
|
Macedo CSD, Schwarz RT, Todeschini AR, Previato JO, Mendonça-Previato L. Overlooked post-translational modifications of proteins in Plasmodium falciparum: N- and O-glycosylation - A Review. Mem Inst Oswaldo Cruz 2010; 105:949-56. [DOI: 10.1590/s0074-02762010000800001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 11/16/2010] [Indexed: 11/22/2022] Open
|
7
|
Suggestive evidence for Darwinian Selection against asparagine-linked glycans of Plasmodium falciparum and Toxoplasma gondii. EUKARYOTIC CELL 2009; 9:228-41. [PMID: 19783771 DOI: 10.1128/ec.00197-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We are interested in asparagine-linked glycans (N-glycans) of Plasmodium falciparum and Toxoplasma gondii, because their N-glycan structures have been controversial and because we hypothesize that there might be selection against N-glycans in nucleus-encoded proteins that must pass through the endoplasmic reticulum (ER) prior to threading into the apicoplast. In support of our hypothesis, we observed the following. First, in protists with apicoplasts, there is extensive secondary loss of Alg enzymes that make lipid-linked precursors to N-glycans. Theileria makes no N-glycans, and Plasmodium makes a severely truncated N-glycan precursor composed of one or two GlcNAc residues. Second, secreted proteins of Toxoplasma, which uses its own 10-sugar precursor (Glc(3)Man(5)GlcNAc(2)) and the host 14-sugar precursor (Glc(3)Man(9)GlcNAc(2)) to make N-glycans, have very few sites for N glycosylation, and there is additional selection against N-glycan sites in its apicoplast-targeted proteins. Third, while the GlcNAc-binding Griffonia simplicifolia lectin II labels ER, rhoptries, and surface of plasmodia, there is no apicoplast labeling. Similarly, the antiretroviral lectin cyanovirin-N, which binds to N-glycans of Toxoplasma, labels ER and rhoptries, but there is no apicoplast labeling. We conclude that possible selection against N-glycans in protists with apicoplasts occurs by eliminating N-glycans (Theileria), reducing their length (Plasmodium), or reducing the number of N-glycan sites (Toxoplasma). In addition, occupation of N-glycan sites is markedly reduced in apicoplast proteins versus some secretory proteins in both Plasmodium and Toxoplasma.
Collapse
|
8
|
Kun JF, de Carvalho EG. Novel therapeutic targets in Plasmodium falciparum: aquaglyceroporins. Expert Opin Ther Targets 2009; 13:385-94. [PMID: 19335062 DOI: 10.1517/14728220902817839] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Malaria is caused by the intracellular parasite Plasmodium falciparum. The constant need for novel malaria therapies is due to the development of resistance against existing drugs. OBJECTIVE To summarise attempts to investigate parasitic aquaporins as drug targets in malaria. METHODS Starting with a summary of the history of malaria we present aquaporin structure and function relationships. Potential interactions of inhibitors with plasmodial AQP (PfAQP) are discussed. PfAQP blockage is examined in the light of recent work on knock-out parasites. Since PfAQP is able to transport other small solutes the parasites are sensitive to other compounds which are harmless to the human host. RESULTS/CONCLUSIONS Total blockage of PfAQP may not lead to the death of the parasite but application of PfAQP as a vehicle for toxic substances may be a further pathway for research.
Collapse
Affiliation(s)
- Jürgen F Kun
- Department of Parasitology, Institute for Tropical Medicine, Tübingen, Germany.
| | | |
Collapse
|
9
|
Hot, sweet and sticky: the glycobiology of Plasmodium falciparum. Trends Parasitol 2008; 24:210-8. [DOI: 10.1016/j.pt.2008.02.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 02/02/2008] [Accepted: 02/05/2008] [Indexed: 11/22/2022]
|
10
|
Giersing B, Miura K, Shimp R, Wang J, Zhou H, Orcutt A, Stowers A, Saul A, Miller LH, Long C, Singh S. posttranslational modification of recombinant Plasmodium falciparum apical membrane antigen 1: impact on functional immune responses to a malaria vaccine candidate. Infect Immun 2005; 73:3963-70. [PMID: 15972483 PMCID: PMC1168543 DOI: 10.1128/iai.73.7.3963-3970.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 02/14/2005] [Accepted: 03/06/2005] [Indexed: 01/06/2023] Open
Abstract
Recombinant apical membrane antigen 1 (AMA1) is a leading vaccine candidate for Plasmodium falciparum malaria, as antibodies against recombinant P. falciparum AMA1 (PfAMA1) interrupt merozoite invasion into erythrocytes. In order to investigate the role of posttranslational modification in modulating the functional immune response to recombinant AMA1, two separate alleles of PfAMA1 (FVO and 3D7), in which native N-glycosylation sites have been mutated, were produced using Escherichia coli and a Pichia pastoris expression system. Recombinant Pichia pastoris AMA1-FVO (PpAMA1-FVO) and PpAMA1-3D7 are O-linked glycosylated, and 45% of PpAMA1-3D7 is nicked, though all four recombinant molecules react with conformation-specific monoclonal antibodies. To address the immunological effect of O-linked glycosylation, we compared the immunogenicity of E. coli AMA1-FVO (EcAMA1-FVO) and PpAMA1-FVO antigens, since both molecules are intact. The effect of antigen nicking was then investigated by comparing the immunogenicity of EcAMA1-3D7 and PpAMA1-3D7. Our data demonstrate that there is no significant difference in the rabbit antibody titer elicited towards EcAMA1-FVO and PpAMA1-FVO or to EcAMA1-3D7 and PpAMA1-3D7. Furthermore, we have demonstrated that recombinant AMA1 (FVO or 3D7), whether expressed and refolded from E. coli or produced from the Pichia expression system, is equivalent and mimics the functionality of the native protein in in vitro growth inhibition assay experiments. We conclude that in the case of recombinant AMA1, the E. coli- and P. pastoris-derived antigens are immunologically and functionally equivalent and are unaffected by the posttranslational modification resulting from expression in these two systems.
Collapse
Affiliation(s)
- Birgitte Giersing
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, Twinbrook I, Room 1210A, 5640 Fisher Lane, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Samuelson J, Banerjee S, Magnelli P, Cui J, Kelleher DJ, Gilmore R, Robbins PW. The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc Natl Acad Sci U S A 2005; 102:1548-53. [PMID: 15665075 PMCID: PMC545090 DOI: 10.1073/pnas.0409460102] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The vast majority of eukaryotes (fungi, plants, animals, slime mold, and euglena) synthesize Asn-linked glycans (Alg) by means of a lipid-linked precursor dolichol-PP-GlcNAc2Man9Glc3. Knowledge of this pathway is important because defects in the glycosyltransferases (Alg1-Alg12 and others not yet identified), which make dolichol-PP-glycans, lead to numerous congenital disorders of glycosylation. Here we used bioinformatic and experimental methods to characterize Alg glycosyltransferases and dolichol-PP-glycans of diverse protists, including many human pathogens, with the following major conclusions. First, it is demonstrated that common ancestry is a useful method of predicting the Alg glycosyltransferase inventory of each eukaryote. Second, in the vast majority of cases, this inventory accurately predicts the dolichol-PP-glycans observed. Third, Alg glycosyltransferases are missing in sets from each organism (e.g., all of the glycosyltransferases that add glucose and mannose are absent from Giardia and Plasmodium). Fourth, dolichol-PP-GlcNAc2Man5 (present in Entamoeba and Trichomonas) and dolichol-PP- and N-linked GlcNAc2 (present in Giardia) have not been identified previously in wild-type organisms. Finally, the present diversity of protist and fungal dolichol-PP-linked glycans appears to result from secondary loss of glycosyltransferases from a common ancestor that contained the complete set of Alg glycosyltransferases.
Collapse
Affiliation(s)
- John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, 715 Albany Street, Boston, MA 02118-2932, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Kauth CW, Epp C, Bujard H, Lutz R. The merozoite surface protein 1 complex of human malaria parasite Plasmodium falciparum: interactions and arrangements of subunits. J Biol Chem 2003; 278:22257-64. [PMID: 12654909 DOI: 10.1074/jbc.m302299200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major protein component at the surface of merozoites, the infectious form of blood stage malaria parasites, is the merozoite surface protein 1 (MSP-1) complex. In the human malaria parasite Plasmodium falciparum, this complex is generated by proteolytic cleavage of a 190-kDa glycosylphosphatidylinositol-anchored precursor into four major fragments, which remain non-covalently associated. Here, we describe the in vitro reconstitution of the MSP-1 complex of P. falciparum strain 3D7 from its heterologously produced subunits. We provide evidence for the arrangement of the subunits within the complex and show how they interact with each other. Our data indicate that the conformation assumed by the reassembled complex as well as by the heterologously produced 190-kDa precursor corresponds to the native one. Based on these results we propose a first structural model for the MSP-1 complex. Together with access to faithfully produced material, this information will advance further structure-function studies of MSP-1 that plays an essential role during invasion of erythrocytes by the parasite and that is considered a promising candidate for a malaria vaccine.
Collapse
Affiliation(s)
- Christian W Kauth
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
13
|
Withers-Martinez C, Saldanha JW, Ely B, Hackett F, O'Connor T, Blackman MJ. Expression of recombinant Plasmodium falciparum subtilisin-like protease-1 in insect cells. Characterization, comparison with the parasite protease, and homology modeling. J Biol Chem 2002; 277:29698-709. [PMID: 12052828 DOI: 10.1074/jbc.m203088200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine proteases play crucial roles in erythrocyte invasion by merozoites of the malaria parasite. Plasmodium falciparum subtilisin-like protease-1 (PfSUB-1) is synthesized during maturation of the intraerythrocytic parasite and accumulates in a set of merozoite secretory organelles, suggesting that it may play a role in host cell invasion or post-invasion events. We describe the production, purification, and characterization of recombinant PfSUB-1 and comparison with the authentic protease detectable in parasite extracts. The recombinant protease requires high levels of calcium for optimum activity and has an alkaline pH optimum. Using a series of decapeptide and protein substrates, PfSUB-1 was found to have a relaxed substrate specificity with regard to the P1 position but is unable to efficiently cleave substrates with a P1 leucine residue. Similarly, replacement of a P4 valine with alanine severely reduced cleavage efficiency, whereas its replacement with lysine abolished cleavage. In all respects investigated, the recombinant protease was indistinguishable from parasite-derived enzyme. Three-dimensional homology modeling of the PfSUB-1 catalytic domain based on an alignment with closely related bacterial subtilisins and an orthologue from the rodent malaria Plasmodium yoelii suggests that the protease has at least three potential calcium ion-binding sites, three intramolecular disulfide bridges, and a single free cysteine within the enzyme S1 pocket. A predicted highly polar S1 pocket and a hydrophobic S4 subsite are in broad agreement with the experimentally determined substrate specificity.
Collapse
Affiliation(s)
- Chrislaine Withers-Martinez
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Kedzierski L, Black CG, Stowers AW, Goschnick MW, Kaslow DC, Coppel RL. Comparison of the protective efficacy of yeast-derived and Escherichia coli-derived recombinant merozoite surface protein 4/5 against lethal challenge by Plasmodium yoelii. Vaccine 2001; 19:4661-8. [PMID: 11535314 DOI: 10.1016/s0264-410x(01)00244-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The gene encoding the Plasmodium yoelii homologue of P. falciparum merozoite surface proteins 4 (MSP4) and 5 (MSP5) has been expressed in Escherichia coli and Saccharomyces cerevisiae. The protein contains a single epidermal growth factor (EGF)-like domain and is expressed in a form lacking the predicted N-terminal signal and glycosyl phosphatidylinositol (GPI) attachment sequences. The recombinant protein derived from E. coli (EcMSP4/5) was highly effective at protecting mice against lethal challenge with 10(5) parasites of the P. yoelii YM strain. In contrast, the protective efficacy of yeast-derived MSP4/5 (yMSP4/5) was considerably less. The antibody titres in both groups were significantly different with mice immunised with yeast-derived protein showing significantly lower pre-challenge antibody responses. There was a significant inverse correlation between antibody levels as measured by ELISA and peak parasitaemia. Mice immunised with EcMSP4/5 produced anti-PyMSP4/5 antibodies predominantly of the IgG2a and IgG2b isotypes, whereas, mice immunised with yMSP4/5 mainly produced antibodies of the IgG1 isotype. The differences in antibody titres and subtype distribution may account for the observed differences in protective efficacy of these protein preparations. Levels of protective efficacy of MSP4/5 were compared with that obtained using P. yoelii MSP1 produced in S. cerevisiae. Levels of protection induced by E. coli derived MSP4/5 were superior to those induced by MSP1 which in turn were better than those induced by yeast-derived MSP4/5.
Collapse
Affiliation(s)
- L Kedzierski
- Department of Microbiology, Monash University, PO Box 53, Victoria 3800, Clayton, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Howell SA, Withers-Martinez C, Kocken CH, Thomas AW, Blackman MJ. Proteolytic processing and primary structure of Plasmodium falciparum apical membrane antigen-1. J Biol Chem 2001; 276:31311-20. [PMID: 11399764 DOI: 10.1074/jbc.m103076200] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a malaria merozoite integral membrane protein that plays an essential but poorly understood role in invasion of host erythrocytes. The PfAMA-1 ectodomain comprises three disulfide-constrained domains, the first of which (domain I) is preceded by an N-terminal prosequence. PfAMA-1 is initially routed to secretory organelles at the apical end of the merozoite, where the 83-kDa precursor (PfAMA-1(83)) is converted to a 66-kDa form (PfAMA-1(66)). At about the time of erythrocyte invasion, PfAMA-1(66) selectively translocates onto the merozoite surface. Here we use direct microsequencing and mass spectrometric peptide mass fingerprinting to characterize in detail the primary structure and proteolytic processing of PfAMA-1. We have determined the site at which processing takes place to convert PfAMA-1(83) to PfAMA-1(66) and have shown that both species possess a completely intact and unmodified transmembrane and cytoplasmic domain. Following relocation to the merozoite surface, PfAMA-1(66) is further proteolytically cleaved at one of two alternative sites, either between domains II and III, or at a membrane-proximal site following domain III. As a result, the bulk of the ectodomain is shed from the parasite surface in the form of two soluble fragments of 44 and 48 kDa. PfAMA-1 is not detectably modified by the addition of N-linked oligosaccharides.
Collapse
Affiliation(s)
- S A Howell
- Division of Protein Structure and the Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Naik RS, Venkatesan M, Gowda DC. Plasmodium falciparum: the lethal effects of tunicamycin and mevastatin on the parasite are not mediated by the inhibition of N-linked oligosaccharide biosynthesis. Exp Parasitol 2001; 98:110-4. [PMID: 11465994 DOI: 10.1006/expr.2001.4616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- R S Naik
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
17
|
Abstract
Glycoconjugates are abundant and ubiquitious on the surface of many protozoan parasites. Their tremendous diversity has implicated their critical importance in the life cycle of these organisms. This review highlights our current knowledge of the major glycoconjugates, with particular emphasis on their structures, of representative protozoan parasites, including Leishmania, Trypanosoma, Giardia, Plasmodia, and others.
Collapse
Affiliation(s)
- A Guha-Niyogi
- Department of Molecular and Cellular Biochemistry, University of Kentucky Medical Center, Lexington KY 40536, USA
| | | | | |
Collapse
|