1
|
Breves JP, Shaughnessy CA. Endocrine control of gill ionocyte function in euryhaline fishes. J Comp Physiol B 2024; 194:663-684. [PMID: 38739280 DOI: 10.1007/s00360-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ciaran A Shaughnessy
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA
| |
Collapse
|
2
|
Okomoda VT, Isah S, Solomon SG, Ikhwanuddin M. Salinity tolerance in Clarias gariepinus (Burchell, 1822): insight on blood parameter variations and gill histological changes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:605-616. [PMID: 38165562 DOI: 10.1007/s10695-023-01293-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/22/2023] [Indexed: 01/04/2024]
Abstract
This study was designed to evaluate the tolerance of Clarias gariepinus juveniles to a gradual and abrupt increase in salinity over time. To this effect, C. gariepinus juveniles were exposed to three salinity incremental protocols namely 1 g L-1 day-1, 5 g L-1 day-1, and 10 g L-1 day-1. Changes in the hematological parameters and the gill histology of fish were analyzed to determine the impact of osmotic stress on the health status of the fish and its osmoregulatory ability. The result obtained showed that juveniles of C. gariepinus can tolerate salinity stress up to 14 g L-1. At 15 g L-1 and beyond, all samples died regardless of gradual (i.e., 1 g L-1 day-1 administered for 15 days) or abrupt salinity exposure (i.e., 5 g L-1 day-1 administered for three days and 10 g L-1 day-1 administered for two days). Interestingly, more than 90% of the fish survived a direct 10 g L-1 exposure for 24 h without prior acclimation. The hematological parameters accessed in the fish exposed to 10 g L-1 (either gradually or abruptly) showed a significant increase in the white blood cells and a decrease in the red blood cells, packed cell volume, hemoglobin concentration, and all derived blood parameters. The results of the serum biochemistry show a lower total protein and albumin in the salinity-treated fish compared to the control group. However, the serum glucose and the plasma electrolytes (i.e., K+, Na+, and Cl-) were higher in the former group than in the latter. Aside from the stress response expressed in the blood parameters, severe gill degenerations were seen in the histological micrograph obtained for the salinity-treated fish, while the control had a near-normal gill architecture. It was concluded that C. gariepinus could tolerate salinity exposure of 10 g L-1 day-1 (administered gradually or abruptly) and below without killing the fish within 24 h.
Collapse
Affiliation(s)
- Victor Tosin Okomoda
- Department of Fisheries and Aquaculture, College of Forestry and Fisheries, Joseph Sarwuan Tarka University (Formerly, Federal University of Agriculture Makurdi), Makurdi P.M.B. 2373, Makurdi, Nigeria.
- Higher Institution Centre of Excellence, Institute of Tropical Aquaculture and Fisheries Research (AQUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Safiya Isah
- Department of Fisheries and Aquaculture, College of Forestry and Fisheries, Joseph Sarwuan Tarka University (Formerly, Federal University of Agriculture Makurdi), Makurdi P.M.B. 2373, Makurdi, Nigeria
| | - Shola Gabriel Solomon
- Department of Fisheries and Aquaculture, College of Forestry and Fisheries, Joseph Sarwuan Tarka University (Formerly, Federal University of Agriculture Makurdi), Makurdi P.M.B. 2373, Makurdi, Nigeria
| | - Mhd Ikhwanuddin
- Higher Institution Centre of Excellence, Institute of Tropical Aquaculture and Fisheries Research (AQUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, Guangdong, China.
| |
Collapse
|
3
|
Hieu DQ, Hang BTB, Huong DTT, Kertaoui NE, Farnir F, Phuong NT, Kestemont P. Salinity affects growth performance, physiology, immune responses and temperature resistance in striped catfish (Pangasianodon hypophthalmus) during its early life stages. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1995-2013. [PMID: 34708321 DOI: 10.1007/s10695-021-01021-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
In this study, striped catfish larvae were gradually exposed to the increase of different salinities, and then they reached the levels of 0, 5, 10, 15, and 20 psu after 10 days, followed by heat shock at 39 °C to determine stress tolerance. After the 10-day experiment, the survival rate of fish exposed to the 20 psu treatment was only 28.6 ± 4%, significantly lower than that of the other treatments. The results showed that the osmolality of the whole-body (WB) homogenate was gradually and significantly increased with salinity elevation, except in fish exposed to freshwater and 5 psu treatments, while there were no significant changes in WB Na+/K+-ATPase activity. Digestive enzymatic activities, i.e., pepsin, α-amylase, alkaline phosphatase, and leucine alanine peptidase (leu-ala) generally increased with salinity, but not aminopeptidase and trypsin. Lysozyme and peroxidase activities increased in fish larvae exposed to 15 and 20 psu. These increases proportionally improved growth performance, with the lowest and the highest final weights observed in fish reared at 0 psu (0.08 ± 0.03 g/larvae) and 20 psu (0.11 ± 0.02 g/larvae), respectively, although the average growth recorded at 20 psu could be biased by the high mortality in this group. Occurrence of skeleton deformities, such as in caudal vertebrae and branchiostegal rays, was significantly higher in fish exposed to the higher osmotic conditions (15.0 ± 1.2% and 10.3 ± 2.1% respectively at 0 psu vs. 31.0 ± 2.9% and 49.0 ± 5.6%, respectively at 15 psu). After the 12.5-h heat shock, survival rates significantly differed between treatments with the highest survival observed in fish submitted to 5 psu (68.9%), followed by those exposed to 0 (27%) and 10 (20%) while all fish died at 15 psu. These findings suggest that the striped catfish larvae could be reared in salinity up to 5 to 10 psu with a higher survival and tolerance to thermal stress when compared to fish maintained in freshwater.
Collapse
Affiliation(s)
- Dang Quang Hieu
- Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth & Environment (ILEE), University of Namur (UNamur), Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Bui Thi Bich Hang
- College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam
| | - Najlae El Kertaoui
- Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth & Environment (ILEE), University of Namur (UNamur), Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Frédéric Farnir
- Department of Animal Production, Faculty of Veterinary Medicine, University of Liege, 4000, Liege, Belgium
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth & Environment (ILEE), University of Namur (UNamur), Rue de Bruxelles 61, B-5000, Namur, Belgium.
| |
Collapse
|
4
|
Si Y, Li H, Gong X, Bao B. Isolation of prolactin gene and its differential expression during metamorphosis involving eye migration of Japanese flounder Paralichthys olivaceus. Gene 2021; 780:145522. [PMID: 33631243 DOI: 10.1016/j.gene.2021.145522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/13/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
Eye migration during flatfish metamorphosis is driven by asymmetrical cell proliferation. To figure out Prolactin (PRL) function in this process, the full-length cDNA of prl was cloned from Japanese flounder (Paralichthys olivaceus) in our study. The deduced PRL protein shares highly conserved sequence with other teleosts, but has several amino acids loss compared with higher vertebrates, including amphibians, reptiles, avian and mammals. Spatio-temporal expression of prl gene displayed its extensive expression in the early development stages, while the limited expression of prl was observed in the pituitary, brain, and intestine of adult fish. In situ hybridization showed the asymmetrical distribution patterns of prl gene around the eyes during metamorphosis, which was coincident with the cell proliferation signals. Colchicine inhibited cell proliferation and reduced the prl gene expression, which indicates that PRL was involved in cell proliferation in the suborbital area of the migrating eye. The treatment of methimazole and 9-cis-retinoic acid respectively led to a reduction in the number of proliferating cells and the downregulation of prl expression, suggesting PRL was regulated by thyroid hormone signaling pathway and retinoic acid related signaling pathways. The results gave us a basic understanding of PRL function during flatfish metamorphosis.
Collapse
Affiliation(s)
- Yufeng Si
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoling Gong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Liew HJ, Pelle A, Chiarella D, Faggio C, Tang CH, Blust R, De Boeck G. Common carp, Cyprinus carpio, prefer branchial ionoregulation at high feeding rates and kidney ionoregulation when food supply is limited: additional effects of cortisol and exercise. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:451-469. [PMID: 31773438 DOI: 10.1007/s10695-019-00736-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
This study aims to examine ionoregulatory parameters during exercise and cortisol elevation in common carp fed different food rations. Fish subjected to two different feeding regimes (0.5 or 3.0% body mass (BM) daily) received no implant or an intraperitoneal cortisol implant (250 mg/kg BM) or sham, and were monitored over a 168-h post-implant (PI) period under resting, low aerobic swimming or exhaustive swimming conditions. Plasma osmolality was maintained at relatively stable levels without much influence of feeding, swimming or cortisol, especially in low feeding groups. Nevertheless, a transient hyponatremia was observed in all low feeding fish implanted with cortisol. The hyponatremia was more pronounced in fish swum to exhaustion but even in this group, Na+ levels returned to control levels as cortisol levels recovered (168 h-PI). Cortisol-implanted fish also had lower plasma Cl- levels, and this loss of plasma Cl- was more prominent in fish fed a high ration during exhaustive swimming (recovered at 168 h-PI). Cortisol stimulated branchial NKA and H+ ATPase activities, especially in high ration fish. In contrast, low ration fish upregulated kidney NKA and H+ ATPase activities when experiencing elevated levels of cortisol. In conclusion, low feeding fish experience an ionoregulatory disturbance in response to cortisol implantation especially when swum to exhaustion in contrast to high feeding fish.
Collapse
Affiliation(s)
- Hon Jung Liew
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia.
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerp, Belgium.
| | - Antonella Pelle
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerp, Belgium
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 CAP, 98166, Messina, Italy
| | - Daniela Chiarella
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerp, Belgium
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 CAP, 98166, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 CAP, 98166, Messina, Italy
| | - Cheng-Hao Tang
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan, Republic of China
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerp, Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerp, Belgium
| |
Collapse
|
6
|
Cao Q, Gu J, Wang D, Liang F, Zhang H, Li X, Yin S. Physiological mechanism of osmoregulatory adaptation in anguillid eels. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:423-433. [PMID: 29344774 PMCID: PMC5862950 DOI: 10.1007/s10695-018-0464-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
In recent years, the production of eel larvae has dramatic declines due to reductions in spawning stocks, overfishing, growth habitat destruction and access reductions, and pollution. Therefore, it is particularly important and urgent for artificial production of glass eels. However, the technique of artificial hatching and rearing larvae is still immature, which has long been regarded as an extremely difficult task. One of the huge gaps is artificial condition which is far from the natural condition to develop their capability of osmoregulation. Thus, understanding their osmoregulatory mechanisms will help to improve the breed and adapt to the changes in the environment. In this paper, we give a general review for a study progress of osmoregulatory mechanisms in eels from five aspects including tissues and organs, ion transporters, hormones, proteins, and high throughput sequencing methods.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Jie Gu
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Dan Wang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Fenfei Liang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Hongye Zhang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Xinru Li
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Shaowu Yin
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
7
|
Schmitz M, Ziv T, Admon A, Baekelandt S, Mandiki SN, L'Hoir M, Kestemont P. Salinity stress, enhancing basal and induced immune responses in striped catfish Pangasianodon hypophthalmus (Sauvage). J Proteomics 2017; 167:12-24. [DOI: 10.1016/j.jprot.2017.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022]
|
8
|
Schmitz M, Baekelandt S, Tran Thi LK, Mandiki SNM, Douxfils J, Nguyen TQ, Do Thi Thanh H, Kestemont P. Osmoregulatory and immunological status of the pond-raised striped catfish (Pangasianodon hypophthalmus S.) as affected by seasonal runoff and salinity changes in the Mekong Delta, Vietnam. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:39-49. [PMID: 27435745 DOI: 10.1007/s10695-016-0266-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
In Vietnam, the production of striped catfish Pangasianodon hypophthalmus S. reached more than 1.2 millions of tons in 2014 and is mainly gathered in the Mekong Delta (South Vietnam). A survey was carried out during the dry season 2013 (March-April) and rainy season 2014 (July-August) in 12 fish farms of the lower (Tra Vinh Province) and higher (Can Tho Province) Mekong River Delta. This study allowed drawing up current key osmoregulatory and innate immune parameters of striped catfish in aquaculture depending on the geographical location, particularly the proximity to the River Mekong Estuary and the seasonal surface runoff. In the dry season, plasma osmolality was positively correlated with salinity. Gill Na+K+ ATPase dropped in the rainy season, while kidney Na+K+ ATPase remained stable. Abundance of immune blood cells, especially thrombocytes and monocytes, tended to increase in farms located in tidal area. Production of reactive oxygen species in the spleen, kidney lysozyme activity and plasma complement activity did not vary whatever the season or the proximity to the estuary. Plasma lysozyme activity was 50-fold higher than in kidney and increased in the rainy season as well as in tidal sites. Kidney complement activity decreased in the dry season, especially in tidal sites. In conclusion, regarding key osmoregulatory and immune factors, striped catfish farms located in the Mekong Delta may be affected by seasonal and regional salinity and runoff fluctuations.
Collapse
Affiliation(s)
- Mélodie Schmitz
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| | - Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Lam Khoa Tran Thi
- College of Aquaculture and Fisheries, Can Tho University, 3/2 Street, Campus II, Can Tho City, Vietnam
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Jessica Douxfils
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Thinh Quoc Nguyen
- College of Aquaculture and Fisheries, Can Tho University, 3/2 Street, Campus II, Can Tho City, Vietnam
| | - Huong Do Thi Thanh
- College of Aquaculture and Fisheries, Can Tho University, 3/2 Street, Campus II, Can Tho City, Vietnam
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| |
Collapse
|
9
|
Juo JJ, Kang CK, Yang WK, Yang SY, Lee TH. A Stenohaline Medaka, Oryzias woworae, Increases Expression of Gill Na(+), K(+)-ATPase and Na(+), K(+), 2Cl(-) Cotransporter 1 to Tolerate Osmotic Stress. Zoolog Sci 2017; 33:414-25. [PMID: 27498801 DOI: 10.2108/zs150157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study aimed to evaluate the osmoregulatory mechanism of Daisy's medaka, O. woworae,as well as demonstrate the major factors affecting the hypo-osmoregulatory characteristics of euryhaline and stenohaline medaka. The medaka phylogenetic tree indicates that Daisy's medaka belongs to the celebensis species group. The salinity tolerance of Daisy's medaka was assessed. Our findings revealed that 20‰ (hypertonic) saltwater (SW) was lethal to Daisy's medaka. However, 62.5% of individuals survived 10‰ (isotonic) SW with pre-acclimation to 5‰ SW for one week. This transfer regime, "Experimental (Exp.) 10‰ SW", was used in the following experiments. After 10‰ SW-transfer, the plasma osmolality of Daisy's medaka significantly increased. The protein abundance and distribution of branchial Na(+), K(+)-ATPase (NKA) and Na(+), K(+), 2Cl(-) cotransporter 1 (NKCC1) were also examined after transfer to 10‰ SW for one week. Gill NKA activity increased significantly after transfer to 10‰ SW. Meanwhile, elevation of gill NKA αα-subunit protein-abundance was found in the 10‰ SW-acclimated fish. In gill cross-sections, more and larger NKA-immunoreactive (NKA-IR) cells were observed in the Exp. 10‰ SW medaka. The relative abundance of branchial NKCC1 protein increased significantly after transfer to 10‰ SW. NKCC1 was distributed in the basolateral membrane of NKA-IR cells of the Exp. 10‰ SW group. Furthermore, a higher abundance of NKCC1 protein was found in the gill homogenates of the euryhaline medaka, O. dancena, than in that of the stenohaline medaka, O. woworae.
Collapse
Affiliation(s)
- Jiun-Jang Juo
- 1 Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.,† JJJ, CKK, and WKY contributed equally to this paper
| | - Chao-Kai Kang
- 2 Tainan Hydraulics Laboratory, National Cheng Kung University, Tainan 709, Taiwan.,† JJJ, CKK, and WKY contributed equally to this paper
| | - Wen-Kai Yang
- 1 Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.,† JJJ, CKK, and WKY contributed equally to this paper
| | - Shu-Yuan Yang
- 1 Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Tsung-Han Lee
- 1 Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.,3 Department of Biological Science and Technology, China Medical University,Taichung 404, Taiwan
| |
Collapse
|
10
|
Morini M, Peñaranda DS, Vílchez MC, Tveiten H, Lafont AG, Dufour S, Pérez L, Asturiano JF. The expression of nuclear and membrane estrogen receptors in the European eel throughout spermatogenesis. Comp Biochem Physiol A Mol Integr Physiol 2017; 203:91-99. [DOI: 10.1016/j.cbpa.2016.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 02/02/2023]
|
11
|
Breves JP, Inokuchi M, Yamaguchi Y, Seale AP, Hunt BL, Watanabe S, Lerner DT, Kaneko T, Grau EG. Hormonal regulation of aquaporin 3: opposing actions of prolactin and cortisol in tilapia gill. J Endocrinol 2016; 230:325-37. [PMID: 27402066 DOI: 10.1530/joe-16-0162] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
Abstract
Aquaporins (Aqps) are expressed within key osmoregulatory tissues where they mediate the movement of water and selected solutes across cell membranes. We leveraged the functional plasticity of Mozambique tilapia (Oreochromis mossambicus) gill epithelium to examine how Aqp3, an aquaglyceroporin, is regulated in response to osmoregulatory demands. Particular attention was paid to the actions of critical osmoregulatory hormones, namely, prolactin (Prl), growth hormone and cortisol. Branchial aqp3 mRNA levels were modulated following changes in environmental salinity, with enhanced aqp3 mRNA expression upon transfer from seawater to freshwater (FW). Accordingly, extensive Aqp3 immunoreactivity was localized to cell membranes of branchial epithelium in FW-acclimated animals. Upon transferring hypophysectomized tilapia to FW, we identified that a pituitary factor(s) is required for Aqp3 expression in FW. Replacement with ovine Prl (oPrl) was sufficient to stimulate Aqp3 expression in hypophysectomized animals held in FW, an effect blocked by coinjection with cortisol. Both oPrl and native tilapia Prls (tPrl177 and tPrl188) stimulated aqp3 in incubated gill filaments in a concentration-related manner. Consistent with in vivo responses, coincubation with cortisol blocked oPrl-stimulated aqp3 expression in vitro Our data indicate that Prl and cortisol act directly upon branchial epithelium to regulate Aqp3 in tilapia. Thus, within the context of the diverse actions of Prl on hydromineral balance in vertebrates, we define a new role for Prl as a regulator of Aqp expression.
Collapse
Affiliation(s)
- Jason P Breves
- Department of BiologySkidmore College, Saratoga Springs, New York, USA
| | - Mayu Inokuchi
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA Department of Aquatic BioscienceGraduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yoko Yamaguchi
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | - Andre P Seale
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | - Bethany L Hunt
- Department of BiologySkidmore College, Saratoga Springs, New York, USA
| | - Soichi Watanabe
- Department of Aquatic BioscienceGraduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Darren T Lerner
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA University of Hawai'i Sea Grant College ProgramUniversity of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Toyoji Kaneko
- Department of Aquatic BioscienceGraduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, Japan
| | - E Gordon Grau
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| |
Collapse
|
12
|
Synergic stress in striped catfish (Pangasianodon hypophthalmus, S.) exposed to chronic salinity and bacterial infection: Effects on kidney protein expression profile. J Proteomics 2016; 142:91-101. [DOI: 10.1016/j.jprot.2016.04.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022]
|
13
|
Verhille CE, Dabruzzi TF, Cocherell DE, Mahardja B, Feyrer F, Foin TC, Baerwald MR, Fangue NA. Inter-population differences in salinity tolerance and osmoregulation of juvenile wild and hatchery-born Sacramento splittail. CONSERVATION PHYSIOLOGY 2016; 4:cov063. [PMID: 27293743 PMCID: PMC4758839 DOI: 10.1093/conphys/cov063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/17/2015] [Accepted: 11/26/2015] [Indexed: 06/06/2023]
Abstract
The Sacramento splittail (Pogonichthys macrolepidotus) is a minnow endemic to the highly modified San Francisco Estuary of California, USA and its associated rivers and tributaries. This species is composed of two genetically distinct populations, which, according to field observations and otolith strontium signatures, show largely allopatric distribution patterns as recently hatched juveniles. Juvenile Central Valley splittail are found primarily in the nearly fresh waters of the Sacramento and San Joaquin rivers and their tributaries, whereas San Pablo juveniles are found in the typically higher-salinity waters (i.e. up to 10‰) of the Napa and Petaluma Rivers. As the large salinity differences between young-of-year habitats may indicate population-specific differences in salinity tolerance, we hypothesized that juvenile San Pablo and Central Valley splittail populations differ in their response to salinity. In hatchery-born and wild-caught juvenile San Pablo splittail, we found upper salinity tolerances, where mortalities occurred within 336 h of exposure to 16‰ or higher, which was higher than the upper salinity tolerance of 14‰ for wild-caught juvenile Central Valley splittail. This, in conjunction with slower recovery of plasma osmolality, but not ion levels, muscle moisture or gill Na(+),K(+)-ATPase activity, in Central Valley relative to San Pablo splittail during osmoregulatory disturbance provides some support for our hypothesis of inter-population variation in salinity tolerance and osmoregulation. The modestly improved salinity tolerance of San Pablo splittail is consistent with its use of higher-salinity habitats. Although confirmation of the putative adaptive difference through further studies is recommended, this may highlight the need for population-specific management considerations.
Collapse
Affiliation(s)
- Christine E Verhille
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA 95616, USA
| | - Theresa F Dabruzzi
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA 95616, USA
| | - Dennis E Cocherell
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA 95616, USA
| | - Brian Mahardja
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Frederick Feyrer
- US Geological Survey, California Water Science Center, Sacramento, CA 95819-6129, USA
| | - Theodore C Foin
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Melinda R Baerwald
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Nann A Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
14
|
Liew HJ, Fazio A, Faggio C, Blust R, De Boeck G. Cortisol affects metabolic and ionoregulatory responses to a different extent depending on feeding ration in common carp, Cyprinus carpio. Comp Biochem Physiol A Mol Integr Physiol 2015. [DOI: 10.1016/j.cbpa.2015.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Thanh NM, Jung H, Lyons RE, Njaci I, Yoon BH, Chand V, Tuan NV, Thu VTM, Mather P. Optimizing de novo transcriptome assembly and extending genomic resources for striped catfish (Pangasianodon hypophthalmus). Mar Genomics 2015; 23:87-97. [PMID: 25979246 DOI: 10.1016/j.margen.2015.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/03/2015] [Accepted: 05/03/2015] [Indexed: 12/17/2022]
Abstract
Striped catfish (Pangasianodon hypophthalmus) is a commercially important freshwater fish used in inland aquaculture in the Mekong Delta, Vietnam. The culture industry is facing a significant challenge however from saltwater intrusion into many low topographical coastal provinces across the Mekong Delta as a result of predicted climate change impacts. Developing genomic resources for this species can facilitate the production of improved culture lines that can withstand raised salinity conditions, and so we have applied high-throughput Ion Torrent sequencing of transcriptome libraries from six target osmoregulatory organs from striped catfish as a genomic resource for use in future selection strategies. We obtained 12,177,770 reads after trimming and processing with an average length of 97bp. De novo assemblies were generated using CLC Genomic Workbench, Trinity and Velvet/Oases with the best overall contig performance resulting from the CLC assembly. De novo assembly using CLC yielded 66,451 contigs with an average length of 478bp and N50 length of 506bp. A total of 37,969 contigs (57%) possessed significant similarity with proteins in the non-redundant database. Comparative analyses revealed that a significant number of contigs matched sequences reported in other teleost fishes, ranging in similarity from 45.2% with Atlantic cod to 52% with zebrafish. In addition, 28,879 simple sequence repeats (SSRs) and 55,721 single nucleotide polymorphisms (SNPs) were detected in the striped catfish transcriptome. The sequence collection generated in the current study represents the most comprehensive genomic resource for P. hypophthalmus available to date. Our results illustrate the utility of next-generation sequencing as an efficient tool for constructing a large genomic database for marker development in non-model species.
Collapse
Affiliation(s)
- Nguyen Minh Thanh
- International University - VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Hyungtaek Jung
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia; Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Russell E Lyons
- Animal Genetics Laboratory, School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia.
| | - Isaac Njaci
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Byoung-Ha Yoon
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, Korea University of Science and Technology, Daejoen 305-333, Republic of Korea.
| | - Vincent Chand
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Nguyen Viet Tuan
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Vo Thi Minh Thu
- International University - VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Peter Mather
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| |
Collapse
|
16
|
Nakkrasae LI, Wisetdee K, Charoenphandhu N. Osmoregulatory adaptations of freshwater air-breathing snakehead fish (Channa striata) after exposure to brackish water. J Comp Physiol B 2015; 185:527-37. [PMID: 25899744 DOI: 10.1007/s00360-015-0902-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 11/29/2022]
Abstract
NaCl-rich rock salt dissolved in natural water source leads to salinity fluctuation that profoundly affects freshwater ecosystem and aquatic fauna. The snakehead (Channa striata) can live in saline water, but the osmoregulatory mechanisms underlying this ability remain unclear. Herein, we found that exposure to salinities ≥ 10‰ NaCl markedly elevated plasma cortisol and glucose levels, and caused muscle dehydration. In a study of time-dependent response after being transferred from fresh water (0‰ NaCl, FW) to salt-dissolved brackish water (10‰ NaCl, SW), FW-SW, cortisol increased rapidly along with elevations of plasma glucose and lactate. Interestingly, plasma cortisol returned to baseline after prolonged exposure, followed by a second peak that probably enhanced the branchial Na(+)/K(+)-ATPase activity. Under SW-FW condition, Na(+)/K(+)-ATPase activity was not altered as compared to SW-adapted fish. In conclusion, salinity change, especially FW-SW, induced a stress response and hence cortisol release in C. striata, which might increase plasma glucose and lactate to energize the branchial Na(+)/K(+)-ATPase.
Collapse
Affiliation(s)
- La-iad Nakkrasae
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand,
| | | | | |
Collapse
|
17
|
Nguyen PTH, Do HTT, Mather PB, Hurwood DA. Experimental assessment of the effects of sublethal salinities on growth performance and stress in cultured tra catfish (Pangasianodon hypophthalmus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1839-1848. [PMID: 25139325 DOI: 10.1007/s10695-014-9972-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 08/10/2014] [Indexed: 06/03/2023]
Abstract
The effects of a range of different sublethal salinities were assessed on physiological processes and growth performance in the freshwater 'tra' catfish (Pangasianodon hypophthalmus) juveniles over an 8-week experiment. Fish were distributed randomly among 6 salinity treatments [2, 6, 10, 14 and 18 g/L of salinity and a control (0 g/L)] with a subsequent 13-day period of acclimation. Low salinity conditions from 2 to 10 g/L provided optimal conditions with high survival and good growth performance, while 0 g/L and salinities >14 g/L gave poorer survival rates (p < 0.05). Salinity levels from freshwater to 10 g/L did not have any negative effects on fish weight gain, daily weight gain, or specific growth rate. Food conversion ratio, however, was lowest in the control treatment (p < 0.05) and highest at the maximum salinities tested (18 g/L treatment). Cortisol levels were elevated in the 14 and 18 g/L treatments after 6 h and reached a peak after 24-h exposure, and this also led to increases in plasma glucose concentration. After 14 days, surviving fish in all treatments appeared to have acclimated to their respective conditions with cortisol levels remaining under 5 ng/mL with glucose concentrations stable. Tra catfish do not appear to be efficient osmoregulators when salinity levels exceed 10 g/L, and at raised salinity levels, growth performance is compromised. In general, results of this study confirm that providing culture environments in the Mekong River Basin do not exceed 10 g/L salinity and that cultured tra catfish can continue to perform well.
Collapse
Affiliation(s)
- Phuc Trong Hong Nguyen
- Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4001, Australia,
| | | | | | | |
Collapse
|
18
|
Soldatov AA. Mass-transfer, utilization, and diffusion of oxygen in skeletal muscles of the stenohaline goby Gobius cobitus pallas under conditions of hypoosmotic medium. J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s0022093013020114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Breves JP, Serizier SB, Goffin V, McCormick SD, Karlstrom RO. Prolactin regulates transcription of the ion uptake Na+/Cl- cotransporter (ncc) gene in zebrafish gill. Mol Cell Endocrinol 2013; 369:98-106. [PMID: 23395804 PMCID: PMC3664226 DOI: 10.1016/j.mce.2013.01.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 01/04/2013] [Accepted: 01/14/2013] [Indexed: 01/07/2023]
Abstract
Prolactin (PRL) is a well-known regulator of ion and water transport within osmoregulatory tissues across vertebrate species, yet how PRL acts on some of its target tissues remains poorly understood. Using zebrafish as a model, we show that ionocytes in the gill directly respond to systemic PRL to regulate mechanisms of ion uptake. Ion-poor conditions led to increases in the expression of PRL receptor (prlra), Na(+)/Cl(-) cotransporter (ncc; slc12a10.2), Na(+)/H(+) exchanger (nhe3b; slc9a3.2), and epithelial Ca(2+) channel (ecac; trpv6) transcripts within the gill. Intraperitoneal injection of ovine PRL (oPRL) increased ncc and prlra transcripts, but did not affect nhe3b or ecac. Consistent with direct PRL action in the gill, addition of oPRL to cultured gill filaments stimulated ncc in a concentration-dependent manner, an effect blocked by a pure human PRL receptor antagonist (Δ1-9-G129R-hPRL). These results suggest that PRL signaling through PRL receptors in the gill regulates the expression of ncc, thereby linking this pituitary hormone with an effector of Cl(-) uptake in zebrafish for the first time.
Collapse
Affiliation(s)
- Jason P. Breves
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Sandy B. Serizier
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Vincent Goffin
- Inserm, Unit 845, Research Center Growth and Signaling, Prolactin/GH Pathophysiology Laboratory, University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine, Necker site, Paris F-75015, France
| | - Stephen D. McCormick
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
- USGS, Conte Anadromous Fish Research Center, Turners Falls, MA 01376, USA
| | - Rolf O. Karlstrom
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
- Corresponding author. Phone: +1 413 577 3448; Fax: +1 413 545 3243 (R.O. Karlstrom)
| |
Collapse
|
20
|
Noh GE, Lim HK, Kim JM. Characterization of genes encoding prolactin and prolactin receptors in starry flounder Platichthys stellatus and their expression upon acclimation to freshwater. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:263-275. [PMID: 22843312 DOI: 10.1007/s10695-012-9697-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
This study aims to investigate the genes encoding prolactin (PRL) and prolactin receptors (PRLR) and their tissue-specific expression in starry flounder Platichthys stellatus. Starry flounder PRL gene consisting of five exons encodes an ORF of 212 amino acid residue comprised of a putative signal peptide of 24 amino acids and a mature protein of 188 amino acids. It showed amino acid identities of 73 % with tuna Thunnus thynnus, 71 % with black porgy Acanthopagrus schlegelii, 69 % with Nile tilapia Oreochromis niloticus, 64 % with pufferfish Takifugu rubripes, 63 % with rainbow trout Oncorhynchus mykiss, and 60 % with mangrove rivulus Kryptolebias marmoratus. Phylogenetic analysis of piscine PRLs also demonstrated a similarity between starry flounder and other teleosts but with a broad distinction from non-teleost PRLs. PRLR gene consists of eight exons encoding a protein of 528 amino acid residues. It showed a similarity to the PRLR2 subtype as reflected by amino acid identities of 54 % with A. schlegelii, 48.1 % with K. marmoratus, 46.3 % with tilapia O. mossambicus, and 46.1 % with O. niloticus PRLR2 as compared to PRLR1 isoform having less than 30 % identities. While mRNA transcript corresponding to PRL was detected only from the pituitary, most of PRLR mRNA was detected in the gill, kidney, and intestine, with a small amount in the ovary. The level of PRL transcript progressively increased during 6 days of acclimation to freshwater and then decreased but stayed higher than that of seawater at 60 days of acclimation. An opposite pattern of changes including a decrease at the beginning of the acclimation but a slight increase in the level osmolality was found as adaptation continued. The results support the osmoregulatory role of PRL signaling in starry flounder.
Collapse
Affiliation(s)
- Gyeong Eon Noh
- Department of Fishery Biology, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | |
Collapse
|
21
|
Chasiotis H, Kelly SP. Effects of elevated circulating cortisol levels on hydromineral status and gill tight junction protein abundance in the stenohaline goldfish. Gen Comp Endocrinol 2012; 175:277-83. [PMID: 22137907 DOI: 10.1016/j.ygcen.2011.11.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/12/2011] [Accepted: 11/15/2011] [Indexed: 11/18/2022]
Abstract
A role for cortisol in the regulation of hydromineral balance and gill tight junction (TJ) protein transcript abundance in the stenohaline freshwater goldfish was investigated. Intraperitoneal cortisol implants (50, 100, 200, 400 μg cortisol/g body weight) were used to dose-dependently elevate circulating cortisol levels over a 4 day period. Elevated cortisol did not significantly alter serum osmolality, serum Na(+) or muscle water content, however serum glucose and gill Na(+)-K(+)-ATPase activity were significantly increased and serum Cl(-) levels were significantly reduced when compared to control groups. Transcript levels for glucocorticoid receptor 1 (GR1) and mineralocorticoid receptor (MR) in the gill remained unchanged by cortisol treatment, however glucocorticoid receptor 2 (GR2) mRNA abundance was significantly down-regulated. Conversely, cortisol treatment significantly increased transcript and protein abundance of the TJ protein occludin in goldfish gill tissue, as well as mRNA abundance for claudin e, 7 and 8d. Goldfish tissue expression profiles demonstrated that transcripts encoding for these claudins are particularly abundant in the gill. Overall, results suggest a 'tightened' gill epithelium in response to elevated cortisol levels in goldfish. However, negative autoregulation of gill GR2 transcript suggests a lessened capacity to respond to cortisol and thus a potentially 'dampened' corticosteroid-mediated effect in the gill. Reduced systemic Cl(-) levels also suggest that sustained cortisol elevation in goldfish may have a detrimental effect on other ionoregulatory tissues.
Collapse
Affiliation(s)
- Helen Chasiotis
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3.
| | | |
Collapse
|
22
|
Kwong AKY, Woo NYS. The importance of the olfactory rosettes in maintaining pituitary prolactin and prolactin-releasing peptide levels during hyposmotic acclimation in silver sea bream (Sparus sarba). Comp Biochem Physiol A Mol Integr Physiol 2012; 161:456-62. [PMID: 22266396 DOI: 10.1016/j.cbpa.2012.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/06/2012] [Accepted: 01/06/2012] [Indexed: 11/19/2022]
Abstract
A potential role of the olfactory rosettes in maintaining prolactin (PRL) and prolactin-releasing peptide (PrRP) levels was examined in the euryhaline silver sea bream (Sparus sarba). The olfactory rosettes were surgically removed in silver sea bream adapted to hypo- (6 ppt) and hyper-osmotic (33 ppt) salinities and the mRNA expression of the two previously identified freshwater-adapting factors, prolactin (PRL) and prolactin-releasing peptide (PrRP), in silver sea bream was measured. The elevation of pituitary PRL and PrRP mRNA expression levels as seen in 6 ppt-adapted fish was abolished by surgical removal of the olfactory rosettes. The PRL and PrRP expression levels in fish adapted to 6 ppt were significantly lowered following olfactory rosette removal. On the other hand, hypothalamic PrRP mRNA expression in 6 ppt-adapted fish did not change. Specific signals for Na(+)-K(+)-ATPase but not CFTR mRNA expression were detected in the surface layers of olfactory epithelial cells by in situ hybridization. The mRNA abundance of CFTR and Na(+)-K(+)-ATPase α and β subunits remained unchanged in the olfactory rosette of silver sea bream adapted to 0, 6, 12, 33 and 50 ppt for 4 weeks and in fish abruptly transferred from 33 ppt to 6 ppt. Data obtained from the olfactory rosette removal experiments suggest a possible role of the olfactory system for maintaining PRL and PrRP expression during hyposmotic acclimation in sea bream.
Collapse
Affiliation(s)
- Anna K Y Kwong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | |
Collapse
|
23
|
|
24
|
Salati AP, Baghbanzadeh A, Soltani M, Peyghan R, Riazi G. Effect of different levels of salinity on gill and kidney function in common carpCyprinus carpio(Pisces: Cyprinidae). ACTA ACUST UNITED AC 2011. [DOI: 10.1080/11250003.2011.567400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Rhee JS, Kim RO, Seo JS, Lee J, Lee YM, Lee JS. Effects of salinity and endocrine-disrupting chemicals on expression of prolactin and prolactin receptor genes in the euryhaline hermaphroditic fish, Kryptolebias marmoratus. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:413-23. [PMID: 20620225 DOI: 10.1016/j.cbpc.2010.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 07/02/2010] [Accepted: 07/04/2010] [Indexed: 11/15/2022]
Abstract
Prolactin plays an essential role in ion uptake as well as reduction in ion and water permeability of osmoregulatory surfaces in euryhaline fish. Kryptolebias marmoratus is a euryhaline fish with unique internal self-fertilization. In order to understand the effect of different salinities and environmental endocrine-disrupting chemicals (EDCs) on the regulation of prolactin (PRL) and prolactin receptor (PRLR) genes, the full-length sequences of PRL and two PRLR genes were cloned from K. marmoratus. The expression pattern of K. marmoratus PRL (Km-PRL) and PRLR (Km-PRLR1, Km-PRLR2) mRNAs was analyzed in different developmental stages (2dpf to 5h post-hatching) and tissues of hermaphrodite fish. To investigate the effects of salinity changes and EDC exposure, the mRNA expression pattern of PRL, PRLR1 and PRLR2 was analyzed in exposed fish. The Km-PRL mRNA in the hermaphrodite was predominantly expressed in the brain/pituitary, the Km-PRLR1 mRNA was highly expressed in the intestine, while the Km-PRLR2 mRNA was intensively expressed in the gills. The expression of the Km-PRL mRNA generally increased from stage 1 (2 dpf) to stage 3 (12 dpf) in a developmental, stage-dependent manner. It decreased in stage 4 (12 dpf) and the hatching stage (stage 5). Km-PRLR1 and Km-PRLR2 mRNAs showed a gradual increase in expression from stage 1 (2 dpf) to stage 4 (12 dpf) and decreased by stage 5 (5 h post-hatching). Also, both mRNAs of PRLR showed a different expression pattern after exposure to different salinity concentrations (0, 33, and 50 ppt) in juvenile fish. The expression of PRL mRNA was upregulated at 0 ppt, but was downregulated at a moderately higher salinity concentration (33 to 50 ppt). The Km-PRLR1 mRNA showed upregulation at freshwater stress (0 ppt) compared to other concentrations of salinity (33 ppt to 50 ppt). The Km-PRLR2 mRNA was marginally upregulated at freshwater stress (0 ppt), but was downregulated at a higher salinity concentration (50 ppt) and showed no significant change in expression at 33 ppt salinity. Interestingly, both mRNAs showed upregulation in the brain (e.g. Km-PRL) and intestine (e.g. Km-PRLR1) after EDC exposure. These findings suggested that Km-PRL and two Km-PRLR mRNAs would be useful in analyzing the effect of different salinities as well as the modulatory effect of EDC exposure on these gene expressions in K. marmoratus.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | |
Collapse
|
26
|
Breves JP, Watanabe S, Kaneko T, Hirano T, Grau EG. Prolactin restores branchial mitochondrion-rich cells expressing Na+/Cl- cotransporter in hypophysectomized Mozambique tilapia. Am J Physiol Regul Integr Comp Physiol 2010; 299:R702-10. [PMID: 20504910 DOI: 10.1152/ajpregu.00213.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypophysectomy and hormone replacement therapy were conducted to investigate the regulation of branchial mitochondrion-rich cell (MRC) recruitment and hormone receptor expression in euryhaline tilapia (Oreochromis mossambicus). Gene expression and immunolocalization of Na(+)/Cl(-) cotransporter (NCC) and Na(+)/K(+)/2Cl(-) cotransporter (NKCC) were used as markers for freshwater (FW)- and seawater (SW)-type MRCs, respectively. In FW fish, hypophysectomy resulted in a significant drop in plasma osmolality, an effect associated with a marked reduction of NCC gene expression and the disappearance of MRCs with apical-NCC immunoreactivity. In contrast, hypophysectomy in SW fish did not impact plasma osmolality, NKCC, or Na(+), K(+)-ATPase(alpha1) gene expression, or the recruitment of MRCs with basolateral-NKCC. Hypophysectomized fish in SW exhibited reduced mRNA levels of prolactin (PRL) receptor 1 and growth hormone (GH) receptor in the gill; GH receptor expression was also reduced following hypophysectomy in FW. PRL replacement therapy restored NCC gene expression and the appearance of MRCs with apical NCC in both FW and SW; there was no interaction of PRL with cortisol. In FW, cortisol modestly stimulated NKCC mRNA levels, while no effect of GH was evident. In SW, no clear effects of hormone replacement on gene expression of NKCC, Na(+), K(+)-ATPase(alpha1), or hormone receptors were detected. Taken together, the essential nature of PRL to survival of Mozambique tilapia in FW is derived, at least in part, from its ability to stimulate the recruitment of MRCs that express NCC, while recruitment of SW-type MRCs does not require pituitary mediation in this euryhaline tilapia.
Collapse
Affiliation(s)
- Jason P Breves
- Hawaii Institute of Marine Biology, Univ. of Hawaii, P.O. Box 1346, Kaneohe, HI 96744, USA
| | | | | | | | | |
Collapse
|
27
|
Cao YB, Chen XQ, Wang S, Chen XC, Wang YX, Chang JP, Du JZ. Growth hormone and insulin-like growth factor of naked carp (Gymnocypris przewalskii) in Lake Qinghai: expression in different water environments. Gen Comp Endocrinol 2009; 161:400-6. [PMID: 19233187 DOI: 10.1016/j.ygcen.2009.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 01/10/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
Here, we report the cloning and characterization of growth hormone (GH), insulin-like growth factor-I (IGF-I) and IGF-II from naked carp (Gymnocypris przewalskii), a native teleost fish of Lake Qinghai in the Qinghai-Tibet Plateau of China. The GH of naked carp encodes for a predicted amino acid sequence showing identities of 63%, 63%, 91% and 94% with cherry salmon, rainbow trout, zebrafish and grass carp, respectively. Compared to common carp and goldfish, evolutionary analysis showed that genome duplication has had less influence on the relaxation of purifying selection in the evolution of naked carp GH. Sequence analysis of naked carp IGF-I (ncIGF-I) and ncIGF-II showed a high degree of homology with known fish IGF-I and IGF-II. To investigate effects of salinity and ionic composition of the aquatic environment on the GH-IGF axis in naked carp, male fish held in river water were assigned randomly to 4 groups: RW (river-water), RW+Na (NaCl in RW), RW+Mg (MgCl(2) in RW) and LW (lake-water) groups. The concentrations of Na(+) in RW+Na and Mg(2+) in RW+Mg were equal to the concentrations of these ions in lake-water. After 2 days of exposure, the plasma IGF-I levels in the RW+Na and LW groups were significantly higher than the control group (RW), and the plasma GH levels of the LW group were also significantly higher than the RW group. The somatostatin (SS) levels in the hypothalamus significantly increased in the RW+Na group. After 5 days of exposure, these hormone levels did not differ significantly among groups. These results indicate that while the plasma GH and IGF-I levels are osmosensitive, the absence of a change in GH secretion in RW+Na might be partly due to a transiently increased release of hypothalamic SS induced by the stress of neutral-saline water. This is the first report of a salinity-induced increase of GH-IGF-I circulating levels in Cypriniformes.
Collapse
Affiliation(s)
- Yi-Bin Cao
- Division of Neurobiology and Physiology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Uchida K, Moriyama S, Breves JP, Fox BK, Pierce AL, Borski RJ, Hirano T, Grau EG. cDNA cloning and isolation of somatolactin in Mozambique tilapia and effects of seawater acclimation, confinement stress, and fasting on its pituitary expression. Gen Comp Endocrinol 2009; 161:162-70. [PMID: 19133264 DOI: 10.1016/j.ygcen.2008.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 11/05/2008] [Accepted: 11/20/2008] [Indexed: 01/13/2023]
Abstract
Somatolactin (SL) is a member of the growth hormone (GH)/prolactin (PRL) family of pituitary hormones, and is found in a variety of teleost species. Somatolactin is thought to be involved in a wide range of physiological actions, including reproduction, stress response, the regulation of Ca(2+) and acid-base balance, growth, metabolism, and immune response. We report here on the cDNA structure of SL from the pituitary of Mozambique tilapia, Oreochromis mossambicus, and its gene expression in response to seawater acclimation, stress, and fasting. Tilapia SL cDNA (1573bp long) encoded a prehormone of 230 amino acids. Sequence analysis of purified SL revealed that the prehormone is composed of a signal peptide of 23 amino acids and a mature protein of 207 amino acids, which has a possible N-glycosylation site at position 121 and seven Cys residues. Tilapia SL shows over 80% amino acid identity with SLalpha of advanced teleosts such as medaka and flounder, and around 50% identity with SLbeta of carp and goldfish. Acclimation to seawater had no effect on pituitary expression of SL or on hepatic expression of the putative tilapia SL receptor (GHR1). By contrast, seawater acclimation resulted in significant increases in pituitary GH expression and in hepatic expression of tilapia GH receptor (GHR2). Confinement stress had no effect on pituitary expression of either SL or GH, or on hepatic expression of GHR1, whereas a significant increase was seen in GHR2 expression in the liver. Fasting for 4 weeks resulted in significant reductions in SL transcripts both in fresh water and seawater. It is highly likely that SL is involved in metabolic processes in tilapia along with the GH/IGF-I axis.
Collapse
Affiliation(s)
- Katsuhisa Uchida
- Sado Marine Biological Station, Niigata University, Sado, Niigata, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tomy S, Chang YM, Chen YH, Cao JC, Wang TP, Chang CF. Salinity effects on the expression of osmoregulatory genes in the euryhaline black porgy Acanthopagrus schlegeli. Gen Comp Endocrinol 2009; 161:123-32. [PMID: 19116154 DOI: 10.1016/j.ygcen.2008.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/22/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
Black porgy is a marine euryhaline species with a capacity to cope with demands in a wide range of salinities and thus is a perfect model-fish to study osmoregulatory responses to salinity-acclimated processes and their hormonal control. The present study was performed to understand the regulatory changes in hormone, hormone receptors and important osmoregulatory genes in pituitary, gill, intestine and kidney in response to acute salinity stress. Transcript levels were analyzed by quantitative real-time PCR following acute salinity challenge by direct transfer of seawater (SW) acclimatized fish to fresh water (FWBP) and vice versa (SWBP). SW acclimation significantly increased plasma osmolality and intestine Na+/K+-ATPase (NKA) activity while FW acclimation increased plasma cortisol and branchial NKA activity. Plasma osmolality and chloride concentration decreased in FWBP whereas GH levels remained unchanged in both FWBP and SWBP. Comparative analysis of gene profiles between FWBP and SWBP showed that pituitary prolactin transcript increased significantly in FWBP. Prolactin receptor (PRLR) transcripts increased in gill of FWBP while it decreased in gill and kidney of SWBP. NKA transcripts increased in gill of both FWBP and SWBP, while it decreased in intestine of FWBP and increased in intestine and kidney of SWBP. Glucocorticoid receptor (GR) transcripts decreased in intestine and kidney of FWBP while it increased in gill and intestine of SWBP. No significant changes were observed in growth hormone receptor (GHR) transcripts of both FWBP and SWBP in pituitary, gill, intestine and kidney. Our current data demonstrated the correlation between PRLR gene expression in relation to FW adaptation, and GR gene expression in relation to SW adaptation in euryhaline black porgy. The results indicate that black porgy has an excellent osmoregulatory capacity and is capable of withstanding large variations in salinity.
Collapse
Affiliation(s)
- Sherly Tomy
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Kwong AKY, Ng AHY, Leung LY, Man AKY, Woo NYS. Effect of extracellular osmolality and ionic levels on pituitary prolactin release in euryhaline silver sea bream (Sparus sarba). Gen Comp Endocrinol 2009; 160:67-75. [PMID: 19027016 DOI: 10.1016/j.ygcen.2008.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 09/01/2008] [Accepted: 10/22/2008] [Indexed: 11/25/2022]
Abstract
In many euryhaline fish, prolactin (PRL) plays a key role in freshwater adaptation. Consistent with this function, the present study showed a remarkable reduction in pituitary PRL content of silver sea bream abruptly transferred to low salinity (6ppt). This reduction in pituitary PRL content followed closely the temporal changes in serum osmolality and ion levels. Serum osmolality, Na(+) and Cl(-) levels of silver sea bream abruptly transferred to hyposmotic salinity (6ppt) were markedly reduced 2h after the transfer. The decline in pituitary PRL content lagged behind the serum changes implying that reduction in pituitary PRL content is a response to the drop in serum ion levels and osmotic pressure. Silver sea bream pituitary cells were dispersed and exposed to a medium with reduced ion levels and osmolality in vitro, and PRL released from pituitary cells was significantly elevated. In hyposmotic exposed anterior pituitary cells, cell volume exhibited a 20% increase when exposed to a medium with a 20% decrease in osmolality. The enlarged pituitary cells did not shrink until the surrounding hyposmotic medium was replaced, a phenomenon suggesting an osmosensing ability of silver sea bream PRL cells for PRL secretion in response to a change in extracellular osmotic pressure. The decrease in pituitary PRL content in vivo and stimulated pituitary PRL release in vitro under reduced osmolality together suggest hyposmotic exposure triggers PRL release from the pituitary.
Collapse
Affiliation(s)
- Anna K Y Kwong
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | | | | | | | | |
Collapse
|
31
|
Sherwani FA, Parwez I. Plasma Thyroxine and Cortisol Profiles and Gill and Kidney Na+/K+-ATPase and SDH Activities During Acclimation of the Catfish Heteropneustes fossilis (Bloch) to Higher Salinity, with Special Reference to the Effects of Exogenous Cortisol on Hypo-Osmoregulatory Ability of the Catfish. Zoolog Sci 2008; 25:164-71. [DOI: 10.2108/zsj.25.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 10/15/2007] [Indexed: 11/17/2022]
|
32
|
Tsuzuki M, Ogawa K, Strüssmann C, Maita M, Takashima F, Melo C. The significance of cortisol on acclimation to salinity in pejerrey Odontesthes bonariensis. ARQ BRAS MED VET ZOO 2007. [DOI: 10.1590/s0102-09352007000500030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of cortisol on the osmoregulation of pejerrey Odontesthes bonariensis at different salinities was investigated in adult fish injected with 0.7mg hydrocortisone per 100g body weight of fish, and transferred to 0, 5 and 20ppt of NaCl. Blood cortisol was 566ng/ml at the beginning of the experiment (0h) but surged to 1250ng/ml within 3h in cortisol-injected fish. Cortisol levels were influenced not only by treatment but also by time, being higher at 3h compared to 24h. Salinity level, time of exposure and their interaction, but not cortisol treatment, significantly affected plasma osmolality and the concentration of ions Cl- and Na+. This study showed that exogenous cortisol does not seem to play a significant role on the regulation of plasma osmolality and concentration of individual ions in pejerrey.
Collapse
Affiliation(s)
- M.Y. Tsuzuki
- Tokyo University of Marine Science and Technology, Japan
| | - K. Ogawa
- Tokyo University of Marine Science and Technology, Japan
| | | | - M. Maita
- Tokyo University of Marine Science and Technology, Japan
| | - F. Takashima
- Tokyo University of Marine Science and Technology, Japan
| | | |
Collapse
|
33
|
Fiess JC, Kunkel-Patterson A, Mathias L, Riley LG, Yancey PH, Hirano T, Grau EG. Effects of environmental salinity and temperature on osmoregulatory ability, organic osmolytes, and plasma hormone profiles in the Mozambique tilapia (Oreochromis mossambicus). Comp Biochem Physiol A Mol Integr Physiol 2007; 146:252-64. [PMID: 17134926 DOI: 10.1016/j.cbpa.2006.10.027] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 09/04/2006] [Accepted: 10/16/2006] [Indexed: 10/24/2022]
Abstract
The Mozambique tilapia, Oreochromis mossambicus, is capable of surviving a wide range of salinities and temperatures. The present study was undertaken to investigate the influence of environmental salinity and temperature on osmoregulatory ability, organic osmolytes and plasma hormone profiles in the tilapia. Fish were acclimated to fresh water (FW), seawater (SW) or double-strength seawater (200% SW) at 20, 28 or 35 degrees C for 7 days. Plasma osmolality increased significantly as environmental salinity and temperature increased. Marked increases in gill Na(+), K(+)-ATPase activity were observed at all temperatures in the fish acclimated to 200% SW. By contrast, Na(+), K(+)-ATPase activity was not affected by temperature at any salinity. Plasma glucose levels increased significantly with the increase in salinity and temperature. Significant correlations were observed between plasma glucose and osmolality. In brain and kidney, content of myo-inositol increased in parallel with plasma osmolality. In muscle and liver, there were similar increases in glycine and taurine, respectively. Glucose content in liver decreased significantly in the fish in 200% SW. Plasma prolactin levels decreased significantly after acclimation to SW or 200% SW. Plasma levels of cortisol and growth hormone were highly variable, and no consistent effect of salinity or temperature was observed. Although there was no significant difference among fish acclimated to different salinity at 20 degrees C, plasma IGF-I levels at 28 degrees C increased significantly with the increase in salinity. Highest levels of IGF-I were observed in SW fish at 35 degrees C. These results indicate that alterations in gill Na(+), K(+)-ATPase activity and glucose metabolism, the accumulation of organic osmolytes in some organs as well as plasma profiles of osmoregulatory hormones are sensitive to salinity and temperature acclimation in tilapia.
Collapse
Affiliation(s)
- Jeanette C Fiess
- Department of Zoology and Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii 96744, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Chang YJ, Min BH, Choi CY. Black porgy (Acanthopagrus schlegeli) prolactin cDNA sequence: mRNA expression and blood physiological responses during freshwater acclimation. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:122-8. [PMID: 17329140 DOI: 10.1016/j.cbpb.2007.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 01/02/2007] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
To investigate the consequences of freshwater (FW) transfer, we studied the prolactin (PRL) cDNA sequence and its mRNA expression, and physiological responses in the black porgy (Acanthopagrus schlegeli). We cloned and characterized cDNA encoding its PRL from the pituitary gland. Black porgy PRL cDNA consists of 1492 bp and encodes a protein of 212 amino acids including 24 signal peptides. Reverse transcription-PCR showed the PRL mRNA expression in the pituitary gland. Expression of pituitary gland PRL mRNA was significantly higher during FW acclimation. Furthermore, we studied the stress responses and osmoregulatory abilities of black porgy in changing salinities. Plasma cortisol, glucose, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) significantly increased in the fish immediately after transfer to FW. We also identified significant changes in the fish in terms of plasma ions (Na(+), Cl(-), Ca(2+)) and osmolality during the acclimation period. These results suggests that PRL plays an important role in hormonal regulation in osmoregulatory organs, thereby improving the hyperosmoregulatory ability of black porgy in freshwater.
Collapse
Affiliation(s)
- Young Jin Chang
- Department of Aquaculture, Pukyong National University, Busan, Republic of Korea
| | | | | |
Collapse
|
35
|
Boutet I, Lorin-Nebel C, De Lorgeril J, Guinand B. Molecular characterisation of prolactin and analysis of extrapituitary expression in the European sea bass Dicentrarchus labrax under various salinity conditions. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2006; 2:74-83. [PMID: 20483280 DOI: 10.1016/j.cbd.2006.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 12/04/2006] [Accepted: 12/04/2006] [Indexed: 10/23/2022]
Abstract
Although prolactin has been demonstrated to be the main hormone involved in adaptation to dilute media in several freshwater teleosts, few studies have been conducted in marine teleosts. In the Mediterranean, the sea bass Dicentrarchus labrax inhabits environments ranging from the open sea to coastal lagoons, where salinity varies greatly. We characterised the prolactin (prl) gene and analysed its expression in two organs (gill and intestine) in D. labrax acclimated to either freshwater or seawater. A 2819 bp long sequence encompassing the prl gene and a part (282 bp) of the promoter were identified, and these comprised 5 coding exons separated by 4 introns. Prolactin was similarly expressed in fresh- and seawater adapted fish, although expression in gills was significantly greater than in the intestine. Nonetheless, individuals unable to successfully regulate osmotic balance in freshwater presented overall low expression rates. Results are discussed according to the mechanism of sea bass adaptation in the wild and to their life cycle between open sea and lagoons. Finally, a phylogenetic analysis indicated that teleosts are not branched according to their life-history features (e.g. seawater vs. freshwater habitats), and no signature of positive selection was detected across the phylogeny of the prl gene in teleosts.
Collapse
Affiliation(s)
- I Boutet
- Laboratoire Génome Populations Interaction Adaptation, UMR CNRS IFREMER 5171, Université de Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | | | | | | |
Collapse
|
36
|
Yada T, Muto K, Azuma T, Fukamachi S, Kaneko T, Hirano T. Effects of Acid Water Exposure on Plasma Cortisol, Ion Balance, and Immune Functions in the “Cobalt” Variant of Rainbow Trout. Zoolog Sci 2006; 23:707-13. [PMID: 16971789 DOI: 10.2108/zsj.23.707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was undertaken to examine physiological responses to acidification of environmental water in the "cobalt" variant of rainbow trout (Oncorhynchus mykiss), which exhibits malformation of the pituitary, by following changes in plasma levels of cortisol and electrolytes, blood pH, gill Na(+), K(+)-ATPase activity, and immune functions after exposure to acid water (pH 4.5). Resting levels of plasma cortisol and lysozyme were significantly lower in the cobalt variant than in the normal trout, whereas plasma ceruloplasmin was significantly higher in the cobalt variant, suggesting that some endocrine factors, lacking or deficient in the cobalt variant, are important for the regulation of its immune functions. Blood pH was slightly but significantly lower in the cobalt variant at rest. After exposure to acid water for 24 h, both the normal trout and cobalt variant showed a significant elevation in plasma cortisol, although the increased level in the cobalt variant was still lower than that in the normal trout transferred to neutral water. No differences were seen in blood pH, plasma electrolytes, and gill Na(+), K(+)-ATPase activity between the normal trout and the cobalt variant, indicating that the cobalt variant regulates ion balance when exposed to acid water, despite malformation of the pituitary. Although the normal trout showed a reduction in plasma lysozyme level after acid exposure, there was no significant change in the cobalt trout. Adverse effects of pituitary malformation on ion balance and immune functions may be compensated by extrapituitary factors in the cobalt variant when it is exposed to acid water.
Collapse
Affiliation(s)
- Takashi Yada
- Freshwater Fisheries Research Division, National Research Institute of Fisheries Science, Nikko, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Sakamoto T, McCormick SD. Prolactin and growth hormone in fish osmoregulation. Gen Comp Endocrinol 2006; 147:24-30. [PMID: 16406056 DOI: 10.1016/j.ygcen.2005.10.008] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 10/22/2005] [Indexed: 11/29/2022]
Abstract
Prolactin is an important regulator of multiple biological functions in vertebrates, and has been viewed as essential to ion uptake as well as reduction in ion and water permeability of osmoregulatory surfaces in freshwater and euryhaline fish. Prolactin-releasing peptide seems to stimulate prolactin expression in the pituitary and peripheral organs during freshwater adaptation. Growth hormone, a member of the same family of hormones as prolactin, promotes acclimation to seawater in several teleost fish, at least in part through the action of insulin-like growth factor I. In branchial epithelia, development and differentiation of the seawater-type chloride cell (and their underlying biochemistry) is regulated by GH, IGF-I, and cortisol, whereas the freshwater-type chloride cell is regulated by prolactin and cortisol. In the epithelia of gastrointestinal tract, prolactin induces cell proliferation during freshwater adaptation, whereas cortisol stimulates both cell proliferation and apoptosis. We propose that control of salinity acclimation in teleosts by prolactin and growth hormone primarily involves regulation of cell proliferation, apoptosis, and differentiation (the latter including upregulation of specific ion transporters), and that there is an important interaction of these hormones with corticosteroids.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Laboratory, Faculty of Science, Okayama University, Ushimado, Okayama, Japan.
| | | |
Collapse
|
38
|
Kaiya H, Small BC, Bilodeau AL, Shepherd BS, Kojima M, Hosoda H, Kangawa K. Purification, cDNA cloning, and characterization of ghrelin in channel catfish, Ictalurus punctatus. Gen Comp Endocrinol 2005; 143:201-10. [PMID: 16111526 DOI: 10.1016/j.ygcen.2005.03.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 02/28/2005] [Accepted: 03/21/2005] [Indexed: 11/18/2022]
Abstract
The ghrelin peptide and cDNA encoding precursor protein were isolated from the stomach of a channel catfish, Ictalurus punctatus. Catfish ghrelin is a 22-amino acid peptide with a sequence of GSSFLSPTQKPQNRGDRKPPRV. The third serine residue has been modified by n-decanoic acid and unsaturated fatty acids; however, an octanoylated form could not be identified. The carboxyl end of the peptide possessed an amide structure. A Gly-extended, non-amidated 23-amino acid ghrelin (ghrelin-Gly) was also isolated. Real-time quantitative PCR analysis revealed high levels of gene expression in the stomach and moderate levels in the pancreas and gall bladder. Intraperitoneal (IP) injection of ghrelin increased plasma GH levels in the catfish, but the effect of ghrelin-Gly was more potent than that of amidated ghrelin. Furthermore, IP injection with both amidated ghrelin and ghrelin-Gly caused a significant increase in pituitary GH mRNA expression over a 3-h period. These results indicate that ghrelin is present in catfish and stimulates GH gene expression and GH release in channel catfish.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Peterson BC, Waldbieser GC, Bilodeau L. IGF-I and IGF-II mRNA expression in slow and fast growing families of USDA103 channel catfish (Ictalurus punctatus). Comp Biochem Physiol A Mol Integr Physiol 2005; 139:317-23. [PMID: 15556387 DOI: 10.1016/j.cbpb.2004.09.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 09/22/2004] [Accepted: 09/23/2004] [Indexed: 11/20/2022]
Abstract
The objective of this study was to examine insulin-like growth factor (IGF)-I and IGF-II mRNA levels in fast and slow growing families of catfish. Relative levels of IGF-I and IGF-II mRNA were determined by real-time PCR. Family A exhibited a specific growth rate (SGR) of 3.6 and was designated as fast growing, while family H exhibited a SGR of 3.1 and was designated as slow growing (P=0.017). Levels of IGF-II mRNA were 3.3-fold greater (P=0.006) in muscle for the fast growing family compared to the slow growing family. Levels of IGF-II mRNA were 1.8-fold greater (P=0.049) in liver for the fast growing family compared to the slow growing family. Levels of IGF-II mRNA from both fast and slow families were 12.2-fold greater (P<0.001) in muscle and 5.8-fold greater (P=0.021) in liver, respectively, compared to levels of IGF-I mRNA. Muscle and liver levels of IGF-I mRNA were similar between families. Elevated levels of IGF-II mRNA in muscle and liver compared to IGF-I mRNA, as well as differences in levels of IGF-II mRNA between fast and slow growing families of fish suggests a role of IGF-II in growth of channel catfish.
Collapse
Affiliation(s)
- Brian C Peterson
- USDA/ARS Catfish Genetics Research Unit, Thad Cochran National Warmwater Aquaculture Center, PO Box 38, Stoneville, MS 38776, USA.
| | | | | |
Collapse
|
40
|
Marchi B, Burlando B, Panfoli I, Dondero F, Viarengo A, Gallo G. Heavy metal interference with growth hormone signalling in trout hepatoma cells RTH-149. Biometals 2005; 18:179-90. [PMID: 15954744 DOI: 10.1007/s10534-004-6254-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have studied the effects of heavy metals (Hg2+, Cu2+, Cd2+) on growth hormone (GH) activation of tyrosine kinase and Ca2+ signaling in the trout (Oncorhynchus mykiss) hepatoma cell line RTH-149. Molecular cloning techniques using primer designed on Oncorhynchus spp. growth hormone receptor (GHR) genes allowed to isolate a highly homologous cDNA fragment from RTH-149 mRNA. Thereafter, cells were analysed by Western blotting or, alternatively, with Ca2+ imaging using fura-2/AM. Exposure of cells to ovine GH alone produced a stimulation of the JAK2/STAT5 pathway and intracellular free Ca2+ variations similar to what has been observed in mammalian models. Cell pre-exposure to Cu2+, Hg2+ or Cd2+ affected cell response to GH by enhancing (Cu2+) or inhibiting (Cd2+) the phosphorylation of JAK2 and STAT5. Heavy metals induced the activation of the MAP kinase p38, and pre-exposure to Hg2+ or Cu2+ followed by GH enhanced the effect of metal alone. Image analysis of fura2-loaded cells indicated that pre-treatment with Hg2+ prior to GH produced a considerable increase of the [Ca2+]i variation produced by either element, while using Cu2+ or Cd2+ the result was similar but much weaker. Data suggest that heavy metals interfere with GH as follows: Hg2+ is nearly ineffective on JAK/STAT and strongly synergistic on Ca2+ signaling; Cu2+ is activatory on JAK/STAT and slightly activatory on Ca2+; Cd2+ is strongly inhibitory on JAK/STAT and slightly activatory on Ca2+; heavy metals could partially activate STAT via p38 independently from GH interaction.
Collapse
Affiliation(s)
- Barbara Marchi
- Dipartimento di Biologia, Università di Genova, Viale Benedetto XV 5, 16132, Genova, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
Evans DH, Piermarini PM, Choe KP. The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste. Physiol Rev 2005; 85:97-177. [PMID: 15618479 DOI: 10.1152/physrev.00050.2003] [Citation(s) in RCA: 1653] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fish gill is a multipurpose organ that, in addition to providing for aquatic gas exchange, plays dominant roles in osmotic and ionic regulation, acid-base regulation, and excretion of nitrogenous wastes. Thus, despite the fact that all fish groups have functional kidneys, the gill epithelium is the site of many processes that are mediated by renal epithelia in terrestrial vertebrates. Indeed, many of the pathways that mediate these processes in mammalian renal epithelial are expressed in the gill, and many of the extrinsic and intrinsic modulators of these processes are also found in fish endocrine tissues and the gill itself. The basic patterns of gill physiology were outlined over a half century ago, but modern immunological and molecular techniques are bringing new insights into this complicated system. Nevertheless, substantial questions about the evolution of these mechanisms and control remain.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville 32611, USA.
| | | | | |
Collapse
|
42
|
Buddington RK, Krogdahl A. Hormonal regulation of the fish gastrointestinal tract. Comp Biochem Physiol A Mol Integr Physiol 2004; 139:261-71. [PMID: 15556381 DOI: 10.1016/j.cbpb.2004.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 08/18/2004] [Accepted: 09/06/2004] [Indexed: 10/26/2022]
Abstract
The gastrointestinal tracts (GIT) of fish and other vertebrates are challenged with a diversity of functional demands caused by changes and differences in dietary inputs and environmental conditions. This contribution reviews how hormonal regulation plays an essential role in modulating the GIT functions of fish to match changes in functional demands. Exemplary is how hormones produced by the GIT, the associated organs (e.g., pancreas), and other sources (e.g., hypothalamus, adrenal cortex, thyroid, gonads) modulate the digestive processes (motility, secretion, and nutrient absorption) in response to dietary inputs. Hormones regulate the other GIT functions of osmoregulation (secretion and absorption of electrolytes and water), immunity, endocrine secretions, metabolism, and the elimination of toxic metabolites and environmental contaminants to match changes in environmental conditions and physiological states. Although the regulatory molecules and associated signaling pathways have been conserved during evolution of the vertebrate GIT, the specific responses often vary among fish with different feeding habits and from different environments, and can differ from those described for mammals.
Collapse
Affiliation(s)
- Randal K Buddington
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| | | |
Collapse
|
43
|
Kajimura S, Hirano T, Moriyama S, Vakkuri O, Leppäluoto J, Grau EG. Changes in plasma concentrations of immunoreactive ouabain in the tilapia in response to changing salinity: is ouabain a hormone in fish? Gen Comp Endocrinol 2004; 135:90-9. [PMID: 14644648 DOI: 10.1016/j.ygcen.2003.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ouabain, a cardiac glycoside and inhibitor of Na(+), K(+)-ATPase, is now believed to be a steroid hormone in mammals, involved in blood pressure and volume regulation and possibly acting as a natriuretic hormone. We have identified ouabain-like immunoreactivity in the plasma and tissues of a euryhaline teleost, the tilapia (Oreochromis mossambicus), by means of solid-phase extraction followed by a specific radioimmunoassay. Plasma concentrations of immunoreactive ouabain were 5-20pg/ml. Ouabain immunoreactivity was detected in all the tissues examined, with highest concentrations in the head kidney followed by intestine and body kidney. When the fish in fresh water were transferred to seawater, plasma osmolality increased significantly after 2, 4, 8, and 24h. Significant increases were observed in plasma ouabain immunoreactivity after 4 and 24h, and a significant correlation was seen between ouabain immunoreactivity and plasma osmolality. There was also a significant correlation between the plasma osmolality and cortisol concentrations. Upon transfer from seawater to fresh water, significant increases were seen in plasma cortisol after 4 and 8h and in immunoreactive ouabain after 4h. When the correlation was analyzed using all the data obtained during the two transfer experiments, plasma ouabain immunoreactivity and cortisol were significantly correlated with plasma osmolality, whereas there was a significant negative correlation between plasma prolactin and osmolality. A significant positive correlation was also seen between plasma cortisol and ouabain immunoreactivity. These results suggest that immunoreactive ouabain may be involved, together with cortisol, in the maintenance of hydromineral balance in the tilapia.
Collapse
Affiliation(s)
- S Kajimura
- Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Kaneohe, HI 96744, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Zhou B, Kelly SP, Ianowski JP, Wood CM. Effects of cortisol and prolactin on Na+ and Cl- transport in cultured branchial epithelia from FW rainbow trout. Am J Physiol Regul Integr Comp Physiol 2003; 285:R1305-16. [PMID: 12893656 DOI: 10.1152/ajpregu.00704.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The electrophysiological and ion-transporting properties of cultured gill epithelia from freshwater (FW) rainbow trout were examined in the presence of cortisol and prolactin as media supplements. Epithelia were of the double-seeded insert (DSI) type containing both pavement cells (PVCs) and mitochondria-rich cells (MRCs) and were grown in Leibovitz's L15 media on filters allowing exposure to different apical media conditions. Experiments were carried out in two series after 7-9 days symmetrical (L15 apical-L15 basolateral) culture. In both series, 100% L15 was maintained as the basolateral medium throughout and supplemented with physiologically relevant doses of either prolactin (50 ng/ml), cortisol (500 ng/ml), or cortisol + prolactin (500 + 50 ng/ml, respectively). In series 1, epithelia were exposed to progressively diluted apical media (100, 75, 50, 25, 12.5% L15, and FW) at 24-h intervals. The preparations retained integrity [high transepithelial resistance (TER); low ion efflux rates] during this prolonged dilution protocol. Cortisol, or cortisol + prolactin, resulted in a greater TER and reduced ion efflux rates during dilution, likely an effect on junctional permeability of PVCs, but did not promote active Na+ and Cl- uptake from apical FW. In series 2, epithelia were directly exposed to apical FW and ion fluxes measured over the first 6 h. Under these conditions, cortisol or cortisol + prolactin promoted active uptake of both Na+ and Cl- simultaneously from apical FW, probably attributable to actions on the MRCs. However, Na+-K+-ATPase activities were not significantly altered by any of the treatments in either series. Overall, prolactin alone did not appear to promote FW adaptation but exhibited synergism with cortisol. These results provide further support for the cultured DSI epithelium as an in vitro model for ion transport in FW fish.
Collapse
Affiliation(s)
- Bingsheng Zhou
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | |
Collapse
|
45
|
Johnson J, Silverstein J, Wolters WR, Shimizu M, Dickhoff WW, Shepherd BS. Disparate regulation of insulin-like growth factor-binding proteins in a primitive, ictalurid, teleost (Ictalurus punctatus). Gen Comp Endocrinol 2003; 134:122-30. [PMID: 14511982 DOI: 10.1016/s0016-6480(03)00244-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vertebrate growth is principally controlled by growth hormone (GH) and, its intermediary, insulin-like growth factor-I (IGF-I). The actions of IGF-I are modulated by high-affinity binding proteins called insulin-like growth factor binding-proteins (IGFBPs). Channel catfish exhibit atypical responses (increased percentage body fat and reduced percentage protein) to GH treatment, despite GH-dependent IGF-I production. Among possible explanations for this atypical response to GH treatment is an unusual regulation of blood IGFBPs. In this species, there has been one report of a single 33-kDa plasma binding protein. To examine the occurrence and regulation of plasma IGFBPs in this species, two strains of channel catfish (Norris and USDA-103) were treated with weekly injections of recombinant bovine GH at different temperatures (21 degrees C versus 26 degrees C). In a separate experiment involving catfish of a different strain, endogenous GH levels were altered via injection of the GH secretagogue, bGHRH(1-29)-amide, and held in fresh water or transferred to brackish water (12 ppt). Following these treatments, the type and regulation of plasma IGFBPs in these catfish strains were examined by Western ligand blotting. We have identified five IGFBPs (19, 35, 44, 47, and >80 kDa) in catfish plasma that are differentially altered by experimental treatment and genetic lineage. Levels of the 19-kDa IGFBP were elevated in catfish of Norris and USDA-103 strains that were exposed to a higher environmental temperature (26 degrees C versus 21 degrees C), but was not seen in those animals used for the GH secretagogue/salinity study. In most vertebrates, treatment with GH increases levels of plasma IGFBP-3 (approximately 40-50 kDa). In the USDA-103 and Norris catfish strains, bGH injection reduced plasma levels of the 44- and 47-kDa IGFBPs. Similarly, elevations in plasma GH levels in GH secretagogue-treated and brackish water-adapted catfish resulted in reductions of the 44- and 47-kDa IGFBPs as well as a reduction in presence of a 35-kDa IGFBP that was not detected in the Norris or USDA-103 strains. Reduced levels of the 35, 44, and 47 kDa IGFBPs, seen in the plasma of the GH secretagogue-treated and brackish water-adapted animals, suggests that the atypical response of channel catfish to GH treatment is not attributed to the use of heterologous (bovine) GH. This negative response of the 35-47 kDa IGFBPs to GH has not been reported in any teleost or vertebrate (healthy) and may be partly responsible for the atypical physiological responses of channel catfish to GH treatment.
Collapse
Affiliation(s)
- Jaime Johnson
- Department of Biology, University of Kentucky, 101 TH Morgan Building, Lexington, KY 40506-0225, USA
| | | | | | | | | | | |
Collapse
|
46
|
Drennon K, Moriyama S, Kawauchi H, Small B, Silverstein J, Parhar I, Shepherd B. Development of an enzyme-linked immunosorbent assay for the measurement of plasma growth hormone (GH) levels in channel catfish (Ictalurus punctatus): assessment of environmental salinity and GH secretogogues on plasma GH levels. Gen Comp Endocrinol 2003; 133:314-22. [PMID: 12957475 DOI: 10.1016/s0016-6480(03)00194-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the development of a sensitive, and specific, competitive, antigen-capture enzyme-linked immunosorbent assay for the measurement of channel catfish (Ictalurus punctatus) growth hormone (cfGH). The detection limit of the assay (90% binding) was 2.0ng/ml and the ED(50) value (standard curve range 150-0.59 ng/ml) was 67.3 ng/ml. Recovery of cfGH-spiked plasma samples was determined to be 102%. Dose-response inhibition curves using serially diluted pituitary homogenates and plasma samples consistently showed parallelism with the standard curves using purified cfGH. The GH antibody (rabbit anti-catfish GH) specificity was demonstrated in competitive binding curves employing heterologous hormones and purified channel catfish prolactin (cfPRL). These studies show that there was no significant (0.006%) binding of cfPRL (competitive inhibition of cfGH binding), or heterologous hormones, within the working range of the assay. To physiologically validate the assay, catfish were injected (100 microg/g body weight, 3 injections every 5 days) with either bovine GHRH(1-29)-amide or the synthetic hexapeptide GHRP-2 (KP-102: D-Ala-D-beta-Nal-Ala-Trp-D-Phe-Lys-NH(2)) suspended in corn oil. Following the last injection, half of the animals were sampled for plasma and the remaining transferred from fresh water (FW) to 12 ppt seawater (BW: brackish water). Twenty-four hours after transfer to BW, animals were again sampled for plasma. Plasma GH levels were significantly (p<0.001) elevated in all the BW groups (control, KP-102, and bGHRH), compared with the FW (fresh water) groups. In addition, plasma GH levels were significantly (p<0.001) elevated by treatment with either of the GH secretogogues, KP-102 or bGHRH. Our findings demonstrate that two regulatory mechanisms of GH elevation, one which is seen in euryhaline teleosts (salinity-induced GH levels) and another, which has been recently described in teleosts (GHRP-induced GH levels), are present in the stenohaline channel catfish.
Collapse
Affiliation(s)
- Katherine Drennon
- Department of Biology, University of Kentucky, T.H. Morgan School of Biological Sciences, 101 T.H. Morgan Building, Lexington, KY 40506-0225, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Laiz-Carrión R, Martín Del Río MP, Miguez JM, Mancera JM, Soengas JL. Influence of cortisol on osmoregulation and energy metabolism in gilthead seabream Sparus aurata. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 298:105-18. [PMID: 12884272 DOI: 10.1002/jez.a.10256] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gilthead seabream Sparus aurata were injected intraperitoneally with slow-release implants of coconut oil alone or containing cortisol (50 and 100 microg x g(-1) body weight), and sampled after two, five, and seven days to assess the simultaneous effects of cortisol on both osmoregulation and energy metabolism. Plasma cortisol levels increased in treated fish to 50-70 ng x ml(-1). An enhanced hypoosmoregulatory capacity of cortisol-implanted fish is suggested by the increase observed in gill Na+, K+-ATPase activity, and the decrease observed in plasma ion concentration (Na+ and Cl-) and osmolality. Cortisol also elicited metabolic changes in liver (increased gluconeogenic potential suggested by elevated FBPase activity, and decreased potential of glycolysis and pentose-phosphate shunt, suggested by the decreased activities of both PK and G6PDH) supporting changes in levels of plasma metabolites suitable for use in other tissues. Thus in this study, we demonstrate for the first time in fish that cortisol treatments elicit changes in the use of exogenous glucose in gills (decreased HK activity) and an increased glycolytic and glycogenic potential in brain (increased GPase, PK and PFK activities).
Collapse
Affiliation(s)
- Raúl Laiz-Carrión
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | | | | | | | | |
Collapse
|
48
|
Leedom TA, Hirano T, Grau EG. Effect of blood withdrawal and angiotensin II on prolactin release in the tilapia, Oreochromis mossambicus. Comp Biochem Physiol A Mol Integr Physiol 2003; 135:155-63. [PMID: 12727552 DOI: 10.1016/s1095-6433(03)00046-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Repeated blood withdrawal (5% of estimated blood volume at 0, 1, 4, 8, 24, 48 and 76 h) from tilapia acclimated to fresh water (FW) resulted in a marked increase in plasma levels of prolactin (PRL) during the first 8 h, reaching a peak above 300 ng/ml after 4 h. The increase in plasma PRL levels was significant except for the level after 72 h. A slight but significant decrease in plasma osmolality was observed at all time points after the blood withdrawal. Repeated blood withdrawal from fish acclimated to seawater (SW) resulted in a marked increase in plasma osmolality after 4 and 8 h. A significant increase was observed in plasma growth hormone (GH) in the fish in SW until the end of the experiment, but there was no change in plasma PRL. Plasma levels of cortisol were significantly higher in the fish in SW than in those in FW during the first 24 h. Blood withdrawal resulted in a significant reduction in hematocrit values in both FW- and SW-adapted fish, suggesting hemodilution. In a separate experiment, a single blood withdrawal (20% of total blood) stimulated drinking after 5 h, regardless of whether the fish were held in FW or SW. Plasma PRL level was also elevated following a single blood withdrawal in the fish acclimated to FW, but not in the fish in SW. Intraperitoneal injection of ANG II (1.0 microg/g) into the fish in FW significantly increased plasma PRL levels after 1 h. Activation of the renin-angiotensin system after blood withdrawal and the dipsogenic action of angiotensin II (ANG II) are well established in fish. The reduction in plasma osmolality after repeated blood withdrawal in FW and the increased osmolality in SW suggest that blood volume is restored, at least in part, by drinking environmental water. These results suggest that the marked increase in PRL concentration after blood withdrawal from the fish in FW is due, at least in part, to a facilitative effect between ANG II and reduced plasma osmolality.
Collapse
Affiliation(s)
- Thomas A Leedom
- Department of Animal Science and Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Coconut Island, Kaneohe, HI 96744, USA
| | | | | |
Collapse
|
49
|
Uchida K, Kajimura S, Riley LG, Hirano T, Aida K, Grau EG. Effects of fasting on growth hormone/insulin-like growth factor I axis in the tilapia, Oreochromis mossambicus. Comp Biochem Physiol A Mol Integr Physiol 2003; 134:429-39. [PMID: 12547273 DOI: 10.1016/s1095-6433(02)00318-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effects of fasting on the growth hormone (GH)-insulin-like growth factor I (IGF-I) axis were examined in the tilapia (Oreochromis mossambicus) acclimated to fresh water. Fasting for 2 weeks resulted in significant reductions in body weight, specific growth rate and hepatosomatic index in both males and females. Significant reductions in specific growth rates were observed after 1 and 2 weeks in both sexes, although the decrease in body weight was not significant in the female. A significant reduction was also seen in the condition factor of females after 2 weeks. No change was seen in the gonadosomatic index in either sex. Two weeks of fasting also produced a significant reduction in plasma IGF-I but not in plasma GH, prolactin (PRL(188)) or cortisol. Significant reductions in the hepatic IGF-I mRNA were seen in both sexes. On the other hand, a significant increase was observed in cortisol receptor mRNA in the female liver. Plasma IGF-I levels were correlated significantly with specific growth rate, condition factor and hepatosomatic index, indicating that plasma IGF-I is a good indicator of growth in the tilapia. No change was seen in plasma glucose or osmolality after 2 weeks of fasting. During fasting, tilapia appears to convert metabolic energy from growth to basal metabolism including maintenance of ion and water balance.
Collapse
Affiliation(s)
- K Uchida
- Department of Zoology and Hawaii Institute of Marine Biology, University of Hawaii, 96744, Kaneohe, HI, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The adrenal homolog of teleosts is not a compact organ as the adrenal glands of most vertebrates but is composed by aminergic chromaffin and interrenal steroidogenic cells located mostly inside the head kidney that, in this taxon, generally has a hematopoietic function. The two tissues can be mixed, adjacent, or completely separated and line the endothelium of the venous vessels or are located in close proximity. The chromaffin cells in some species are also present in the posterior kidney. Histological and ultrastructural work revealed cytological peculiarities of both types of cells as compared to those of other vertebrate species. In particular, the interrenal ones can show some variations in ultrastructure depending on sex, time of the year, and relation to stress events. A periodic renewal of the whole gland tissue is also sustained by some studies. Research regarding development is scanty as compared to mammals and most studies go back to the early years of the past century. The adrenal homolog of teleosts is under hormonal and neuronal control. Moreover, local paracrine interactions may play an important role in modulating a system involved in stress response and osmoregulation. Most previous studies involved a few species with the object of intensive rearing for commercial purposes; in fact cortisol, the main hormone secreted by the interrenal cells, can also influence reproduction and growth. This review summarizes data from morphocytological work and refers to other excellent reviews regarding physiology. Some of the results are compared to data available from other fishes and vertebrate classes with the aim of including them in an evolutionary and environmental framework.
Collapse
|