1
|
Lauffer M, Wen H, Myers B, Plumb A, Parker K, Williams A. Deletion of the voltage-gated calcium channel, Ca V 1.3, causes deficits in motor performance and associative learning. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12791. [PMID: 35044095 PMCID: PMC9744532 DOI: 10.1111/gbb.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
L-type voltage-gated calcium channels are important regulators of neuronal activity and are widely expressed throughout the brain. One of the major L-type voltage-gated calcium channel isoforms in the brain is CaV 1.3. Mice lacking CaV 1.3 are reported to have impairments in fear conditioning and depressive-like behaviors, which have been linked to CaV 1.3 function in the hippocampus and amygdala. Genetic variation in CaV 1.3 has been linked to a variety of psychiatric disorders, including autism and schizophrenia, which are associated with altered motor learning, associative learning and social function. Here, we explored whether CaV 1.3 plays a role in these behaviors. We found that CaV 1.3 knockout mice have deficits in rotarod learning despite normal locomotor function. Deletion of CaV 1.3 is also associated with impaired gait adaptation and associative learning on the Erasmus Ladder. We did not observe any impairments in CaV 1.3 knockout mice on assays of anxiety-like, depression-like or social preference behaviors. Our results suggest an important role for CaV 1.3 in neural circuits involved in motor learning and concur with previous data showing its involvement in associative learning.
Collapse
Affiliation(s)
- Marisol Lauffer
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIowaUSA
| | - Hsiang Wen
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIowaUSA,Department of PsychiatryUniversity of IowaIowa CityIowaUSA,Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Bryn Myers
- Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Ashley Plumb
- Department of Physical Therapy and Rehabilitation ScienceUniversity of IowaIowa CityIowaUSA
| | - Krystal Parker
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIowaUSA,Department of PsychiatryUniversity of IowaIowa CityIowaUSA,Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Aislinn Williams
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIowaUSA,Department of PsychiatryUniversity of IowaIowa CityIowaUSA,Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
2
|
Przybyl KJ, Jenz ST, Lim PH, Ji MT, Wert SL, Luo W, Gacek SA, Schaack AK, Redei EE. Genetic stress-reactivity, sex, and conditioning intensity affect stress-enhanced fear learning. Neurobiol Learn Mem 2021; 185:107523. [PMID: 34562618 DOI: 10.1016/j.nlm.2021.107523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/11/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022]
Abstract
The Stress-Enhanced Fear Learning (SEFL) model of posttraumatic stress disorder (PTSD) reveals increased fear memory in animals exposed to stress prior to contextual fear conditioning (CFC), similar to the increased likelihood of developing PTSD in humans after prior stress. The present study utilized the SEFL model by exposing animals to restraint stress as the first stressor, followed by CFC using foot-shocks with 0.6 mA or 0.8 mA intensity. Adult males and females from the two nearly isogenic rat strains, the genetically more stress-reactive Wistar Kyoto (WKY) More Immobile (WMI), and the less stress-reactive WKY Less Immobile (WLI) were employed. Percent time spent freezing at acquisition and at recall differed between these strains in both prior stress and no stress conditions. The significant correlations between percent freezing at acquisition and at recall suggest that fear memory differences represent a true phenotype related to the stress-reactivity differences between the strains. This assumption is further substantiated by the lack of effect of either conditioning intensity on percent freezing in WLI males, while WMI males were affected by both intensities albeit with opposite directional changes after prior stress. Differences between the sexes in sensitivity to the two conditioning intensities became apparent by the opposite directional and inverse relationship between fear memory and the intensity of conditioning in WMI males and females. The present data also illustrate that although corticosterone (CORT) responses to prior stress are known to be necessary for SEFL, plasma CORT and percent freezing were positively correlated only in the stress less-reactive WLI strain. These differences in baseline fear acquisition, fear memory, and the percent freezing responses to the SEFL paradigm in the two genetically close inbred WMI and WLI strains provide a unique opportunity to study the genetic contribution to the variation in these phenotypes.
Collapse
Affiliation(s)
- K J Przybyl
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - S T Jenz
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - P H Lim
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - M T Ji
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - S L Wert
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - W Luo
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - S A Gacek
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - A K Schaack
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - E E Redei
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
3
|
Johnstone KC, McArthur C, Banks PB. Testing transgenerational transfer of personality in managed wildlife populations: a house mouse control experiment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02247. [PMID: 33135270 DOI: 10.1002/eap.2247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/23/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Pest species control operations are most effective if every individual in a population is targeted. Yet, individual personality drives variation in animal responses to devices such as traps and baits. Failing to account for differences in behavior during control operations may drive a selective removal, resulting in residual animals with biased expressions of personality. If these biased traits are passed onto offspring, control operations would become increasingly problematic. To test if biased trait expressions in founding populations are passed on to offspring, we quantified personality traits in wild-caught house mice (Mus musculus) and created founder populations selected for biased (high, low) or intermediate expressions of activity. We released the behaviorally biased populations into outdoor yards to breed to the F1 generation and, 10 weeks later, removed the mice and quantified the personality traits of the offspring. Despite the strong personality bias in founder populations, we observed no transgenerational transfer of personality and detected no personality bias in the F1 generation. Our results provide reassuring evidence that a single intensive control operation that selects for survivors with a personality bias is unlikely to lead to a recovering population inherently more difficult to eradicate, at least for house mice.
Collapse
Affiliation(s)
- Kyla C Johnstone
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building, Sydney, New South Wales, 2006, Australia
| | - Clare McArthur
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building, Sydney, New South Wales, 2006, Australia
| | - Peter B Banks
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
4
|
Sahin Z, Solak H, Koc A, Ozen Koca R, Ozkurkculer A, Cakan P, Solak Gormus ZI, Kutlu S, Kelestimur H. Long-term metabolic cage housing increases anxiety/depression-related behaviours in adult male rats. Arch Physiol Biochem 2019; 125:122-127. [PMID: 29463132 DOI: 10.1080/13813455.2018.1441314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
There are several reports on unfavourable effects of metabolic cage housing on animal welfare mainly due to the characteristic structures of these cages such as single housing and grid flooring. This study was aimed to compare the effects of long-term metabolic cage housing and conventional housing (normal grouped housing in standard cages) on the anxiety/depression-like behaviours in male rats. Anxiety/depression-related behaviours were evaluated by use of forced swimming test and open field test. Swimming and climbing were significantly lower and immobility duration higher in the metabolic cage group. In the open field test, total distance, mean velocity, time spent in the central area, zone transition, grooming, and rearing scores were significantly lower in the metabolic cage. Moreover, serum corticosterone level was higher in the metabolic cage group. The results of the study indicate that long-term metabolic cage housing may cause an increase in the anxiety- and depression-related behaviours in male rats.
Collapse
Affiliation(s)
- Zafer Sahin
- a Department of Physiology , Karadeniz Technical University , Trabzon , Turkey
| | - Hatice Solak
- b Department of Physiology , Necmettin Erbakan University , Konya , Turkey
| | - Aynur Koc
- b Department of Physiology , Necmettin Erbakan University , Konya , Turkey
| | - Raviye Ozen Koca
- b Department of Physiology , Necmettin Erbakan University , Konya , Turkey
| | | | - Pinar Cakan
- c Department of Physiology , Inonu University , Malatya , Turkey
| | | | - Selim Kutlu
- b Department of Physiology , Necmettin Erbakan University , Konya , Turkey
| | | |
Collapse
|
5
|
Gunduz-Cinar O, Brockway E, Lederle L, Wilcox T, Halladay LR, Ding Y, Oh H, Busch EF, Kaugars K, Flynn S, Limoges A, Bukalo O, MacPherson KP, Masneuf S, Pinard C, Sibille E, Chesler EJ, Holmes A. Identification of a novel gene regulating amygdala-mediated fear extinction. Mol Psychiatry 2019; 24:601-612. [PMID: 29311651 PMCID: PMC6035889 DOI: 10.1038/s41380-017-0003-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/08/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022]
Abstract
Recent years have seen advances in our understanding of the neural circuits associated with trauma-related disorders, and the development of relevant assays for these behaviors in rodents. Although inherited factors are known to influence individual differences in risk for these disorders, it has been difficult to identify specific genes that moderate circuit functions to affect trauma-related behaviors. Here, we exploited robust inbred mouse strain differences in Pavlovian fear extinction to uncover quantitative trait loci (QTL) associated with this trait. We found these strain differences to be resistant to developmental cross-fostering and associated with anatomical variation in basolateral amygdala (BLA) perineuronal nets, which are developmentally implicated in extinction. Next, by profiling extinction-driven BLA expression of QTL-linked genes, we nominated Ppid (peptidylprolyl isomerase D, a member of the tetratricopeptide repeat (TPR) protein family) as an extinction-related candidate gene. We then showed that Ppid was enriched in excitatory and inhibitory BLA neuronal populations, but at lower levels in the extinction-impaired mouse strain. Using a virus-based approach to directly regulate Ppid function, we demonstrated that downregulating BLA-Ppid impaired extinction, while upregulating BLA-Ppid facilitated extinction and altered in vivo neuronal extinction encoding. Next, we showed that Ppid colocalized with the glucocorticoid receptor (GR) in BLA neurons and found that the extinction-facilitating effects of Ppid upregulation were blocked by a GR antagonist. Collectively, our results identify Ppid as a novel gene involved in regulating extinction via functional actions in the BLA, with possible implications for understanding genetic and pathophysiological mechanisms underlying risk for trauma-related disorders.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| | - Emma Brockway
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Lauren Lederle
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Troy Wilcox
- 0000 0004 0374 0039grid.249880.fThe Jackson Laboratory, Bar Harbor, ME USA
| | - Lindsay R. Halladay
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Ying Ding
- Joint Carnegie Mellon University–University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, PA USA
| | - Hyunjung Oh
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA ,0000 0001 2157 2938grid.17063.33Departments of Psychiatry and Pharmacology & Toxicology, Campbell Family Mental Health Research Institute of CAMH, University of Toronto, Toronto, Canada
| | - Erica F. Busch
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Katie Kaugars
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Shaun Flynn
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Aaron Limoges
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Olena Bukalo
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Kathryn P. MacPherson
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Sophie Masneuf
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Courtney Pinard
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Etienne Sibille
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA ,0000 0001 2157 2938grid.17063.33Departments of Psychiatry and Pharmacology & Toxicology, Campbell Family Mental Health Research Institute of CAMH, University of Toronto, Toronto, Canada
| | - Elissa J. Chesler
- 0000 0004 0374 0039grid.249880.fThe Jackson Laboratory, Bar Harbor, ME USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
6
|
Molenhuis RT, Bruining H, Brandt MJV, van Soldt PE, Abu-Toamih Atamni HJ, Burbach JPH, Iraqi FA, Mott RF, Kas MJH. Modeling the quantitative nature of neurodevelopmental disorders using Collaborative Cross mice. Mol Autism 2018; 9:63. [PMID: 30559955 PMCID: PMC6293525 DOI: 10.1186/s13229-018-0252-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
Background Animal models for neurodevelopmental disorders (NDD) generally rely on a single genetic mutation on a fixed genetic background. Recent human genetic studies however indicate that a clinical diagnosis with ASDAutism Spectrum Disorder (ASD) is almost always associated with multiple genetic fore- and background changes. The translational value of animal model studies would be greatly enhanced if genetic insults could be studied in a more quantitative framework across genetic backgrounds. Methods We used the Collaborative Cross (CC), a novel mouse genetic reference population, to investigate the quantitative genetic architecture of mouse behavioral phenotypes commonly used in animal models for NDD. Results Classical tests of social recognition and grooming phenotypes appeared insufficient for quantitative studies due to genetic dilution and limited heritability. In contrast, digging, locomotor activity, and stereotyped exploratory patterns were characterized by continuous distribution across our CC sample and also mapped to quantitative trait loci containing genes associated with corresponding phenotypes in human populations. Conclusions These findings show that the CC can move animal model studies beyond comparative single gene-single background designs, and point out which type of behavioral phenotypes are most suitable to quantify the effect of developmental etiologies across multiple genetic backgrounds.
Collapse
Affiliation(s)
- Remco T. Molenhuis
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Hilgo Bruining
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Myrna J. V. Brandt
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Petra E. van Soldt
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Hanifa J. Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - J. Peter H. Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Richard F. Mott
- Genetics Institute, University College London, Gower Street, London, WC1E 6BT UK
| | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Hill WG, Zeidel ML, Bjorling DE, Vezina CM. Void spot assay: recommendations on the use of a simple micturition assay for mice. Am J Physiol Renal Physiol 2018; 315:F1422-F1429. [PMID: 30156116 DOI: 10.1152/ajprenal.00350.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Investigators have for decades used mouse voiding patterns as end points for studying behavioral biology. It is only recently that mouse voiding patterns were adopted for study of lower urinary tract physiology. The spontaneous void spot assay (VSA), a popular micturition assessment tool, involves placing a mouse in an enclosure lined by filter paper and quantifying the resulting urine spot pattern. The VSA has advantages of being inexpensive and noninvasive, but some investigators challenge its ability to distinguish lower urinary tract function from behavioral voiding. A consensus group of investigators who regularly use the VSA was established by the National Institutes of Health in 2015 to address the strengths and weaknesses of the assay, determine whether it can be standardized across laboratories, and determine whether it can be used as a surrogate for evaluating urinary function. Here we leverage experience from the consensus group to review the history of the VSA and its uses, summarize experiments to optimize assay design for urinary physiology assessment, and make best practice recommendations for performing the assay and analyzing its results.
Collapse
Affiliation(s)
- Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Dale E Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin.,University of Wisconsin-Madison/University of Massachusetts-Boston, George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin and Boston, Massachusetts
| | - Chad M Vezina
- University of Wisconsin-Madison/University of Massachusetts-Boston, George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin and Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
8
|
Williams AJ, Yee P, Smith MC, Murphy GG, Umemori H. Deletion of fibroblast growth factor 22 (FGF22) causes a depression-like phenotype in adult mice. Behav Brain Res 2016; 307:11-7. [PMID: 27036645 DOI: 10.1016/j.bbr.2016.03.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/15/2022]
Abstract
Specific growth factors induce formation and differentiation of excitatory and inhibitory synapses, and are essential for brain development and function. Fibroblast growth factor 22 (FGF22) is important for specifying excitatory synapses during development, including in the hippocampus. Mice with a genetic deletion of FGF22 (FGF22KO) during development subsequently have fewer hippocampal excitatory synapses in adulthood. As a result, FGF22KO mice are resistant to epileptic seizure induction. In addition to playing a key role in learning, the hippocampus is known to mediate mood and anxiety. Here, we explored whether loss of FGF22 alters affective, anxiety or social cognitive behaviors in mice. We found that relative to control mice, FGF22KO mice display longer duration of floating and decreased latency to float in the forced swim test, increased immobility in the tail suspension test, and decreased preference for sucrose in the sucrose preference test, which are all suggestive of a depressive-like phenotype. No differences were observed between control and FGF22KO mice in other behavioral assays, including motor, anxiety, or social cognitive tests. These results suggest a novel role for FGF22 specifically in affective behaviors.
Collapse
Affiliation(s)
- Aislinn J Williams
- Molecular and Behavioral Neuroscience Institute and Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.
| | - Patricia Yee
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.
| | - Mitchell C Smith
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States.
| | - Geoffrey G Murphy
- Molecular and Behavioral Neuroscience Institute and Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States.
| | - Hisashi Umemori
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States; Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
9
|
Jiang P, Scarpa JR, Fitzpatrick K, Losic B, Gao VD, Hao K, Summa KC, Yang HS, Zhang B, Allada R, Vitaterna MH, Turek FW, Kasarskis A. A systems approach identifies networks and genes linking sleep and stress: implications for neuropsychiatric disorders. Cell Rep 2015; 11:835-48. [PMID: 25921536 DOI: 10.1016/j.celrep.2015.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/23/2014] [Accepted: 03/30/2015] [Indexed: 02/06/2023] Open
Abstract
Sleep dysfunction and stress susceptibility are comorbid complex traits that often precede and predispose patients to a variety of neuropsychiatric diseases. Here, we demonstrate multilevel organizations of genetic landscape, candidate genes, and molecular networks associated with 328 stress and sleep traits in a chronically stressed population of 338 (C57BL/6J × A/J) F2 mice. We constructed striatal gene co-expression networks, revealing functionally and cell-type-specific gene co-regulations important for stress and sleep. Using a composite ranking system, we identified network modules most relevant for 15 independent phenotypic categories, highlighting a mitochondria/synaptic module that links sleep and stress. The key network regulators of this module are overrepresented with genes implicated in neuropsychiatric diseases. Our work suggests that the interplay among sleep, stress, and neuropathology emerges from genetic influences on gene expression and their collective organization through complex molecular networks, providing a framework for interrogating the mechanisms underlying sleep, stress susceptibility, and related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Peng Jiang
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Joseph R Scarpa
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karrie Fitzpatrick
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Bojan Losic
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vance D Gao
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keith C Summa
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - He S Yang
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ravi Allada
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Martha H Vitaterna
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Fred W Turek
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| | - Andrew Kasarskis
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
10
|
Ursinus WW, Van Reenen CG, Reimert I, Bolhuis JE. Tail biting in pigs: blood serotonin and fearfulness as pieces of the puzzle? PLoS One 2014; 9:e107040. [PMID: 25188502 PMCID: PMC4154847 DOI: 10.1371/journal.pone.0107040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 08/14/2014] [Indexed: 12/04/2022] Open
Abstract
Tail biting in pigs is a widespread problem in intensive pig farming. The tendency to develop this damaging behaviour has been suggested to relate to serotonergic functioning and personality characteristics of pigs. We investigated whether tail biting in pigs can be associated with blood serotonin and with their behavioural and physiological responses to novelty. Pigs (n = 480) were born in conventional farrowing pens and after weaning at four weeks of age they were either housed barren (B) or in straw-enriched (E) pens. Individual pigs were exposed to a back test and novel environment test before weaning, and after weaning to a novel object (i.e. bucket) test in an unfamiliar arena. A Principal Component Analysis on behaviours during the tests and salivary cortisol (novel object test only) revealed five factors for both housing systems, labeled ‘Early life exploration’, ‘Near bucket’, ‘Cortisol’, ‘Vocalizations & standing alert’, and ‘Back test activity’. Blood samples were taken at 8, 9 and 22 weeks of age to determine blood platelet serotonin. In different phases of life, pigs were classified as tail biter/non-tail biter based on tail biting behaviour, and as victim/non-victim based on tail wounds. A combination of both classifications resulted in four pig types: biters, victims, biter/victims, and neutrals. Generally, only in phases of life during which pigs were classified as tail biters, they seemed to have lower blood platelet serotonin storage and higher blood platelet uptake velocities. Victims also seemed to have lower blood serotonin storage. Additionally, in B housing, tail biters seemed to consistently have lower scores of the factor ‘Near bucket’, possibly indicating a higher fearfulness in tail biters. Further research is needed to elucidate the nature of the relationship between peripheral 5-HT, fearfulness and tail biting, and to develop successful strategies and interventions to prevent and reduce tail biting.
Collapse
Affiliation(s)
- Winanda W. Ursinus
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
- Animal behaviour & Welfare, Wageningen UR Livestock Research, Wageningen, The Netherlands
- * E-mail:
| | - Cornelis G. Van Reenen
- Animal behaviour & Welfare, Wageningen UR Livestock Research, Wageningen, The Netherlands
| | - Inonge Reimert
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
11
|
Medeiros GFD, Corrêa FJ, Corvino ME, Izídio GDS, Ramos A. The Long Way from Complex Phenotypes to Genes: The Story of Rat Chromosome 4 and Its Behavioral Effects. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/wjns.2014.43024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Maximino C, de Oliveira DL, Broock Rosemberg D, de Jesus Oliveira Batista E, Herculano AM, Matos Oliveira KR, Benzecry R, Blaser R. A comparison of the light/dark and novel tank tests in zebrafish. BEHAVIOUR 2012. [DOI: 10.1163/1568539x-00003029] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Karlsson L, Hiemke C, Carlsson B, Josefsson M, Ahlner J, Bengtsson F, Schmitt U, Kugelberg FC. Effects on enantiomeric drug disposition and open-field behavior after chronic treatment with venlafaxine in the P-glycoprotein knockout mice model. Psychopharmacology (Berl) 2011; 215:367-77. [PMID: 21191569 DOI: 10.1007/s00213-010-2148-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
Abstract
RATIONALE P-glycoprotein (P-gp) plays an important role in the efflux of drugs from the brain back into the bloodstream and can influence the pharmacokinetics and pharmacodynamics of drug molecules. To our knowledge, no studies have reported pharmacodynamic effects of any antidepressant drug in the P-gp knockout mice model. OBJECTIVE The aim of this study was to investigate the enantiomeric venlafaxine and metabolite concentrations in serum and brain of abcb1ab⁻/⁻ mice compared to wild-type mice upon chronic dosing, and to assess the effect of venlafaxine treatment on open-field behavior. METHODS P-gp knockout and wild-type mice received two daily intraperitoneal injections of venlafaxine (10 mg/kg) over ten consecutive days. Locomotor and rearing activities were assessed on days 7 and 9. After 10 days, drug and metabolite concentrations in brain and serum were determined using an enantioselective LC/MS/MS method. RESULTS The brain concentrations of venlafaxine and its three demethylated metabolites were two to four times higher in abcb1ab⁻/⁻ mice compared to abcb1ab+/+ mice. The behavioral results indicated an impact on exploration-related behaviors in the open-field as center activity was increased, and rears were decreased by venlafaxine treatment. CONCLUSION Our results show that P-gp at the blood-brain barrier plays an important role in limiting brain entry of the enantiomers of venlafaxine and its metabolites after chronic dosing. Taken together, the present pharmacokinetic and pharmacodynamic findings offer the possibility that the expression of P-gp in patients may be a contributing factor for limited treatment response.
Collapse
Affiliation(s)
- Louise Karlsson
- Division of Drug Research, Clinical Pharmacology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
14
|
The genetic basis of adrenal gland weight and structure in BXD recombinant inbred mice. Mamm Genome 2011; 22:209-34. [DOI: 10.1007/s00335-011-9315-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 12/21/2022]
|
15
|
Zaccaria KJ, Lagace DC, Eisch AJ, McCasland JS. Resistance to change and vulnerability to stress: autistic-like features of GAP43-deficient mice. GENES, BRAIN, AND BEHAVIOR 2010; 9:985-96. [PMID: 20707874 PMCID: PMC2975747 DOI: 10.1111/j.1601-183x.2010.00638.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is an urgent need for animal models of autism spectrum disorder (ASD) to understand the underlying pathology and facilitate development and testing of new treatments. The synaptic growth-associated protein-43 (GAP43) has recently been identified as an autism candidate gene of interest. Our previous studies show many brain abnormalities in mice lacking one allele for GAP43 [GAP43 (+/-)] that are consistent with the disordered connectivity theory of ASD. Thus, we hypothesized that GAP43 (+/-) mice would show at least some autistic-like behaviors. We found that GAP43 (+/-) mice, relative to wild-type (+/+) littermates, displayed resistance to change, consistent with one of the diagnostic criteria for ASD. GAP43 (+/-) mice also displayed stress-induced behavioral withdrawal and anxiety, as seen in many autistic individuals. In addition, both GAP43 (+/-) mice and (+/+) littermates showed low social approach and lack of preference for social novelty, consistent with another diagnostic criterion for ASD. This low sociability is likely because of the mixed C57BL/6J 129S3/SvImJ background. We conclude that GAP43 deficiency leads to the development of a subset of autistic-like behaviors. As these behaviors occur in a mouse that displays disordered connectivity, we propose that future anatomical and functional studies in this mouse may help uncover underlying mechanisms for these specific behaviors. Strain-specific low sociability may be advantageous in these studies, creating a more autistic-like environment for study of the GAP43-mediated deficits of resistance to change and vulnerability to stress.
Collapse
Affiliation(s)
- K J Zaccaria
- Department of Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | | | |
Collapse
|
16
|
Wilson YM, Brodnicki TC, Lawrence AJ, Murphy M. Congenic Mouse Strains Enable Discrimination of Genetic Determinants Contributing to Fear and Fear Memory. Behav Genet 2010; 41:278-87. [DOI: 10.1007/s10519-010-9387-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 07/22/2010] [Indexed: 12/23/2022]
|
17
|
Lebreton S, Martin JR. Mutations affecting the cAMP transduction pathway disrupt the centrophobism behavior. J Neurogenet 2010; 23:225-34. [PMID: 19306211 DOI: 10.1080/01677060802509160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Like vertebrates, invertebrates such as Drosophila display complex integrated behaviors that rely on locomotion for their execution. The use of genetic tools combined with sophisticated behavioral analysis has permitted researchers to investigate the brain structures implicated in those complex behaviors, such as locomotor activity. The video-tracking paradigm has allowed the study of multiple parameters of locomotor activity and has revealed that Drosophila exhibits centrophobism, a behavior related to spatial orientation. A structure/function study has demonstrated that the mushroom bodies (MBs) are implicated in this behavior. In the continuity of these former studies, we have investigated the role of the cAMP transduction pathway known to be implicated in olfactory learning and memory within the MBs. Here, we report that disturbing this pathway by using different mutants, such as dnc, rut, PKA, or amn, lead to centrophobism defect. Moreover, we found that the P[GAL4]C316 flies, used to rescue the amn mutant phenotype, like those previously reported for the learning and memory defect, are severely disturbed in centrophobism behavior. Remarkably, those flies are perfectly randomly distributed in the arena, suggesting that C316 flies carry an important mutated-gene implicated in neuronal networks required for proper spatial orientation.
Collapse
Affiliation(s)
- Sébastien Lebreton
- Bases Neurales des Comportements chez la Drosophile Laboratoire de Neurobiologie Cellulaire et Moléculaire (NBCM), CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
18
|
Massett MP, Fan R, Berk BC. Quantitative trait loci for exercise training responses in FVB/NJ and C57BL/6J mice. Physiol Genomics 2009; 40:15-22. [PMID: 19789284 DOI: 10.1152/physiolgenomics.00116.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The genetic factors determining the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with adaptation to exercise training in a cross between FVB/NJ (FVB) and C57BL/6J (B6) mice. Mice completed an exercise performance test before and after a 4-wk treadmill running program, and changes in exercise capacity, expressed as work (kg.m), were calculated. Changes in work in F(2) mice averaged 1.51 +/- 0.08 kg.m (94.3 +/- 7.3%), with a range of -1.67 to +4.55 kg.m. All F(2) mice (n = 188) were genotyped at 20-cM intervals with 103 single nucleotide polymorphisms (SNPs), and genomewide linkage scans were performed for pretraining, posttraining, and change in work. Significant QTL for pretraining work were located on chromosomes 14 at 4.0 cM [3.72 logarithm of odds (LOD)] and 19 at 34.4 cM (3.63 LOD). For posttraining work significant QTL were located on chromosomes 3 at 60 cM (4.66 LOD) and 14 at 26 cM (4.99 LOD). Suggestive QTL for changes in work were found on chromosomes 11 at 44.6 cM (2.30 LOD) and 14 at 36 cM (2.25 LOD). When pretraining work was used as a covariate, a potential QTL for change in work was identified on chromosome 6 at 68 cM (3.56 LOD). These data indicate that one or more QTL determine exercise capacity and training responses in mice. Furthermore, these data suggest that the genes that determine pretraining work and training responses may differ.
Collapse
Affiliation(s)
- Michael P Massett
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas 77845-4243, USA.
| | | | | |
Collapse
|
19
|
Bolivar VJ. Intrasession and intersession habituation in mice: from inbred strain variability to linkage analysis. Neurobiol Learn Mem 2009; 92:206-14. [PMID: 19496240 DOI: 10.1016/j.nlm.2009.02.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
When placed in a novel environment, mice tend to explore for a period of time, and then reduce the level of exploration. This reduction in locomotor or exploratory behavior is known as habituation and can occur within a single session or across sessions, respectively, termed intrasession and intersession habituation. Recent research indicates that there is a genetic component to habituation behavior and that some of the genes involved differ between the two types of habituation. The genetic evidence also suggests that intrasession habituation and intersession habituation are measuring somewhat different conceptual entities and with more such evidence may eventually help us understand the different pathways involved. Some of the genetic methods and tools used to unravel the roles of specific genes in both types of habituation are outlined here, with examples from the literature, as well as new data, to illustrate that this seemingly simple behavior is actually very complicated in terms of genetics. Evidence to date suggests that a number of genetic regions play roles in one or both types of habituation, and further research will be necessary to determine the specific genes involved.
Collapse
Affiliation(s)
- Valerie J Bolivar
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
20
|
Foreman JE, Lionikas A, Lang DH, Gyekis JP, Krishnan M, Sharkey NA, Gerhard GS, Grant MD, Vogler GP, Mack HA, Stout JT, Griffith JW, Lakoski JM, Hofer SM, McClearn GE, Vandenbergh DJ, Blizard DA. Genetic architecture for hole-board behaviors across substantial time intervals in young, middle-aged and old mice. GENES BRAIN AND BEHAVIOR 2009; 8:714-27. [PMID: 19671078 DOI: 10.1111/j.1601-183x.2009.00516.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A quantitative trait locus (QTL) analysis of behaviors across the life span was conducted in F(2) mice from a C57BL/6J x DBA/2J cross and 22 BXD recombinant inbred (RI) strains. Mice of three age groups were tested in a hole-board apparatus for 3 min on three occasions approximately 1 month apart (average age at test 150, 450 and 750 days, approximately 400 mice per group, divided equally by sex). Quantitative trait loci with small effect size were found on 11 chromosomes for hole-board activity (Hbact) and hole-board rearing (Hbrear). Analysis of 22 RI strains tested at 150 and 450 days of age found only suggestive linkage, with four QTL for Hbact overlapping with those from the F(2) analysis. There was a significant phenotypic correlation between Hbact and Hbrear (approximately 0.55-0.69) and substantial commonality among QTL for the two behaviors. QTL analyses of head-pokes (HP) and fecal boli (FB) only identified QTL at the suggestive level of significance. Age accounted for approximately 15% of the phenotypic variance (sex approximately 3%), and there were genotype by age interactions at approximately 25% of the Hbact and Hbrear QTL. Quantitative trait loci for Hbrear were relatively stable across the three measurement occasions (those for Hbact somewhat less so), although mean levels of each index declined markedly comparing the first to subsequent trials. Considered as a whole, the polygenic system influencing exploratory behaviors accounts for approximately the same amount of phenotypic variance as age (within the range studied), is stable across substantial periods of time, and acts, for the most part, independently of age and sex.
Collapse
Affiliation(s)
- J E Foreman
- Center for Developmental and Health Genetics, The Pennsylvania State University, University Park, PA 16802-2317, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gale GD, Yazdi RD, Khan AH, Lusis AJ, Davis RC, Smith DJ. A genome-wide panel of congenic mice reveals widespread epistasis of behavior quantitative trait loci. Mol Psychiatry 2009; 14:631-45. [PMID: 18379576 PMCID: PMC3014058 DOI: 10.1038/mp.2008.4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Understanding the genetics of behavioral variation remains a fascinating but difficult problem with considerable theoretical and practical implications. We used the genome-tagged mice (GTM) and an extensive test battery of well-validated behavioral assays to scan the genome for behavioral quantitative trait loci (QTLs). The GTM are a panel of 'speed congenic' mice consisting of over 60 strains spanning the entire autosomal genome. Each strain harbors a small (approximately 23 cM) DBA/2J donor segment on a uniform C57BL/6J background. The panel allows for mapping to regions as small as 5 cM and provides a powerful new tool for increasing mapping power and replicability in the analysis of QTLs. A total of 97 loci were mapped for a variety of complex behavioral traits including hyperactivity, anxiety, prepulse inhibition, avoidance and conditional fear. A larger number of loci were recovered than generally attained from standard mapping crosses. In addition, a surprisingly high proportion of loci, 63%, showed phenotypes unlike either of the parental strains. These data suggest that epistasis decreases sensitivity of locus detection in traditional crosses and demonstrate the utility of the GTM for mapping complex behavioral traits with high sensitivity and precision.
Collapse
Affiliation(s)
- GD Gale
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - RD Yazdi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - AH Khan
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - AJ Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - RC Davis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - DJ Smith
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
22
|
Evidence for epigenetic interactions for loci on mouse chromosome 1 regulating open field activity. Behav Genet 2008; 39:176-82. [PMID: 19048365 DOI: 10.1007/s10519-008-9243-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
Abstract
The expression of motor activity levels in response to novel situations is under complex genetic and environmental control. Several genetic loci have been implicated in the regulation of this behavioral phenotype, but their relationship to epigenetic and epistatic interactions is relatively unknown. Here, we report on a quantitative trait locus (QTL) on mouse chromosome 1 for novelty-induced motor activity in the open field, using chromosome substitution strains derived from a high active host strain (C57BL/6J) and a low active donor strain (A/J). The QTL for open field (horizontal distance moved) peaked at the location of Kcnj9, however, QTL detection was initially masked by an interplay of both grandparent genetic origin and genetic co-factors influencing behavior on chromosome 1. Our findings indicate that epigenetic interactions can play an important role in the identification of behavioral QTLs and must be taken into consideration when applying behavioral genetic strategies.
Collapse
|
23
|
Abstract
The basis of social evolution in mammals is the mother-offspring relationship. It is also the primary and most important instance of indirect genetic effects, where genetic variation in one individual affects phenotypic variation among others. This relationship is so important in mammals that often the major factor determining the life or death of newborns is the environment provided by their mother. Variations in these environments can be due to variations in maternal genotypes. In our work with the intercross of two mouse inbred strains, LG/J and SM/J, we uncovered a very severe variation in maternal performance. These females failed to nurture their offspring and showed abnormal maternal behaviors leading to loss of their litter. Rather than this being due to a single gene variant as in knockout mice, we uncovered a complex genetic basis for this trait. The effects of genes on maternal performance are entirely context dependent in our cross. They depend on the alleles present at the same or other epistatically interacting loci. Genomic locations identified in this study include locations of candidate genes whose knockouts displayed similar aberrant maternal behavior. Behaviors significantly associated with maternal performance in this study include suckling, nest building, placentophagia, pup grooming, and retrieval of pups after disturbance.
Collapse
Affiliation(s)
- Andréa C Peripato
- Department of Biology/Genetics, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | | |
Collapse
|
24
|
Takahashi A, Nishi A, Ishii A, Shiroishi T, Koide T. Systematic analysis of emotionality in consomic mouse strains established from C57BL/6J and wild-derived MSM/Ms. GENES BRAIN AND BEHAVIOR 2008; 7:849-58. [PMID: 18616609 PMCID: PMC2667313 DOI: 10.1111/j.1601-183x.2008.00419.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Consomic strains have recently attracted attention as an advantageous method to screen for genes related to developmental, physiological, and behavioral phenotypes. Recently, a new set of consomic strains was established from the Japanese wild-derived mouse strain MSM/Ms and C57BL/6JJcl. By analyzing the entire consomic panel, we were able to identify a number of chromosomes associated with anxiety-like behaviors in the open-field (OF) test, a light-dark box and an elevated plus maze. Detailed observation of the OF behavior allowed us to identify chromosomes associated with those ethological traits, such as stretch attend, rearing, and jumping. Repeated OF test trials have different meanings for animals, and we found that some chromosomes responded to only the first or second trial, while others were consistent across both trials. By examining both male and female mice, sex-dependent effects were found in several measurements. Principal component analysis of anxiety-like behaviors extracted five factors: 'general locomotor activity', 'thigmotaxis', 'risk assessment', 'open-arm exploration' and 'autonomic emotionality'. We mapped chromosomes associated with these five factors of emotionality.
Collapse
Affiliation(s)
- A Takahashi
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | | | | | | | |
Collapse
|
25
|
Bazovkina DV, Kondaurova EM, Kulikov AV. Genome microsatellite mapping of mice bred for high catalepsy susceptibility. DOKL BIOCHEM BIOPHYS 2008; 420:127-9. [DOI: 10.1134/s1607672908030083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Fullerton JM, Willis-Owen SAG, Yalcin B, Shifman S, Copley RR, Miller SR, Bhomra A, Davidson S, Oliver PL, Mott R, Flint J. Human-mouse quantitative trait locus concordance and the dissection of a human neuroticism locus. Biol Psychiatry 2008; 63:874-83. [PMID: 18083140 DOI: 10.1016/j.biopsych.2007.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/28/2007] [Accepted: 10/17/2007] [Indexed: 12/01/2022]
Abstract
BACKGROUND Exploiting synteny between mouse and human disease loci has been proposed as a cost-effective method for the identification of human susceptibility genes. Here we explore its utility in an analysis of a human personality trait, neuroticism, which can be modeled in mice by tests of emotionality. We investigated a mouse emotionality locus on chromosome 1 that contains no annotated genes but abuts four regulators of G protein signaling, one of which (rgs2) has been previously identified as a quantitative trait gene for emotionality. This locus is syntenic with a human region that has been consistently implicated in the genetic aetiology of neuroticism. METHODS The functional candidacy of 29 murine sequence variants was tested by a combination of gel shift and transient transfection assays. Murine sequences that contained functional variants and exhibited significant cross-species conservation were prioritized for investigation in humans. Genetic association with neuroticism was tested in 1869 high and 2032 low unrelated individuals scored for neuroticism, selected from the extremes of 88,141 people from southwest England. RESULTS Fifteen sequence variants contributed to variation in the expression of rgs18, the gene lying at the edge of the quantitative trait loci (QTL) interval. There was no evidence of association between neuroticism and single nucleotide polymorphisms (SNPs) lying in the human regions homologous to those of mouse functional variants. One SNP, rs6428058, in a region of sequence conservation 644 kb upstream of RGS18, showed significant association (p = .000631). CONCLUSIONS It is unlikely that a single variant is responsible for the mouse emotionality locus on chromosome 1. This level of underlying genetic complexity means that although cross-species QTL concordance may be invaluable for the identification of human disease loci, it is unlikely to be as informative in the identification of human disease-causing variants.
Collapse
Affiliation(s)
- Janice M Fullerton
- Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Behavioural analysis of congenic mouse strains confirms stress-responsive Loci on chromosomes 1 and 12. Behav Genet 2008; 38:407-16. [PMID: 18379869 DOI: 10.1007/s10519-008-9206-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
Abstract
The way in which animals respond to stressful environments correlates with anxiety-related behaviour. To begin identifying the genetic factors that influence anxiety, we have studied the stress-responsiveness of inbred mouse strains using a modified form of the open field activity test (OFA), termed the elevated (e) OFA. In particular, two strains show high (DBA/2J) or low (C57BL/6J) stress-responsiveness in the eOFA. Genetic studies of an F(2) intercross between these two strains previously identified two regions, on chromosomes (Chr) 1 and 12, linked to anxiety-related behaviour. To confirm that these regions contain loci for stress-responsiveness, we established separate congenic mouse strains for the linked Chr1 and Chr12 regions. Each congenic strain harbours a DBA/2J-derived interval encompassing the linked region on the C57BL/6J genetic background: the congenic intervals are between, but not including approximately 48.6 Mb and approximately 194.8 Mb on Chr1, and approximately 36.2 Mb and the distal end of Chr12. Cohorts of DBA/2J, C57BL/6J and congenic mice were analysed for a series of stress-responsive phenotypes using the eOFA test. Both congenic strains had significantly different stress-responsive phenotypes compared to the low-stress C57BL/6J parental strain, but the DBA/2J-derived Chr12 interval had a greater genetic effect than the DBA/2J-derived Chr1 interval for changing the behavioral phenotype of the parental C57BL/6J mouse strain. These results confirmed the presence of stress-responsive loci on Chr1 and Chr12. New stress-related phenotypes were also identified, which aided in comparing and differentiating DBA/2J, C57BL/6J and congenic mice.
Collapse
|
28
|
Rapid selection response for contextual fear conditioning in a cross between C57BL/6J and A/J: behavioral, QTL and gene expression analysis. Behav Genet 2008; 38:277-91. [PMID: 18363093 DOI: 10.1007/s10519-008-9203-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
Abstract
We used short-term selection to produce outbred mouse lines with differences in contextual fear conditioning. Within two generations of selection all low selected mice were homozygous for the recessive tyrc allele and showed the corresponding albino coat color. Freezing differed in the high and low selected lines across a range of parameters. We identified several QTLs for the selection response, including a highly significant QTL at the tyr locus (p < 9.6(-10)). To determine whether the tyrc allele was directly responsible for the response to selection, we examined B6 mice that have a mutant tyr allele (tyr(c-2j-)) and an AJ congenic strain that has the wild-type B6 allele for tyr. These studies showed that the tyr allele had a small influence on fear learning. We used Affymetrix microarrays to identify many differentially expressed genes in the amygdala and hippocampus of the selected lines. We conclude that tyr is one of many alleles that influence fear conditioning.
Collapse
|
29
|
Chromosomal assignment of quantitative trait loci influencing modified hole board behavior in laboratory mice using consomic strains, with special reference to anxiety-related behavior and mouse chromosome 19. Behav Genet 2008; 38:159-84. [PMID: 18175213 DOI: 10.1007/s10519-007-9188-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 12/06/2007] [Indexed: 10/22/2022]
Abstract
Male mice from a panel of chromosome substitution strains (CSS, also called consomic strains or lines)--in which a single full-length chromosome from the A/J inbred strain has been transferred onto the genetic background of the C57BL/6J inbred strain--and the parental strains were examined in the modified hole board test. This behavioral test allows to assess for a variety of different motivational systems in parallel (i.e. anxiety, risk assessment, exploration, memory, locomotion, and arousal). Such an approach is essential for behavioral characterization since the motivational system of interest is strongly influenced by other behavioral systems. Both univariate and bivariate analyses, as well as a factor analysis, were performed. The C57BL/6J and A/J mouse parental inbred strains differed in all motivational systems. The chromosome substitution strain survey indicated that nearly all mouse chromosomes (with the exception of chromosome 2) each contain at least one quantitative trait locus (QTL) that is involved in modified hole board behavior. The results agreed well with previous reports of QTLs for anxiety-related behavior using the A/J and C57BL/6J as parental strains. The present study confirmed that mouse chromosomes 5, 8, 10, 15, 18 and 19 likely contain at least one anxiety QTL. There was also evidence for a novel anxiety QTL on the Y chromosome. With respect to anxiety-related avoidance behavior towards an unprotected area, we have special interest for mouse chromosome 19. CSS-19 (C57BL/6J-Chr19(A)/NaJ) differed in avoidance behavior from the C57BL/6J, but not in locomotion. Thus pleiotropic contribution of locomotion could be excluded.
Collapse
|
30
|
Thifault S, Ondrej S, Sun Y, Fortin A, Skamene E, Lalonde R, Tremblay J, Hamet P. Genetic determinants of emotionality and stress response in AcB/BcA recombinant congenic mice and in silico evidence of convergence with cardiovascular candidate genes. Hum Mol Genet 2007; 17:331-44. [PMID: 17913702 DOI: 10.1093/hmg/ddm277] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genomic loci bearing stress-related phenotypes were dissected in recombinant congenic strains (RCS) of mice with C57BL/6J (B6) and A/J progenitors. Adult male mice from 14 A/J and 22 B6 background lines were evaluated for emotional reactivity in open-field (OF) and elevated plus-maze tests. Core temperature was monitored by radio telemetry during immobilization and on standard as well as salt-enriched diets. In addition, urinary electrolytes were measured. Genome-wide linkage analysis of the parameters revealed over 20 significant quantitative trait loci (QTL). The highest logarithm of odds (LOD) scores were within the previously-reported OF emotionality locus on Chr 1 (LOD = 4.6), in the dopa decarboxylase region on Chr 11 for the plus-maze (LOD = 4.7), and within a novel region of calmodulin 1 on Chr 12 for Ca++ excretion after a 24-h salt load (LOD = 4.6). RCS stress QTL overlapped with several candidate loci for cardiovascular (CV) disease. In silico evidence of functional polymorphisms by comparative sequence analysis of progenitor strains assisted to ascertain this convergence. The anxious BcA70 strain showed down regulation of Atp1a2 gene expression in the heart (P < 0.001) and brain (P < 0.05) compared with its parental B6 strain, compatible with the enhanced emotionality described in knock out animals for this gene, also involved in the salt-sensitive component of hypertension. Functional polymorphisms in regulatory elements of candidate genes of the CV/inflammatory/immune systems support the hypothesis of genetically-altered environmental susceptibility in CV disease development.
Collapse
Affiliation(s)
- Stéphane Thifault
- Centre de recherche, Centre hospitalier de l'Université de Montréal-Technopôle Angus, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Martin JGA, Réale D. Animal temperament and human disturbance: implications for the response of wildlife to tourism. Behav Processes 2007; 77:66-72. [PMID: 17683881 DOI: 10.1016/j.beproc.2007.06.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 05/16/2007] [Accepted: 06/11/2007] [Indexed: 11/29/2022]
Abstract
Studies on the response of wildlife to human disturbance generally focus on demographic changes or on physiological and behavioural modifications directly related to stress response. Yet fewer studies have explored whether the distribution of individual animals in response to human disturbance is influenced by temperament. Temperament represents the consistency of responses of individuals in reaction to novel or challenging situations. Individuals are thus assumed to express highly consistent behaviour-hormonal response under specific stress conditions. In this study, we investigate the relations between exploration, grooming-scanning continuum, emotionality, and docility of individual Eastern chipmunks (Tamias striatus) and location of their burrow respective to frequentation by humans. We then assess the relationship between cortisol accumulated in the hair and both temperament and frequentation by humans. Explorative or docile chipmunks were more common in frequented areas. Hair cortisol increased with docility, but was not related to human frequentation. These results indicate that temperament may cause animals to distribute themselves in a non-random way in response to human disturbance. Integrating temperament into studies of the stress response of wildlife to humans could therefore help us understand the impact of tourism on wildlife.
Collapse
Affiliation(s)
- J G A Martin
- Groupe de Recherche en Ecologie Comportementale et Animale, Université du Québec à Montréal, Département des Sciences Biologiques, BP 8888 Succursale Centre-ville, Montréal, Québec, Canada.
| | | |
Collapse
|
32
|
Ponder CA, Munoz M, Gilliam TC, Palmer AA. Genetic architecture of fear conditioning in chromosome substitution strains: relationship to measures of innate (unlearned) anxiety-like behavior. Mamm Genome 2007; 18:221-8. [PMID: 17492333 DOI: 10.1007/s00335-007-9013-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 03/06/2007] [Indexed: 12/01/2022]
Abstract
We measured fear conditioning (FC) in a panel of chromosome substitution strains (CSS) created using the C57BL/6J (B6) and A/J (AJ) inbred strains. Mice were trained to associate a specific context and tone with a foot shock. FC was measured by observing freezing behavior during re-exposure to the context and tone. Freezing to context was more than twofold greater in the AJ strain relative to the B6 strain. Among the CSS we identified four strains with higher (CSS-6, -10, -11, and -18) and two strains with lower (CSS-7 and -14) freezing to context. CSS-10 and -18 also showed higher freezing to tone, while CSS-12 showed less freezing to tone. CSS-1 has been implicated in open-field (OF) and light-dark box (LDB); we observed significant activity differences prior to training but no differences in FC. Chromosomes 6 and 10 have been associated with differences in anxiety-like behaviors, suggesting the existence of pleiotropic alleles that influence both learned and innate fear. By utilizing a genetic reference population, we have identified chromosomes that pleiotropically influence multiple phenotypes hypothesized to reflect a common ethologic construct that has been termed emotionality. The CSS provide a straightforward means of isolating the underlying genetic factors.
Collapse
Affiliation(s)
- Christine A Ponder
- Department of Genetics and Development, Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
33
|
Ohl F, Arndt SS, van der Staay FJ. Pathological anxiety in animals. Vet J 2007; 175:18-26. [PMID: 17321766 DOI: 10.1016/j.tvjl.2006.12.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 12/18/2006] [Accepted: 12/20/2006] [Indexed: 11/17/2022]
Abstract
Selective breeding programmes in domestic and laboratory animals generally focus on physiological and/or anatomical characteristics. However, selection may have an (unintended) impact on other characteristics and may lead to dysfunctional behaviour that can affect biological functioning and, as a consequence, compromise welfare and quality of life. In this review it is proposed that various behavioural dysfunctions in animals are due to pathological anxiety. Although several approaches have been undertaken to specify the diagnostic criteria of pathological anxiety as a behavioural disorder in animals, the causal aetiology largely remains unknown. This is mainly due to the fact that integrated concepts, combining the behavioural syndrome and (neuro-) physiological processes, are widely lacking. Moreover, even the term anxiety itself represents a poorly defined concept or category. A definition is suggested and the potential causes of pathological anxiety are explored with a plea for developing adequate diagnostic tools and therapies to fight pathological anxiety in animals based on insight from scientific research.
Collapse
Affiliation(s)
- Frauke Ohl
- Department of Animals, Science and Society, Division of Laboratory Animal Science, Veterinary Faculty, Utrecht University, P.O. Box 80166, 3508 TD Utrecht, Netherlands.
| | | | | |
Collapse
|
34
|
Marden JH. Quantitative and evolutionary biology of alternative splicing: how changing the mix of alternative transcripts affects phenotypic plasticity and reaction norms. Heredity (Edinb) 2006; 100:111-20. [PMID: 17006532 DOI: 10.1038/sj.hdy.6800904] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing (AS) of pre-messenger RNA is a common phenomenon that creates different transcripts from a single gene, and these alternative transcripts affect phenotypes. The majority of AS research has examined tissue and developmental specificity of expression of particular AS transcripts, how this specificity affects cell function, and how aberrant AS is related to disease. Few studies have examined quantitative between-individual variation in AS within a cell or tissue type, or in relation to phenotypes, but the results are compelling: quantitative variation in AS affects plastic traits such as stress, anxiety, fear, egg production, muscle performance, energetics and plant growth. Genomic analyses of AS are also at a nascent stage, but have revealed a number of significant evolutionary patterns. Growing knowledge of upstream genes and kinases that regulate AS provides the as-yet little explored potential to examine how these genes and pathways respond to environmental and genotype variables. Research in this area can provide glimpses of a labyrinth of genetic architectures that have rarely been considered in evolutionary and organismal biology, or in quantitative genetics. The scarcity of contribution to knowledge about AS from these fields is illustrated by the fact that heritability of quantitative variation in AS has not yet been determined for any gene in any organism. New research tactics that incorporate quantitative analyses of AS will allow organismal and evolutionary biologists to attain a fuller mechanistic understanding of many of the traits they study, and may lead to more rapid discovery of functionally important polymorphisms.
Collapse
Affiliation(s)
- J H Marden
- Department of Biology, 208 Mueller Lab, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
35
|
van der Staay FJ. Animal models of behavioral dysfunctions: Basic concepts and classifications, and an evaluation strategy. ACTA ACUST UNITED AC 2006; 52:131-59. [PMID: 16529820 DOI: 10.1016/j.brainresrev.2006.01.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 01/17/2006] [Accepted: 01/17/2006] [Indexed: 12/31/2022]
Abstract
In behavioral neurosciences, such as neurobiology and biopsychology, animal models make it possible to investigate brain-behavior relations, with the aim of gaining insight into normal and abnormal human behavior and its underlying neuronal and neuroendocrinological processes. Different types of animal models of behavioral dysfunctions are reviewed in this article. In order to determine the precise criteria that an animal model should fulfill, experts from different fields must define the desired characteristics of that model at the neuropathologic and behavioral level. The list of characteristics depends on the purpose of the model. The phenotype-abnormal behavior or behavioral dysfunctions-has to be translated into testable measures in animal experiments. It is essential to standardize rearing, housing, and testing conditions, and to evaluate the reliability, validity (primarily predictive and construct validity), and biological or clinical relevance of putative animal models of human behavioral dysfunctions. This evaluation, guided by a systematic strategy, is central to the development of a model. The necessity of animal models and the responsible use of animals in research are discussed briefly.
Collapse
Affiliation(s)
- F Josef van der Staay
- Wageningen University and Research Center, Animal Sciences Group, PO Box 65, 8200 AB Lelystad, The Netherlands.
| |
Collapse
|
36
|
Abstract
The last decade has witnessed a steady expansion in the number of quantitative trait loci (QTL) mapped for complex phenotypes. However, despite this proliferation, the number of successfully cloned QTL has remained surprisingly low, and to a great extent limited to large effect loci. In this review, we follow the progress of one complex trait locus; a low magnitude moderator of murine emotionality identified some 10 years ago in a simple two-strain intercross, and successively resolved using a variety of crosses and fear-related phenotypes. These experiments have revealed a complex underlying genetic architecture, whereby genetic effects fractionate into several separable QTL with some evidence of phenotype specificity. Ultimately, we describe a method of assessing gene candidacy, and show that given sufficient access to genetic diversity and recombination, progression from QTL to gene can be achieved even for low magnitude genetic effects.
Collapse
|
37
|
Beaumont C, Roussot O, Feve K, Vignoles F, Leroux S, Pitel F, Faure JM, Mills AD, Guémené D, Sellier N, Mignon-Grasteau S, Le Roy P, Vignal A. A genome scan with AFLP markers to detect fearfulness-related QTLs in Japanese quail. Anim Genet 2006; 36:401-7. [PMID: 16167983 DOI: 10.1111/j.1365-2052.2005.01336.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A quantitative trait loci (QTL) study was undertaken to identify genome regions involved in the control of fearfulness in Japanese quail (Coturnix japonica). An F2 cross was made between two quail lines divergently selected over 29 generations on duration of tonic immobility (DTI), a catatonic-like state of reduced responsiveness to a stressful stimulation. A total of 1065 animals were measured for the logarithm of DTI (LOGTI), the number of inductions (NI) necessary to induce the immobility reaction, open-field behaviour including locomotor activity (MOVE), latency before first movement (LAT), number of jumps (JUMP), dejections (DEJ) and shouts (SHOUT), corticosterone level after a contention stress (LOGCORT) and body weight at 2 weeks of age (BW2). A total of 310 animals were included in a genome scan using selective genotyping with 248 AFLP markers. A total of 21 suggestive or genome-wide significant QTL were observed. Two highly significant QTL were identified on linkage group 1 (GL1), one for LOGTI and one for NI. In the vicinity of the QTL for LOGTI, a nearly significant QTL for SHOUT and a suggestive QTL for LAT were also identified. On GL3, genome-wide significant QTL were observed for JUMP and DEJ as well as suggestive QTL for LOGTI, MOVE, SHOUT and LAT. A significant QTL for BW2 was observed on GL2 and a nearly significant one on GL1. These results may be useful in the understanding of fearfulness in quail and related species provided that fearfulness has the same genetic basis.
Collapse
Affiliation(s)
- C Beaumont
- Laboratoire de Génétique Cellulaire, INRA, 31326 Castanet-Tolosan, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Takahashi A, Kato K, Makino J, Shiroishi T, Koide T. Multivariate Analysis of Temporal Descriptions of Open-field Behavior in Wild-derived Mouse Strains. Behav Genet 2006; 36:763-74. [PMID: 16402282 DOI: 10.1007/s10519-005-9038-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
The open-field test is a commonly used apparatus in many behavioral studies. However, in most studies, temporal changes of details of behavior have been ignored. We thus examined open-field behavior as measured by both conventional indices and 12 ethograms supported by detailed temporal observation. To obtain a broader understanding, we used genetically diverse mouse strains: 10 wild-derived mouse strains (PGN2, BFM/2, HMI, CAST/Ei, NJL, BLG2, CHD, SWN, KJR, MSM), one strain derived from the so-called fancy mouse (JFI), and one standard laboratory strain, C57BL/6. Conventional measurements revealed a variety of relationships: some strains did not show the hypothesized association between high ambulation, longer stay in the central area, and low defecation. Our ethological approach revealed that some behaviors, such as freezing and jumping, were not observed in C57BL/6 but were seen in some wild-derived strains. Principal component analysis which included temporal information indicated that these strains had varied temporal patterns of habituation to novelty.
Collapse
Affiliation(s)
- Aki Takahashi
- Department of Genetics, SOKENDAI, Hayama, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
39
|
Hovatta I, Tennant RS, Helton R, Marr RA, Singer O, Redwine JM, Ellison JA, Schadt EE, Verma IM, Lockhart DJ, Barlow C. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature 2005; 438:662-6. [PMID: 16244648 DOI: 10.1038/nature04250] [Citation(s) in RCA: 364] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 09/23/2005] [Indexed: 11/09/2022]
Abstract
Anxiety and fear are normal emotional responses to threatening situations. In human anxiety disorders--such as panic disorder, obsessive-compulsive disorder, post-traumatic stress disorder, social phobia, specific phobias and generalized anxiety disorder--these responses are exaggerated. The molecular mechanisms involved in the regulation of normal and pathological anxiety are mostly unknown. However, the availability of different inbred strains of mice offers an excellent model system in which to study the genetics of certain behavioural phenotypes. Here we report, using a combination of behavioural analysis of six inbred mouse strains with quantitative gene expression profiling of several brain regions, the identification of 17 genes with expression patterns that correlate with anxiety-like behavioural phenotypes. To determine if two of the genes, glyoxalase 1 and glutathione reductase 1, have a causal role in the genesis of anxiety, we performed genetic manipulation using lentivirus-mediated gene transfer. Local overexpression of these genes in the mouse brain resulted in increased anxiety-like behaviour, while local inhibition of glyoxalase 1 expression by RNA interference decreased the anxiety-like behaviour. Both of these genes are involved in oxidative stress metabolism, linking this pathway with anxiety-related behaviour.
Collapse
Affiliation(s)
- Iiris Hovatta
- The Salk Institute for Biological Studies, Laboratory of Genetics, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang S, Lou Y, Amstein TM, Anyango M, Mohibullah N, Osoti A, Stancliffe D, King R, Iraqi F, Gershenfeld HK. Fine mapping of a major locus on chromosome 10 for exploratory and fear-like behavior in mice. Mamm Genome 2005; 16:306-18. [PMID: 16104379 DOI: 10.1007/s00335-004-2427-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Advanced intercross lines (AIL) and interval-specific congenic strains (ISCS) were used to fine map previously coarsely defined quantitative trait loci (QTL) on Chromosomes 1, 10, and 19, influencing behaviors in the open Field (OF) and light-dark (LD) paradigms in mice. F12(A x B) AIL mice (N = 1130) were phenotyped, genotyped, and mapped. The ISCS were studied only in the telomeric Chromosome 10 region of interest, containing the exploratory and excitability QTL1 (Exq1). The Chromosome 10 Exq1 and Chromosome 19 Exq4 loci mapped robustly in the AIL. The most significant QTL findings (2.0 LOD score intervals; peak; LOD score) came from the TD15 and LD transitions traits, yielding estimated intervals of 2.2 cM for Exq1 (71.3-73.5 cM; peak 72.3 cM; LOD 11.9) and 9.0 cM for Exq4 (29.0-38.2 cM; peak 34 cM; LOD 4.2). The replicated QTLs on Chromosome 1 failed to map in this AIL population. The ISCS data confirmed Exq1 loci in general. However, the ISCS data were complex and less definitive for localizing the Exq1 loci. These exploratory and fear-like behaviors result from inheriting "many small things," namely, QTL explaining 2%-7% of the phenotypic variance. These results highlight the challenges of positionally cloning loci of small effect for complex traits. In particular, fine-mapping success may depend on the genetic architecture underlying complex traits.
Collapse
Affiliation(s)
- Shumin Zhang
- Department of Psychiatry and Integrative Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Boissy A, Fisher A, Bouix J, Hinch G, Le Neindre P. Genetics of fear in ruminant livestock. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.livprodsci.2004.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Leppänen PK, Ewalds-Kvist SBM, Selander RK. Mice Selectively Bred for Open-Field Thigmotaxis: Life Span and Stability of the Selection Trait. The Journal of General Psychology 2005; 132:187-204. [PMID: 15871300 DOI: 10.3200/genp.132.2.187-204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In 2 experiments, the authors examined 69 mice selectively bred for high or low levels of open-field (OF) thigmotactic behavior (high open-field thigmotaxis [HOFT] and low open-field thigmotaxis [LOFT], respectively). They found that the strains differed in defecation during the 60-min exposure to the OF. Furthermore, the strains differed with regard to their life spans: The more thigmotactic HOFT mice lived longer than the LOFT mice. The strains were not differentiated by food intake or excretion. The strain difference in thigmotaxis was not age dependent, and it persisted in the home-cage condition as well. Neither the location (center or wall) of the starting point nor the shape (circular or square) of the OF arena affected the difference in wall-seeking behavior between the two strains. The authors concluded that the difference in thigmotaxis (or emotionality) between the HOFT and LOFT mice is a stable and robust feature of these animals.
Collapse
|
43
|
Gill KJ, Boyle AE. Quantitative trait loci for novelty/stress-induced locomotor activation in recombinant inbred (RI) and recombinant congenic (RC) strains of mice. Behav Brain Res 2005; 161:113-24. [PMID: 15904718 DOI: 10.1016/j.bbr.2005.01.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 01/25/2005] [Indexed: 11/26/2022]
Abstract
The objective of the present study was to map and compare quantitative trait loci (QTLs) for an anxiety-related trait (novelty/stress-induced activation) in the AXB/BXA recombinant inbred (RI) and AcB/BcA recombinant congenic (RC) strains of mice derived from the A/J and C57BL/6J inbred progenitor strains. Activational responses to a novel open field (OF) were measured under identical stressful conditions (no prior handling or exposure to testing procedures) in both the RI and RC strains. Naive male and female mice were weighed, injected with IP saline and locomotor activity was monitored in a computerized OF apparatus for 15 min. Measures obtained from this experimental design included: (1) total activity scores, (2) time course of response (5 min time blocks over the 15 min session). Data for the RI strains were subjected to a QTL analysis using composite interval mapping. Significant loci were identified on chr 5 (D5Mit356, 41 cM), chr 8 (D8Mit305, 37 cM) and chr 14 (D14Mit36, 6 3cM). Single locus association analysis of the AcB/BcA RC strains identified 15 putative regions, 7 of which overlapped regions independently mapped in the RI strains on chr 1 (58.5-63.1cM), chr 4 (21.9-28.6 cM), chr 5 (19-45 & 74-86 cM), chr 6 (0.5-20.4cM), chr 9 (15-38 cM), chr 13 (47cM) and chr 19 (47cM). The loci identified on chr 5 near D5Mit356 (41cM) in both the AXB/BXA RIS and AcB/BcA RCS maps to a region containing the genes for several GABA(A) receptor subunits. Additionally, the present study provides further confirmation of a frequently identified QTL on chromosome 1. The results are discussed in the context of previous QTL studies of anxiety-related traits that have used genetic crosses that include the A or B6 progenitors.
Collapse
Affiliation(s)
- Kathryn J Gill
- Research Institute of the McGill University Health Centre and Psychiatry Department, McGill University, 1604 Pine Ave. West, Montreal, Quebec, Canada H3G 1B4.
| | | |
Collapse
|
44
|
Leppänen PK, Ewalds-Kvist SBM. Crossfostering in mice selectively bred for high and low levels of open-field thigmotaxis. Scand J Psychol 2005; 46:21-9. [PMID: 15660630 DOI: 10.1111/j.1467-9450.2005.00431.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The main purpose of this research was to investigate whether the difference in open-field (OF) thigmotaxis between mice selectively bred for high and low levels of wall-seeking behavior originated from genetic or acquired sources. Unfostered, infostered, and crossfostered mice were compared in two experiments in which the effects of strain, sex, and fostering on ambulation, defecation, exploration, grooming, latency to move, radial latency, rearing, thigmotaxis, and urination were studied. These experiments revealed that OF thigmotaxis was unaffected by the foster condition and thus genetically determined. The selected strains of mice also diverged repeatedly with regard to exploration and rearing. The findings are in line with the previously described existence of an inverse relationship between emotionality and exploration.
Collapse
Affiliation(s)
- Pia K Leppänen
- Department of Psychology, Abo Akademi University, Finland.
| | | |
Collapse
|
45
|
Yalcin B, Willis-Owen SAG, Fullerton J, Meesaq A, Deacon RM, Rawlins JNP, Copley RR, Morris AP, Flint J, Mott R. Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nat Genet 2004; 36:1197-202. [PMID: 15489855 DOI: 10.1038/ng1450] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 09/13/2004] [Indexed: 11/08/2022]
Abstract
Here we present a strategy to determine the genetic basis of variance in complex phenotypes that arise from natural, as opposed to induced, genetic variation in mice. We show that a commercially available strain of outbred mice, MF1, can be treated as an ultrafine mosaic of standard inbred strains and accordingly used to dissect a known quantitative trait locus influencing anxiety. We also show that this locus can be subdivided into three regions, one of which contains Rgs2, which encodes a regulator of G protein signaling. We then use quantitative complementation to show that Rgs2 is a quantitative trait gene. This combined genetic and functional approach should be applicable to the analysis of any quantitative trait.
Collapse
Affiliation(s)
- Binnaz Yalcin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Singer JB, Hill AE, Nadeau JH, Lander ES. Mapping quantitative trait loci for anxiety in chromosome substitution strains of mice. Genetics 2004; 169:855-62. [PMID: 15371360 PMCID: PMC1449086 DOI: 10.1534/genetics.104.031492] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anxious behavior in the mouse is a complex quantitative phenotype that varies widely among inbred mouse strains. We examined a panel of chromosome substitution strains bearing individual A/J chromosomes in an otherwise C57BL/6J background in open-field and light-dark transition tests. Our results confirmed previous reports of quantitative trait loci (QTL) on chromosomes 1, 4, and 15 and identified novel loci on chromosomes 6 and 17. The studies were replicated in two separate laboratories. Systematic differences in the overall activity level were found between the two facilities, but the presence of the QTL was confirmed in both laboratories. We also identified specific effects on open-field defecation and center avoidance and distinguished them from overall open-field activity.
Collapse
Affiliation(s)
- Jonathan B Singer
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
| | | | | | | |
Collapse
|
47
|
Keays DA, Nolan PM. N-ethyl-N-nitrosourea mouse mutants in the dissection of behavioural and psychiatric disorders. Eur J Pharmacol 2004; 480:205-17. [PMID: 14623363 DOI: 10.1016/j.ejphar.2003.08.107] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Twin and adoption studies have consistently implicated genetics in the aetiology of psychiatric and behavioural disorders. The identification of the genes and molecular pathways that are associated with these traits using linkage studies has been difficult because psychiatric disorders are almost always non-mendelian, heterogeneous, involve multiple genetic loci and are influenced significantly by environmental factors. Mouse models that are based on intermediate signatures of psychiatric disease and pharmacological responsiveness hold promise as a complementary approach to dissecting the molecular basis of neurobehavioural disorders. This has been made possible by the development and refinement of gene targeting technologies and the use of super-efficient chemical mutagens. N-ethyl-N-nitrosourea (ENU) mutagenesis in the mouse, when coupled to a battery of sensitive behavioural screens, is an effective way of creating and identifying novel mouse behavioural mutants. Here, the concept of screening for ENU mutants is introduced while progress with two behavioural screens, an "anxiety" screen and a circadian screen, are presented. It is hoped that the study of mouse mutants that have arisen from these screens will provide new insights into the genetic basis of abnormal behaviour and that they might lead to the development of novel therapeutic compounds for human psychiatric disease.
Collapse
Affiliation(s)
- David A Keays
- MRC Mammalian Genetics Unit, Harwell, Didcot, OX11 0RD, Oxfordshire, UK
| | | |
Collapse
|
48
|
Lipkind D, Sakov A, Kafkafi N, Elmer GI, Benjamini Y, Golani I. New replicable anxiety-related measures of wall vs. center behavior of mice in the open field. J Appl Physiol (1985) 2004; 97:347-59. [PMID: 14990560 DOI: 10.1152/japplphysiol.00148.2004] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anxiety is a widely studied psychiatric disorder and is thought to be a complex and multidimensional phenomenon. Sensitive behavioral discrimination of animal models of anxiety is crucial for the elucidation of the behavioral components of anxiety and the physiological processes that mediate them. Commonly used behavior paradigms of anxiety usually include only a few automatically collected measures; these do not exhaust the behavioral richness exhibited by animals, thus perhaps missing important differences between preparations. The aim of the present study was to expand the repertoire of automatically collected measures in a classical test of anxiety: behavior in relation to the wall in the open field. We present an algorithm, based on the Software for the Exploration of Exploration strategy, which automatically partitions the mouse path into intrinsically defined patterns of movement near the wall and in the center. These patterns are used to design new end points, which provide an articulated description of various aspects of behavior near the wall and in the center. Sixteen new end points were designed with data from C57BL/6J and DBA/2J mice tested in three laboratories. The strain differences in all end points were evaluated on another data set to assess their validity and were found to remain stable. Ten of the sixteen end points were found to discriminate between the two strains in a replicable manner. The entire set of end points can be used on various genetic and pharmacological models of anxiety with good prospects of providing fine discrimination in a replicable manner.
Collapse
Affiliation(s)
- Dina Lipkind
- Department of Zoology, George S Wise Faculty of life Sciences, Tel Aviv University, Tel Aviv, Israel 69978.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Gray has drawn upon genetic evidence to argue for the existence of rodent emotionality, a model of human neuroticism. With the advent of molecular mapping techniques it has become possible to test this hypothesis. Here I review the progress that has been made, largely in animal genetic studies, demonstrating that a common set of genes act pleiotropically on measures of emotionality. More recently, evidence has emerged supporting the view that the same genes influence variation in both rodent and human phenotypes.
Collapse
Affiliation(s)
- Jonathan Flint
- Wellcome Trust Centre for Human Genetics, University of Oxford, OX3 7BN, UK.
| |
Collapse
|
50
|
|