1
|
Breves JP, Shaughnessy CA. Endocrine control of gill ionocyte function in euryhaline fishes. J Comp Physiol B 2024; 194:663-684. [PMID: 38739280 DOI: 10.1007/s00360-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ciaran A Shaughnessy
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA
| |
Collapse
|
2
|
Canosa LF, Bertucci JI. The effect of environmental stressors on growth in fish and its endocrine control. Front Endocrinol (Lausanne) 2023; 14:1109461. [PMID: 37065755 PMCID: PMC10098185 DOI: 10.3389/fendo.2023.1109461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Fish body growth is a trait of major importance for individual survival and reproduction. It has implications in population, ecology, and evolution. Somatic growth is controlled by the GH/IGF endocrine axis and is influenced by nutrition, feeding, and reproductive-regulating hormones as well as abiotic factors such as temperature, oxygen levels, and salinity. Global climate change and anthropogenic pollutants will modify environmental conditions affecting directly or indirectly fish growth performance. In the present review, we offer an overview of somatic growth and its interplay with the feeding regulatory axis and summarize the effects of global warming and the main anthropogenic pollutants on these endocrine axes.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico Chascomús (INTECH), CONICET-EByNT-UNSAM, Chascomús, Argentina
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| | - Juan Ignacio Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía - Consejo Superior de Investigaciones Científicas (IEO-CSIC), Vigo, Spain
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| |
Collapse
|
3
|
Seale AP, Breves JP. Endocrine and osmoregulatory responses to tidally-changing salinities in fishes. Gen Comp Endocrinol 2022; 326:114071. [PMID: 35697315 DOI: 10.1016/j.ygcen.2022.114071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
Salinity is one of the main physical properties that govern the distribution of fishes across aquatic habitats. In order to maintain their body fluids near osmotic set points in the face of salinity changes, euryhaline fishes rely upon tissue-level osmotically-induced responses and systemic endocrine signaling to direct adaptive ion-transport processes in the gill and other critical osmoregulatory organs. Some euryhaline teleosts inhabit tidally influenced waters such as estuaries where salinity can vary between fresh water (FW) and seawater (SW). The physiological adaptations that underlie euryhalinity in teleosts have been traditionally identified in fish held under steady-state conditions or following unidirectional transfers between FW and SW. Far fewer studies have employed salinity regimes that simulate the tidal cycles that some euryhaline fishes may experience in their native habitats. With an emphasis on prolactin (Prl) signaling and branchial ionocytes, this mini-review contrasts the physiological responses between euryhaline fish responding to tidal versus unidirectional changes in salinity. Three patterns that emerged from studying Mozambique tilapia (Oreochromis mossambicus) subjected to tidally-changing salinities include, 1) fish can compensate for continuous and marked changes in external salinity to maintain osmoregulatory parameters within narrow ranges, 2) tilapia maintain branchial ionocyte populations in a fashion similar to SW-acclimated fish, and 3) there is a shift from systemic to local modulation of Prl signaling.
Collapse
Affiliation(s)
- Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| |
Collapse
|
4
|
Xiang K, Yang Q, Liu M, Yang X, Li J, Hou Z, Wen H. Crosstalk between Growth and Osmoregulation of GHRH-SST-GH-IGF Axis in Triploid Rainbow Trout ( Oncorhynchus mykiss). Int J Mol Sci 2022; 23:ijms23158691. [PMID: 35955823 PMCID: PMC9369269 DOI: 10.3390/ijms23158691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Smolting is an important development stage of salmonid, and an energy trade-off occurs between osmotic regulation and growth during smolting in rainbow trout (Oncorhynchus mykiss). Growth hormone releasing hormone, somatostatin, growth hormone and insulin-like growth factor (GHRH-SST-GH-IGF) axis exhibit pleiotropic effects in regulating growth and osmotic adaptation. Due to salmonid specific genome duplication, increased paralogs are identified in the ghrh-sst-gh-igf axis, however, their physiology in modulating osmoregulation has yet to be investigated. In this study, seven sst genes (sst1a, sst1b, sst2, sst3a, sst3b, sst5, sst6) were identified in trout. We further investigated the ghrh-sst-gh-igf axis of diploid and triploid trout in response to seawater challenge. Kidney sst (sst1b, sst2, sst5) and sstr (sstr1b1, sstr5a, sstr5b) expressions were changed (more than 2-fold increase (except for sstr5a with 1.99-fold increase) or less than 0.5-fold decrease) due to osmoregulation, suggesting a pleiotropic physiology of SSTs in modulating growth and smoltification. Triploid trout showed significantly down-regulated brain sstr1b1 and igfbp2a1 (p < 0.05), while diploid trout showed up-regulated brain igfbp1a1 (~2.61-fold, p = 0.057) and igfbp2a subtypes (~1.38-fold, p < 0.05), suggesting triploid trout exhibited a better acclimation to the seawater environment. The triploid trout showed up-regulated kidney igfbp5a subtypes (~6.62 and 7.25-fold, p = 0.099 and 0.078) and significantly down-regulated igfbp5b2 (~0.37-fold, p < 0.05), showing a conserved physiology of teleost IGFBP5a in regulating osmoregulation. The IGFBP6 subtypes are involved in energy and nutritional regulation. Distinctive igfbp6 subtypes patterns (p < 0.05) potentially indicated trout triggered energy redistribution in brain and kidney during osmoregulatory regulation. In conclusion, we showed that the GHRH-SST-GH-IGF axis exhibited pleiotropic effects in regulating growth and osmoregulatory regulation during trout smolting, which might provide new insights into seawater aquaculture of salmonid species.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhishuai Hou
- Correspondence: (Z.H.); (H.W.); Tel.: +86-133-4524-7715 (Z.H.); +86-532-8203-1825 (H.W.)
| | - Haishen Wen
- Correspondence: (Z.H.); (H.W.); Tel.: +86-133-4524-7715 (Z.H.); +86-532-8203-1825 (H.W.)
| |
Collapse
|
5
|
Chandhini S, Trumboo B, Jose S, Varghese T, Rajesh M, Kumar VJR. Insulin-like growth factor signalling and its significance as a biomarker in fish and shellfish research. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1011-1031. [PMID: 33987811 DOI: 10.1007/s10695-021-00961-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The insulin-like growth factor signalling system comprises insulin-like growth factors, insulin-like growth factor receptors and insulin-like growth factor-binding proteins. Along with the growth hormones, insulin-like growth factor signalling is very pivotal in the growth and development of all vertebrates. In fishes, insulin-like growth factors play an important role in osmoregulation, besides the neuroendocrine regulation of growth. Insulin-like growth factor concentration in plasma can assess the growth in fishes and shellfishes and therefore widely applied in nutritional research as an indicator to evaluate the performance of selected nutrients. The present review summarizes the role of insulin-like growth factor signalling in fishes and shellfishes, its significance in aquaculture and in evaluating growth, reproduction and development, and discusses the utility of this system as biomarkers for early indication of growth in aquaculture.
Collapse
Affiliation(s)
- S Chandhini
- Centre of Excellence in Sustainable Aquaculture and Aquatic Animal Health Management (CAAHM), Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India
| | - Bushra Trumboo
- Centre of Excellence in Sustainable Aquaculture and Aquatic Animal Health Management (CAAHM), Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India
| | - Seena Jose
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, 682016, Kerala, India
| | - Tincy Varghese
- Fish Physiology and Biochemistry Division, ICAR-Central Institute of Fisheries Education, Off-Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - M Rajesh
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, 263136, Uttarakhand, India
| | - V J Rejish Kumar
- Centre of Excellence in Sustainable Aquaculture and Aquatic Animal Health Management (CAAHM), Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India.
| |
Collapse
|
6
|
Yin X, Martinez AS, Sepúlveda MS, Christie MR. Rapid genetic adaptation to recently colonized environments is driven by genes underlying life history traits. BMC Genomics 2021; 22:269. [PMID: 33853517 PMCID: PMC8048285 DOI: 10.1186/s12864-021-07553-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Uncovering the mechanisms underlying rapid genetic adaptation can provide insight into adaptive evolution and shed light on conservation, invasive species control, and natural resource management. However, it can be difficult to experimentally explore rapid adaptation due to the challenges associated with propagating and maintaining species in captive environments for long periods of time. By contrast, many introduced species have experienced strong selection when colonizing environments that differ substantially from their native range and thus provide a “natural experiment” for studying rapid genetic adaptation. One such example occurred when sea lamprey (Petromyzon marinus), native to the northern Atlantic, naturally migrated into Lake Champlain and expanded their range into the Great Lakes via man-made shipping canals. Results Utilizing 368,886 genome-wide single nucleotide polymorphisms (SNPs), we calculated genome-wide levels of genetic diversity (i.e., heterozygosity and π) for sea lamprey collected from native (Connecticut River), native but recently colonized (Lake Champlain), and invasive (Lake Michigan) populations, assessed genetic differentiation between all populations, and identified candidate genes that responded to selection imposed by the novel environments. We observed a 14 and 24% reduction in genetic diversity in Lake Michigan and Lake Champlain populations, respectively, compared to individuals from the Connecticut River, suggesting that sea lamprey populations underwent a genetic bottleneck during colonization. Additionally, we identified 121 and 43 outlier genes in comparisons between Lake Michigan and Connecticut River and between Lake Champlain and Connecticut River, respectively. Six outlier genes that contained synonymous SNPs in their coding regions and two genes that contained nonsynonymous SNPs may underlie the rapid evolution of growth (i.e., GHR), reproduction (i.e., PGR, TTC25, STARD10), and bioenergetics (i.e., OXCT1, PYGL, DIN4, SLC25A15). Conclusions By identifying the genomic basis of rapid adaptation to novel environments, we demonstrate that populations of invasive species can be a useful study system for understanding adaptive evolution. Furthermore, the reduction in genome-wide levels of genetic diversity associated with colonization coupled with the identification of outlier genes underlying key life history traits known to have changed in invasive sea lamprey populations (e.g., growth, reproduction) illustrate the utility in applying genomic approaches for the successful management of introduced species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07553-x.
Collapse
Affiliation(s)
- Xiaoshen Yin
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, Indiana, 47907-2054, USA
| | - Alexander S Martinez
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, Indiana, 47907-2054, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, Indiana, 47907-2054, USA
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, Indiana, 47907-2054, USA. .,Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, Indiana, 47907-2054, USA.
| |
Collapse
|
7
|
Si Y, Li H, Gong X, Bao B. Isolation of prolactin gene and its differential expression during metamorphosis involving eye migration of Japanese flounder Paralichthys olivaceus. Gene 2021; 780:145522. [PMID: 33631243 DOI: 10.1016/j.gene.2021.145522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/13/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
Eye migration during flatfish metamorphosis is driven by asymmetrical cell proliferation. To figure out Prolactin (PRL) function in this process, the full-length cDNA of prl was cloned from Japanese flounder (Paralichthys olivaceus) in our study. The deduced PRL protein shares highly conserved sequence with other teleosts, but has several amino acids loss compared with higher vertebrates, including amphibians, reptiles, avian and mammals. Spatio-temporal expression of prl gene displayed its extensive expression in the early development stages, while the limited expression of prl was observed in the pituitary, brain, and intestine of adult fish. In situ hybridization showed the asymmetrical distribution patterns of prl gene around the eyes during metamorphosis, which was coincident with the cell proliferation signals. Colchicine inhibited cell proliferation and reduced the prl gene expression, which indicates that PRL was involved in cell proliferation in the suborbital area of the migrating eye. The treatment of methimazole and 9-cis-retinoic acid respectively led to a reduction in the number of proliferating cells and the downregulation of prl expression, suggesting PRL was regulated by thyroid hormone signaling pathway and retinoic acid related signaling pathways. The results gave us a basic understanding of PRL function during flatfish metamorphosis.
Collapse
Affiliation(s)
- Yufeng Si
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoling Gong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
8
|
Zhu C, Pan Z, Chang G, Wang H, Ding H, Wu N, Qiang X, Yu X, Wang L, Zhang J. Polymorphisms of the growth hormone gene and their association with growth traits and sex in Sarcocheilichthys sinensis. Mol Genet Genomics 2020; 295:1477-1488. [PMID: 32700104 DOI: 10.1007/s00438-020-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/15/2020] [Indexed: 11/27/2022]
Abstract
The growth hormone gene (gh) of Sarcocheilichthys sinensis was cloned and characterized in this study. The cDNA length of gh was 973 bp, containing a 5'-UTR of 15 bp, a 3'-UTR of 325 bp and an open reading frame of 633 bp. The genomic DNA of gh was 2135 bp in length containing five exons and four introns. The precursor peptide of gh contained 210 amino acids (aa), including a signal peptide of 22 aa (Met1-Ala22) and a mature region of 188 aa (Ser23-Leu210). The similarity and identity ranges of the gh precursor peptide with those of other cyprinids were 88.6%-99.0% and 84.8%-98.6%, respectively. The gh of S. sinensis expressed at the highest level in the pituitary, and its expression was also detected in muscle and brain. Six polymorphic sites were detected in intron 1 (g.51InDel, g.64InDel and g.242InDel), intron 2 (g.864T>C), intron 3 (g.1017InDel) and intron 4 (g.1541A>G). Among these sites, g.242InDel was significantly associated with condition factor, g.1541A>G was associated with all six growth traits, while g.864T>C was associated with sex. The data obtained herein provide useful information for further studies on the regulation mechanisms of growth and sexual growth differences in S. sinensis.
Collapse
Affiliation(s)
- Chuankun Zhu
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, China.
| | - Zhengjun Pan
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Guoliang Chang
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Hui Wang
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Huaiyu Ding
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Nan Wu
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Xiaogang Qiang
- Huai'an Fishery Technology Guidance Station, Huai'an, China
| | - Xiangsheng Yu
- Huai'an Fishery Technology Guidance Station, Huai'an, China
| | - Long Wang
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, China
- Fisheries and Life Science College, Shanghai Ocean University, Shanghai, China
| | - Ji Zhang
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, China
| |
Collapse
|
9
|
Seale AP, Pavlosky KK, Celino-Brady FT, Lerner DT. Sex, salinity and sampling period dependent patterns of growth hormone mRNA expression in Mozambique tilapia. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2020; 519:734766. [PMID: 32863453 PMCID: PMC7451021 DOI: 10.1016/j.aquaculture.2019.734766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tilapias comprise the second most aquacultured finfish group in the world. Such popularity stems in part from their tolerance to a wide range of environmental conditions and their sexually dimorphic nature, where males grow larger than females. As in other vertebrates, growth in tilapia is regulated by the growth hormone/ insulin like growth factor (GH/IGF) system. Moreover, environmental salinity has previously been shown to directly modulate growth in tilapia. Less is known, however, regarding how salinity may modulate sexually dimorphic growth. Utilizing a species of tilapia of high salinity tolerance, the Mozambique tilapia, Oreochromis mossambicus, we compared gh expression from the pituitary of male and female adults reared in fresh water (FW), seawater (SW), and a tidal regime (TR) characterized by dynamically changing salinities between FW and SW every six hours, over a 24 h period. We found significant effects of sex, salinity regime and whether fish were sampled during daylight or dark hours. In both sexes, gh expression was greater in fish reared in SW and TR compared with those in FW, and greater in fish sampled during dark hours, compared with those sampled in daylight hours. Pituitary gh expression was greater in males than in females reared in SW and TR, but not in FW. These results provide insight on the sex-specific modulation of gh expression by environmental factors in Mozambique tilapia.
Collapse
Affiliation(s)
- Andre P. Seale
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA
- Hawai’i Institute of Marine Biology, University of Hawai’i, Kāne’ohe, HI 96744, USA
| | - K. Keano Pavlosky
- Hawai’i Institute of Marine Biology, University of Hawai’i, Kāne’ohe, HI 96744, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA
| | - Fritzie T. Celino-Brady
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA
| | - Darren T. Lerner
- University of Hawai’i Sea Grant College Program, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
10
|
Liu B, Guo HY, Zhu KC, Guo L, Liu BS, Zhang N, Yang JW, Jiang SG, Zhang DC. Growth, physiological, and molecular responses of golden pompano Trachinotus ovatus (Linnaeus, 1758) reared at different salinities. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1879-1893. [PMID: 31396801 DOI: 10.1007/s10695-019-00684-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Golden pompano (Trachinotus ovatus) is a commercially important marine fish and is widely cultured in the coastal area of South China. Salinity is one of the most important environmental factors influencing the growth and survival of fish. The aims of this study are to investigate the growth, physiological, and molecular responses of juvenile golden pompano reared at different salinities. Juveniles reared at 15 and 25‰ salinity grew significantly faster than those reared at the other salinities. According to the final body weights, weight gain rate, and feed conversion ratio, the suitable culture salinity range was 15-25‰ salinity. The levels of branchial NKA activity showed a typical "U-shaped" pattern with the lowest level at 15‰ salinity, which suggested a lower energy expenditure on osmoregulation at this level of salinity. The results of this study showed that the alanine aminotransferase, aspartate aminotransferase, and cortisol of juveniles at 5‰ were higher than those of other salinity groups. Our results showed that glucose-6-phosphate dehydrogenase significantly increased at 5‰ and 35‰ salinity. Our study showed that osmolality had significant differences in each salinity group. GH, GHR1, and GHR2 had a wide range of tissue expression including the liver, intestine, kidneys, muscle, gills and brain. The expression levels of GH, GHR1 and GHR2 in the intestine, kidneys, and muscle at 15‰ salinity were significantly higher than those in other three salinity groups. Based on the growth parameters and physiological and molecular responses, the results of the present study indicated that the optimal salinity for rearing golden pompano was 21.36‰ salinity.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 200090, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Jing-Wen Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China.
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Qiang J, Bao JW, Li HX, Chen DJ, He J, Tao YF, Xu P. miR-1338-5p Modulates Growth Hormone Secretion and Glucose Utilization by Regulating ghitm in Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus). Front Physiol 2017; 8:998. [PMID: 29270127 PMCID: PMC5723647 DOI: 10.3389/fphys.2017.00998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding small RNA molecules about 22 nt in length, which could regulate the expressions of target genes and participate in growth and development of organisms. Genetically improved farmed tilapia (GIFT, Oreochromis niloticus) is an important economic freshwater species in China and the growth performance is one of the main breeding indicators. Growth hormone inducible transmembrane protein (ghitm) plays an important role in growth and development of both mammals and invertebrates; however, little studies have been reported on fish. Our previous experiments indicated that miR-1338-5p expression may be negatively correlated with ghitm expression. In this study, we firstly used qRT-PCR and northern blot to verify the expression of miR-1338-5p and ghitm, and determined the binding site of miR-1338-5p in the ghitm 3'-untranslated region (UTR) by luciferase reporter assay. Secondly, juveniles GIFT injected with miR-1338-5p antagomir were used to analyze the regulatory function of the miR-1338-5p-ghitm pair in vivo. The results showed that the ghitm 3'-UTR was complementary to the 5' 2-8-nt site of miR-1338-5p. Inhibition of miR-1338-5p promoted ghitm expression in the pituitary and liver of GIFT. ghitm could interfere in the growth hormone (Gh)-growth hormone receptor (Ghr)-insulin-like growth factor (Igf) signaling pathway by competing with the ghr1 for combination with Gh, and then reduce the growth of GIFT. Moreover, the reduction of Gh in serum may regulate insulin secretion and result in the increasing sugar and fat storage in serum and liver. Our results suggest that miR-1338-5p participates in the growth and development of GIFT through the regulation of ghitm, which provides theoretical support for the study of the fish growth mechanism.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jing Wen Bao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Hong Xia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - De Ju Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yi Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
12
|
Yuan M, Jia Q, Wang T, Lu Q, Tang L, Wang Y, Lu W. Dynamic responses of prolactin, growth hormone and their receptors to hyposmotic acclimation in the olive flounder Paralichthys olivaceus. Gen Comp Endocrinol 2017; 254:8-13. [PMID: 28927875 DOI: 10.1016/j.ygcen.2017.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/16/2017] [Accepted: 09/13/2017] [Indexed: 11/13/2022]
Abstract
Prolactin (PRL) and growth hormone (GH) play important roles in regulating salt and water balance through osmoregulatory organs in vertebrates. The aim of this study was to investigate the dynamic changes of GH/PRL hormone gene expressions in the pituitary gland and their receptors in gill and kidney, as well as the plasma osmolality when the olive flounder fish Paralichthys olivaceus were acclimated in freshwater (FW) conditions. After transfer from seawater (SW) to freshwater (FW), the osmolality of FW-adaption fish reached the lowest level at 1d which rose slightly afterwards. However, the hormone gene expression of PRL increased from 2d, reaching its peak at 5d, and then decreased at 14d. At this time, the value was still significantly higher than the control, showing a similar trend to the plasma hormone PRL. In contrast, the pituitary mRNA level of GH significantly decreased at 1d and then returned to normal levels. The mRNA levels of PRL receptor (PRLR) in both gill and kidney displayed a similar trend to the pituitary PRL. We also observed the synchronous expression trend of the renal PRLR with pituitary PRL (5d) and the asynchronous expression peaks between branchial (8d) and renal PRLR (5d). Significant responses of GH and its receptor (GHR) in both gill and kidney during the FW-acclimation were not observed. Nevertheless, the gene expression of GH receptor variant (GHR-V) in both gill and kidney declined at 2d, indicating unknown osmoregulatory functions of GHR-V. Collectively, our results provided more insights of the PRL, GH and their corresponding receptors in modulating osmoregulatory responses, representing an important aspect of FW-acclimation in flounder fish.
Collapse
Affiliation(s)
- Mingzhe Yuan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China
| | - Qianqian Jia
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China
| | - Ting Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China
| | - Qi Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Langlang Tang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China.
| |
Collapse
|
13
|
Bystriansky J, Clarke W, Alonge M, Judd S, Schulte P, Devlin R. Salinity acclimation and advanced parr–smolt transformation in growth-hormone transgenic coho salmon (Oncorhynchus kisutch). CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growth hormone (GH) is involved in the parr–smolt transformation of salmonid fishes and is known to improve salinity tolerance. This study compared the capacity for seawater acclimation of GH transgenic coho salmon (Oncorhynchus kisutch (Walbaum, 1792)) to that of wild-type fish, allowing examination of responses to sustained (chronic) exposure to elevated GH. GH transgenic fish (GH TG) smolted 1 year in advance of wild-type salmon and showed a greater capacity to hypo-osmoregulate in seawater. As GH TG fish were much larger than the wild-type fish, a second experiment was conducted with three size-matched groups of coho salmon (a 1+-year-old wild-type group, a 1+-year-old ration-restricted GH TG group, and a 0+-year-old fully fed GH TG group). When size-matched, the effect of GH transgenesis was not as dramatic, but the feed-rationed TG1+ group exhibited smaller deviations in plasma ion and osmolality levels following seawater exposure than did the other groups, suggesting a somewhat improved hypo-osmoregulatory ability. These results support a role for GH in the development of seawater tolerance by salmonid fishes independent of fish size.
Collapse
Affiliation(s)
- J.S. Bystriansky
- Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, IL 60614, USA
| | - W.C. Clarke
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, BC V9R 5K6, Canada
| | - M.M. Alonge
- Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, IL 60614, USA
| | - S.M. Judd
- Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, IL 60614, USA
| | - P.M. Schulte
- Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - R.H. Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| |
Collapse
|
14
|
Hou J, Su Y, Lin W, Guo H, Xie P, Chen J, Gu Z, Li L. Microcystin-LR retards gonadal maturation through disrupting the growth hormone/insulin-like growth factors system in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:27-35. [PMID: 28109900 DOI: 10.1016/j.ecoenv.2017.01.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Recent studies have documented that microcystins (MCs) have potential toxic effects on growth and reproduction in fish. However, no systematic data exist on whether MCs cause gonadal development retardation through disrupting the growth hormone/insulin-like growth factors (GH/IGFs) system. To this end, zebrafish hatchlings (5 d post-fertilization) were exposed to 0, 0.3, 3 and 30µg/L microcystin-LR (MC-LR) for 90 d until they reached sexual maturity. Life-cycle exposure to MC-LR caused delayed ovarian maturation and sperm development along with ultrapathological lesions in the brain and liver. Moreover, the retarded gonadal development was accompanied by an inhibition of the GH/IGFs system, which was characterized by significant decreases in the transcriptional levels of brain gh (males only), hepatic igf2a and igf2b as well as gonadal igf1 (males only), igf3 and igf2r. These findings for the first time point to the influence of MC-LR on fish gonadal development via the GH/IGFs system. Also, sex-differential impairments suggested that gonadal development of males is more vulnerable than that of female to MC-LR. Our results provide evidence that MC-LR at environmentally relevant concentrations is able to induce impairments on fish gonadal development.
Collapse
Affiliation(s)
- Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yujing Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zemao Gu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
15
|
Li M, Jiang C, Zhang Y, Zhang S. Activities of Amphioxus GH-Like Protein in Osmoregulation: Insight into Origin of Vertebrate GH Family. Int J Endocrinol 2017; 2017:9538685. [PMID: 28408927 PMCID: PMC5376476 DOI: 10.1155/2017/9538685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/14/2016] [Indexed: 01/21/2023] Open
Abstract
GH is known to play an important role in both growth promotion and osmoregulation in vertebrates. We have shown that amphioxus possesses a single GH-like hormone (GHl) gene encoding a functional protein capable of promoting growth. However, if GHl can mediate osmoregulation remains open. Here, we demonstrated clearly that GHl increased not only the survival rate of amphioxus but also the muscle moisture under high salinity. Moreover, GHl induced the expression of both the ion transporter Na+-K+-ATPase (NKA) and Na+-K+-2Cl- cotransporter (NKCC) in the gill as well as the mediator of GH action IGFl in the hepatic caecum, indicating that GHl fulfills this osmoregulatory activity through the same mechanisms of vertebrate GH. These results together suggest that the osmoregulatory activities of GH had emerged in the basal chordate amphioxus. We also proposed a new model depicting the origin of pituitary hormone family in vertebrates.
Collapse
Affiliation(s)
- Mengyang Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Chengyan Jiang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
- College of Life Science and Technology, Hong He University, Mengzi, Yunnan 661100, China
| | - Yu Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
- *Yu Zhang: and
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
- *Shicui Zhang:
| |
Collapse
|
16
|
Bernal MA, Gaither MR, Simison WB, Rocha LA. Introgression and selection shaped the evolutionary history of sympatric sister-species of coral reef fishes (genus: Haemulon). Mol Ecol 2016; 26:639-652. [PMID: 27873385 DOI: 10.1111/mec.13937] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/18/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022]
Abstract
Closely related marine species with large overlapping ranges provide opportunities to study mechanisms of speciation, particularly when there is evidence of gene flow between such lineages. Here, we focus on a case of hybridization between the sympatric sister-species Haemulon maculicauda and H. flaviguttatum, using Sanger sequencing of mitochondrial and nuclear loci, as well as 2422 single nucleotide polymorphisms (SNPs) obtained via restriction site-associated DNA sequencing (RADSeq). Mitochondrial markers revealed a shared haplotype for COI and low divergence for CytB and CR between the sister-species. On the other hand, complete lineage sorting was observed at the nuclear loci and most of the SNPs. Under neutral expectations, the smaller effective population size of mtDNA should lead to fixation of mutations faster than nDNA. Thus, these results suggest that hybridization in the recent past (0.174-0.263 Ma) led to introgression of the mtDNA, with little effect on the nuclear genome. Analyses of the SNP data revealed 28 loci potentially under divergent selection between the two species. The combination of mtDNA introgression and limited nuclear DNA introgression provides a mechanism for the evolution of independent lineages despite recurrent hybridization events. This study adds to the growing body of research that exemplifies how genetic divergence can be maintained in the presence of gene flow between closely related species.
Collapse
Affiliation(s)
- Moisés A Bernal
- Integrative Systems Biology Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Kingdom of Saudi Arabia.,Institute for Biodiversity, Science and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Michelle R Gaither
- Institute for Biodiversity, Science and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA.,School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - W Brian Simison
- Center for Comparative Genomics, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Luiz A Rocha
- Institute for Biodiversity, Science and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| |
Collapse
|
17
|
Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis. Comp Biochem Physiol A Mol Integr Physiol 2016; 198:8-14. [DOI: 10.1016/j.cbpa.2016.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 01/18/2023]
|
18
|
Inokuchi M, Breves JP, Moriyama S, Watanabe S, Kaneko T, Lerner DT, Grau EG, Seale AP. Prolactin 177, prolactin 188, and extracellular osmolality independently regulate the gene expression of ion transport effectors in gill of Mozambique tilapia. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1251-63. [PMID: 26377558 DOI: 10.1152/ajpregu.00168.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/11/2015] [Indexed: 02/03/2023]
Abstract
This study characterized the local effects of extracellular osmolality and prolactin (PRL) on branchial ionoregulatory function of a euryhaline teleost, Mozambique tilapia (Oreochromis mossambicus). First, gill filaments were dissected from freshwater (FW)-acclimated tilapia and incubated in four different osmolalities, 280, 330, 380, and 450 mosmol/kg H2O. The mRNA expression of Na(+)/K(+)-ATPase α1a (NKA α1a) and Na(+)/Cl(-) cotransporter (NCC) showed higher expression with decreasing media osmolalities, while Na(+)/K(+)/2Cl(-) cotransporter 1a (NKCC1a) and PRL receptor 2 (PRLR2) mRNA levels were upregulated by increases in media osmolality. We then incubated gill filaments in media containing ovine PRL (oPRL) and native tilapia PRLs (tPRL177 and tPRL188). oPRL and the two native tPRLs showed concentration-dependent effects on NCC, NKAα1a, and PRLR1 expression; Na(+)/H(+) exchanger 3 (NHE3) expression was increased by 24 h of incubation with tPRLs. Immunohistochemical observation showed that oPRL and both tPRLs maintained a high density of NCC- and NKA-immunoreactive ionocytes in cultured filaments. Furthermore, we found that tPRL177 and tPRL188 differentially induce expression of these ion transporters, according to incubation time. Together, these results provide evidence that ionocytes of Mozambique tilapia may function as osmoreceptors, as well as directly respond to PRL to modulate branchial ionoregulatory functions.
Collapse
Affiliation(s)
- Mayu Inokuchi
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii; Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan; and
| | - Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, New York
| | - Shunsuke Moriyama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan; and
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan; and
| | - Darren T Lerner
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii; University of Hawaii Sea Grant College Program, University of Hawaii at Manoa, Honolulu, Hawaii
| | - E Gordon Grau
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii; University of Hawaii Sea Grant College Program, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii
| |
Collapse
|
19
|
Mu X, Su M, Gui L, Liang X, Zhang P, Hu P, Liu Z, Zhang J. Comparative renal gene expression in response to abrupt hypoosmotic shock in spotted scat (Scatophagus argus). Gen Comp Endocrinol 2015; 215:25-35. [PMID: 25304824 DOI: 10.1016/j.ygcen.2014.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/17/2014] [Accepted: 09/20/2014] [Indexed: 11/18/2022]
Abstract
Scatophagus argus, a euryhaline fish, is notable for its ability to tolerate a wide range of environmental salinities and especially for its tolerance to a rapid, marked reduction in salinity. Therefore, S. argus is a good model for studying the molecular mechanisms mediating abrupt hyperosmoregulation. The serum osmotic pressure decreased steeply within one hour after transferring S. argus from seawater (SW) to freshwater (FW) and remained at new balance throughout the duration of one week. To explain this phenomenon and understand the molecular responses to an abrupt hypoosmotic shock, hypoosmotic stress responsive genes were identified by constructing two suppression subtractive hybridization (SSH) cDNA libraries from the kidneys of S. argus that had been transferred from SW to FW. After trimming and blasting, 52 ESTs were picked out from the subtractive library. Among them, 11 genes were significantly up-regulated (p < 0.05). The kinetics studies of gene expression levels were conducted for 1 week after the transfer using quantitative real-time PCR. A significant variation in the expression of these genes occurred within 12h after the hypoosmotic shock, except for growth hormone (GH) and polyadenylate binding protein 1 (PBP1), which were significantly up-regulated 2 days post-transfer. Our results suggest different functional roles for these genes in response to hypoosmotic stress during the stress response phase (1 hpt-12 hpt) and stable phase (12 hpt-7 dpt). Furthermore, the plasma growth hormone level was detected to be significantly elevated at 1 hpt and 24 hpt following abrupt hypoosmotic shock. Meanwhile, several hematological parameters, hemoglobin (HGB), red blood cell (RBC) and mean cellular hemoglobin concentration (MCHC), were observed to be significantly increased at 12 hpt and 2 dpt compared with that of control group. Our results provide a solid basis from which to conduct future studies on the osmoregulatory mechanisms in the euryhaline fish.
Collapse
Affiliation(s)
- Xingjiang Mu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Maoliang Su
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xuemei Liang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Peipei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Pan Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenhao Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Junbin Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
20
|
Moorman BP, Lerner DT, Grau EG, Seale AP. The effects of acute salinity challenges on osmoregulation in Mozambique tilapia reared in a tidally changing salinity. ACTA ACUST UNITED AC 2015; 218:731-9. [PMID: 25617466 DOI: 10.1242/jeb.112664] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study characterizes the differences in osmoregulatory capacity among Mozambique tilapia, Oreochromis mossambicus, reared in freshwater (FW), in seawater (SW) or under tidally driven changes in salinity. This was addressed through the use of an abrupt exposure to a change in salinity. We measured changes in: (1) plasma osmolality and prolactin (PRL) levels; (2) pituitary expression of prolactin (PRL) and its receptors, PRLR1 and PRLR2; (3) branchial expression of PRLR1, PRLR2, Na(+)/Cl(-) co-transporter (NCC), Na(+)/K(+)/2Cl(-) co-transporter (NKCC), α1a and α1b isoforms of Na(+)/K(+)-ATPase (NKA), cystic fibrosis transmembrane conductance regulator (CFTR), aquaporin 3 (AQP3) and Na(+)/H(+) exchanger 3 (NHE3). Mozambique tilapia reared in a tidal environment successfully adapted to SW while fish reared in FW did not survive a transfer to SW beyond the 6 h sampling. With the exception of CFTR, the change in the expression of ion pumps, transporters and channels was more gradual in fish transferred from tidally changing salinities to SW than in fish transferred from FW to SW. Upon transfer to SW, the increase in CFTR expression was more robust in tidal fish than in FW fish. Tidal and SW fish successfully adapted when transferred to FW. These results suggest that Mozambique tilapia reared in a tidally changing salinity, a condition that more closely represents their natural history, gain an adaptive advantage compared with fish reared in FW when facing a hyperosmotic challenge.
Collapse
Affiliation(s)
- Benjamin P Moorman
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Darren T Lerner
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA University of Hawaii Sea Grant College Program, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - E Gordon Grau
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| |
Collapse
|
21
|
Breves JP, Seale AP, Moorman BP, Lerner DT, Moriyama S, Hopkins KD, Grau EG. Pituitary control of branchial NCC, NKCC and Na+, K+-ATPase α-subunit gene expression in Nile tilapia, Oreochromis niloticus. J Comp Physiol B 2014; 184:513-23. [DOI: 10.1007/s00360-014-0817-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
22
|
Noh GE, Lim HK, Kim JM. Characterization of genes encoding prolactin and prolactin receptors in starry flounder Platichthys stellatus and their expression upon acclimation to freshwater. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:263-275. [PMID: 22843312 DOI: 10.1007/s10695-012-9697-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
This study aims to investigate the genes encoding prolactin (PRL) and prolactin receptors (PRLR) and their tissue-specific expression in starry flounder Platichthys stellatus. Starry flounder PRL gene consisting of five exons encodes an ORF of 212 amino acid residue comprised of a putative signal peptide of 24 amino acids and a mature protein of 188 amino acids. It showed amino acid identities of 73 % with tuna Thunnus thynnus, 71 % with black porgy Acanthopagrus schlegelii, 69 % with Nile tilapia Oreochromis niloticus, 64 % with pufferfish Takifugu rubripes, 63 % with rainbow trout Oncorhynchus mykiss, and 60 % with mangrove rivulus Kryptolebias marmoratus. Phylogenetic analysis of piscine PRLs also demonstrated a similarity between starry flounder and other teleosts but with a broad distinction from non-teleost PRLs. PRLR gene consists of eight exons encoding a protein of 528 amino acid residues. It showed a similarity to the PRLR2 subtype as reflected by amino acid identities of 54 % with A. schlegelii, 48.1 % with K. marmoratus, 46.3 % with tilapia O. mossambicus, and 46.1 % with O. niloticus PRLR2 as compared to PRLR1 isoform having less than 30 % identities. While mRNA transcript corresponding to PRL was detected only from the pituitary, most of PRLR mRNA was detected in the gill, kidney, and intestine, with a small amount in the ovary. The level of PRL transcript progressively increased during 6 days of acclimation to freshwater and then decreased but stayed higher than that of seawater at 60 days of acclimation. An opposite pattern of changes including a decrease at the beginning of the acclimation but a slight increase in the level osmolality was found as adaptation continued. The results support the osmoregulatory role of PRL signaling in starry flounder.
Collapse
Affiliation(s)
- Gyeong Eon Noh
- Department of Fishery Biology, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | |
Collapse
|
23
|
Sinha AK, Diricx M, Chan LP, Liew HJ, Kumar V, Blust R, De Boeck G. Expression pattern of potential biomarker genes related to growth, ion regulation and stress in response to ammonia exposure, food deprivation and exercise in common carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 122-123:93-105. [PMID: 22750116 DOI: 10.1016/j.aquatox.2012.05.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 05/27/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
Waterborne ammonia has become a persistent pollutant of aquatic habitats. During certain periods (e.g. winter), food deprivation may occur simultaneously in natural water. Additionally, under such stressful circumstances, fish may be enforced to swim at a high speed in order to catch prey, avoid predators and so on. Consequently, fish need to cope with all these stressors by altering physiological processes which in turn are controlled by their genes. In this present study, toxicogenomic analyses using real time PCR was used to characterize expression patterns of potential biomarker genes controlling growth, ion regulation and stress responses in common carp subjected to elevated ammonia (1 mg/L; Flemish water quality guideline for surface water) following periods of feeding (2% body weight) and fasting (unfed for 7 days prior to sampling). Both feeding groups of fish were exposed to high environment ammonia (HEA) for 0 h (control), 3h, 12h, 1 day, 4 days, 10 days, 21 days and 28 days, and were sampled after performing swimming at different speeds (routine versus exhaustive). Results show that the activity and expression of Na(+)/K(+)-ATPase, an important branchial ion regulatory enzyme, was increased after 4-10 days of exposure. Effect of HEA was also evident on expression patterns of other ion-regulatory hormone and receptor genes; prolactin and cortisol receptor mRNA level(s) were down-regulated and up-regulated respectively after 4, 10 and 21 days. Starvation and exhaustive swimming, the additional challenges in present study significantly further enhanced the HEA effect on the expression of these two genes. mRNA transcript of growth regulating hormone and receptor genes such as Insulin-like growth factor I, growth hormone receptor, and the thyroid hormone receptor were reduced in response to HEA and the effect of ammonia was exacerbated in starved fish, with levels that were remarkably reduced compared to fed exposed fish. However, the expression of the growth hormone gene itself was up-regulated under the same conditions. Expression of somatolactin remained unaltered. Stress representative genes, cytochrome oxidase subunit 1 showed an up-regulation in response to HEA and starvation while the mRNA level of heat shock protein 70 was increased in response to all the three stressors. The expression kinetics of the studied genes could permit to develop a "molecular biomarker system" to identify the underlying physiological processes and impact of these stressors before effects at population level occur.
Collapse
Affiliation(s)
- Amit Kumar Sinha
- Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
24
|
Sudo R, Suetake H, Suzuki Y, Aoyama J, Tsukamoto K. Profiles of mRNA expression for prolactin, growth hormone, and somatolactin in Japanese eels, Anguilla japonica: The effect of salinity, silvering and seasonal change. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:10-6. [PMID: 23047050 DOI: 10.1016/j.cbpa.2012.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/28/2012] [Accepted: 09/28/2012] [Indexed: 11/29/2022]
Abstract
For understanding the functions of the growth hormone (GH)/prolactin (PRL)/somatolactin (SL) family of hormones, we examined pituitary mRNA expression of these hormones in anguillid eels in relation to salinity difference, silvering, and seasonal change. Female Japanese eels (Anguilla japonica) were collected in the brackish Hamana Lake and its freshwater rivers from July to December. To clarify the effect of salinity, the habitat use history of the eels were determined using otolith microchemistry. Expression levels of mRNA of each hormone were determined using real time PCR. Although GH and PRL have been known to be osmoregulatory hormones, there were no consistent differences in expression levels of these hormones between different salinity habitats. In contrast, SL mRNA expression was higher in eels from freshwater rivers than from the brackish lake. GH mRNA expression clearly decreased during silvering, whereas PRL and SL mRNA expression did not change. We also showed that PRL mRNA and SL mRNA decreased in the brackish lake and PRL mRNA increased in freshwater rivers from autumn to early winter. These findings provide basic knowledge for a further understanding of the role of these hormones.
Collapse
Affiliation(s)
- Ryusuke Sudo
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | | | | | | | | |
Collapse
|
25
|
Growth hormone transgenesis affects osmoregulation and energy metabolism in zebrafish (Danio rerio). Transgenic Res 2012; 22:75-88. [PMID: 22706793 DOI: 10.1007/s11248-012-9627-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
Growth hormone (GH) transgenic fish are at a critical step for possible approval for commercialization. Since this hormone is related to salinity tolerance in fish, our main goal was to verify whether the osmoregulatory capacity of the stenohaline zebrafish (Danio rerio) would be modified by GH-transgenesis. For this, we transferred GH-transgenic zebrafish (T) from freshwater to 11 ppt salinity and analyzed survival as well as relative changes in gene expression. Results show an increased mortality in T versus non-transgenic (NT) fish, suggesting an impaired mechanism of osmotic acclimation in T. The salinity effect on expression of genes related to osmoregulation, the somatotropic axis and energy metabolism was evaluated in gills and liver of T and NT. Genes coding for Na(+), K(+)-ATPase, H(+)-ATPase, plasma carbonic anhydrase and cytosolic carbonic anhydrase were up-regulated in gills of transgenics in freshwater. The growth hormone receptor gene was down-regulated in gills and liver of both NT and T exposed to 11 ppt salinity, while insulin-like growth factor-1 was down-regulated in liver of NT and in gills of T exposed to 11 ppt salinity. In transgenics, all osmoregulation-related genes and the citrate synthase gene were down-regulated in gills of fish exposed to 11 ppt salinity, while lactate dehydrogenase expression was up-regulated in liver. Na(+), K(+)-ATPase activity was higher in gills of T exposed to 11 ppt salinity as well as the whole body content of Na(+). Increased ATP content was observed in gills of both NT and T exposed to 11 ppt salinity, being statistically higher in T than NT. Taking altogether, these findings support the hypothesis that GH-transgenesis increases Na(+) import capacity and energetic demand, promoting an unfavorable osmotic and energetic physiological status and making this transgenic fish intolerant of hyperosmotic environments.
Collapse
|
26
|
|
27
|
Velan A, Hulata G, Ron M, Cnaani A. Comparative time-course study on pituitary and branchial response to salinity challenge in Mozambique tilapia (Oreochromis mossambicus) and Nile tilapia (O. niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:863-73. [PMID: 21461902 DOI: 10.1007/s10695-011-9484-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 03/23/2011] [Indexed: 05/22/2023]
Abstract
The physiological response of Mozambique and Nile tilapia transferred from fresh to brackish (15 ppt) water was compared during a one-week time course. Response in the pituitary was measured by the gene expression pattern of prolactin (PRL I), growth hormone (GH), and calcium-sensing receptor (CaSR), while the response in the gills was measured by the gene expression pattern of the prolactin receptor (PRL-R), Na(+)/K(+)/2Cl(-) cotransporter (NKCC) and Na(+)/Cl(-) cotransporter (NCC), and by activity and expression of Na(+)/K(+)-ATPase (NKA). The time-course curves of plasma osmolality levels indicate a rapid elevation 24 h after transfer, which later decreased and maintained at stable level. PRL I expression decreased in both species, but with stronger response in the Nile tilapia, while no differences were found in the slightly elevated levels of GH mRNA. The branchial response demonstrated a faster up-regulation of NKA and NKCC in the Mozambique tilapia, but similar levels after a week, while Nile tilapia had stronger and constant down-regulation of NCC. The time-course response of the measured osmoregulatory parameters indicate that 24 h after transfer is a critical time point for brackish-water adaptation. The differences in responses to saltwater challenge between Mozambique and Nile tilapia shown in this study may be associated with the differences in saltwater tolerance between these two tilapiine species.
Collapse
Affiliation(s)
- Ariel Velan
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, Israel
| | | | | | | |
Collapse
|
28
|
Ji XS, Liu HW, Chen SL, Jiang YL, Tian YS. Growth differences and dimorphic expression of growth hormone (GH) in female and male Cynoglossus semilaevis after male sexual maturation. Mar Genomics 2011; 4:9-16. [PMID: 21429460 DOI: 10.1016/j.margen.2010.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/21/2010] [Accepted: 11/29/2010] [Indexed: 02/06/2023]
Abstract
Half-smooth tongue sole, Cynoglossus semilaevis, is an ideal model to investigate the regulatory mechanisms of sexual growth dimorphism in fish species. The aim of the study was to investigate the effect of differential age of sexual maturity for females and males on growth and GH mRNA expression in C. semilaevis. The body weight differences between the sexes were not significant in C. semilaevis at age 5 months when females and males were all immature. Significant differences in body weight between the sexes were found after early sexual maturation of males at the age of 9 months. The body weight of 21-month-old females (621.4 ± 86.4g), still not immature, was even 3.28 times higher than that of the males (189.7 ± 14.4g). The cDNAs encoding GH in C. semilaevis was cloned. The GH gene is 2924bp long and consists of six exons and five introns. The results of qRT-PCR showed that GH mRNA levels of the immature females were not significantly different from that of immature males at age 5 months. However, GH mRNA levels of the immature females were significantly higher compared with those of the mature males at age 9 months (P<0.05). At age 11 months, GH mRNA levels of females were even 6.4-fold higher than that of males. In conclusion, for the first time we show that early sexual maturity of males is the main cause of sexual growth dimorphism in C. semilaevis and exert significant effect on GH mRNA expression.
Collapse
Affiliation(s)
- Xiang-Shan Ji
- Key Laboratory for Sustainable Utilization Development of Marine Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | | | | | | | | |
Collapse
|
29
|
Breves JP, Fox BK, Pierce AL, Hirano T, Grau EG. Gene expression of growth hormone family and glucocorticoid receptors, osmosensors, and ion transporters in the gill during seawater acclimation of Mozambique tilapia, Oreochromis mossambicus. ACTA ACUST UNITED AC 2010; 313:432-41. [PMID: 20623800 DOI: 10.1002/jez.613] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study characterized endocrine and ionoregulatory responses accompanying seawater (SW) acclimation in Mozambique tilapia (Oreochromis mossambicus). Changes in plasma hormones and gene expression of hormone receptors, putative osmosensors, and ion transporters in the gill were measured. Transfer of freshwater (FW)-acclimated tilapia to SW resulted in a marked elevation in plasma osmolality and a significant rise in plasma growth hormone (GH) levels at 12 hr and 14 days after transfer. Significant reductions in plasma prolactin (PRL(177) and PRL(188)) levels also occurred in SW-transferred fish; no effect of transfer upon plasma cortisol or insulin-like growth factor I was observed. Gene expression of GH receptor increased strongly 6 hr after transfer, whereas PRL receptor was lower than controls at 12 hr. By contrast, mRNA levels of somatolactin and glucocorticoid receptors were unaffected by SW transfer. Osmotic stress transcription factor 1 mRNA levels rose significantly between 3 and 12 hr, whereas the calcium-sensing receptor was unaffected. Aquaporin-3 gene expression was strongly down-regulated during SW acclimation from 12 hr until the conclusion of the experiment. Na(+)/K(+)/2Cl(-) cotransporter gene expression increased significantly 3 hr after transfer, whereas expression of Na(+)/Cl(-) cotransporter, specific to FW-type chloride cells, declined by 6 hr into SW acclimation. The response of Na(+)/H(+) exchanger was less pronounced, but showed a similar pattern to that of the Na(+)/Cl(-) cotransporter. These results suggest that acquisition of hyposmoregulatory mechanisms in Mozambique tilapia entails the coordinated interaction of systemic hormones with local factors in the gill, including hormone receptors, ion transporters, and osmosensors.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | | | | | | | | |
Collapse
|
30
|
Dong H, Zeng L, Duan D, Zhang H, Wang Y, Li W, Lin H. Growth hormone and two forms of insulin-like growth factors I in the giant grouper (Epinephelus lanceolatus): molecular cloning and characterization of tissue distribution. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:201-212. [PMID: 20467861 DOI: 10.1007/s10695-008-9231-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 05/08/2008] [Indexed: 05/29/2023]
Abstract
Growth hormone and insulin-like growth factors play important roles in the growth, development and metabolism of vertebrates. In this study, we used reverse transcription and rapid amplification of cDNA ends (RACE) to obtain the three full-length cDNA sequences encoding GH and two forms of IGF-I from the giant grouper (Epinephelus lanceolatus), a coral fish of high commercial value cultured in Southeast Asia. GH precursor cDNA consists of 938 bp in size with an open-reading frame (ORF) encoding 204 amino acid (aa), a 65 bp 5'-untranslated region and a 236 bp 3'-untranslated region. The sequence of giant grouper GH shared 98.6% nucleotide sequence homology with orange-spotted grouper (E. coioides) GH. Two forms of IGF-I precursor cDNA were cloned from giant grouper, IGF-I a consisting of 159 aa, and IGF-I b with 186 aa. They shared 98.4 and 98.7% aa identity with IGF-I reported in the orange-spotted grouper, respectively. Giant grouper IGF-I a and b have the same signal peptide and B-C-A-D domains, but they are different in the E domain. Using real-time reverse transcription PCR strategy, tissue distribution profile showed that GH and IGF-I mRNA signals were all observed in pituitary, brain, liver, ovary and spleen. GH mRNA in pituitary was the most abundant, and IGF-I mRNA level in liver was found to be more abundant than that in other selected tissues. These findings will contribute to the understanding of the evolution of GH and IGF-I, and provide some basic information about the characterization of GH and IGF-I in the giant grouper.
Collapse
Affiliation(s)
- Haiyan Dong
- State Key Laboratory of Biocontrol and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
31
|
Breves JP, Watanabe S, Kaneko T, Hirano T, Grau EG. Prolactin restores branchial mitochondrion-rich cells expressing Na+/Cl- cotransporter in hypophysectomized Mozambique tilapia. Am J Physiol Regul Integr Comp Physiol 2010; 299:R702-10. [PMID: 20504910 DOI: 10.1152/ajpregu.00213.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypophysectomy and hormone replacement therapy were conducted to investigate the regulation of branchial mitochondrion-rich cell (MRC) recruitment and hormone receptor expression in euryhaline tilapia (Oreochromis mossambicus). Gene expression and immunolocalization of Na(+)/Cl(-) cotransporter (NCC) and Na(+)/K(+)/2Cl(-) cotransporter (NKCC) were used as markers for freshwater (FW)- and seawater (SW)-type MRCs, respectively. In FW fish, hypophysectomy resulted in a significant drop in plasma osmolality, an effect associated with a marked reduction of NCC gene expression and the disappearance of MRCs with apical-NCC immunoreactivity. In contrast, hypophysectomy in SW fish did not impact plasma osmolality, NKCC, or Na(+), K(+)-ATPase(alpha1) gene expression, or the recruitment of MRCs with basolateral-NKCC. Hypophysectomized fish in SW exhibited reduced mRNA levels of prolactin (PRL) receptor 1 and growth hormone (GH) receptor in the gill; GH receptor expression was also reduced following hypophysectomy in FW. PRL replacement therapy restored NCC gene expression and the appearance of MRCs with apical NCC in both FW and SW; there was no interaction of PRL with cortisol. In FW, cortisol modestly stimulated NKCC mRNA levels, while no effect of GH was evident. In SW, no clear effects of hormone replacement on gene expression of NKCC, Na(+), K(+)-ATPase(alpha1), or hormone receptors were detected. Taken together, the essential nature of PRL to survival of Mozambique tilapia in FW is derived, at least in part, from its ability to stimulate the recruitment of MRCs that express NCC, while recruitment of SW-type MRCs does not require pituitary mediation in this euryhaline tilapia.
Collapse
Affiliation(s)
- Jason P Breves
- Hawaii Institute of Marine Biology, Univ. of Hawaii, P.O. Box 1346, Kaneohe, HI 96744, USA
| | | | | | | | | |
Collapse
|
32
|
Breves JP, Hasegawa S, Yoshioka M, Fox BK, Davis LK, Lerner DT, Takei Y, Hirano T, Grau EG. Acute salinity challenges in Mozambique and Nile tilapia: differential responses of plasma prolactin, growth hormone and branchial expression of ion transporters. Gen Comp Endocrinol 2010; 167:135-42. [PMID: 20138183 DOI: 10.1016/j.ygcen.2010.01.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/21/2010] [Accepted: 01/31/2010] [Indexed: 11/17/2022]
Abstract
The responses of Mozambique and Nile tilapia acclimated to fresh water (FW) and brackish water (BW; 17 per thousand) were compared following acute salinity challenges. In both species, plasma osmolality increased to above 450 mOsm by 2h after transfer from FW to seawater (SW); these increases in osmolality were accompanied by unexpected increases in plasma prolactin (PRL). Likewise, PRL receptor gene expression in the gill also increased in both species. In Nile tilapia, hyperosmotic transfers (FW to BW and SW) resulted in increased plasma growth hormone (GH) and in branchial GH receptor gene expression, responses that were absent in Mozambique tilapia. Branchial gene expression of osmotic stress transcription factor 1 (OSTF1) increased in both species following transfer from FW to SW, whereas transfer from BW to SW induced OSTF1 expression only in the Nile tilapia. Branchial expression of Na(+)/Cl(-) cotransporter was higher in FW in both species than in BW. Branchial gene expression of Na(+)/K(+)/2Cl(-) cotransporter (NKCC) increased after transfer from BW to SW in Mozambique tilapia, whereas expression was reduced in the Nile tilapia following the same transfer. The difference in the SW adaptability of these species may be related to a limited capacity of Nile tilapia to up-regulate NKCC gene expression, which is likely to be an essential component in the recruitment of SW-type chloride cells. The differential responses of GH and OSTF1 may also be associated with the disparate SW adaptability of these two tilapiine species.
Collapse
Affiliation(s)
- J P Breves
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Reinecke M. Influences of the environment on the endocrine and paracrine fish growth hormone-insulin-like growth factor-I system. JOURNAL OF FISH BIOLOGY 2010; 76:1233-54. [PMID: 20537012 DOI: 10.1111/j.1095-8649.2010.02605.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Insulin-like growth factor-I (IGF-I) is a key component of the complex system that regulates differentiation, development, growth and reproduction of fishes. The IGF-I gene is mainly expressed in the liver that represents the principal source of endocrine IGF-I but also in numerous other organs where the hormone most probably acts in an autocrine-paracrine manner. The primary stimulus for synthesis and release of IGF-I is growth hormone (GH) from the anterior pituitary. Thus, in analogy to mammals, it is usual to speak of a fish 'GH-IGF-I axis'. The GH-IGF-I system is affected by changes in the environment and probably represents a target of endocrine disrupting compounds (EDC) that impair many physiological processes in fishes. Thus, the review deals with the influences of changes in different environmental factors, such as food availability, temperature, photoperiod, season, salinity and EDCs, on GH gene expression in pituitary, IGF-I gene expression in liver and extrahepatic sites and the physiological effects resulting from the evoked alterations in endocrine and local IGF-I. Environmental influences certainly interact with each other but for convenience of the reader they will be dealt with in separate sections. Current trends in GH-IGF-I research are analysed and future focuses are suggested at the end of the sections.
Collapse
Affiliation(s)
- M Reinecke
- Division of Neuroendocrinology, Institute of Anatomy, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland.
| |
Collapse
|
34
|
Ojima D, Pettersen RJ, Wolkers J, Johnsen HK, Jørgensen EH. Growth hormone and cortisol treatment stimulate seawater tolerance in both anadromous and landlocked Arctic charr. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:378-85. [DOI: 10.1016/j.cbpa.2009.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 10/21/2022]
|
35
|
Vargas-Chacoff L, Astola A, Arjona FJ, Martín del Río MP, García-Cózar F, Mancera JM, Martínez-Rodríguez G. Pituitary gene and protein expression under experimental variation on salinity and temperature in gilthead sea bream Sparus aurata. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:303-8. [PMID: 19607931 DOI: 10.1016/j.cbpb.2009.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/02/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022]
Abstract
Temperature and salinity are important factors that affect several physiological processes in aquatic organisms, which could be produced by variation of certain hormones. In this study, the expression of pituitary hormones involved in the acclimation to different temperatures and salinities was examined in Sparus aurata, a euryhaline and eurytherm species, by Q-Real Time RT-PCR and Western blot analyses for mRNA and protein expression, respectively. Three different experimental conditions were designed with specimens (10 per treatment) acclimated to: a) low salinity water; b) sea water; and c) high salinity water. Additionally, fish under different salinities were acclimated to three different temperatures: 12, 19 and 26 degrees C. Animals were maintained seven weeks before sampling pituitary glands. Our results provided enough evidence for a differential expression of PRL, GH and SL in the pituitary of gilthead sea bream, under different temperature and salinity regimes.
Collapse
Affiliation(s)
- L Vargas-Chacoff
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Laiz-Carrión R, Fuentes J, Redruello B, Guzmán JM, Martín del Río MP, Power D, Mancera JM. Expression of pituitary prolactin, growth hormone and somatolactin is modified in response to different stressors (salinity, crowding and food-deprivation) in gilthead sea bream Sparus auratus. Gen Comp Endocrinol 2009; 162:293-300. [PMID: 19348804 DOI: 10.1016/j.ygcen.2009.03.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 01/28/2009] [Accepted: 03/30/2009] [Indexed: 11/20/2022]
Abstract
Prolactin (PRL), growth hormone (GH) and somatolactin (SL) expression was studied in gilthead sea bream (Sparus auratus) in response to several different stressors (salinity, food deprivation or stocking density). In the first experiment, specimens were acclimated during 100 days at three different environmental salinities: low salinity water (LSW, 6 ppt), brackish water (BW, 12 ppt) and seawater (SW, 38 ppt). Osmoregulatory parameters corresponded to those previously reported for this species under similar osmotic conditions. Pituitary PRL expression increased with decreasing environmental salinity, and was significantly different between SW- and LSW-acclimated fish. Pituitary GH expression was similar between SW- and BW-acclimated fish but decreased in LSW-acclimated specimens. Pituitary SL expression had a "U-shaped" relationship to environmental salinity with the lowest expression in BW-acclimated fish. In a second experiment SW-acclimated specimens were randomly assigned to one of four treatments and maintained for 14 days: (1) fed fish under low density (LD, 4 kg m(-3)); (2) fed fish under high density (HD, 70 kg m(-3)); (3) food deprived fish under LD; and (4) food deprived fish under HD. Plasma glucose and cortisol levels corresponded to those previously reported in S. auratus under similar experimental conditions. Pituitary PRL and SL expression increased in fish maintained under HD and decreased in food deprived fish. In conclusion, an effect of environmental salinity on pituitary PRL and GH expression has been demonstrated. In addition, crowding stress seems to interact with food deprivation in S. auratus and this is reflected by changes in pituitary PRL, GH and SL expression levels.
Collapse
Affiliation(s)
- Raúl Laiz-Carrión
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Cao YB, Chen XQ, Wang S, Chen XC, Wang YX, Chang JP, Du JZ. Growth hormone and insulin-like growth factor of naked carp (Gymnocypris przewalskii) in Lake Qinghai: expression in different water environments. Gen Comp Endocrinol 2009; 161:400-6. [PMID: 19233187 DOI: 10.1016/j.ygcen.2009.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 01/10/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
Here, we report the cloning and characterization of growth hormone (GH), insulin-like growth factor-I (IGF-I) and IGF-II from naked carp (Gymnocypris przewalskii), a native teleost fish of Lake Qinghai in the Qinghai-Tibet Plateau of China. The GH of naked carp encodes for a predicted amino acid sequence showing identities of 63%, 63%, 91% and 94% with cherry salmon, rainbow trout, zebrafish and grass carp, respectively. Compared to common carp and goldfish, evolutionary analysis showed that genome duplication has had less influence on the relaxation of purifying selection in the evolution of naked carp GH. Sequence analysis of naked carp IGF-I (ncIGF-I) and ncIGF-II showed a high degree of homology with known fish IGF-I and IGF-II. To investigate effects of salinity and ionic composition of the aquatic environment on the GH-IGF axis in naked carp, male fish held in river water were assigned randomly to 4 groups: RW (river-water), RW+Na (NaCl in RW), RW+Mg (MgCl(2) in RW) and LW (lake-water) groups. The concentrations of Na(+) in RW+Na and Mg(2+) in RW+Mg were equal to the concentrations of these ions in lake-water. After 2 days of exposure, the plasma IGF-I levels in the RW+Na and LW groups were significantly higher than the control group (RW), and the plasma GH levels of the LW group were also significantly higher than the RW group. The somatostatin (SS) levels in the hypothalamus significantly increased in the RW+Na group. After 5 days of exposure, these hormone levels did not differ significantly among groups. These results indicate that while the plasma GH and IGF-I levels are osmosensitive, the absence of a change in GH secretion in RW+Na might be partly due to a transiently increased release of hypothalamic SS induced by the stress of neutral-saline water. This is the first report of a salinity-induced increase of GH-IGF-I circulating levels in Cypriniformes.
Collapse
Affiliation(s)
- Yi-Bin Cao
- Division of Neurobiology and Physiology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Uchida K, Moriyama S, Breves JP, Fox BK, Pierce AL, Borski RJ, Hirano T, Grau EG. cDNA cloning and isolation of somatolactin in Mozambique tilapia and effects of seawater acclimation, confinement stress, and fasting on its pituitary expression. Gen Comp Endocrinol 2009; 161:162-70. [PMID: 19133264 DOI: 10.1016/j.ygcen.2008.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 11/05/2008] [Accepted: 11/20/2008] [Indexed: 01/13/2023]
Abstract
Somatolactin (SL) is a member of the growth hormone (GH)/prolactin (PRL) family of pituitary hormones, and is found in a variety of teleost species. Somatolactin is thought to be involved in a wide range of physiological actions, including reproduction, stress response, the regulation of Ca(2+) and acid-base balance, growth, metabolism, and immune response. We report here on the cDNA structure of SL from the pituitary of Mozambique tilapia, Oreochromis mossambicus, and its gene expression in response to seawater acclimation, stress, and fasting. Tilapia SL cDNA (1573bp long) encoded a prehormone of 230 amino acids. Sequence analysis of purified SL revealed that the prehormone is composed of a signal peptide of 23 amino acids and a mature protein of 207 amino acids, which has a possible N-glycosylation site at position 121 and seven Cys residues. Tilapia SL shows over 80% amino acid identity with SLalpha of advanced teleosts such as medaka and flounder, and around 50% identity with SLbeta of carp and goldfish. Acclimation to seawater had no effect on pituitary expression of SL or on hepatic expression of the putative tilapia SL receptor (GHR1). By contrast, seawater acclimation resulted in significant increases in pituitary GH expression and in hepatic expression of tilapia GH receptor (GHR2). Confinement stress had no effect on pituitary expression of either SL or GH, or on hepatic expression of GHR1, whereas a significant increase was seen in GHR2 expression in the liver. Fasting for 4 weeks resulted in significant reductions in SL transcripts both in fresh water and seawater. It is highly likely that SL is involved in metabolic processes in tilapia along with the GH/IGF-I axis.
Collapse
Affiliation(s)
- Katsuhisa Uchida
- Sado Marine Biological Station, Niigata University, Sado, Niigata, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Rodríguez-Mallon A, Cárdenas Y, Lugo JM, Oliva A, Morales A, Estrada MP. Competitive RT-PCR Strategy for Quantitative Evaluation of the Expression of Tilapia (Oreochromis niloticus) Growth Hormone Receptor Type I. Biol Proced Online 2009; 11:79-98. [PMID: 19495916 PMCID: PMC3055623 DOI: 10.1007/s12575-009-9002-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 01/30/2009] [Indexed: 12/13/2022] Open
Abstract
Quantization of gene expression requires that an accurate measurement of a specific transcript is made. In this paper, a quantitative reverse transcription-polymerase chain reaction (RT-PCR) by competition for tilapia growth hormone receptor type I is designed and validated. This experimental procedure was used to determine the abundance of growth hormone receptor type I transcript in different tilapia tissues. The results obtained with this developed competitive RT-PCR were similar to real-time PCR results reported recently. This protocol provides a reliable alternative, but less expensive than real-time PCR to quantify specific genes.
Collapse
Affiliation(s)
- Alina Rodríguez-Mallon
- Aquatic Biotechnology Department, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10 600, Cuba
| | - Yamilet Cárdenas
- Aquatic Biotechnology Department, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10 600, Cuba
| | - Juana María Lugo
- Aquatic Biotechnology Department, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10 600, Cuba
| | - Aymé Oliva
- Aquatic Biotechnology Department, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10 600, Cuba
| | - Antonio Morales
- Aquatic Biotechnology Department, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10 600, Cuba
| | - Mario Pablo Estrada
- Aquatic Biotechnology Department, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10 600, Cuba
| |
Collapse
|
40
|
Tomy S, Chang YM, Chen YH, Cao JC, Wang TP, Chang CF. Salinity effects on the expression of osmoregulatory genes in the euryhaline black porgy Acanthopagrus schlegeli. Gen Comp Endocrinol 2009; 161:123-32. [PMID: 19116154 DOI: 10.1016/j.ygcen.2008.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/22/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
Black porgy is a marine euryhaline species with a capacity to cope with demands in a wide range of salinities and thus is a perfect model-fish to study osmoregulatory responses to salinity-acclimated processes and their hormonal control. The present study was performed to understand the regulatory changes in hormone, hormone receptors and important osmoregulatory genes in pituitary, gill, intestine and kidney in response to acute salinity stress. Transcript levels were analyzed by quantitative real-time PCR following acute salinity challenge by direct transfer of seawater (SW) acclimatized fish to fresh water (FWBP) and vice versa (SWBP). SW acclimation significantly increased plasma osmolality and intestine Na+/K+-ATPase (NKA) activity while FW acclimation increased plasma cortisol and branchial NKA activity. Plasma osmolality and chloride concentration decreased in FWBP whereas GH levels remained unchanged in both FWBP and SWBP. Comparative analysis of gene profiles between FWBP and SWBP showed that pituitary prolactin transcript increased significantly in FWBP. Prolactin receptor (PRLR) transcripts increased in gill of FWBP while it decreased in gill and kidney of SWBP. NKA transcripts increased in gill of both FWBP and SWBP, while it decreased in intestine of FWBP and increased in intestine and kidney of SWBP. Glucocorticoid receptor (GR) transcripts decreased in intestine and kidney of FWBP while it increased in gill and intestine of SWBP. No significant changes were observed in growth hormone receptor (GHR) transcripts of both FWBP and SWBP in pituitary, gill, intestine and kidney. Our current data demonstrated the correlation between PRLR gene expression in relation to FW adaptation, and GR gene expression in relation to SW adaptation in euryhaline black porgy. The results indicate that black porgy has an excellent osmoregulatory capacity and is capable of withstanding large variations in salinity.
Collapse
Affiliation(s)
- Sherly Tomy
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | | | | | | | | | | |
Collapse
|
41
|
Kwong AKY, Ng AHY, Leung LY, Man AKY, Woo NYS. Effect of extracellular osmolality and ionic levels on pituitary prolactin release in euryhaline silver sea bream (Sparus sarba). Gen Comp Endocrinol 2009; 160:67-75. [PMID: 19027016 DOI: 10.1016/j.ygcen.2008.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 09/01/2008] [Accepted: 10/22/2008] [Indexed: 11/25/2022]
Abstract
In many euryhaline fish, prolactin (PRL) plays a key role in freshwater adaptation. Consistent with this function, the present study showed a remarkable reduction in pituitary PRL content of silver sea bream abruptly transferred to low salinity (6ppt). This reduction in pituitary PRL content followed closely the temporal changes in serum osmolality and ion levels. Serum osmolality, Na(+) and Cl(-) levels of silver sea bream abruptly transferred to hyposmotic salinity (6ppt) were markedly reduced 2h after the transfer. The decline in pituitary PRL content lagged behind the serum changes implying that reduction in pituitary PRL content is a response to the drop in serum ion levels and osmotic pressure. Silver sea bream pituitary cells were dispersed and exposed to a medium with reduced ion levels and osmolality in vitro, and PRL released from pituitary cells was significantly elevated. In hyposmotic exposed anterior pituitary cells, cell volume exhibited a 20% increase when exposed to a medium with a 20% decrease in osmolality. The enlarged pituitary cells did not shrink until the surrounding hyposmotic medium was replaced, a phenomenon suggesting an osmosensing ability of silver sea bream PRL cells for PRL secretion in response to a change in extracellular osmotic pressure. The decrease in pituitary PRL content in vivo and stimulated pituitary PRL release in vitro under reduced osmolality together suggest hyposmotic exposure triggers PRL release from the pituitary.
Collapse
Affiliation(s)
- Anna K Y Kwong
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | | | | | | | | |
Collapse
|
42
|
Agnèse JF, Adépo-Gourène B, Nyingi D. Functional microsatellite and possible selective sweep in natural populations of the black-chinned tilapia Sarotherodon melanotheron (Teleostei, Cichlidae). Mar Genomics 2008; 1:103-7. [PMID: 21798160 DOI: 10.1016/j.margen.2008.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 10/23/2008] [Indexed: 11/25/2022]
Abstract
The Prolactin I (PrlI) gene is a key locus involved in fish osmotic regulation. Two microsatellites, PrlI GT and PrlI AC, are present in the promoter region of this gene in tilapias. One of these microsatellite is associated to PrlI gene expression and growth rate. Aquaria reared individuals homozygous for long microsatellite alleles at the PrlI AC locus expressed less PrlI in fresh water than fishes with other genotypes. To assess the occurrence of selection acting on these microsatellites we carried out a survey of their variability compared with four others microsatellites in natural populations. Samples of two tilapia species were studied, Oreochromis niloticus (6 samples) a typically freshwater species inhabiting osmotically stable environments and Sarotherodon melanotheron (5 samples) a brackish water species obliged and able to adapt very rapidly to any salinity changes. For both species the different populations studied exhibited a high amount of differentiation (all F(st) value were statistically significant) at every loci. Only one locus, PrlI AC, was monomorphic for the same allele in all S. melanotheron populations. We have hypothesized that this outlier locus with its unique allele could have experienced a selective sweep that took place in the early stages of the species origin. S. melanotheron represents an example of adaptation (to fluctuant salinity environment) acting indirectly on gene product through its promoter.
Collapse
Affiliation(s)
- Jean-François Agnèse
- Laboratoire Biologie Intégrative, UM2 - IFREMER - CNRS UMR 5554, Université de Montpellier II, cc 63 - Place E Bataillon F-34095 Montpellier Cedex 5, France; Institut de Recherche pour le Développement, 213 rue La Fayette, 75480, Paris CEDEX 10, France
| | | | | |
Collapse
|
43
|
Yang XM, He JZ, Huang XJ, Li FF, Guo YF, Jiang HS. [cDNA cloning and protein structure analysis of growth hormone from Clarias lazera]. YI CHUAN = HEREDITAS 2008; 30:913-8. [PMID: 18779136 DOI: 10.3724/sp.j.1005.2008.00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Total RNA was isolated from pituitary gland of Clarias lazera, and the cDNA encoding growth hormone (GH) protein was amplified and cloned by reverse transcription polymerase chain reaction (RT-PCR). The open reading frame (ORF) of cDNA is of 603 nt which encodes GH precursor consisted of a signal peptide with 22 amino acid residues and a mature peptide with 178 amino acid residues. Sequence alignment indicated that the amino acid sequence homology approached to 95.8% between C. lazera and other 6 species of Siluriforms catfish. Secondary structure assessment showed that the GH protein contained different structural regions of alpha-helix, beta-sheet, beta-turn and random coil, among which alpha-helix has main proportion. Antigenicity analysis indicates that there exist 4 domains in amino acid sequence where B cell dominant epitopes could form. Summarily, the structure characteristics of C. lazera GH should provide a great benefit in its modification into recombinant vaccine or monoclonal antibody for future application.
Collapse
Affiliation(s)
- Xue-Ming Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China.
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Kalujnaia S, McWilliam IS, Zaguinaiko VA, Feilen AL, Nicholson J, Hazon N, Cutler CP, Cramb G. Transcriptomic approach to the study of osmoregulation in the European eel Anguilla anguilla. Physiol Genomics 2007; 31:385-401. [PMID: 17666525 DOI: 10.1152/physiolgenomics.00059.2007] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In euryhaline teleosts, osmoregulation is a fundamental and dynamic process that is essential for the maintenance of ion and water balance, especially when fish migrate between fresh water (FW) and sea water (SW) environments. The European eel has proved to be an excellent model species to study the molecular and physiological adaptations associated with this osmoregulatory plasticity. The life cycle of the European eel includes two migratory periods, the second being the migration of FW eels back to the Sargasso Sea for reproduction. Various anatomical and physiological changes allow the successful transition to SW. The aim of this study was to use a microarray approach to screen the osmoregulatory tissues of the eel for changes in gene expression following acclimation to SW. Tissues were sampled from fish at selected intervals over a 5-mo period following FW/SW transfer, and RNA was isolated. Suppressive subtractive hybridization was used for enrichment of differentially expressed genes. Microarrays comprising 6,144 cDNAs from brain, gill, intestine, and kidney libraries were hybridized with appropriate targets and analyzed; 229 differentially expressed clones with unique sequences were identified. These clones represented the sequences for 95 known genes, with the remaining sequences (59%) being unknown. The results of the microarray analysis were validated by quantification of 28 differentially expressed genes by Northern blotting. A number of the differentially expressed genes were already known to be involved in osmoregulation, but the functional roles of many others, not normally associated with ion or water transport, remain to be characterized.
Collapse
|
46
|
Tine M, de Lorgeril J, Panfili J, Diop K, Bonhomme F, Durand JD. Growth hormone and Prolactin-1 gene transcription in natural populations of the black-chinned tilapia Sarotherodon melanotheron acclimatised to different salinities. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:541-9. [DOI: 10.1016/j.cbpb.2007.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2006] [Revised: 03/08/2007] [Accepted: 03/12/2007] [Indexed: 11/16/2022]
|
47
|
Li Y, Liu X, Zhang Y, Zhu P, Lin H. Molecular cloning, characterization and distribution of two types of growth hormone receptor in orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 2007; 152:111-22. [PMID: 17382945 DOI: 10.1016/j.ygcen.2007.01.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 01/21/2007] [Accepted: 01/25/2007] [Indexed: 10/23/2022]
Abstract
The cDNAs encoding two distinct growth hormone receptors (GHRs) were firstly cloned and sequenced from the liver of orange-spotted grouper (Epinephelus coioides). The cDNA of grouper GHR1 consisted of 2673-bp and encoded 658 amino acids, while the cDNA of grouper GHR2 consisted of 2989-bp and encoded 577 amino acids. The two cDNAs shared 78.6% identity in nucleotide sequence and 37.8% identity in deduced amino acid sequence. Northern blot analysis demonstrated a single GHR1 transcript of approximately 4.3 kb in liver and a single GHR2 transcript of approximately 3.9 kb in the liver and muscle. In the Real-time PCR assay, grouper GHR1 and GHR2 were expressed in all tissues tested. The expression of GHR2 was significantly higher than that of GHR1 in telencephalon, cerebellum, pituitary, heart and white muscle, whereas the expression of GHR1 was significantly higher in liver. These results indicated that there were two types of GHRs existing in orange-spotted grouper, and they had different structural features and tissues expression patterns. However, the functional differences between GHR1 and GHR2 in orange-spotted grouper remained further research.
Collapse
Affiliation(s)
- Yun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | | | | | | | | |
Collapse
|
48
|
Molecular characterization and sex-specific tissue expression of prolactin, somatolactin and insulin-like growth factor-I in yellow perch (Perca flavescens). Comp Biochem Physiol B Biochem Mol Biol 2007; 147:412-27. [PMID: 17418604 DOI: 10.1016/j.cbpb.2007.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/19/2007] [Accepted: 02/20/2007] [Indexed: 11/16/2022]
Abstract
The cDNA sequences encoding prolactin (PRL), somatolactin (SL) and insulin-like growth factor-I (IGF-I) genes of the yellow perch were obtained. Brain, pituitary, gill, heart, liver, stomach, kidney, spleen, muscle and gonad tissues were analyzed from both male and female adult yellow perch for sex-specific tissue expression. The full length cDNA of yellow perch PRL consists of 2306 bp and PRL expression was highest in the yellow perch pituitary with low to moderate expression in other tissues including brain, gill and post-vitellogenic oocytes. The full length cDNA of yellow perch SL consists of 1589 bp and SL expression was highest in the yellow perch pituitary with low to moderate expression in other tissues including brain, gill, liver, stomach, spleen and kidney. The full length cDNA of yellow perch IGF-Ib consists of 814 bp and tissue expression analysis of yellow perch IGF-I revealed a second yellow perch transcript (IGF-Ia) that is 81 nucleotides smaller. Both IGF-Ib and IGF-Ia had the greatest expression in liver tissue with moderate expression in brain, spleen and kidney tissues of both sexes. These sequences are valuable molecular tools which can be used in future studies investigating the basis for sexually dimorphic growth in yellow perch.
Collapse
|
49
|
Chang YJ, Min BH, Choi CY. Black porgy (Acanthopagrus schlegeli) prolactin cDNA sequence: mRNA expression and blood physiological responses during freshwater acclimation. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:122-8. [PMID: 17329140 DOI: 10.1016/j.cbpb.2007.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 01/02/2007] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
To investigate the consequences of freshwater (FW) transfer, we studied the prolactin (PRL) cDNA sequence and its mRNA expression, and physiological responses in the black porgy (Acanthopagrus schlegeli). We cloned and characterized cDNA encoding its PRL from the pituitary gland. Black porgy PRL cDNA consists of 1492 bp and encodes a protein of 212 amino acids including 24 signal peptides. Reverse transcription-PCR showed the PRL mRNA expression in the pituitary gland. Expression of pituitary gland PRL mRNA was significantly higher during FW acclimation. Furthermore, we studied the stress responses and osmoregulatory abilities of black porgy in changing salinities. Plasma cortisol, glucose, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) significantly increased in the fish immediately after transfer to FW. We also identified significant changes in the fish in terms of plasma ions (Na(+), Cl(-), Ca(2+)) and osmolality during the acclimation period. These results suggests that PRL plays an important role in hormonal regulation in osmoregulatory organs, thereby improving the hyperosmoregulatory ability of black porgy in freshwater.
Collapse
Affiliation(s)
- Young Jin Chang
- Department of Aquaculture, Pukyong National University, Busan, Republic of Korea
| | | | | |
Collapse
|
50
|
Fox BK, Naka T, Inoue K, Takei Y, Hirano T, Grau EG. In vitro effects of homologous natriuretic peptides on growth hormone and prolactin release in the tilapia, Oreochromis mossambicus. Gen Comp Endocrinol 2007; 150:270-7. [PMID: 17107675 DOI: 10.1016/j.ygcen.2006.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/14/2006] [Accepted: 09/16/2006] [Indexed: 11/18/2022]
Abstract
C-type natriuretic peptide (CNP) cDNA was cloned from the tilapia brain and its inferred mature sequence was chemically synthesized together with previously cloned tilapia A-type and B-type natriuretic peptides (ANP and BNP). The cloned CNP belongs to the CNP-1 type of teleosts. Reverse-transcription polymerase chain reaction showed that the ANP and BNP genes were hardly expressed in the tilapia brain and pituitary, whereas the CNP gene was expressed strongly in the brain and slightly in the pituitary. Effects of homologous natriuretic peptides (100 nM each) on growth hormone (GH) and prolactin (PRL) release were examined using dispersed tilapia pituitary cells. Tilapia ANP and BNP stimulated GH and PRL release during 4-8, and 8-24 h of incubation. BNP appeared to be more potent than ANP, also stimulating GH and PRL release during 0-4 h of incubation. CNP stimulated GH release only during 4-8 h of incubation; CNP was without effect on PRL release. All three NPs stimulated GH and PRL mRNA expression in dispersed pituitary cells following 24 h of incubation. ANP and BNP significantly elevated intracellular cGMP accumulation in dispersed pituitary cells after 15 min of exposure, whereas no effect of CNP was observed. These results indicate a long-lasting stimulation of GH and PRL release by ANP and BNP that is mediated, at least in part, by the guanylyl cyclase-linked NP receptor.
Collapse
Affiliation(s)
- Bradley K Fox
- Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Kaneohe, HI 96744, USA
| | | | | | | | | | | |
Collapse
|