1
|
Sund M, Maeshima Y, Kalluri R. Bifunctional promoter of type IV collagen COL4A5 and COL4A6 genes regulates the expression of alpha5 and alpha6 chains in a distinct cell-specific fashion. Biochem J 2006; 387:755-61. [PMID: 15598179 PMCID: PMC1135006 DOI: 10.1042/bj20041870] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Type IV collagen is present ubiquitously in basement membranes. A bifunctional promoter regulates the expression of the alpha1/alpha2 genes, and the alpha3/alpha4 and the alpha5/alpha6 genes are also considered to be regulated by putative bifunctional promoters. Unlike the other type IV collagen chains, the alpha5(IV) and alpha6(IV) chains do not always co-localize and are present in distinct basement membranes. To address such dichotomy in the alpha5(IV) and alpha6(IV) gene regulation, we cloned a mouse genomic DNA fragment containing the promoter region between the two transcription start sites of these genes and we then placed this putative promoter sequence between the chloramphenicol acetyltransferase and Luciferase reporter genes, so that these genes would be transcribed in opposite directions in this unique construct. Glomerular endothelial cells and mesangial cells generate the kidney glomerular basement membrane, which always contains the alpha5(IV) chain but not the alpha6(IV) chain. In contrast, the basement membranes of Bowman's capsule and distal tubuli (produced by the tubular epithelial cells) contain the alpha6(IV) chain. We demonstrate that, in response to TGF-beta (transforming growth factor beta), epidermal growth factor, vascular endothelial growth factor and platelet-derived growth factor, expression from the alpha5(IV) gene is significantly enhanced in the glomerular endothelial cells and mesangial cells, but not expression from the alpha6(IV) gene. In contrast, the expression from the alpha6(IV) gene, and not that from the alpha5(IV) gene, was significantly enhanced in response to growth factors in the tubular epithelial cells. Our results demonstrate that the proximal bifunctional promoter regulates the expression of the alpha5(IV) and alpha6(IV) genes in a cell-specific manner and offers the first demonstration of the promoter plasticity in growth factor regulation of type IV collagen genes in different tissues of the body.
Collapse
Affiliation(s)
- Malin Sund
- Center for Matrix Biology, Department of Medicine, DANA 514, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, U.S.A
| | - Yohei Maeshima
- Center for Matrix Biology, Department of Medicine, DANA 514, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, U.S.A
| | - Raghu Kalluri
- Center for Matrix Biology, Department of Medicine, DANA 514, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
2
|
Frints SGM, Jun L, Fryns JP, Devriendt K, Teulingkx R, Van den Berghe L, De Vos B, Borghgraef M, Chelly J, Des Portes V, Van Bokhoven H, Hamel B, Ropers HH, Kalscheuer V, Raynaud M, Moraine C, Marynen P, Froyen G. Inv(X)(p21.1;q22.1) in a man with mental retardation, short stature, general muscle wasting, and facial dysmorphism: clinical study and mutation analysis of the NXF5 gene. Am J Med Genet A 2003; 119A:367-74. [PMID: 12784308 DOI: 10.1002/ajmg.a.20195] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe a 59-year-old male (patient A059) with moderate to severe mental retardation (MR) and a pericentric inversion of the X-chromosome: inv(X)(p21.1;q22.1). He had short stature, pectus excavatum, general muscle wasting, and facial dysmorphism. Until now, no other patients with similar clinical features have been described in the literature. Molecular analysis of both breakpoints led to the identification of a novel "Nuclear RNA export factor" (NXF) gene cluster on Xq22.1. Within this cluster, the NXF5 gene was interrupted with subsequent loss of gene expression. Hence, mutation analysis of the NXF5 and its neighboring homologue, the NXF2 gene was performed in 45 men with various forms of syndromic X-linked MR (XLMR) and in 70 patients with nonspecific XLMR. In the NXF5 gene four nucleotide changes: one intronic, two silent, and one missense (K23E), were identified. In the NXF2 gene two changes (one intronic and one silent) were found. Although none of these changes were causative mutations, we propose that NXF5 is a good candidate gene for this syndromic form of XLMR, given the suspected role of NXF proteins is within mRNA export/transport in neurons. Therefore, mutation screening of the NXF gene family in phenotypically identical patients is recommended.
Collapse
MESH Headings
- Abnormalities, Multiple/diagnosis
- Abnormalities, Multiple/genetics
- Active Transport, Cell Nucleus
- Base Sequence
- Chromosome Breakage
- Chromosome Inversion
- Chromosomes, Human, X
- Cloning, Molecular
- Gene Expression
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Mental Retardation, X-Linked/genetics
- Mental Retardation, X-Linked/metabolism
- Middle Aged
- Molecular Sequence Data
- Mutation/genetics
- Nuclear Proteins/genetics
- Nucleocytoplasmic Transport Proteins
- RNA/metabolism
- RNA-Binding Proteins/genetics
- Sequence Homology, Nucleic Acid
- Syndrome
Collapse
Affiliation(s)
- Suzanna G M Frints
- Human Genome Laboratory and Flanders Interuniversity Institute for Biotechnology, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Jun L, Frints S, Duhamel H, Herold A, Abad-Rodrigues J, Dotti C, Izaurralde E, Marynen P, Froyen G. NXF5, a novel member of the nuclear RNA export factor family, is lost in a male patient with a syndromic form of mental retardation. Curr Biol 2001; 11:1381-91. [PMID: 11566096 DOI: 10.1016/s0960-9822(01)00419-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Although X-linked mental retardation (XLMR) affects 2%-3% of the human population, little is known about the underlying molecular mechanisms. Recent interest in this topic led to the identification of several genes for which mutations result in the disturbance of cognitive development. RESULTS We identified a novel gene that is interrupted by an inv(X)(p21.1;q22) in a male patient with a syndromic form of mental retardation. Molecular analysis of both breakpoint regions did not reveal an interrupted gene on Xp, but identified a novel nuclear RNA export factor (NXF) gene cluster, Xcen-NXF5-NXF2-NXF4-NXF3-Xqter, in which NXF5 is split by the breakpoint, leading to its functional nullisomy. The predicted NXF5 protein shows high similarity with the central part of the presumed mRNA nuclear export factor TAP/NXF1. Functional analysis of NXF5 demonstrates binding to RNA as well as to the RNA nuclear export-associated protein p15/NXT. In contrast to TAP/NXF1, overexpression studies localized NXF5 in the form of granules in the cell body and neurites of mature hippocampal neurons, suggesting a role in mRNA transport. The two newly identified mouse nxf homologs, nxf-a and nxf-b, which also map on X, show highest mRNA levels in the brain. CONCLUSIONS A novel member of the nuclear RNA export factor family is absent in a male patient with a syndromic form of mental retardation. Although we did not find direct evidence for the involvement of NXF5 in MR, the gene could be involved in development, possibly through a process in mRNA metabolism in neurons.
Collapse
Affiliation(s)
- L Jun
- Human Genome Laboratory, Flanders Interuniversity Institute for Biotechnology, University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Barker DF, Denison JC, Atkin CL, Gregory MC. Efficient detection of Alport syndrome COL4A5 mutations with multiplex genomic PCR-SSCP. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 98:148-60. [PMID: 11223851 DOI: 10.1002/1096-8628(20010115)98:2<148::aid-ajmg1024>3.0.co;2-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have performed effective mutation screening of COL4A5 with a new method of direct, multiplex genomic amplification that employs a single buffer condition and PCR profile. Application of the method to a consecutive series of 46 United States patients with diverse indications of Alport syndrome resulted in detection of mutations in 31 cases and of five previously unreported polymorphisms. With a correction for the presence of cases that are not likely to be due to changes at the COL4A5 locus, the mutation detection sensitivity is greater than 79%. The test examines 52 segments, including the COL4A6/COL4A5 intergenic promoter region, all 51 of the previously recognized exons and two newly detected exons between exons 41 and 42 that encode an alternatively spliced mRNA segment. New genomic sequence information was generated and used to design primer pairs that span substantial intron sequences on each side of all 53 exons. For SSCP screening, 16 multiplex PCR combinations (15 4-plex and 1 3-plex) were used to provide complete, partially redundant coverage of the gene. The selected combinations allow clear resolution of products from each segment using various SSCP gel formulations. One of the 29 different mutations detected initially seemed to be a missense change in exon 32 but was found to cause exon skipping. Another missense variant may mark a novel functional site located in the collagenous domain.
Collapse
Affiliation(s)
- D F Barker
- Department of Physiology, the University of Utah Health Sciences Center, Salt Lake City 84108, USA.
| | | | | | | |
Collapse
|
5
|
Sana TR, Debets R, Timans JC, Bazan JF, Kastelein RA. Computational identification, cloning, and characterization of IL-1R9, a novel interleukin-1 receptor-like gene encoded over an unusually large interval of human chromosome Xq22.2-q22.3. Genomics 2000; 69:252-62. [PMID: 11031108 DOI: 10.1006/geno.2000.6328] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Interleukin-1 receptor (IL-1R) and Toll signaling pathways share the evolutionarily conserved Toll homology domain (THD), which is a critical component in the signaling cascade of the host defense responses to infection and inflammation. Our initial genomic database searches uncovered a novel THD signature sequence between DNA markers DXS87 and DXS366. The feasibility of subsequently applying a coordinated computational approach, including various exon-finding programs, homology-based searches, and receptor profile searches, in revealing the exons encoding this novel IL-1R family member is described. IL-1R9 shows restricted expression in fetal brain and is highly homologous to IL1RAPL (A. Carrie et al., 1999 Nat. Genet. 23: 25-31), which is reportedly involved in nonsyndromic X-linked mental retardation. These genes are scattered over separate genomic intervals in excess of 1.0 Mb and encode receptors with extended C-terminal tails. In our functional NF-kappaB reporter assays, IL1RAPL, IL-1R9, or versions lacking the extended C-terminal sequences failed in responding either to IL-1 directly or to IL-18 when various permutations of IL-18R ectodomain chimeras were fused to their cytoplasmic domains. Evolutionary sequence analyses reinforce our conclusion that these novel orphan receptors probably form a functionally distinct subset of the IL-1R superfamily.
Collapse
Affiliation(s)
- T R Sana
- Department of Molecular Biology, DNAX Research Institute, 901 California Avenue, Palo Alto, California 94304-1104, USA.
| | | | | | | | | |
Collapse
|
6
|
Schueler MG, Higgins AW, Nagaraja R, Tentler D, Dahl N, Gustashaw K, Willard HF. Large-insert clone/STS contigs in Xq11-q12, spanning deletions in patients with androgen insensitivity and mental retardation. Genomics 2000; 66:104-9. [PMID: 10843811 DOI: 10.1006/geno.2000.6180] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An integrated large-insert clone map of the region Xq11-q12 is presented. A physical map containing markers within a few hundred kilobases of the centromeric locus DXZ1 to DXS1125 spans nearly 5 Mb in two contigs separated by a gap estimated to be approximately 100-250 kb. The contigs combine 75 yeast artificial chromosome clones, 12 bacterial artificial chromosome clones, and 17 P1-derived artificial chromosome clones with 81 STS or EST markers. Overall marker density across this region is approximately 1 STS/60 kb. Mapped within the contigs are 12 ESTs as well as 5 known genes, moesin (MSN), hephaestin (HEPH), androgen receptor (AR), oligophrenin-1 (OPHN1), and Eph ligand-2 (EPLG2). Orientation of the contigs on the X chromosome, as well as marker order within the contigs, was unambiguously determined by reference to a number of X chromosome breakpoints. In addition, the distal contig spans deletions from chromosomes of three patients exhibiting either complete androgen insensitivity (CAI) or a contiguous gene syndrome that includes CAI, impaired vision, and mental retardation.
Collapse
Affiliation(s)
- M G Schueler
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Buchner G, Montini E, Andolfi G, Quaderi N, Cainarca S, Messali S, Bassi MT, Ballabio A, Meroni G, Franco B. MID2, a homologue of the Opitz syndrome gene MID1: similarities in subcellular localization and differences in expression during development. Hum Mol Genet 1999; 8:1397-407. [PMID: 10400986 DOI: 10.1093/hmg/8.8.1397] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The B-box family is an expanding new family of genes encoding proteins involved in diverse cellular functions such as developmental patterning and oncogenesis. A member of this protein family, MID1, is the gene responsible for the X-linked form of Opitz G/BBB syndrome, a developmental disorder characterized by defects of the midline structures. We now report the identification of MID2, a new transcript closely related to MID1. MID2 maps to Xq22 in human and to the syntenic region on the mouse X chromosome. The two X-linked genes share the same domains, the same exon-intron organization, a high degree of similarity at the protein level and the same subcellular localization, both being confined to the cytoplasm in association to micro-tubular structures. The expression pattern studied by RNA in situ hybridization in mouse revealed that Mid2 is expressed early in development and the highest level of expression is detected in the heart, unlike Mid1 for which no expression was detected in the developing heart. Together, these data suggest that midin and MID2 have a similar biochemical function but a different physiological role during development.
Collapse
Affiliation(s)
- G Buchner
- Telethon Institute of Genetics and Medicine (TIGEM), San Raffaele Biomedical Science Park, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Steingruber HE, Dunham A, Coffey AJ, Clegg SM, Howell GR, Maslen GL, Scott CE, Gwilliam R, Hunt PJ, Sotheran EC, Huckle EJ, Hunt SE, Dhami P, Soderlund C, Leversha MA, Bentley DR, Ross MT. High-Resolution Landmark Framework for the Sequence-Ready Mapping of Xq23–q26.1. Genome Res 1999. [DOI: 10.1101/gr.9.8.751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have established a landmark framework map over 20–25 Mb of the long arm of the human X chromosome using yeast artificial chromosome (YAC) clones. The map has approximately one landmark per 45 kb of DNA and stretches from DXS7531 in proximal Xq23 to DXS895 in proximal Xq26, connecting to published framework maps on its proximal and distal sides. There are three gaps in the framework map resulting from the failure to obtain clone coverage from the YAC resources available. Estimates of the maximum sizes of these gaps have been obtained. The four YAC contigs have been positioned and oriented using somatic-cell hybrids and fluorescence in situ hybridization, and the largest is estimated to cover ∼15 Mb of DNA. The framework map is being used to assemble a sequence-ready map in large-insert bacterial clones, as part of an international effort to complete the sequence of the X chromosome. PAC and BAC contigs currently cover 18 Mb of the region, and from these, 12 Mb of finished sequence is available.
Collapse
|
9
|
Srivastava AK, McMillan S, Jermak C, Shomaker M, Copeland-Yates SA, Sossey-Alaoui K, Mumm S, Schlessinger D, Nagaraja R. Integrated STS/YAC physical, genetic, and transcript map of human Xq21.3 to q23/q24 (DXS1203-DXS1059). Genomics 1999; 58:188-201. [PMID: 10366451 DOI: 10.1006/geno.1999.5820] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A map has been assembled that extends from the XY homology region in Xq21.3 to proximal Xq24, approximately 20 Mb, formatted with 200 STSs that include 25 dinucleotide repeat polymorphic markers and more than 80 expressed sequences including 30 genes. New genes HTRP5, CAPN6, STPK, 14-3-3PKR, and CALM1 and previously known genes including BTK, DDP, GLA, PLP, COL4A5, COL4A6, PAK3, and DCX are localized; candidate loci for other disorders for which genes have not yet been identified, including DFN-2, POF, megalocornea, and syndromic and nonsyndromic mental retardation, are also mapped in the region. The telomeric end of the contig overlaps a yeast artificial chromosome (YAC) contig from Xq24-q26 and with other previously published contigs provides complete sequence-tagged site (STS)/YAC-based coverage of the long arm of the X chromosome. The order of published landmark loci in genetic and radiation hybrid maps is in general agreement. Combined with high-density STS landmarks, the multiple YAC clone coverage and integrated genetic, radiation hybrid, and transcript map provide resources to further disease gene searches and sequencing.
Collapse
Affiliation(s)
- A K Srivastava
- J. C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, 29646, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Allen KM, Gleeson JG, Shoup SM, Walsh CA. A YAC contig in Xq22.3-q23, from DXS287 to DXS8088, spanning the brain-specific genes doublecortin (DCX) and PAK3. Genomics 1998; 52:214-8. [PMID: 9782089 DOI: 10.1006/geno.1998.5424] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although several genes for mental retardation and epilepsy, including double cortex/X-linked lissencephaly (DC/XLIS), have been localized to Xq21.3-q23, there has been no complete physical map of this region available. We constructed a YAC/STS contig map by initiating two yeast artificial chromosome (YAC) walks from the markers that flanked the DC/XLIS candidate gene region. We report an approximately 4-Mb contig extending from DXS287 to DXS8088, encompassing DXS1072 and DXS1059, and composed of 52 YACs identified with 15 previously published STSs and 19 novel YAC-end STSs. This contig also contains two brain-specific genes, doublecortin (HGMW-approved symbol DCX), responsible for DC/XLIS, and PAK3, which may be responsible for neurological diseases localized to this region. The new contig extends and incorporates several previously published contigs, providing a total overlapping contig extending approximately 34 Mb from DXS441 in Xq13.1 to DXS8088 in Xq23.
Collapse
Affiliation(s)
- K M Allen
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | | | | | | |
Collapse
|
11
|
Barbesino G, Tomer Y, Concepcion ES, Davies TF, Greenberg DA. Linkage analysis of candidate genes in autoimmune thyroid disease. II. Selected gender-related genes and the X-chromosome. International Consortium for the Genetics of Autoimmune Thyroid Disease. J Clin Endocrinol Metab 1998; 83:3290-5. [PMID: 9745443 DOI: 10.1210/jcem.83.9.5091] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hashimoto's thyroiditis (HT) and Graves' disease (GD) are autoimmune thyroid diseases (AITD) in which multiple genetic factors are suspected to play an important role. Until now, only a few minor risk factors for these diseases have been identified. Susceptibility seems to be stronger in women, pointing toward a possible role for genes related to sex steroid action or mechanisms related to genes on the X-chromosome. We have studied a total of 45 multiplex families, each containing at least 2 members affected with either GD (55 patients) or HT (72 patients), and used linkage analysis to target as candidate susceptibility loci genes involved in estrogen activity, such as the estrogen receptor alpha and beta and the aromatase genes. We then screened the entire X-chromosome using a set of polymorphic microsatellite markers spanning the whole chromosome. We found a region of the X-chromosome (Xq21.33-22) giving positive logarithm of odds (LOD) scores and then reanalyzed this area with dense markers in a multipoint analysis. Our results excluded linkage to the estrogen receptor alpha and aromatase genes when either the patients with GD only, those with HT only, or those with any AITD were considered as affected. Linkage to the estrogen receptor beta could not be totally ruled out, partly due to incomplete mapping information for the gene itself at this time. The X-chromosome data revealed consistently positive LOD scores (maximum of 1.88 for marker DXS8020 and GD patients) when either definition of affectedness was considered. Analysis of the family data using a multipoint analysis with eight closely linked markers generated LOD scores suggestive of linkage to GD in a chromosomal area (Xq21.33-22) extending for about 6 cM and encompassing four markers. The maximum LOD score (2.5) occurred at DXS8020. In conclusion, we ruled out a major role for estrogen receptor alpha and the aromatase genes in the genetic predisposition to AITD. Estrogen receptor beta remains a candidate locus. We found a locus on Xq21.33-22 linked to GD that may help to explain the female predisposition to GD. Confirmation of these data in HT may require study of an extended number of families because of possible heterogeneity.
Collapse
Affiliation(s)
- G Barbesino
- Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | |
Collapse
|
12
|
Woodward K, Kendall E, Vetrie D, Malcolm S. Pelizaeus-Merzbacher disease: identification of Xq22 proteolipid-protein duplications and characterization of breakpoints by interphase FISH. Am J Hum Genet 1998; 63:207-17. [PMID: 9634530 PMCID: PMC1377253 DOI: 10.1086/301933] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is an X-linked, dysmyelinating disorder of the CNS. Duplications of the proteolipid protein (PLP) gene have been found in a proportion of patients, suggesting that, in addition to coding-region or splice-site mutations, overdosage of the gene can cause PMD. We show that the duplication can be detected by interphase FISH, using a PLP probe in five patients and their four asymptomatic carrier mothers. The extent of the duplication was analyzed in each family by interphase FISH, with probes from a 1. 7-Mb region surrounding the PLP gene between markers DXS83 and DXS94. A large duplication >=500 kb was detected, with breakpoints that differed, between families, at the proximal end. Distinct separation of the duplicated PLP signals could be seen only on metaphase chromosomes in one family, providing further evidence that different duplication events are involved. Quantitative fluorescent multiplex PCR was used to confirm the duplication in patients, by the detection of increased copy number of the PLP gene. Multiallelic markers from the duplicated region were analyzed, since the identification of two alleles in an affected boy would indicate a duplication. The majority of boys were homozygous for all four markers, compared with their mothers, who were heterozygous for one to three of the markers. These results suggest that intrachromosomal rearrangements may be a common mechanism by which duplications arise in PMD. One boy was heterozygous for the PLP marker, indicating a duplication and suggesting that interchromosomal rearrangements of maternal origin also can be involved. Since duplications are a major cause of PMD, we propose that interphase FISH is a reliable method for diagnosis and identification of female carriers.
Collapse
Affiliation(s)
- K Woodward
- Molecular Genetics Unit, Institute of Child Health, Guy's Hosptial, London, United Kingdom.
| | | | | | | |
Collapse
|
13
|
Ueki Y, Naito I, Oohashi T, Sugimoto M, Seki T, Yoshioka H, Sado Y, Sato H, Sawai T, Sasaki F, Matsuoka M, Fukuda S, Ninomiya Y. Topoisomerase I and II consensus sequences in a 17-kb deletion junction of the COL4A5 and COL4A6 genes and immunohistochemical analysis of esophageal leiomyomatosis associated with Alport syndrome. Am J Hum Genet 1998; 62:253-61. [PMID: 9463311 PMCID: PMC1376880 DOI: 10.1086/301703] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diffuse esophageal leiomyomatosis (DL), a benign smooth-muscle-cell tumor, is characterized by abnormal cell proliferation. DL is sometimes associated with X-linked Alport syndrome (AS), an inherited nephropathy caused by COL4A5 gene mutations. COL4A5 is tightly linked, in a head-to-head fashion, to the functionally related and coordinately regulated COL4A6 gene. No X-linked AS cases are due to COL4A6 mutations, but all DL/AS cases are always associated with deletions spanning the 5' regions of the COL4A5/COL4A6 cluster. Unlike the COL4A5 breakpoints, those of COL4A6 are clustered within intron 2 of the gene. We identified a DL/AS deletion and the first characterization of the breakpoint sequences. We show that a deletion eliminates the first coding exon of COL4A5 and the first two coding exons of COL4A6. The breakpoints share the same sequence, which, in turn, is closely homologous to the consensus sequences of topoisomerases I and II. Additional DNA evidence suggested that the male patient is a somatic mosaic for the mutation. Immunohistochemical analysis using alpha-chain-specific monoclonal antibodies supported this conclusion, since it revealed the absence of the alpha5(IV) and alpha6(IV) collagen chains in most but not all of the basement membranes of the smooth-muscle-cell tumor. We also documented a similar segmental staining pattern in the glomerular basement membranes of the patient's kidney. This study is particularly relevant to the understanding of DL pathogenesis and its etiology.
Collapse
Affiliation(s)
- Y Ueki
- Department of Molecular Biology, Okayama University Medical School, Shigei Medical Research Institute, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|