1
|
Hall GB, Hildenberger D, Long JA, Diehl K. Evaluating ovarian follicles and their steroid hormone gene expression patterns in a high egg-producing research turkey line. Poult Sci 2025; 104:104592. [PMID: 39616679 PMCID: PMC11647615 DOI: 10.1016/j.psj.2024.104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025] Open
Abstract
Low egg-producing turkeys reduce the profitability of a flock by limiting the number of poults that can be hatched. Understanding the biological mechanics behind egg-production rates will greatly benefit the industry. Two lines with vastly different egg production rates are the Ohio State University E line, and its unselected counterpart, the random-bred control one (RBC1). Differences between E Line and RBC1 hens (n = 4 per line) were investigated by measuring egg production traits, ovarian and follicle anatomical characteristics, and gene expression for reproductively important genes within different follicle types. Data were analyzed by an ANOVA mixed model procedure in SAS. The E line hens produced 20% more eggs than the RBC1 hens, even though they had similar numbers of preovulatory follicles in their ovaries. This was accomplished by increasing clutch length and keeping the pause length the same. On the gene expression side small white follicles (SWF) within E line hens had less LHCGR expression which coincided with downregulation of CYP11A1 and CYP17A1. Along with an upregulation of PRLR in small yellow follicles (SYF) which also coincided with downregulation of CYP17A1. In both cases changes in pituitary hormone receptor transcription levels appeared to affect the steroid hormone synthesis pathway. In SWF from E line hens ESR2 was downregulated, however in the large white follicles and selected follicles ESR1 was the estradiol receptor which was downregulated. The similarity in preovulatory numbers suggests that E line hens aren't selecting more follicles to grow, but instead, follicles are growing faster. Based on the gene expression patterns, the reduction of steroid hormone synthesis might hint at the follicles putting more energy into growth and differentiation. At the same time, the decrease in estradiol receptor might limit the negative effects of estradiol on granulosa cells and allow for more rapid growth, suggesting a possible mechanism for the higher egg production trait of the E line.
Collapse
Affiliation(s)
- George B Hall
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, 10300 Baltimore Ave, BARC-East, Beltsville, MD 20705, United States
| | - Diane Hildenberger
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, 10300 Baltimore Ave, BARC-East, Beltsville, MD 20705, United States
| | - Julie A Long
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, 10300 Baltimore Ave, BARC-East, Beltsville, MD 20705, United States
| | - Kristen Diehl
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, 10300 Baltimore Ave, BARC-East, Beltsville, MD 20705, United States.
| |
Collapse
|
2
|
Monson C, Goetz G, Forsgren K, Swanson P, Young G. In vivo treatment with a non-aromatizable androgen rapidly alters the ovarian transcriptome of previtellogenic secondary growth coho salmon (Onchorhynchus kisutch). PLoS One 2024; 19:e0311628. [PMID: 39383164 PMCID: PMC11463792 DOI: 10.1371/journal.pone.0311628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
Recent evidence suggests that androgens are a potent driver of growth during late the primary stage of ovarian follicle development in teleosts. We have previously shown that the non-aromatizable androgen, 11-ketotestosterone (11-KT), both advances ovarian follicle growth in vivo and dramatically alters the primary growth ovarian transcriptome in coho salmon. Many of the transcriptomic changes pointed towards 11-KT driving process associated with the transition to a secondary growth phenotype. In the current study, we implanted previtellogenic early secondary growth coho salmon with cholesterol pellets containing 11-KT and performed RNA-Seq on ovarian tissue after 3 days in order to identify alterations to the ovarian transcriptome in early secondary growth. We identified 8,707 contiguous sequences (contigs) that were differentially expressed (DE) between control and 11-KT implanted fish and were able to collapse those to 3,853 gene-level IDs, more than a 3-fold more DE contigs than at the primary growth stage we reported previously. These contigs included genes encoding proteins involved in steroidogenesis, vitellogenin and lipid uptake, follicle stimulating hormone signaling, growth factor signaling, and structural proteins, suggesting androgens continue to promote previtellogenic secondary growth.
Collapse
Affiliation(s)
- Christopher Monson
- School or Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Giles Goetz
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Kristy Forsgren
- Department of Biological Science, California State University, Fullerton, Fullerton, California, United States of America
| | - Penny Swanson
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, Seattle, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Graham Young
- School or Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
3
|
Zhu H, Qin N, Xu X, Sun X, Chen X, Zhao J, Xu R, Mishra B. Synergistic inhibition of csal1 and csal3 in granulosa cell proliferation and steroidogenesis of hen ovarian prehierarchical development†. Biol Reprod 2020; 101:986-1000. [PMID: 31350846 PMCID: PMC6877779 DOI: 10.1093/biolre/ioz137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/29/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022] Open
Abstract
SALL1 and SALL3 are transcription factors that play an essential role in regulating developmental processes and organogenesis in many species. However, the functional role of SALL1 and SALL3 in chicken prehierarchical follicle development is unknown. This study aimed to explore the potential role and mechanism of csal1 and csal3 in granulosa cell proliferation, differentiation, and follicle selection within the prehierarchical follicles of hen ovary. Our data demonstrated that the csal1 and csal3 transcriptions were highly expressed in granulosa cells of prehierarchical follicles, and their proteins were mainly localized in the cytoplasm of granulosa cells and oocytes as well as in the ovarian stroma and epithelium. It initially revealed that both csal1 and csal3 may be involved in chicken prehierarchical follicle development via a translocation mechanism. Furthermore, our results showed an abundance of CCND1, Bcat, StAR, CYP11A1, and FSHR mRNA in granulosa cells, and the proliferation levels of granulosa cells from the prehierarchical follicles were significantly increased by siRNA-mediated knockdown of csal1 or/and csal3. Conversely, the overexpression of csal1 or/and csal3 in the granulosa cells led to a remarkably decreased of them. Moreover, csal1 and csal3 together exert a much stronger effect on the regulation than any of csal1 or csal3. These results indicated that csal1 and csal3 play synergistic inhibitory roles on granulosa cell proliferation, differentiation, and steroidogenesis during prehierarchical follicle development in vitro. The current data provide a basis of molecular mechanisms of csal1 and csal3 in controlling the prehierarchical follicle development and growth of hen ovary in vivo.
Collapse
Affiliation(s)
- Hongyan Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, China
| | - Ning Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Modern Agricultural Technology International Cooperative Joint Laboratory of the Ministry of Education, Changchun, P. R. China
| | - Xiaoxing Xu
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Xue Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Modern Agricultural Technology International Cooperative Joint Laboratory of the Ministry of Education, Changchun, P. R. China
| | - Xiaoxia Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jinghua Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rifu Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Modern Agricultural Technology International Cooperative Joint Laboratory of the Ministry of Education, Changchun, P. R. China
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
4
|
Wallner C, Rausch A, Drysch M, Dadras M, Wagner JM, Becerikli M, Lehnhardt M, Behr B. Regulatory aspects of myogenic factors GDF-8 and Follistatin on the intake of combined oral contraceptives. Gynecol Endocrinol 2020; 36:406-412. [PMID: 31526145 DOI: 10.1080/09513590.2019.1666816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Combined oral contraceptives are one of the most prescribed drugs in the western world. While there is little evidence regarding effects of estrogen or gestagens on muscle metabolism, androgens are well-known for their anabolic characteristics. In this study, we seeked to investigate potential correlations of the myokines GDF-8, IGF-1 and Follistatin with female sexual hormones and likewise possible interactions with combined oral contraceptives (Dienogest and Ethyl Estradiol) intake. We obtained serum samples of young healthy women to measure hormone correlations. Furthermore, we simulated combined oral contraceptive blood circulating hormone concentrations to identify myogenic effects on HSkM in vitro. GDF-8, IGF-1 and Follistatin showed concentration correlations (p = .005) in overall patients' serum, while Follistatin as a promyogenic protein additionally showed a positive correlation with testosterone and estradiol (p < .05). Lower GDF-8 levels were also linked to a higher BMI (p = .009). Upon combined oral contraceptives (COC) intake, patients showed decreased GDF-8 (p = .006) but increased Follistatin (p = .0001) concentrations compared to patients without COC intake. In vitro, addition of Ethyl Estradiol and Dienogest to HSkM cells revealed a pro-myogenic, proliferative, chemosensitized pattern. Our data support a pro-myogenic effect of combined oral contraceptives.
Collapse
Affiliation(s)
- Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Annesophie Rausch
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Marius Drysch
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Mehran Dadras
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Johannes Maximilian Wagner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Mustafa Becerikli
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| |
Collapse
|
5
|
Benson AP, Malloy MN, Steed JR, Christensen VL, Fairchild BD, Davis AJ. Zona pellucida protein B2 messenger ribonucleic acid expression varies with follicular development and granulosa cell location. Poult Sci 2018; 96:3414-3421. [PMID: 28854741 DOI: 10.3382/ps/pex126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/26/2017] [Indexed: 11/20/2022] Open
Abstract
The freshly ovulated ovum in avian species is surrounded by a protein layer called the inner perivitelline layer (IPVL). The IPVL contains zona pellucida proteins and 6 distinct zona pellucida genes have been identified (ZPA, ZPB1, ZPB2, ZPC, ZPD and ZPX1) in the chicken. In the present research, the expression of the mRNA for ZPA, ZPB2, and ZPX1 was investigated in 2 lines of turkey hens selected for either increased egg production (E line) or increased body weight (F line). Theca and granulosa cell expression of the mRNA for ZPA and ZPB2 was also investigated in hierarchical and prehierarchical follicles from broiler breeder hens. Granulosa tissue was collected from F1 through F4 and F1 through F10 follicles in E line and F line hens, respectively. A one cm2 section of the granulosa layer around the germinal disc (GD) and an equivalent sized nongerminal disc (NGD) area was also collected from the F1 and F2 follicles from other hens from each genetic line. Granulosa and theca tissue was collected from hierarchical and prehierarchical follicles of broiler breeder hens. Total RNA was extracted from the samples. Minor groove-binding probes and primers for detecting ZPA, ZPB2, and ZPX1, were made for real-time PCR analyses. Expression of ZPA, ZPB2, and ZPX1 was detected in all follicle sizes from both genetic lines of hens. No significant differences in ZPA and ZPX1 mRNA expression were detected between the GD and NGD granulosa cells. However, the expression of the mRNA for ZPB2 was significantly greater in the GD granulosa cells when compared to the NGD granulosa cells in F1 and F2 follicles from E line and F line hens. In broiler breeder hens, the mRNA expression of ZPA and ZPB2 was greatest in the smallest prehierarchical follicles. The results suggest that higher expression of ZPB2 in the germinal disc area may be important for the preferential binding of sperm to this region of the IPVL.
Collapse
Affiliation(s)
- A P Benson
- Department of Poultry Science, University of Georgia, Athens, GA 30602-2772.
| | - M N Malloy
- Department of Poultry Science, University of Georgia, Athens, GA 30602-2772
| | - J R Steed
- Department of Poultry Science, University of Georgia, Athens, GA 30602-2772
| | - V L Christensen
- Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608
| | - B D Fairchild
- Department of Poultry Science, University of Georgia, Athens, GA 30602-2772
| | - A J Davis
- Department of Poultry Science, University of Georgia, Athens, GA 30602-2772
| |
Collapse
|
6
|
Effects of 11-ketotestosterone and temperature on inhibin subunit mRNA levels in the ovary of the shortfinned eel, Anguilla australis. Comp Biochem Physiol B Biochem Mol Biol 2015; 187:14-21. [DOI: 10.1016/j.cbpb.2015.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/16/2022]
|
7
|
Nott SL, Huang Y, Li X, Fluharty BR, Qiu X, Welshons WV, Yeh S, Muyan M. Genomic responses from the estrogen-responsive element-dependent signaling pathway mediated by estrogen receptor alpha are required to elicit cellular alterations. J Biol Chem 2009; 284:15277-88. [PMID: 19321454 DOI: 10.1074/jbc.m900365200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Estrogen (E2) signaling is conveyed by the transcription factors estrogen receptor (ER) alpha and beta. ERs modulate the expression of genes involved in cellular proliferation, motility, and death. The regulation of transcription by E2-ERalpha through binding to estrogen-responsive elements (EREs) in DNA constitutes the ERE-dependent signaling pathway. E2-ERalpha also modulates gene expression by interacting with transregulators bound to cognate DNA-regulatory elements, and this regulation is referred to as the ERE-independent signaling pathway. The relative importance of the ERE-independent pathway in E2-ERalpha signaling is unclear. To address this issue, we engineered an ERE-binding defective ERalpha mutant (ERalpha(EBD)) by changing residues in an alpha-helix of the protein involved in DNA binding to render the receptor functional only through the ERE-independent signaling pathway. Using recombinant adenovirus-infected ER-negative MDA-MB-231 cells derived from a breast adenocarcinoma, we found that E2-ERalpha(EBD) modulated the expression of a subset of ERalpha-responsive genes identified by microarrays and verified by quantitative PCR. However, E2-ERalpha(EBD) did not affect cell cycle progression, cellular growth, death, or motility in contrast to E2-ERalpha.ERalpha(EBD) in the presence of E2 was also ineffective in inducing phenotypic alterations in ER-negative U-2OS cells derived from an osteosarcoma. E2-ERalpha, on the other hand, effectively repressed growth in this cell line. Our findings suggest that genomic responses from the ERE-dependent signaling pathway are required for E2-ERalpha to induce alterations in cellular responses.
Collapse
Affiliation(s)
- Stephanie L Nott
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Onagbesan O, Bruggeman V, Decuypere E. Intra-ovarian growth factors regulating ovarian function in avian species: a review. Anim Reprod Sci 2008; 111:121-40. [PMID: 19028031 DOI: 10.1016/j.anireprosci.2008.09.017] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 09/15/2008] [Accepted: 09/23/2008] [Indexed: 11/19/2022]
Abstract
There is now overwhelming evidence that the avian ovary is a site of production and action of several growth factors that have also been implicated in the functioning of the mammalian ovary. Several members of the Insulin-like growth factor family (IGF), the Epidermal growth factor family (EGF), the Transforming growth factor-beta family (TGF-beta), Fibroblast growth factors (FGF), the Tumour necrosis factor-alpha (TNF-alpha), and others, have been identified either in the granulosa and/or theca compartments of ovarian follicles and in the embryonic and juvenile ovary. Some have been specifically localized to the germinal disc area containing the oocyte. The mRNAs and proteins of the growth factors, receptor proteins and binding proteins of some of the members of each group have been reported in the chicken, turkey, quail and duck. The intra-ovarian roles reported for the different growth factors include regulation of cell proliferation, steroidogenesis, follicle selection, modulation of gonadotrophin action, control of ovulation rate, cell differentiation, production of growth factors, etc. The aim of this paper is to provide a review of the current knowledge of avian ovarian growth factors and their biological activity in the ovary. The review covers the detection of the growth factor proteins, the receptor proteins, binding proteins, their spatial and temporal distribution in embryonic, juvenile and adult ovaries and their regulation. The paper also discusses their roles in each follicular compartment during follicular development. Greater emphasis is given to the major growth factors that have been studied to greater detail and others are discussed very briefly.
Collapse
|
9
|
Kipp JL, Kilen SM, Bristol-Gould S, Woodruff TK, Mayo KE. Neonatal exposure to estrogens suppresses activin expression and signaling in the mouse ovary. Endocrinology 2007; 148:1968-76. [PMID: 17255206 DOI: 10.1210/en.2006-1083] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the ovary, the steroid hormone estrogen and the TGF-beta superfamily member activin are both produced by granulosa cells and they both have intraovarian functions. Emerging evidence has indicated an interaction of these two signaling pathways. Based on the fact that estrogen and activin can impact early follicle formation and development, we hypothesize that estrogen treatment may alter activin signaling in the neonatal ovary. Therefore, this study was designed to examine the effect of neonatal diethylstilbestrol (DES) and estradiol (E(2)) exposure on the mRNA and protein levels of the key factors involved in activin signaling in the mouse ovary. CD-1 mouse pups were given daily injections of DES, E(2), or oil on postnatal d 1-5, and ovaries and sera were collected on d 19. Neonatal DES or E(2) exposure decreased the number of small antral follicles, induced multioocytic follicle formation, and decreased activin beta-subunit mRNA and protein levels. Consistent with local loss of beta-subunit expression, the phosphorylation of Smad 2, a marker of activin-dependent signaling, was decreased in the estrogen-treated ovaries. The decreased beta-subunit expression resulted in a decrease in serum inhibin levels, with a corresponding increase in FSH. Estrogen also suppressed activin subunit gene promoter activities, suggesting a direct transcriptional effect. Overall, this study demonstrates that activin subunits are targets of estrogen action in the early mouse ovary.
Collapse
MESH Headings
- Activin Receptors/genetics
- Activin Receptors/metabolism
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Activins/genetics
- Activins/metabolism
- Animals
- Animals, Newborn
- Blotting, Western
- Diethylstilbestrol/pharmacology
- Estradiol/pharmacology
- Estrogens, Non-Steroidal/pharmacology
- Female
- Gene Expression/drug effects
- Gene Expression/physiology
- Immunohistochemistry
- Inhibins/genetics
- Mice
- Mice, Inbred Strains
- Organ Size
- Ovarian Follicle/cytology
- Ovarian Follicle/drug effects
- Ovarian Follicle/physiology
- Pregnancy
- Promoter Regions, Genetic/physiology
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Jingjing L Kipp
- Department of Biochemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
10
|
Johnson PA, Woodcock JR, Kent TR. Effect of activin A and inhibin A on expression of the inhibin/activin beta-B-subunit and gonadotropin receptors in granulosa cells of the hen. Gen Comp Endocrinol 2006; 147:102-7. [PMID: 16434038 DOI: 10.1016/j.ygcen.2005.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 11/06/2005] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
Activin A has been shown to be abundant in the theca layer of the large pre-ovulatory follicles of the hen whereas inhibin A is produced in the granulosa layer. The purpose of this study was to investigate the effects of activin A and inhibin A on granulosa cell expression of inhibin beta-B-subunit, FSH receptor (FSHR), and LH receptor (LHR). Granulosa cells were isolated from the F1, F3+F4, and small yellow follicles (SYF; 6-12 mm diameter) of laying hens and pooled according to size. The cells were dispersed and plated in the presence of 0, 10, or 50 ng/ml recombinant human activin A (n=5 replicate cultures). RNA was subsequently extracted from the cells and Northern blots performed. Cell proliferation was determined for all treatments. An identical set of experiments was performed in which the granulosa cells were treated with recombinant human inhibin A (n=4 replicate cultures). Treatment with activin A at 50 ng/ml significantly (p<0.05) increased expression of beta-B-subunit for granulosa cells from all follicles. This dose also significantly increased expression of FSHR in granulosa cells from all follicles (p<0.05) and increased expression of LHR in cells from F1 and F3+F4 follicles (p<0.01) with no significant effect on cells from the SYF. Overall, activin A treatment significantly (p<0.05) decreased cell proliferation at the 50 ng/ml dose. Inhibin A had no significant effect on expression of beta-B-subunit, FSHR or LHR at any dose. There was a moderate stimulatory effect of inhibin A on granulosa cell proliferation. These results suggest that activin A may have an important role in regulating granulosa cell responsiveness to gonadotropins while also modulating follicle development by attenuating cell proliferation.
Collapse
Affiliation(s)
- P A Johnson
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
11
|
Johnson PA, Brooks CF, Davis AJ. Pattern of secretion of immunoreactive inhibin/activin subunits by avian granulosa cells. Gen Comp Endocrinol 2005; 141:233-9. [PMID: 15804510 DOI: 10.1016/j.ygcen.2005.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 01/10/2005] [Accepted: 01/11/2005] [Indexed: 11/23/2022]
Abstract
The messenger RNA expression for the inhibin/activin subunits in the granulosa layer of avian follicles of different developmental stages has previously been reported. In the present study, we examined the pattern of secretion of these protein subunits from cultured granulosa cells (GC) of avian follicles of defined maturity. Laying hens were euthanized and the F1, F2, F3, F4, small yellow follicles (SYF; 6-10 mm) and large white follicles (LWF; 3-5 mm) were removed. GC were isolated from the follicles, plated by size at a density of 6.25 x 10(5)cells per well (3 wells per follicle size) and cultured for 48 h in medium 199 with 5% FBS, antibiotics, and 1.0 microg/ml bovine insulin. After 48 h, the cultures were terminated and the media were saved (n = 6 replications). Proteins were precipitated from media, reconstituted for electrophoresis (SDS-PAGE), and analyzed by Western blot. Progesterone was also measured in the medium. For detection of the inhibin alpha-subunit, a rabbit antibody against the chicken inhibin alpha-subunit (1-26 aa) was used. The betaA-subunit was detected with rabbit anti-betaA-subunit (81-113 aa) and the betaB-subunit was detected with rabbit anti-betaB-subunit (80-112 aa). Under reduced conditions, GC from the larger follicle sizes (F1-F4) secreted the most (p < 0.05) immunoreactive inhibin alpha-subunit compared to smaller follicle sizes. Under non-reduced conditions, a band at approximately 32 kDa was detected by both the alpha-subunit antibody and by the betaA-subunit antibody in media from GC of the F1-F4 follicles, suggesting secretion of intact inhibin A. Immunoreactive alpha-subunit and betaB-subunit were detected under reduced conditions in media from the GC of the SYF, suggesting that this follicle population may secrete intact inhibin B. In addition, under non-reduced conditions, cells from the SYF secreted the greatest amount of intact inhibin B (p < 0.05) at a size of approximately 32 kDa. Cells from the LWF expressed low levels of all inhibin subunits. Progesterone concentration in the media from the F1 follicle was greatest and was decreased in media from smaller follicles. It is suggested that the largest follicles in the hierarchy are the source of most circulating intact inhibin A while the small follicles are the source of intact inhibin B.
Collapse
Affiliation(s)
- P A Johnson
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
12
|
Slappey SN, Davis AJ. Expression pattern of messenger ribonucleic acid for the activin type II receptors and the inhibin/activin subunits during follicular development in broiler breeder hens. Poult Sci 2003; 82:338-44. [PMID: 12619813 DOI: 10.1093/ps/82.2.338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The expression of mRNA for the activin type II receptors (ActRII and ActRIIB), follistatin, and the inhibin/activin subunits was investigated in the follicles of broiler breeder hens. Total RNA was isolated from individual granulosa and theca layers of the F1 through F5 follicles, a pool of the F6 and F7 follicles, the small yellow follicles, and from the combined granulosa and theca layers of the large white follicles from six birds. Northern blot analysis was performed, and two ActRII mRNA transcripts of 6.5 and 3.7 kb were detected in granulosa and theca samples. Both ActRII transcripts were equally expressed in the granulosa samples, but in the theca samples expression of the 3.7-kb transcript was greater than the 6.5-kb transcript. ActRIIB was not detected by Northern analysis in any of the samples. Expression of the mRNA for the activin/inhibin binding protein, follistatin, was detected in theca and granulosa samples with the greatest expression found in small yellow follicle samples for both cell layers. Expression of the inhibin alpha-subunit was detected in the granulosa layer of all the follicles, but expression was greatest in the F6 and F7 follicles. Granulosa from the large hierarchical follicles expressed the most inhibin/activin betaA-subunit, whereas expression of the inhibin/activin betaB-subunit was greatest in the granulosa of small yellow and F6 and F7 follicles. This report is the first, to our knowledge, on detection of activin type II receptor mRNA in the hen ovary and characterization of the expression pattern of the inhibin family in both the theca and granulosa layers throughout follicular development. The presence of activin receptor and follistatin mRNA in the theca and granulosa layers of the small developing follicles suggests that locally produced activin may be highly regulated and have a vital role in early follicular development.
Collapse
Affiliation(s)
- S N Slappey
- Department of Poultry Science, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
13
|
Davis AJ, Brooks CF, Johnson PA. Activin A and gonadotropin regulation of follicle-stimulating hormone and luteinizing hormone receptor messenger RNA in avian granulosa cells. Biol Reprod 2001; 65:1352-8. [PMID: 11673249 DOI: 10.1095/biolreprod65.5.1352] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Activin A regulation of the expression of mRNA for the LH receptor, FSH receptor, and the inhibin alpha subunit as well as the effect of activin A on the secretion of progesterone were investigated in chicken granulosa cell cultures. Granulosa layers were isolated from the F(1) and F(3) + F(4) follicles from five hens, pooled according to size, dispersed, and cultured for 48 h. In experiment 1 (n = 3 replications), granulosa cells were cultured with or without highly purified ovine (o) FSH at 50 ng/ml and in the presence of 0, 10, or 50 ng/ml of recombinant chicken activin A. Experiment 2 (n = 4 replications) followed the same protocol as experiment 1, except that oFSH was replaced with oLH. Results from these experiments showed that addition of activin A to the granulosa cell cultures had no effect on the expression of mRNA for the inhibin alpha subunit or the FSH receptor, but it did affect the expression of mRNA for the LH receptor. Treatment of F(3) + F(4) granulosa cells with LH stimulated the expression of mRNA for the LH receptor; however, when LH was combined with either dose of activin A, this induction was prevented. The highest dose of activin A with or without LH resulted in decreased expression of the LH receptor compared to the untreated controls in the F(3) + F(4) cell cultures. Progesterone secretion by the granulosa cells from both follicle sizes was not altered by activin A. In experiment 3 (n = 3 replications), the effect of activin A on the growth of granulosa cells was examined with the following treatments: 0, 10, or 50 ng/ml of activin A; 50 ng/ml of either oLH or oFSH; and oLH or oFSH combined with 10 ng/ml of activin A. The highest dose of activin reduced the rate of granulosa cell proliferation in both follicle types. Growth of F(1) and F(3) + F(4) granulosa cells was stimulated by the addition of either gonadotropin, and the presence of 10 ng/ml of activin A with either gonadotropin did not alter this proliferation, except for the LH-treated F(3) + F(4) granulosa cells, in which the increase in proliferation was prevented. The results suggest that activin A could act as a local factor that regulates follicular maturation by preventing excessive or untimely LH receptor expression.
Collapse
Affiliation(s)
- A J Davis
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
14
|
Davis AJ, Brooks CF, Johnson PA. Follicle-stimulating hormone regulation of inhibin alpha- and beta(B)-subunit and follistatin messenger ribonucleic acid in cultured avian granulosa cells. Biol Reprod 2001; 64:100-6. [PMID: 11133663 DOI: 10.1095/biolreprod64.1.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
FSH regulation of inhibin alpha-, beta(B)-subunit and follistatin mRNA was investigated in cultured chicken granulosa cells, which were isolated and pooled according to size from the F(4) + F(5) follicles, small yellow follicles (SYF), and large white follicles (LWF). In experiment 1 (four replicate experiments), granulosa cells were cultured, and the effect of FSH (50 ng/ml) on the growth of cells from the different follicles was examined at 24 and 48 h of culture. Cell viability was >95% for all of the granulosa cell cultures at 24 and 48 h. At 24 h, the number of granulosa cells in both the FSH-treated and the untreated cultures for all follicle types was numerically greater than the number of cells originally plated. At 48 h, FSH-treated cultures for all follicle types had twice (P: < 0. 05) the number of cells as the untreated cultures. In experiment 2 (three replicate experiments), FSH increased expression of the mRNA for inhibin alpha-subunit in LWF granulosa cells at 4 and 24 h to detectable levels and increased inhibin alpha-subunit protein accumulation to detectable levels by 24 h in granulosa cells from the LWF. FSH also increased (P: < 0.05) mRNA levels for the inhibin alpha-subunit at 4 and 24 h in SYF granulosa cells and at 24 h in F(4) + F(5) granulosa cells. The effects of FSH on follistatin and ss(B)-subunit were variable with respect to follicle development and culture duration. These results suggest that FSH plays an important role in stimulating the production of mRNA and protein for the inhibin alpha-subunit in small prehierarchical follicles.
Collapse
Affiliation(s)
- A J Davis
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|