1
|
Steier V, Prigolovkin L, Reiter A, Neddermann T, Wiechert W, Reich SJ, Riedel CU, Oldiges M. Automated workflow for characterization of bacteriocin production in natural producers Lactococcus lactis and Latilactobacillus sakei. Microb Cell Fact 2024; 23:74. [PMID: 38433206 PMCID: PMC10910668 DOI: 10.1186/s12934-024-02349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Lactic acid bacteria are commonly used as protective starter cultures in food products. Among their beneficial effects is the production of ribosomally synthesized peptides termed bacteriocins that kill or inhibit food-spoiling bacteria and pathogens, e.g., members of the Listeria species. As new bacteriocins and producer strains are being discovered rapidly, modern automated methods for strain evaluation and bioprocess development are required to accelerate screening and development processes. RESULTS In this study, we developed an automated workflow for screening and bioprocess optimization for bacteriocin producing lactic acid bacteria, consisting of microcultivation, sample processing and automated antimicrobial activity assay. We implemented sample processing workflows to minimize bacteriocin adsorption to producer cells via addition of Tween 80 and divalent cations to the cultivation media as well as acidification of culture broth prior to cell separation. Moreover, we demonstrated the applicability of the automated workflow to analyze influence of media components such as MES buffer or yeast extract for bacteriocin producers Lactococcus lactis B1629 and Latilactobacillus sakei A1608. CONCLUSIONS Our automated workflow provides advanced possibilities to accelerate screening and bioprocess optimization for natural bacteriocin producers. Based on its modular concept, adaptations for other strains, bacteriocin products and applications are easily carried out and a unique tool to support bacteriocin research and bioprocess development is provided.
Collapse
Affiliation(s)
- Valentin Steier
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lisa Prigolovkin
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Alexander Reiter
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | | | | | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
2
|
Sørensen HM, Rochfort KD, Maye S, MacLeod G, Loscher C, Brabazon D, Freeland B. Bioactive Ingredients from Dairy-Based Lactic Acid Bacterial Fermentations for Functional Food Production and Their Health Effects. Nutrients 2023; 15:4754. [PMID: 38004148 PMCID: PMC10675170 DOI: 10.3390/nu15224754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Lactic acid bacteria are traditionally applied in a variety of fermented food products, and they have the ability to produce a wide range of bioactive ingredients during fermentation, including vitamins, bacteriocins, bioactive peptides, and bioactive compounds. The bioactivity and health benefits associated with these ingredients have garnered interest in applications in the functional dairy market and have relevance both as components produced in situ and as functional additives. This review provides a brief description of the regulations regarding the functional food market in the European Union, as well as an overview of some of the functional dairy products currently available in the Irish and European markets. A better understanding of the production of these ingredients excreted by lactic acid bacteria can further drive the development and innovation of the continuously growing functional food market.
Collapse
Affiliation(s)
- Helena Mylise Sørensen
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Keith D. Rochfort
- School of Nursing, Psychotherapy and Community Health, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Susan Maye
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36 Mitchelstown, Ireland; (S.M.); (G.M.)
| | - George MacLeod
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36 Mitchelstown, Ireland; (S.M.); (G.M.)
| | - Christine Loscher
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Brian Freeland
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| |
Collapse
|
3
|
Yu L, Chen Y, Duan H, Qiao N, Wang G, Zhao J, Zhai Q, Tian F, Chen W. Latilactobacillus sakei: a candidate probiotic with a key role in food fermentations and health promotion. Crit Rev Food Sci Nutr 2022; 64:978-995. [PMID: 35997270 DOI: 10.1080/10408398.2022.2111402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Latilactobacillus sakei is used extensively in industrial production and food fermentations. The species is primarily derived from fermented meat and vegetable products and is also found in human feces. Genomics and metabolomics have revealed unique metabolic pathways in L. sakei and molecular mechanisms underlying its competitive advantages in different habitats, which are mostly attributed to its flexible carbohydrate metabolism, cold tolerance, acid and salt tolerance, ability to cope with oxygen changes, and heme uptake. In recent years, probiotic effects of L. sakei and its metabolites have been identified, including the ability to effectively alleviate metabolic syndrome, inflammatory bowel disease, and atopic dermatitis. This review summarizes the genomic and metabolic characteristics of L. sakei and its metabolites and describes their applications, laying a foundation for their expanded use across the food and healthcare industries.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Nanzhen Qiao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Perez RH, Zendo T, Sonomoto K. Multiple bacteriocin production in lactic acid bacteria. J Biosci Bioeng 2022; 134:277-287. [DOI: 10.1016/j.jbiosc.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
|
5
|
Evaluation and Mathematical Analysis of a Four-Dimensional Lotka–Volterra-like Equation Designed to Describe the Batch Nisin Production System. MATHEMATICS 2022. [DOI: 10.3390/math10050677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nisin, an antibacterial compound produced by Lactococcus lactis strains, has been approved by the US Food and Drug Administration to be used as a safe food additive to control the growth of undesirable pathogenic bacteria. Nisin is commonly described as a pH-dependent primary metabolite since its production depends on growth and culture pH evolution. However, the relationships between bacteriocin synthesis (BT), biomass production (X), culture pH, and the consumption of the limiting nutrient (total nitrogen: TN) have not been described until now. Therefore, this study aims to develop a competitive four-dimensional Lotka–Volterra-like Equation (predator-prey system) to describe these complex relationships in three series of batch fermentations with L. lactis CECT 539 in diluted whey (DW)-based media. The developed four-dimensional predator-prey system accurately described each individual culture, providing a good description of the relationships between pH, TN, X, and BT, higher values for R2 and F-ratios, lower values (<10%) for the mean relative percentage deviation modulus, with bias and accuracy factor values approximately equal to one. The mathematical analysis of the developed equation showed the existence of one asymptotically stable equilibrium point, and the phase’s diagram obtained did not show the closed elliptic trajectories observed in biological predator-prey systems.
Collapse
|
6
|
Gerst MM, Somogyi Á, Yang X, Yousef AE. Detection and characterization of a rare two-component lantibiotic, amyloliquecidin GF610 produced by Bacillus velezensis, using a combination of culture, molecular and bioinformatic analyses. J Appl Microbiol 2021; 132:994-1007. [PMID: 34487591 DOI: 10.1111/jam.15290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/24/2021] [Accepted: 08/30/2021] [Indexed: 01/26/2023]
Abstract
AIM To detect and characterize novel lantibiotics from a collection of Bacillus spp. using a multifaceted analytical approach. METHODS AND RESULTS A previously completed microassay identified 45 Bacillus isolates with anti-Listeria activity. The isolates were PCR screened using degenerate primers targeting conserved sequences in lanM-type lantibiotics. B. velezensis GF610 produced a PCR product whose sequence, along with genome mining and bioinformatics, guided the liquid chromatographic analysis of strain's cell-free extracts and the mass spectrometry of purified fractions. Results revealed a new amyloliquecidin variant (designated GF610) produced by the strain. Amyloliquecidin GF610 is a two-component lantibiotic with α and β peptides having monoisotopic masses of 3026 and 2451 Da, and molecular formulae C130 H191 N35 O39 S5 and C110 H158 N26 O30 S4 , respectively. Amyloliquecidin GF610 is active against Listeria monocytogenes, Clostridium sporogenes, Clostridioides difficile, Staphylococcus aureus and Alicyclobacillus acidoterrestris with minimum inhibitory concentrations (MICs) in the range of 0.5-7.0 µmol l-1 . CONCLUSIONS The proposed multifaceted analytical approach was valuable to provide a deep and proper characterization of a novel bacteriocin, amyloliquecidin GF610, with high antimicrobial activity against Gram-positive bacteria. SIGNIFICANCE AND IMPACT The discovered Amyloliquecidin GF610 is potentially useful in food, agricultural or medical applications. The analytical approach followed may facilitate future discoveries of two-component lantibiotics, which are challenging compounds to detect and characterize.
Collapse
Affiliation(s)
- Michelle M Gerst
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Árpád Somogyi
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio, USA
| | - Xu Yang
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Ahmed E Yousef
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA.,Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Sharma BR, Jayant D, Rajshee K, Singh Y, Halami PM. Distribution and Diversity of Nisin Producing LAB in Fermented Food. Curr Microbiol 2021; 78:3430-3438. [PMID: 34255153 DOI: 10.1007/s00284-021-02593-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/11/2021] [Indexed: 10/20/2022]
Abstract
An attempt was made, to characterize natural antibiotics or lantibiotics from unconventional sources and its antibacterial spectrum against food borne pathogens and drug resistant bacteria. Six different traditional fermented foods i.e., fermented fish, fermented soybeans, Soibum (fermented bamboo shoots), milk, idly and dosa batter were used for the isolation of bacteriocin producing Lactic acid bacteria (LAB). Among all bacterial cultures isolated from the various sources, 129 cultures have found to produce antimicrobial compounds. Nisin specific reporter bacteria was utilized as biosensor to identify the Nisin like bacteriocin, where 10 cultures found to be positive Nisin producer. Identified Nisin like bacteriocin was partially concentrated by using ammonium sulphate followed by butanol extraction. Minimum inhibitory concentration (MIC) was analyzed against food borne pathogen and drug resistant bacteria. MIC of partially purified Nisin (pp-Nisin) of all the LAB isolates against food-borne pathogens are ranged between 0.5 and 92 µg/ml respected to various Gram-positive bacteria. Similarly, the drug resistant bacteria were also inhibited by pp-Nisin (MIC ranged between 15 and 175 µg/ml). All samples of ppnisin exhibited auto induction ability. Taxonomic identification of the nisin producers was done by whole genome sequencing which reveals that cultures belongs to Lactococcus lactis ssp. lactis. Also it was found that Lactococcus lactis ssp. lactis C2d and Lactococcus lactis ssp. lactis SP2C4 harbor nisA gene and Lactococcus lactis ssp. lactis FS2 (L. lactis FS2) harbor nisQ gene. The finding of this study highlights the first case of L. lactis FS2 isolated from fermented fish harbor nisQ gene. Antibacterial activity of pp-Nisin against drug resistant LAB is also reported.
Collapse
Affiliation(s)
- Basista Rabina Sharma
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | - Dharana Jayant
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | - Kumari Rajshee
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | - Yashika Singh
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | - Prakash M Halami
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020, India.
| |
Collapse
|
8
|
Modiri S, Kasra Kermanshahi R, Reza Soudi M, Dad N, Ebadi M, Shahbani Zahiri H, Akbari Noghabi K. Growth Optimization of Lactobacillus acidophilus for Production of Antimicrobial Peptide Acidocin 4356: Scale up from Flask to Lab-Scale Fermenter. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2686. [PMID: 34825011 PMCID: PMC8590721 DOI: 10.30498/ijb.2021.218725.2686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: Antibiotic-resistant bacteria are a major threat to global health. Older antibiotics have become more or less ineffective as a result of widespread microbial resistance
and an urgent need has emerged for the development of new antimicrobial strategies. Acidocin 4356 is a novel antimicrobial bacteriocin peptide produced
by Lactobacillus acidophilus ATCC 4356 and capable of confronting the Pseudomonas aeruginosa ATCC 27853 infection challenges.
According to our previous studies, the production of Acidocin 4356 is in parallel with cellular biomass production. Objectives: Given the costly production of Acidocin 4356, the development of a beneficial approach for increasing productivity of the cellular biomass has been targeted
in the lab-scale fermenter for scale-up production of this bacteriocin. Therefore, in this study, we developed an inexpensive optimal culture medium based on the
whey feedstock, evaluating this medium for scaling-up of the bacteriocin production from flask to fermenter. Material and Methods: In the first step, the optimization of the process parameters and medium components was carried out using the Plackett-Burman (PB) design and Response surface
methodology (RSM) in flask culture. After optimization of the medium, bacteriocin production in the optimum culture medium was compared with de Man,
Rogosa and Sharpe (MRS) medium by analyzing the intensity of the peptide band. Intensity analysis has been conducted on the PAGE band of the peptide using
Image J software. Finally, the scale- up of bacteriocin production in the optimum culture medium was evaluated by batch fermentation in a 3-liter fermenter. Results: In this study, a medium containing whey (40 g.L-1) and sodium acetate (5 g.L-1) was used as basal medium, and the effect of other factors were then evaluated.
According to the PB design, three factors of peptone concentration, yeast extract concentrations and cultivation temperature were selected as the most effective factors which
improve the growth of L. acidophilus. The condition providing the highest growth capacity for bacteriocin production were predicted based on the results of RSM
as following: temperature 40 ° C, yeast (4 g.L-1), and peptone (8 g.L-1). Finally, the dry cell weight was obtained after incubation for 12 h as 2.25 g.L-1. Comparison
of cell growth and bacteriocin production between MRS medium and optimized medium confirmed the efficacy of these optimal conditions for the cost-effective production
of Acidocin 4356 in the flask. Besides, the scale- up of bacteriocin production has made under optimal condition in the 3-L fermenter. Conclusions: In this study, for the first time, scale- up production of Acidocin 4356 was presented by using a low-cost method based on whey feedstock to tackle P. aeruginosa infections.
Collapse
Affiliation(s)
- Sima Modiri
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran,
Department of Energy & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran-Iran
| | | | - Mohammad Reza Soudi
- Department of Microbiology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Navid Dad
- Department of Energy & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran-Iran
| | - Mojgan Ebadi
- Department of Energy & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran-Iran
| | - Hossein Shahbani Zahiri
- Department of Energy & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran-Iran
| | - Kambiz Akbari Noghabi
- Department of Energy & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran-Iran
| |
Collapse
|
9
|
|
10
|
Belguesmia Y, Bendjeddou K, Kempf I, Boukherroub R, Drider D. Heterologous Biosynthesis of Five New Class II Bacteriocins From Lactobacillus paracasei CNCM I-5369 With Antagonistic Activity Against Pathogenic Escherichia coli Strains. Front Microbiol 2020; 11:1198. [PMID: 32636812 PMCID: PMC7318550 DOI: 10.3389/fmicb.2020.01198] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/12/2020] [Indexed: 11/13/2022] Open
Abstract
Lactobacillus paracasei CNCM I-5369 isolated from a traditional Algerian dairy product produces extracellular inhibitory substances, namely, bacteriocins, which are active against a panel of pathogenic Escherichia coli strains. This activity was observed only at a narrow pH 4.5–5, and resulted to be heat stable and sensitive to the action of proteolytic enzymes, which indicate a proteinaceous nature. This new strain has a genome of 2,752,975 bp, with a 46.6% G + C ratio and contains at least 2664 coding sequences. The Bagel software analysis identified five open reading frames (ORFs) that are translated to new class II bacteriocin. Each ORF was cloned in frame with a His-tag tail and expressed in E. coli BL21 (DE3) (pLysS) strain. Of note, each fusion protein carrying any of these ORFs at the C- or N-terminal position resulted to be active against E. coli 184 strain used as target organism. This manuscript reports the first multi-bacteriocinogenic strain producing five new class II bacteriocins with activity against Gram-negative bacilli (GNB), namely, E. coli. Heterologous expression and activity of each new class II bacteriocin were demonstrated.
Collapse
Affiliation(s)
- Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro N° 1158, Université de Lille, INRAE, Université de Liège, UPJV, YNCREA, Université d'Artois, Universite du Littoral Côte d'Opale, ICV - Institut Charles Viollette, Lille, France
| | - Kamel Bendjeddou
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Béjaïa, Algeria
| | - Isabelle Kempf
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie Bactériologie Antibiorésistance, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Rabah Boukherroub
- Université de Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, Lille, France
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro N° 1158, Université de Lille, INRAE, Université de Liège, UPJV, YNCREA, Université d'Artois, Universite du Littoral Côte d'Opale, ICV - Institut Charles Viollette, Lille, France
| |
Collapse
|
11
|
Malvido MC, González EA, Bendaña Jácome RJ, Guerra NP. The Joint Effect of pH Gradient and Glucose Feeding on the Growth Kinetics of Lactococcus lactis CECT 539 in Glucose-Limited Fed-Batch Cultures. Pol J Microbiol 2019; 68:269-280. [PMID: 31257793 PMCID: PMC7256817 DOI: 10.33073/pjm-2019-030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/10/2019] [Accepted: 04/25/2019] [Indexed: 11/05/2022] Open
Abstract
Two glucose-limited realkalized fed-batch cultures of Lactococcus lactis CECT 539 were carried out in a diluted whey medium (DW) using two different feeding media. The cultures were fed a mixture of a 400 g/l concentrated lactose and a concentrated mussel processing waste (CMPW, 101.72 g glucose/l) medium (fermentation I) or a CMPW medium supplemented with glucose and KH2PO4 up to concentrations of 400 g glucose/l and 3.21 g total phosphorus/l, respectively (fermentation II). For an accurate description and a better understanding of the kinetics of both cultures, the growth and product formation by L. lactis CECT 539 were both modelled, for the first time, as a function of the amounts of glucose (G) added and the pH gradient (VpH) generated in every realkalization and feeding cycle, by using an empirical polynomial model. With this modeling procedure, the kinetics of biomass, viable cell counts, nisin, lactic acid, acetic acid and butane-2,3-diol production in both cultures were successfully described (R 2 values > 0.970) and interpreted for the first time. In addition, the optimum VpH and G values for each product were accurately calculated in the two realkalized fed-batch cultures. This approach appears to be useful for designing feeding strategies to enhance the productions of biomass, bacteriocin, and metabolites by the nisin-producing strain in wastes from the food industry. Two glucose-limited realkalized fed-batch cultures of Lactococcus lactis CECT 539 were carried out in a diluted whey medium (DW) using two different feeding media. The cultures were fed a mixture of a 400 g/l concentrated lactose and a concentrated mussel processing waste (CMPW, 101.72 g glucose/l) medium (fermentation I) or a CMPW medium supplemented with glucose and KH2PO4 up to concentrations of 400 g glucose/l and 3.21 g total phosphorus/l, respectively (fermentation II). For an accurate description and a better understanding of the kinetics of both cultures, the growth and product formation by L. lactis CECT 539 were both modelled, for the first time, as a function of the amounts of glucose (G) added and the pH gradient (VpH) generated in every realkalization and feeding cycle, by using an empirical polynomial model. With this modeling procedure, the kinetics of biomass, viable cell counts, nisin, lactic acid, acetic acid and butane-2,3-diol production in both cultures were successfully described (R 2 values > 0.970) and interpreted for the first time. In addition, the optimum VpH and G values for each product were accurately calculated in the two realkalized fed-batch cultures. This approach appears to be useful for designing feeding strategies to enhance the productions of biomass, bacteriocin, and metabolites by the nisin-producing strain in wastes from the food industry.
Collapse
Affiliation(s)
- Mónica Costas Malvido
- Department of Analytical and Food Chemistry. Food Science and Technology Faculty, University of Vigo, Ourense Campus , Ourense , Spain
| | - Elisa Alonso González
- Department of Analytical and Food Chemistry. Food Science and Technology Faculty, University of Vigo, Ourense Campus , Ourense , Spain
| | - Ricardo J Bendaña Jácome
- Department of Engineering, Materials, Structural Mechanics and Construction, Food Science and Technology Faculty, University of Vigo, Ourense Campus , Ourense , Spain
| | - Nelson Pérez Guerra
- Department of Analytical and Food Chemistry. Food Science and Technology Faculty, University of Vigo, Ourense Campus , Ourense , Spain
| |
Collapse
|
12
|
Funck GD, de Lima Marques J, da Silva Dannenberg G, Dos Santos Cruxen CE, Sehn CP, Prigol M, Silva MRP, da Silva WP, Fiorentini ÂM. Characterization, Toxicity, and Optimization for the Growth and Production of Bacteriocin-like Substances by Lactobacillus curvatus. Probiotics Antimicrob Proteins 2019; 12:91-101. [PMID: 30843169 DOI: 10.1007/s12602-019-09531-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study aimed to characterize, evaluate toxicity and optimize the conditions for the growth and production of bacteriocin-like substances by Lactobacillus curvatus P99. The antibacterial activity of the cell-free supernatant (CFS) containing bacteriocin-like substances was evaluated by the agar diffusion technique. The stability of the CFS was also examined after heat treatment, refrigeration, freezing, pH variations, and treatment with different chemical substances. The toxic effect of CFS on Drosophila melanogaster diet was determined by calculating the survival rate of the flies. The effects of pH, temperature, and incubation time were the parameters used to optimize cell growth and production of bacteriocin-like substances through response surface methodology. The CFS was stable for 36 weeks under freezing and refrigeration, as well as under heat treatment, in acidic and basic pH and for all chemical substances tested. Fewer than 50,000 AU/mL of CFS added to D. melanogaster diet showed no toxic effect. The optimum growth condition was pH 6.3 at 29.3 °C for 18.6 h, and the optimum production of bacteriocin-like substances was under pH 6.22 at 30.6 °C for 17.9 h. The data on the optimization of cell growth and the characterization and optimization of bacteriocin-like substances provided information to support the industrial-scale production of this microorganism and its metabolites.
Collapse
Affiliation(s)
- Graciele Daiana Funck
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, P.O. Box: 354, Pelotas, RS, 96010-900, Brazil
| | - Juliana de Lima Marques
- Center for Technology Development, Federal University of Pelotas, P.O. Box: 354, Pelotas, RS, 96010-900, Brazil
| | - Guilherme da Silva Dannenberg
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, P.O. Box: 354, Pelotas, RS, 96010-900, Brazil
| | | | - Carla Pohl Sehn
- Laboratory of Pharmacological and Toxicological Reviews Applied to Bioactive Molecules-LaftamBio Pampa, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Reviews Applied to Bioactive Molecules-LaftamBio Pampa, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Márcia Rósula Poetini Silva
- Laboratory of Pharmacological and Toxicological Reviews Applied to Bioactive Molecules-LaftamBio Pampa, Federal University of Pampa, Itaqui, RS, 97650-000, Brazil
| | - Wladimir Padilha da Silva
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, P.O. Box: 354, Pelotas, RS, 96010-900, Brazil.,Center for Technology Development, Federal University of Pelotas, P.O. Box: 354, Pelotas, RS, 96010-900, Brazil
| | - Ângela Maria Fiorentini
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, P.O. Box: 354, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
13
|
Vadakedath N, Halami PM. Characterization and mode of action of a potent bio-preservative from food-gradeBacillus licheniformisMCC 2016. Prep Biochem Biotechnol 2019; 49:334-343. [DOI: 10.1080/10826068.2019.1566141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nithya Vadakedath
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Prakash M. Halami
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, India
| |
Collapse
|
14
|
Stability of Bacteriocin-Like Inhibitory Substance (BLIS) Produced by Pediococcus acidilactici kp10 at Different Extreme Conditions. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5973484. [PMID: 30363649 PMCID: PMC6180926 DOI: 10.1155/2018/5973484] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/12/2018] [Indexed: 11/17/2022]
Abstract
Nowadays, bacteriocin industry has substantially grown replacing the role of chemical preservatives in enhancing shelf-life and safety of food. The progress in bacteriocin study has been supported by the emerging of consumer demand on the applications of natural food preservatives. Since food is a complex ecosystem, the characteristics of bacteriocin determine the effectiveness of their incorporation into the food products. Among four commercial media (M17 broth, MRS broth, tryptic soy broth, and nutrient broth) tested, the highest growth of Pediococcus acidilactici kp10 and bacteriocin-like-inhibitory substance (BLIS) production were obtained in the cultivation with M17. BLIS production was found to be a growth associated process where the production was increased concomitantly with the growth of producing strain, P. acidilactici kp10. The antimicrobial property of BLIS against three indicator microorganisms (Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus) remained stable upon heating at 100°C but not detectable at 121°C. The BLIS activity was also observed to be stable and active at a wide pH range (pH 2 to pH 7). The BLIS activity remained constant at -20°C and -80°C for 1 month of storage. However, the activity dropped after 3 and 6 months of storage at 4°C, -20°C, and -80°C with more than 80% reduction. The ability of bacteriocin from P. acidilactici kp10 to inhibit food-borne pathogens while remaining stable and active at extreme pH and temperature is of potential interest for future applications in food preservatives.
Collapse
|
15
|
|
16
|
Goyal C, Malik RK, Pradhan D. Purification and characterization of a broad spectrum bacteriocin produced by a selected Lactococcus lactis strain 63 isolated from Indian dairy products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:3683-3692. [PMID: 30150828 PMCID: PMC6098757 DOI: 10.1007/s13197-018-3298-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/06/2017] [Accepted: 06/17/2018] [Indexed: 10/28/2022]
Abstract
Lactococcus lactis subsp. lactis strain 63 was isolated from Indian dairy products, produced a bacteriocin with broad spectrum inhibition against several of food pathogens like Listeria monocytogenes and Bacillus cereus as well as Gram negative bacteria viz., E. coli, Yersinia, Citrobacter, Proteus, Enterobacter, Klebsiella and Serratia strains. Bacteriocin production was higher in GM-17 and MRS as compared to TYGE broth and enriched skim milk broth and reached the maximum level during the early stationary phase. The bacteriocin was purified by performing ammonium sulfate precipitation. The bacteriocin was able to survive 90 °C/10 min but not 100 °C/10 min. Complete inactivation of bacteriocin was observed after autoclaving. The bacteriocin maintained its activity over a wide range of pH (3-9). The antimicrobial compound produced by the isolate 63, was sensitive to papain, pepsin, trypsin and amylase but was resistant to detergents like SDS and urea. Tween 20, Tween-80 as well as Triton X-100 enhanced its activity. Since the treatment with proteolytic enzymes resulted in loss of activity, this shows that the proteinaceous nature of the antimicrobial substance. Tentative molecular weight of the bacteriocin was found to be between 3.5 and 5 kDa by Tricine SDS-PAGE. Finally, we confirmed the presence of gene for nisin, and the sequence thus obtained, was identical to the sequences previously described for nisin Z. Lactococcus lactis subsp. lactis 63 or its bacteriocin, which has a wide inhibitory spectrum, has the potential for use as a starter or protective culture in the manufacture of fermented products.
Collapse
Affiliation(s)
- Chhaya Goyal
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India
| | - R. K. Malik
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India
| | - Diwas Pradhan
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India
| |
Collapse
|
17
|
Sidooski T, Brandelli A, Bertoli SL, Souza CKD, Carvalho LFD. Physical and nutritional conditions for optimized production of bacteriocins by lactic acid bacteria – A review. Crit Rev Food Sci Nutr 2018; 59:2839-2849. [DOI: 10.1080/10408398.2018.1474852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Thiago Sidooski
- Chemical Engineering Department, University of Blumenau, São Paulo, Blumenau, SC, Brazil
| | - Adriano Brandelli
- Laboratory of Biochemistry and Applied Microbiology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sávio Leandro Bertoli
- Chemical Engineering Department, University of Blumenau, São Paulo, Blumenau, SC, Brazil
| | | | | |
Collapse
|
18
|
Wu S, Xu S, Chen X, Sun H, Hu M, Bai Z, Zhuang G, Zhuang X. Bacterial Communities Changes during Food Waste Spoilage. Sci Rep 2018; 8:8220. [PMID: 29844418 PMCID: PMC5974359 DOI: 10.1038/s41598-018-26494-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/02/2018] [Indexed: 01/06/2023] Open
Abstract
Food waste is an important component of municipal solid waste worldwide. There are various ways to treat or utilize food waste, such as, biogas fermentation, animal feed, etc. but pathogens and mycotoxins that accumulate in the process of spoilage can present a health hazard. However, spoilage of food waste has not yet been studied, and there are no reports of the bacterial communities present in this waste. In this research, food waste was collected and placed at two different temperatures. We investigated the spoilage microbiota by using culture-independent methods and measured the possible mycotoxins may appear in the spoilage process. The results showed that lactic acid bacteria are the most important bacteria in the food waste community, regardless of the temperature. Few microbial pathogens and aflatoxins were found in the spoilage process. This suggests that if food waste is stored at a relatively low temperature and for a short duration, there will be less risk for utilization.
Collapse
Affiliation(s)
- Shanghua Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haishu Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingli Hu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Yang E, Fan L, Yan J, Jiang Y, Doucette C, Fillmore S, Walker B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express 2018; 8:10. [PMID: 29368243 PMCID: PMC5783981 DOI: 10.1186/s13568-018-0536-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/15/2018] [Indexed: 11/18/2022] Open
Abstract
There has been continued interest in bacteriocins research from an applied perspective as bacteriocins have potential to be used as natural preservative. Four bacteriocinogenic lactic acid bacteria (LAB) strains of Lactobacillus curvatus (Arla-10), Enterococcus faecium (JFR-1), Lactobacillus paracasei subsp. paracasei (JFR-5) and Streptococcus thermophilus (TSB-8) were previously isolated and identified in our lab. The objective of this study was to determine the optimal growth conditions for both LAB growth and bacteriocins production. In this study, various growth conditions including culture media (MRS and BHI), initial pH of culture media (4.5, 5.5, 6.2, 7.4 and 8.5), and incubation temperatures (20, 37 and 44 °C) were investigated for LAB growth measured as optical density (OD), bacteriocin activity determined as arbitrary unit and viability of LAB expressed as log CFU ml-1. Growth curves of the bacteriocinogenic LAB were generated using a Bioscreen C. Our results indicated that Arla-10, JFR-1, and JFR-5 strains grew well on both MRS and BHI media at growth temperature tested whereas TSB-8 strain, unable to grow at 20 °C. LAB growth was significantly affected by the initial pH of culture media (p < 0.001) and the optimal pH was found ranging from 6.2 to 8.5. Bacteriocin activity was significantly different in MRS versus BHI (p < 0.001), and the optimal condition for LAB to produce bacteriocins was determined in MRS broth, pH 6.2 at 37 °C. This study provides useful information on potential application of bacteriocinogenic LAB in food fermentation processes.
Collapse
Affiliation(s)
- En Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5 Canada
| | - Lihua Fan
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5 Canada
| | - Jinping Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yueming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guang Zhou, China
| | - Craig Doucette
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5 Canada
| | - Sherry Fillmore
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5 Canada
| | - Bradley Walker
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5 Canada
| |
Collapse
|
20
|
Fahim HA, Rouby WMAE, El-Gendy AO, Khairalla AS, Naguib IA, Farghali AA. Enhancement of the productivity of the potent bacteriocin avicin A and improvement of its stability using nanotechnology approaches. Sci Rep 2017; 7:10604. [PMID: 28878272 PMCID: PMC5587769 DOI: 10.1038/s41598-017-10157-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/02/2017] [Indexed: 01/25/2023] Open
Abstract
Herein, enhancements of the yield and antimicrobial activity duration of the bacteriocin avicin A were accomplished using fractional factorial design (FFD) and layered double hydroxide (LDH) nanoparticles. Firstly, potential factors affecting bacteriocin production were selected for preliminary study. By a 25-1 FFD, high pH was shown to have a positive effect on avicin A yield, while temperature and duration of incubation, as well as peptone nitrogen sources all had negative effects. The highest bacteriocin production and activity (2560 BU/ml) were observed after 30 h of incubation at 30 °C, with pH adjustment at 7, and in the presence of 2 g mannitol as carbon source and 2.2 g peptone as nitrogen source. Secondly, avicin A nanocomposites with different LDH precursors were tested. Only avicin A-ZnAl-CO3 LDH demonstrated a potent antimicrobial activity against Lactobacillus sakei LMGT 2313 that lasted for at least 24 days, as compared to the values of 6 and 15 days observed with the free avicin A that has been stored at room temperature and at 4 °C, respectively. In conclusion, avicin A production and stability can be improved by manipulating the growth conditions and media composition, together with conjugation to LDHs.
Collapse
Affiliation(s)
- Hazem A Fahim
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Waleed M A El Rouby
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed O El-Gendy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Ahmed S Khairalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Ibrahim A Naguib
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
21
|
Effects of thermal treatment combined with multi-cycle high pressure processing on the bacterial diversity of mud snail ( Bullacta exarata ) during refrigerated storage. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Aarti C, Khusro A, Arasu MV, Agastian P, Al-Dhabi NA. Biological potency and characterization of antibacterial substances produced by Lactobacillus pentosus isolated from Hentak, a fermented fish product of North-East India. SPRINGERPLUS 2016; 5:1743. [PMID: 27795886 PMCID: PMC5055530 DOI: 10.1186/s40064-016-3452-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/29/2016] [Indexed: 11/10/2022]
Abstract
Lactic acid bacteria (LAB) isolated from various foods are important due to their potential to inhibit microorganisms, including drug-resistant bacteria. The objectives of this investigation were to isolate and identify antibacterial substances producing LAB from Hentak, a traditional fermented fish product of Manipur (North-East India), and to optimize the production of antagonistic substances present in cell free neutralized supernatant (CFNS) against enteric bacterial pathogens using the ‘one factor at a time’ (OFAT) method. Out of 10 LAB, the most potent bacterium producing antibacterial substances was isolated and identified as Lactobacillus pentosus strain LAP1 based upon morphological, biochemical and molecular characterization. MRS (de Man, Ragosa and Sharpe) medium was determined to provide better bactericidal activity (AU/ml) than other tested media against the indicator enteric bacteria, including Staphylococcus epidermidis MTTC 3615, Micrococcus luteus MTCC 106, Shigella flexneri MTCC 1457, Yersinia enterocolitica MTCC 840 and Proteus vulgaris MTCC 1771. The culture conditions (pH: 5, temperature: 30 °C and inoculum volume: 1 %) and medium components (carbon source: lactose and nitrogen source: ammonium chloride) were observed to be the most influential parameters of significant antagonistic activity of CFNS against the enteric pathogens. MRS medium supplemented with Tween20 effectively stimulated the yield of antibacterial substances. The CFNS of strain LAP1 exhibited sensitivity to proteolytic enzyme (pepsin) treatment and heat treatment (60 °C for 60 min, 100 °C for 30 min and 121 °C for 15 min) and lost its inhibitory properties. The CFNS was active at an acidic (pH 3.0) to neutral pH (pH 7.0) but lost its antagonistic properties at an alkaline pH. The CFNS obtained from strain LAP1 scavenges the DPPH (1,1-diphenyl-2 picrylhydrazyl) significantly in a concentration-dependent manner within the range of 8.8 ± 0.12–57.35 ± 0.1 %. The OFAT-based approach revealed the baseline for statistical optimization, the scale-up process and efficient production of CFNS by L. pentosus strain LAP1, which could be used as a potential antibacterial and free radical scavenging agent.
Collapse
Affiliation(s)
- Chirom Aarti
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, Tamil Nadu 600034 India
| | - Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, Tamil Nadu 600034 India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Paul Agastian
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, Tamil Nadu 600034 India
| | - Naïf Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
23
|
Antilisterial Bacteriocin-producing Strain of Lactobacillus curvatus CWBI-B28 as a Preservative Culture in Bacon Meat and Influence of Fat and Nitrites on Bacteriocins Production and Activity. FOOD SCI TECHNOL INT 2016. [DOI: 10.1177/1082013206067380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objectives of this study were to evaluate the effectiveness of a bacteriocin-producing Lactobacillus curvatus CWBI-B28 to inhibit the growth of Listeria monocytogenes in de Man, Rogosa and Sharp (MRS) broth and in bacon meat. A co-culture of L. monocytogenes with the Bac strain in MRS broth, resulted in a reduction of the pathogen counts by 4.2 log cycles after 24h of incubation at 37°C. In bacon, the counts of L. monocytogenes was reduced to below the detectable limit (<10cfu/g) in samples inoculated with the Bac strain within 1 or 2 weeks in absence or presence of nitrites (210mg/kg), respectively. However, a week later, a re-growth of the pathogen has occurred. In contrast, no such reduction in Listeria cfus was observed in samples treated with the Bac derivative of Lb. curvatusCWBI-B28. Nonetheless, the extent of inhibitory effect of the Bac strain against L. monocytogenes in bacon was somewhat reduced in the presence of nitrites. A separate study on the influence of nitrites and fats on growth and bacteriocin production by Lb. curvatus CWBI-B28 revealed that the curing agent affects the growth of the Bac strain and, thereby bacteriocin production and activity only at concentrations (>5%) far beyond those allowed in the meat industry. Fat content did not affect the bacterial growth even at the highest concentration used (i.e. 50%), however, it interfered significantly with the detection of AUs and the antilisterial activity. Use of the Bac Lb. curvatus CWBI-B28 has proven efficient in controlling L. monocytogenes in bacon despite the slight antagonistic effect of nitrites, however the efficacy was dramatically reduced upon extended period of storage at 4°C.
Collapse
|
24
|
Garsa AK, Kumariya R, Sood SK, Kumar A, Kapila S. Bacteriocin production and different strategies for their recovery and purification. Probiotics Antimicrob Proteins 2016; 6:47-58. [PMID: 24676767 DOI: 10.1007/s12602-013-9153-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteriocins from lactic acid bacteria (LAB) are a diverse group of antimicrobial proteins/peptides, offering potential as biopreservatives, and exhibit a broad spectrum of antimicrobial activity at low concentrations along with thermal as well as pH stability in foods. High bacteriocin production usually occurs in complex media. However, such media are expensive for an economical production process. For effective use of bacteriocins as food biopreservatives, there is a need to have heat-stable wide spectrum bacteriocins produced with high-specific activity in food-grade medium. The main hurdles concerning the application of bacteriocins as food biopreservatives is their low yield in food-grade medium and time-consuming, expensive purification processes, which are suitable at laboratory scale but not at industrial scale. So, the present review focuses on the bacteriocins production using complex and food-grade media, which mainly emphasizes on the bacteriocin producer strains, media used, different production systems used and effect of different fermentation conditions on the bacteriocin production. In addition, this review emphasizes the purification processes designed for efficient recovery of bacteriocins at small and large scale.
Collapse
Affiliation(s)
- Anita Kumari Garsa
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India,
| | | | | | | | | |
Collapse
|
25
|
Juárez Tomás MS, Bru E, Wiese B, Nader-Macías MEF. Optimization of Low-Cost Culture Media for the Production of Biomass and Bacteriocin by a Urogenital Lactobacillus salivarius Strain. Probiotics Antimicrob Proteins 2016; 2:2-11. [PMID: 26780896 DOI: 10.1007/s12602-010-9037-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of this work was to formulate a culture medium of lower cost than conventional laboratory media, in order to simultaneously obtain high amounts of both biomass and bacteriocin of vaginal Lactobacillus salivarius CRL 1328. The growth assays under different culture conditions were performed by using a 2(8-2) central composite experimental design, with a central point and sixteen additional points. The factors taken into consideration were glucose, lactose, yeast extract, tryptone, ammonium citrate, sodium acetate, MgSO4 and MnSO4. The simultaneous presence of a carbon source (mainly glucose), a nitrogen source (mainly yeast extract) and salts (mainly MnSO4, MgSO4 and sodium acetate) allowed the highest cell biomass and bacteriocin levels to be reached in the experimental design. Through the application of the desirability function, several optimal medium compositions to achieve efficient production of biomass and bacteriocin were predicted. The optimized growth media allow a cost reduction of around 25 to 40% compared with conventional broths. The results obtained represent an advance in the search of the most suitable strategies for the production of bioactive compounds for pharmaceutical products to prevent or treat female urogenital infections.
Collapse
Affiliation(s)
| | - Elena Bru
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, 4000, Tucumán, Argentina
| | - Birgitt Wiese
- Institute of Biometry, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | | |
Collapse
|
26
|
Guerra NP. Modeling the batch bacteriocin production system by lactic acid bacteria by using modified three-dimensional Lotka–Volterra equations. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Abbasiliasi S, Ramanan RN, Ibrahim TAT, Mustafa S, Mohamad R, Daud HHM, Ariff AB. Effect of Medium Composition and Culture Condition on the Production of Bacteriocin-Like Inhibitory Substances (BLIS) byLactobacillus ParacaseiLA07, a Strain Isolated from Budu. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
28
|
Benmechernene Z, Fernández-No I, Quintela-Baluja M, Böhme K, Kihal M, Calo-Mata P, Barros-Velázquez J. Genomic and proteomic characterization of bacteriocin-producing Leuconostoc mesenteroides strains isolated from raw camel milk in two southwest Algerian arid zones. BIOMED RESEARCH INTERNATIONAL 2014; 2014:853238. [PMID: 24809059 PMCID: PMC3997938 DOI: 10.1155/2014/853238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 11/24/2022]
Abstract
Information on the microbiology of camel milk is very limited. In this work, the genetic characterization and proteomic identification of 13 putative producing bacteriocin Leuconostoc strains exhibiting antilisterial activity and isolated from camel milk were performed. DNA sequencing of the 13 selected strains revealed high homology among the 16S rRNA genes for all strains. In addition, 99% homology with Leuconostoc mesenteroides was observed when these sequences were analysed by the BLAST tool against other sequences from reference strains deposited in the Genbank. Furthermore, the isolates were characterized by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDITOF MS) which allowed for the identification of 2 mass peaks 6242 m/z and 5118 m/z that resulted to be specific to the species L. mesenteroides. Remarkably, the phyloproteomic tree provided more intraspecific information of L. mesenteroides than phylogenetic analysis. Accordingly, phyloproteomic analysis grouped L. mesenteroides strains into different subbranches, while all L. mesenteroides isolates were grouped in the same branch according to phylogenetic analysis. This study represents, to our knowledge, the first report on the use of MALDI-TOF MS on the identification of LAB isolated from camel milk.
Collapse
Affiliation(s)
- Zineb Benmechernene
- Laboratory of Applied Microbiology, Department of Biology, Faculty of Sciences, Oran University, B.P. 16, 31100 Es-Senia, Oran, Algeria
| | - Inmaculada Fernández-No
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Rúa Carballo Calero s/n, Campus Lugo, 27002 Lugo, Spain
| | - Marcos Quintela-Baluja
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Rúa Carballo Calero s/n, Campus Lugo, 27002 Lugo, Spain
| | - Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Rúa Carballo Calero s/n, Campus Lugo, 27002 Lugo, Spain
| | - Mebrouk Kihal
- Laboratory of Applied Microbiology, Department of Biology, Faculty of Sciences, Oran University, B.P. 16, 31100 Es-Senia, Oran, Algeria
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Rúa Carballo Calero s/n, Campus Lugo, 27002 Lugo, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Rúa Carballo Calero s/n, Campus Lugo, 27002 Lugo, Spain
| |
Collapse
|
29
|
Fernandez B, Hammami R, Savard P, Jean J, Fliss I. Pediococcus acidilactici UL5 and Lactococcus lactis ATCC 11454 are able to survive and express their bacteriocin genes under simulated gastrointestinal conditions. J Appl Microbiol 2013; 116:677-88. [PMID: 24279824 DOI: 10.1111/jam.12391] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/23/2013] [Accepted: 11/07/2013] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this work is to study the expression of stress genes and those involved in pediocin and nisin production in Pediococcus acidilactici UL5 and Lactococcus lactis ATCC11454 under simulated gastrointestinal (GI) physiological conditions. METHODS AND RESULTS The two strains were fed to a dynamic GI model (TIM-1). Samples were taken from different compartments and analysed for strain survival as well as for the expression of pediocin PA-1 operon, nisin A production gene and stress genes using RT-qPCR. Ileal-delivered efflux showed a survival rate of 17 and 0·0007% for Ped. acidilactici and La. lactis, respectively. Pediocin operon genes from stressed cells were generally expressed at least at the same level as for unstressed cells. However, pedA is up-regulated in the effluent at 120 and 180 min. Nisin A genes were always up-regulated with particularly in the stomach after 70 min compared with control. CONCLUSIONS Bacteriocin production of Ped. acidilactici UL5 and Lc. lactis ATCC 11454 are not affected by upper GI simulated conditions and thus could be considered as relevant probiotic candidates. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates the capacity of lactic acid bacteria to survive and express their bacteriocins genes under simulated GI conditions.
Collapse
Affiliation(s)
- B Fernandez
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
30
|
Iyapparaj P, Maruthiah T, Ramasubburayan R, Prakash S, Kumar C, Immanuel G, Palavesam A. Optimization of bacteriocin production by Lactobacillus sp. MSU3IR against shrimp bacterial pathogens. AQUATIC BIOSYSTEMS 2013; 9:12. [PMID: 23725298 PMCID: PMC3679972 DOI: 10.1186/2046-9063-9-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 05/03/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Aquaculture is one amongst the growing and major food producing sectors. Shrimp culture is one of the subsectors of aquaculture that attracts more attention because of the economic interest. However, the shrimp culture systems have been facing severe consequences and economical losses due to disease outbreaks. Risk of disease outbreak can be combated with the application of probiotics. For economically viable production of such probiotic products, the present study provides information on the optimization and partial purification of bacteriocin produced by a goat milk isolate Lactobacillus sp. MSU3IR against the shrimp bacterial pathogens. RESULTS Bacteriocin production was estimated as a measure of bactericidal activity (arbitrary Unit/ml) over the test strains. The optimum culture conditions and media components for maximum bacteriocin production by Lactobacillus sp. MSU3IR were: pH: 5.0, temperature: 30°C, carbon source: lactose; nitrogen source: ammonium acetate; NaCl: 3.0% and surfactant: Tween 80. MRS medium was found to extend better bacteriocin production than other tested media. Upon partial purification of bacteriocin, the SDS-PAGE analysis had manifested the presence of two peptide bands with the molecular weight of 39.26 and 6.38 kDa, respectively. CONCLUSION The present results provide baseline trend for the statistical optimization, scale up process and efficient production of bacteriocin by the candidate bacterial strain Lactobacillus sp. MSU3IR which could be used to replace the usage of conventional chemotherapeutics in shrimp culture systems.
Collapse
Affiliation(s)
- Palanisamy Iyapparaj
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai – 608 502, Tamilnadu, India
| | - Thirumalai Maruthiah
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam – 629 502 Kanyakumari District, Tamil Nadu, India
| | - Ramasamy Ramasubburayan
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam – 629 502 Kanyakumari District, Tamil Nadu, India
| | - Santhiyagu Prakash
- Directorate of Research, SRM University, Kattankulathur – 603 203 Kanchipuram District, Tamilnadu, India
| | | | - Grasian Immanuel
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam – 629 502 Kanyakumari District, Tamil Nadu, India
| | - Arunachalam Palavesam
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam – 629 502 Kanyakumari District, Tamil Nadu, India
| |
Collapse
|
31
|
Kumar M, Jain AK, Ghosh M, Ganguli A. Statistical optimization of physical parameters for enhanced bacteriocin production by L. casei. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0631-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Effects of dissolved oxygen and pH levels on weissellin A production by Weissella paramesenteroides DX in fermentation. Bioprocess Biosyst Eng 2012; 35:1035-41. [DOI: 10.1007/s00449-012-0689-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/17/2012] [Indexed: 11/26/2022]
|
33
|
Yermolenko E, Chernysh A, Kolobov A, Suvorov A. Influence of synthetic peptide inducers on antibacterial activity of enterococci. Benef Microbes 2012; 2:9-13. [PMID: 21840807 DOI: 10.3920/bm2010.0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antibacterial activity of probiotic enterococci is often related to the production of bacteriocins. There is a variety of Enterococcus faecium strains which synthesise one or several enterocins including A, B, P, 96, L50AB and others. In this work we have analysed the probiotic strain E. faecium L3 whose genome contained the genes encoding enterocins А, В and a three-component regulatory system. All these genes were found to be expressed in enterococcal strain L3. Antimicrobial activity of the strain tested on the strains of Listeria monocytogenes and Streptococcus agalactiae was pheromone dependent. Chemically synthesised cyclic peptides (analogues and shorter derivates of EntF) with different molecular structures were able to increase the antagonistic activity of the strain E. faecium L3 in contrast to the strain E. faecium SF68, which does nоt have genes encoding enterocins А and В.
Collapse
Affiliation(s)
- E Yermolenko
- Department of Molecular Microbiology, Institute of Experimental Medicine, St. Petersburg, Russia
| | | | | | | |
Collapse
|
34
|
Development of Class IIa Bacteriocins as Therapeutic Agents. Int J Microbiol 2011; 2012:386410. [PMID: 22187559 PMCID: PMC3236453 DOI: 10.1155/2012/386410] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/08/2011] [Indexed: 12/02/2022] Open
Abstract
Class IIa bacteriocins have been primarily explored as natural food preservatives, but there is much interest in exploring the application of these peptides as therapeutic antimicrobial agents. Bacteriocins of this class possess antimicrobial activity against several important human pathogens. Therefore, the therapeutic development of these bacteriocins will be reviewed. Biological and chemical modifications to both stabilize and increase the potency of bacteriocins are discussed, as well as the optimization of their production and purification. The suitability of bacteriocins as pharmaceuticals is explored through determinations of cytotoxicity, effects on the natural microbiota, and in vivo efficacy in mouse models. Recent results suggest that class IIa bacteriocins show promise as a class of therapeutic agents.
Collapse
|
35
|
Rehaiem A, Guerra NP, Belgacem ZB, Bernárdez PF, Castro LP, Manai M. Enhancement of enterocin A production by Enterococcus faecium MMRA and determination of its stability to temperature and pH. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
de Arauz LJ, Jozala AF, Baruque-Ramos J, Mazzola PG, Pessoa A, Penna TCV. Culture medium of diluted skimmed milk for the production of nisin in batch cultivations. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0278-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
37
|
Mitra D, Pometto AL, Khanal SK, Karki B, Brehm-Stecher BF, van Leeuwen JH. Value-added production of nisin from soy whey. Appl Biochem Biotechnol 2010; 162:1819-33. [PMID: 20853068 DOI: 10.1007/s12010-010-8951-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/15/2010] [Indexed: 11/28/2022]
Abstract
The objective of this study was to evaluate the potential of low/negative value soy whey (SW) as an alternative, inexpensive fermentation substrate to culture Lactococcus lactis subsp. lactis for nisin production. Initially, a microtiter plate assay using a Bioscreen C Microbiology Plate Reader was used for rapid optimization of culture conditions. Various treatments were examined in efforts to optimize nisin production from SW, including different methods for SW sterilization, ultrasonication of soy flake slurries for possible nutrient release, comparison of diluted and undiluted SW, and supplementation of SW with nutrients. In subsequent flask-based experiments, dry bacterial mass and nisin yields obtained from SW were 2.18 g/L and 619 mg/L, respectively, as compared to 2.17 g/L and 672 mg/L from a complex medium, de Man-Rogosa-Sharpe broth. Ultrasonication of soybean flake slurries (10% solid content) in water prior to production of SW resulted in ∼2% increase in biomass yields and ∼1% decrease in nisin yields. Nutrient supplementation to SW resulted in ∼3% and ∼7% increase in cell and nisin yields, respectively. This proof-of-concept study demonstrates the potential for use of a low/negative value liquid waste stream from soybean processing for production of a high-value fermentation end product.
Collapse
|
38
|
KAWAHARA T, IIDA A, TOYAMA Y, FUKUDA K. Characterization of the Bacteriocinogenic Lactic Acid Bacteria Lactobacillus curvatus Strain Y108 Isolated from Nozawana-Zuke Pickles. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2010. [DOI: 10.3136/fstr.16.253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Renye JA, Somkuti GA. Nisin-induced expression of pediocin in dairy lactic acid bacteria. J Appl Microbiol 2009; 108:2142-51. [PMID: 19929951 DOI: 10.1111/j.1365-2672.2009.04615.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To test whether a single vector, nisin-controlled expression (NICE) system could be used to regulate expression of the pediocin operon in Streptococcus thermophilus, Lactococcus lactis subsp. lactis and Lactobacillus casei. METHODS AND RESULTS The intact pediocin operon was cloned immediately into pMSP3535 downstream of the nisA promoter (PnisA). The resulting vector, pRSNPed, was electrotransformed into Strep. thermophilus ST128, L. lactis subsp. lactis ML3 and Lact. casei C2. Presence of the intact vector was confirmed by PCR, resulting in the amplification of a 0.8-kb DNA fragment, and inhibition zones were observed for all lactic acid bacteria (LAB) transformants following induction with 50 ng ml(-1) nisin, when Listeria monocytogenes Scott A was used as the target bacterium. Using L. monocytogenes NR30 as target, the L. lactis transformants produced hazy zones of inhibition, while the Lact. casei transformants produced clear zones of inhibition. Zones of inhibition were not observed when the Strep. thermophilus transformants were tested against NR30. CONCLUSIONS The LAB hosts were able to produce enough pediocin to inhibit the growth of L. monocytogenes Scott A; the growth of L. monocytogenes NR30 was effectively inhibited only by the Lact. casei transformants. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first time that the NICE system has been used to express the intact pediocin operon in these LAB hosts. This system could allow for the in situ production of pediocin in fermented dairy foods supplemented with nisin to prevent listeria contamination.
Collapse
Affiliation(s)
- J A Renye
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA.
| | | |
Collapse
|
40
|
Development of a low-cost medium for production of nisin from Lactococcus lactis subsp. lactis. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0102-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Todorov SD, Dicks LM. Bacteriocin production by Pediococcus pentosaceus isolated from marula (Scerocarya birrea). Int J Food Microbiol 2009; 132:117-26. [DOI: 10.1016/j.ijfoodmicro.2009.04.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 03/26/2009] [Accepted: 04/05/2009] [Indexed: 10/20/2022]
|
42
|
Characterisation of an Antilisterial Bacteriocin Produced by Lactobacillus sakei CWBI-B1365 Isolated from Raw Poultry Meat and Determination of Factors Controlling its Production. Probiotics Antimicrob Proteins 2009; 1:75. [DOI: 10.1007/s12602-008-9000-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
|
43
|
Hu P, Zhou G, Xu X, Li C, Han Y. Characterization of the predominant spoilage bacteria in sliced vacuum-packed cooked ham based on 16S rDNA-DGGE. Food Control 2009. [DOI: 10.1016/j.foodcont.2008.02.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
RASHID HU, TOGO K, UEDA M, MIYAMOTO T. Characterization of bacteriocin produced byStreptococcus bovisJ2 40-2 isolated from traditional fermented milk ‘Dahi’. Anim Sci J 2009; 80:70-8. [DOI: 10.1111/j.1740-0929.2008.00596.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Fajardo Bernárdez P, Fuciños González C, Méndez Batán J, Pastrana Castro L, Pérez Guerra N. Performance and intestinal coliform counts in weaned piglets fed a probiotic culture (Lactobacillus casei subsp. casei CECT 4043) or an antibiotic. J Food Prot 2008; 71:1797-805. [PMID: 18810863 DOI: 10.4315/0362-028x-71.9.1797] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The production of biomass and antibacterial extracellular products by Lactobacillus casei subsp. casei CECT 4043 was followed in both batch and in realkalized fed-batch cultures. Enhanced concentrations of biomass and antibacterial extracellular products were obtained with the use of the latter fermentation technique in comparison with the batch mode. The culture obtained by fed-batch fermentation was mixed with skim milk and used to prepare a probiotic feed for weaned piglets. To test the effect of the potentially probiotic culture of L. casei on body weight gain, feed intake, feed conversion efficiency, and on fecal coliform counts of piglets, two groups of animals received either feed supplemented with the probiotic preparation or avilamycin for 28 days. The control group was fed nonsupplemented feed. At the end of the administration period (day 28), the groups receiving probiotic and avilamycin exhibited the highest average body weight gain values, although the mean feed intake and feed conversion efficiency values were not different among the groups (P > 0.05). For the entire experimental period (42 days), the control group exhibited the lowest feed intake value, the probiotic group exhibited the highest feed conversion efficiency value, and the antibiotic group exhibited the highest body weight gain (P < 0.05). Interestingly, no significant difference in body weight gain was observed between the probiotic and the control groups by day 42 (P > 0.05). Fecal coliform values decreased (although not significantly) by day 28 in the three groups. However, the mean counts returned to pretreatment levels by day 42 in all groups.
Collapse
Affiliation(s)
- Paula Fajardo Bernárdez
- Departamento de Química Analítica y Alimentaria, Facultad de Ciencias de Orense, Universidad de Vigo, Las Lagunas s/n, 32004 Orense, Spain
| | | | | | | | | |
Collapse
|
46
|
de la Fuente-Salcido N, Guadalupe Alanís-Guzmán M, Bideshi DK, Salcedo-Hernández R, Bautista-Justo M, Barboza-Corona JE. Enhanced synthesis and antimicrobial activities of bacteriocins produced by Mexican strains of Bacillus thuringiensis. Arch Microbiol 2008; 190:633-40. [DOI: 10.1007/s00203-008-0414-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 06/24/2008] [Accepted: 07/09/2008] [Indexed: 11/24/2022]
|
47
|
Razvi A, Zhang Z, Lan CQ. Effects of glucose and nitrogen source concentration on batch fermentation kinetics ofLactococcus lactisunder hemin-stimulated respirative condition. Biotechnol Prog 2008; 24:852-8. [DOI: 10.1002/btpr.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Modelling the stress inducing biphasic growth and pediocin production by Pediococcus acidilactici NRRL B-5627 in re-alkalized fed-batch cultures. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2008.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Tiwari SK, Srivastava S. Statistical Optimization of Culture Components for Enhanced Bacteriocin Production byLactobacillus plantarumLR/14. FOOD BIOTECHNOL 2008. [DOI: 10.1080/08905430701864009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Chen YS, Srionnual S, Onda T, Yanagida F. Effects of prebiotic oligosaccharides and trehalose on growth and production of bacteriocins by lactic acid bacteria. Lett Appl Microbiol 2007; 45:190-3. [PMID: 17651217 DOI: 10.1111/j.1472-765x.2007.02167.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the effects of two prebiotics and trehalose on the production of bacteriocins. METHODS AND RESULTS Four carbohydrates [dextrose, fructo-oligosaccharides (FOS), raffinose, and trehalose] were used as the sole carbon source in a simple broth. Five bacteriocin-producing strains of bacteria, including those producing nisin, enteriocin, and other bacteriocins, were used, and their inhibitory activities when grown on each carbohydrate were determined. The inhibitory activity assay was performed using the agar well diffusion method, and Lactobacillus sakei JCM 1,157(T) was used as the indicator strain. Effective enhancement of bacteriocin production was observed with FOS and trehalose incubation. CONCLUSIONS The results suggest that FOS and trehalose can effectively enhance the production of the five kinds of bacteriocins evaluated in this study. SIGNIFICANCE AND IMPACT OF THE STUDY This study offers useful information for not only a new application of FOS and trehalose, but also the potential improvement of food preservation.
Collapse
Affiliation(s)
- Y-S Chen
- Institute of Enology and Viticulture, University of Yamanashi, Yamanashi, Japan.
| | | | | | | |
Collapse
|