1
|
Sun H, Zhang H. Lysine Methylation-Dependent Proteolysis by the Malignant Brain Tumor (MBT) Domain Proteins. Int J Mol Sci 2024; 25:2248. [PMID: 38396925 PMCID: PMC10889763 DOI: 10.3390/ijms25042248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Lysine methylation is a major post-translational protein modification that occurs in both histones and non-histone proteins. Emerging studies show that the methylated lysine residues in non-histone proteins provide a proteolytic signal for ubiquitin-dependent proteolysis. The SET7 (SETD7) methyltransferase specifically transfers a methyl group from S-Adenosyl methionine to a specific lysine residue located in a methylation degron motif of a protein substrate to mark the methylated protein for ubiquitin-dependent proteolysis. LSD1 (Kdm1a) serves as a demethylase to dynamically remove the methyl group from the modified protein. The methylated lysine residue is specifically recognized by L3MBTL3, a methyl-lysine reader that contains the malignant brain tumor domain, to target the methylated proteins for proteolysis by the CRL4DCAF5 ubiquitin ligase complex. The methylated lysine residues are also recognized by PHF20L1 to protect the methylated proteins from proteolysis. The lysine methylation-mediated proteolysis regulates embryonic development, maintains pluripotency and self-renewal of embryonic stem cells and other stem cells such as neural stem cells and hematopoietic stem cells, and controls other biological processes. Dysregulation of the lysine methylation-dependent proteolysis is associated with various diseases, including cancers. Characterization of lysine methylation should reveal novel insights into how development and related diseases are regulated.
Collapse
Affiliation(s)
| | - Hui Zhang
- Department of Chemistry and Biochemistry, Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, P.O. Box 454003, Las Vegas, NV 89154-4003, USA;
| |
Collapse
|
2
|
Boston AM, Dwead AM, Al-Mathkour MM, Khazaw K, Zou J, Zhang Q, Wang G, Cinar B. Discordant interactions between YAP1 and polycomb group protein SCML2 determine cell fate. iScience 2023; 26:107964. [PMID: 37810219 PMCID: PMC10558808 DOI: 10.1016/j.isci.2023.107964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/25/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
The Polycomb group protein SCML2 and the transcriptional cofactor YAP1 regulate diverse cellular biology, including stem cell maintenance, developmental processes, and gene regulation in mammals and flies. However, their molecular and functional interactions are unknown. Here, we show that SCML2 interacts with YAP1, as revealed by immunological assays and mass spectroscopy. We have demonstrated that the steroid hormone androgen regulates the interaction of SCML2 with YAP1 in human tumor cell models. Our proximity ligation assay and GST pulldown showed that SCML2 and YAP1 physically interacted with each other. Silencing SCML2 by RNAi changed the growth behaviors of cells in response to androgen signaling. Mechanistically, this phenomenon is attributed to the interplay between distinct chromatin modifications and transcriptional programs, likely coordinated by the opposing SCML2 and YAP1 activity. These findings suggest that YAP1 and SCML2 cooperate to regulate cell growth, cell survival, and tumor biology downstream of steroid hormones.
Collapse
Affiliation(s)
- Ava M Boston
- Department of Biological Sciences, Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA
| | - Abdulrahman M Dwead
- Department of Biological Sciences, Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA
| | - Marwah M Al-Mathkour
- Department of Biological Sciences, Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA
| | - Kezhan Khazaw
- Department of Biological Sciences, Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA
| | - Jin Zou
- Department of Biological Sciences, Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA
| | - Qiang Zhang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Bekir Cinar
- Department of Biological Sciences, Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA
| |
Collapse
|
3
|
Du L, Wang L, Yang H, Duan J, Lai J, Wu W, Fan S, Zhi X. Sex Comb on Midleg Like-2 Accelerates Hepatocellular Carcinoma Cell Proliferation and Metastasis by Activating Wnt/β-Catenin/EMT Signaling. Yonsei Med J 2021; 62:1073-1082. [PMID: 34816637 PMCID: PMC8612862 DOI: 10.3349/ymj.2021.62.12.1073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the influences of sex comb on midleg like-2 (SCML2) on hepatocellular carcinoma (HCC) and potentially related mechanisms. MATERIALS AND METHODS SCML2 expression in tumor tissues and cells was analyzed using the TCGA database and/or qRT-PCR. The proliferation of HCC cells was detected by CCK-8, colony formation, and EdU assays. The migration and invasion of HCC cells were detected by transwell and wound healing assays. Apoptosis of HCC cells was determined by flow cytometry. Additionally, qRT-PCR and Western blot were used to detect the expression of SCML2 and Wnt/β-catenin/epithelial-mesenchymal transition (EMT) signaling. A xenograft model in mice was established to verify the in vitro findings. RESULTS We found that SCML2 was highly expressed in HCC tissues and cells and that high expression of SCML2 was correlated with poor prognosis in HCC patients. SCML2 overexpression promoted proliferation, invasion, and migration and repressed apoptosis of HCC cells. The reverse results were obtained in SCML2-silenced cells. Further, we found that SCML2 activated the Wnt/β-catenin/EMT pathway. SCML2 silencing reduced the protein levels of Wnt3a, β-catenin, N-cadherin, Vimentin, and Snail and enhanced E-cadherin protein expression both in vivo and in vitro. CONCLUSION SCML2 silencing inhibits the proliferation, migration, and invasion of HCC cells by regulating the Wnt/β-catenin/EMT pathway.
Collapse
Affiliation(s)
- Lei Du
- No.8 District of Liver Diseases, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Lina Wang
- Clinical Laboratory, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Hong Yang
- Department of Physical Therapy, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Jianping Duan
- Department of Infectious Disease, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Jianming Lai
- Medical College, Qingdao University, Qingdao, Shandong, China
| | - Wei Wu
- No.8 District of Liver Diseases, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Shaohua Fan
- Blood Purification Centre, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China.
| | - Xiaoli Zhi
- Department of Infectious Disease, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Yang JJ, Huang H, Xiao MB, Jiang F, Ni WK, Ji YF, Lu CH, Ni RZ. Sex comb on midleg like-2 is a novel specific marker for the diagnosis of gastroenteropancreatic neuroendocrine tumors. Exp Ther Med 2017; 14:1749-1755. [PMID: 28810646 DOI: 10.3892/etm.2017.4677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/21/2017] [Indexed: 12/14/2022] Open
Abstract
Sex comb on midleg like-2 (SCML2) is a polycomb-group protein that encodes transcriptional repressors essential for appropriate development in the fly and in mammals. On the basis of previous findings, the present study aimed to explore the possibility of developing SCML2 into a new diagnostic marker for gastroenteropancreatic neuroendocrine tumors (GEP-NETs). A total of 64 paired GEP-NET tissues and adjacent non-tumorous tissues were obtained from patients who had undergone surgical resection between January 2009 and January 2014, and the expression of SCML2 and two neuroendocrine markers, namely synaptophysin (Syn) and chromogranin A (CgA), in the tissues was assessed by immunohistochemistry. Strong SCML2 staining was observed predominantly in the cell nuclei of GEP-NET tissues, and the overall expression rate and staining intensity of SCML2 were higher than those of Syn or CgA, respectively. Spearman rank correlation analysis demonstrated that SCML2 was not correlated with either Syn or CgA, while the combined detection of SCML2 with Syn or with CgA increased the diagnostic sensitivity to 100%. SCML2 expression in GEP-NETs was associated with several clinicopathological parameters, such as histological type, tumor grade, depth of invasion and clinical stage. Kaplan-Meier survival curves revealed that patients with higher SCML2 expression had lower survival rates than those with lower expression levels, while Cox proportional hazards regression analysis revealed that SCML2 was not an independent prognostic factor for GEP-NET patients. Therefore, SCML2 may have potential as a specific marker for joint use with other markers to improve the diagnostic efficiency of GEP-NETs.
Collapse
Affiliation(s)
- Jiao-Jiao Yang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ming-Bing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wen-Kai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi-Fei Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Cui-Hua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Run-Zhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
5
|
Hasegawa K, Sin HS, Maezawa S, Broering TJ, Kartashov AV, Alavattam KG, Ichijima Y, Zhang F, Bacon WC, Greis KD, Andreassen PR, Barski A, Namekawa SH. SCML2 establishes the male germline epigenome through regulation of histone H2A ubiquitination. Dev Cell 2015; 32:574-88. [PMID: 25703348 PMCID: PMC4391279 DOI: 10.1016/j.devcel.2015.01.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 12/23/2014] [Accepted: 01/16/2015] [Indexed: 01/03/2023]
Abstract
Gametogenesis is dependent on the expression of germline-specific genes. However, it remains unknown how the germline epigenome is distinctly established from that of somatic lineages. Here we show that genes commonly expressed in somatic lineages and spermatogenesis-progenitor cells undergo repression in a genome-wide manner in late stages of the male germline and identify underlying mechanisms. SCML2, a germline-specific subunit of a Polycomb repressive complex 1 (PRC1), establishes the unique epigenome of the male germline through two distinct antithetical mechanisms. SCML2 works with PRC1 and promotes RNF2-dependent ubiquitination of H2A, thereby marking somatic/progenitor genes on autosomes for repression. Paradoxically, SCML2 also prevents RNF2-dependent ubiquitination of H2A on sex chromosomes during meiosis, thereby enabling unique epigenetic programming of sex chromosomes for male reproduction. Our results reveal divergent mechanisms involving a shared regulator by which the male germline epigenome is distinguished from that of the soma and progenitor cells.
Collapse
Affiliation(s)
- Kazuteru Hasegawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Ho-Su Sin
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Tyler J Broering
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Andrey V Kartashov
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Yosuke Ichijima
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Fan Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - W Clark Bacon
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Artem Barski
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.
| |
Collapse
|
6
|
Polycomb protein SCML2 associates with USP7 and counteracts histone H2A ubiquitination in the XY chromatin during male meiosis. PLoS Genet 2015; 11:e1004954. [PMID: 25634095 PMCID: PMC4310598 DOI: 10.1371/journal.pgen.1004954] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
Polycomb group proteins mediate transcriptional silencing in diverse developmental processes. Sex chromosomes undergo chromosome-wide transcription silencing during male meiosis. Here we report that mouse SCML2 (Sex comb on midleg-like 2), an X chromosome-encoded polycomb protein, is specifically expressed in germ cells, including spermatogonia, spermatocytes, and round spermatids. SCML2 associates with phosphorylated H2AX and localizes to the XY body in spermatocytes. Loss of SCML2 in mice causes defective spermatogenesis, resulting in sharply reduced sperm production. SCML2 interacts with and recruits a deubiquitinase, USP7, to the XY body in spermatocytes. In the absence of SCML2, USP7 fails to accumulate on the XY body, whereas H2A monoubiquitination is dramatically augmented in the XY chromatin. Our results demonstrate that the SCML2/USP7 complex constitutes a novel molecular pathway in modulating the epigenetic state of sex chromosomes during male meiosis.
Collapse
|
7
|
Bezsonova I. Solution NMR structure of the DNA-binding domain from Scml2 (sex comb on midleg-like 2). J Biol Chem 2014; 289:15739-49. [PMID: 24727478 DOI: 10.1074/jbc.m113.524009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Scml2 is a member of the Polycomb group of proteins involved in epigenetic gene silencing. Human Scml2 is a part of a multisubunit protein complex, PRC1 (Polycomb repressive complex 1), which is responsible for maintenance of gene repression, prevention of chromatin remodeling, preservation of the "stemness" of the cell, and cell differentiation. Although the majority of PRC1 subunits have been recently characterized, the structure of Scml2 and its role in PRC1-mediated gene silencing remain unknown. In this work a conserved protein domain within human Scml2 has been identified, and its structure was determined by solution NMR spectroscopy. This module was named Scm-like embedded domain, or SLED. Evolutionarily, the SLED domain emerges in the first multicellular organisms, consistent with the role of Scml2 in cell differentiation. Furthermore, it is exclusively found within the Scm-like family of proteins, often accompanied by malignant brain tumor domain (MBT) and sterile α motif (SAM) domains. The domain adopts a novel α/β fold with no structural analogues found in the Protein Data Bank (PDB). The ability of the SLED to bind double-stranded DNA was also examined, and the isolated domain was shown to interact with DNA in a sequence-specific manner. Because PRC1 complexes localize to the promoters of a specific subset of developmental genes in vivo, the SLED domain of Scml2 may provide an important link connecting the PRC1 complexes to their target genes.
Collapse
Affiliation(s)
- Irina Bezsonova
- From the Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, 06032-3305
| |
Collapse
|
8
|
Polycomb protein SCML2 regulates the cell cycle by binding and modulating CDK/CYCLIN/p21 complexes. PLoS Biol 2013; 11:e1001737. [PMID: 24358021 PMCID: PMC3866099 DOI: 10.1371/journal.pbio.1001737] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022] Open
Abstract
Polycomb group (PcG) proteins are transcriptional repressors of genes involved in development and differentiation, and also maintain repression of key genes involved in the cell cycle, indirectly regulating cell proliferation. The human SCML2 gene, a mammalian homologue of the Drosophila PcG protein SCM, encodes two protein isoforms: SCML2A that is bound to chromatin and SCML2B that is predominantly nucleoplasmic. Here, we purified SCML2B and found that it forms a stable complex with CDK/CYCLIN/p21 and p27, enhancing the inhibitory effect of p21/p27. SCML2B participates in the G1/S checkpoint by stabilizing p21 and favoring its interaction with CDK2/CYCE, resulting in decreased kinase activity and inhibited progression through G1. In turn, CDK/CYCLIN complexes phosphorylate SCML2, and the interaction of SCML2B with CDK2 is regulated through the cell cycle. These findings highlight a direct crosstalk between the Polycomb system of cellular memory and the cell-cycle machinery in mammals.
Collapse
|
9
|
Scmh1 has E3 ubiquitin ligase activity for geminin and histone H2A and regulates geminin stability directly or indirectly via transcriptional repression of Hoxa9 and Hoxb4. Mol Cell Biol 2012. [PMID: 23207902 DOI: 10.1128/mcb.00974-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polycomb-group (PcG) complex 1 acts as an E3 ubiquitin ligase both for histone H2A to silence transcription and for geminin to regulate its stability. Scmh1 is a substoichiometric component of PcG complex 1 that provides the complex with an interaction domain for geminin. Scmh1 is unstable and regulated through the ubiquitin-proteasome system, but its molecular roles are unknown, so we generated Scmh1-deficient mice to elucidate its function. Loss of Scmh1 caused derepression of Hoxb4 and Hoxa9, direct targets of PcG complex 1-mediated transcriptional silencing in hematopoietic cells. Double knockdown of Hoxb4 and Hoxa9 or transduction of a dominant-negative Hoxb4N→A mutant caused geminin accumulation. Age-related transcriptional downregulation of derepressed Hoxa9 also leads to geminin accumulation. Transduction of Scmh1 lacking a geminin-binding domain restored derepressed expression of Hoxb4 and Hoxa9 but did not downregulate geminin like full-length Scmh1. Each of Hoxb4 and Hoxa9 can form a complex with Roc1-Ddb1-Cul4a to act as an E3 ubiquitin ligase for geminin. We suggest that geminin dysregulation may be restored by derepressed Hoxb4 and Hoxa9 in Scmh1-deficient mice. These findings suggest that PcG and a subset of Hox genes compose a homeostatic regulatory system for determining expression level of geminin.
Collapse
|
10
|
Herold JM, Ingerman LA, Gao C, Frye SV. Drug discovery toward antagonists of methyl-lysine binding proteins. CURRENT CHEMICAL GENOMICS 2011; 5:51-61. [PMID: 22145013 PMCID: PMC3229088 DOI: 10.2174/1875397301005010051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 02/22/2011] [Accepted: 04/25/2011] [Indexed: 12/04/2022]
Abstract
The recognition of methyl-lysine and -arginine residues on both histone and other proteins by specific "reader" elements is important for chromatin regulation, gene expression, and control of cell-cycle progression. Recently the crucial role of these reader proteins in cancer development and dedifferentiation has emerged, owing to the increased interest among the scientific community. The methyl-lysine and -arginine readers are a large and very diverse set of effector proteins and targeting them with small molecule probes in drug discovery will inevitably require a detailed understanding of their structural biology and mechanism of binding. In the following review, the critical elements of methyl-lysine and -arginine recognition will be summarized with respect to each protein family and initial results in assay development, probe design, and drug discovery will be highlighted.
Collapse
Affiliation(s)
| | | | | | - Stephen V Frye
- Center for Integrated Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Division of Medicinal Chemistry and Natural Products, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
11
|
Hemp, an mbt domain-containing protein, plays essential roles in hematopoietic stem cell function and skeletal formation. Proc Natl Acad Sci U S A 2011; 108:2468-73. [PMID: 21252303 DOI: 10.1073/pnas.1003403108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To clarify the molecular pathways governing hematopoietic stem cell (HSC) development, we screened a fetal liver (FL) HSC cDNA library and identified a unique gene, hematopoietic expressed mammalian polycomb (hemp), encoding a protein with a zinc-finger domain and four malignant brain tumor (mbt) repeats. To investigate its biological role, we generated mice lacking Hemp (hemp(-/-)). Hemp(-/-) mice exhibited a variety of skeletal malformations and died soon after birth. In the FL, hemp was preferentially expressed in the HSC and early progenitor cell fractions, and analyses of fetal hematopoiesis revealed that the number of FL mononuclear cells, including HSCs, was reduced markedly in hemp(-/-) embryos, especially during early development. In addition, colony-forming and competitive repopulation assays demonstrated that the proliferative and reconstitution abilities of hemp(-/-) FL HSCs were significantly impaired. Microarray analysis revealed alterations in the expression levels of several genes implicated in hematopoietic development and differentiation in hemp(-/-) FL HSCs. These results demonstrate that Hemp, an mbt-containing protein, plays essential roles in HSC function and skeletal formation. It is also hypothesized that Hemp might be involved in certain congenital diseases, such as Klippel-Feil anomaly.
Collapse
|
12
|
Qin J, Van Buren D, Huang HS, Zhong L, Mostoslavsky R, Akbarian S, Hock H. Chromatin protein L3MBTL1 is dispensable for development and tumor suppression in mice. J Biol Chem 2010; 285:27767-75. [PMID: 20592034 DOI: 10.1074/jbc.m110.115410] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L3MBTL1, a paralogue of Drosophila tumor suppressor lethal(3)malignant brain tumor (l(3)mbt), binds histones in a methylation state-dependent manner and contributes to higher order chromatin structure and transcriptional repression. It is the founding member of a family of MBT domain-containing proteins that has three members in Drosophila and nine in mice and humans. Knockdown experiments in cell lines suggested that L3MBTL1 has non-redundant roles in the suppression of oncogene expression. We generated a mutant mouse strain that lacks exons 13-20 of L3mbtl1. Markedly reduced levels of a mutant mRNA with an out-of-frame fusion of exons 12 and 21 were expressed, but a mutant protein was undetectable by Western blot analysis. L3MBTL1(-/-) mice developed and reproduced normally. The highest expression of L3MBTL1 was detected in the brain, but its disruption did not affect brain development, spontaneous movement, and motor coordination. Despite previous implications of L3mbtl1 in the biology of hematopoietic transcriptional regulators, lack of L3MBTL1 did not result in deficiencies in lymphopoiesis or hematopoiesis. In contrast with its demonstrated biochemical activities, embryonic stem (ES) cells lacking L3MBTL1 displayed no abnormalities in H4 lysine 20 (H4K20) mono-, di-, or trimethylation; had normal global chromatin density as assessed by micrococcal nuclease digests; and expressed normal levels of c-myc. Embryonic fibroblasts lacking L3MBTL1 displayed unaltered cell cycle arrest and down-regulation of cyclin E expression after irradiation. In cohorts of mice followed for more than 2 years, lack of L3MBTL1 did not alter normal lifespan or survival with or without sublethal irradiation.
Collapse
Affiliation(s)
- Jinzhong Qin
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Bonasio R, Lecona E, Reinberg D. MBT domain proteins in development and disease. Semin Cell Dev Biol 2009; 21:221-30. [PMID: 19778625 DOI: 10.1016/j.semcdb.2009.09.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 09/11/2009] [Indexed: 12/22/2022]
Abstract
The Malignant Brain Tumor (MBT) domain is a "chromatin reader", a protein module that binds to post-translational modifications on histone tails that are thought to affect a variety of chromatin processes, including transcription. More specifically, MBT domains recognize mono- and di-methylated lysines at a number of different positions on histone H3 and H4 tails. Three Drosophila proteins, SCM, L(3)MBT and SFMBT contain multiple adjacent MBT repeats and have critical roles in development, maintenance of cell identity, and tumor suppression. Although they function in different pathways, these proteins all localize to chromatin in vivo and repress transcription by a currently unknown molecular mechanism that requires the MBT domains. The human genome contains several homologues of these MBT proteins, some of which have been linked to important gene regulatory pathways, such as E2F/Rb- and Polycomb-mediated repression, and to the insurgence of certain neurological tumors. Here, we review the genetics, biochemistry, and cell biology of MBT proteins and their role in development and disease.
Collapse
Affiliation(s)
- Roberto Bonasio
- Howard Hughes Medical Institute and Department of Biochemistry, School of Medicine, New York University, New York, NY 10016, USA
| | | | | |
Collapse
|
14
|
Wu HH, Su B. Adaptive evolution of SCML1 in primates, a gene involved in male reproduction. BMC Evol Biol 2008; 8:192. [PMID: 18601738 PMCID: PMC2459175 DOI: 10.1186/1471-2148-8-192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 07/05/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genes involved in male reproduction are often the targets of natural and/or sexual selection. SCML1 is a recently identified X-linked gene with preferential expression in testis. To test whether SCML1 is the target of selection in primates, we sequenced and compared the coding region of SCML1 in major primate lineages, and we observed the signature of positive selection in primates. RESULTS We analyzed the molecular evolutionary pattern of SCML1 in diverse primate species, and we observed a strong signature of adaptive evolution which is caused by Darwinian positive selection. When compared with the paralogous genes (SCML2 and SCMH1) of the same family, SCML1 evolved rapidly in primates, which is consistent with the proposed adaptive evolution, suggesting functional modification after gene duplication. Gene expression analysis in rhesus macaques shows that during male sexual maturation, there is a significant expression change in testis, implying that SCML1 likely plays a role in testis development and spermatogenesis. The immunohistochemical data indicates that SCML1 is preferentially expressed in germ stem cells of testis, therefore likely involved in spermatogenesis. CONCLUSION The adaptive evolution of SCML1 in primates provides a new case in understanding the evolutionary process of genes involved in primate male reproduction.
Collapse
Affiliation(s)
- Hai-hui Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, PR China.
| | | |
Collapse
|
15
|
Wu S, Trievel RC, Rice JC. Human SFMBT is a transcriptional repressor protein that selectively binds the N-terminal tail of histone H3. FEBS Lett 2007; 581:3289-96. [PMID: 17599839 PMCID: PMC2045647 DOI: 10.1016/j.febslet.2007.06.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 06/07/2007] [Accepted: 06/14/2007] [Indexed: 12/27/2022]
Abstract
Human SFMBT (hSFMBT) is postulated to be a Polycomb (PcG) protein. Similar to other PcG proteins, we found that hSFMBT displays robust transcriptional repressor activity. In addition, hSFMBT localized to the nucleus where it strongly associates with chromatin by directly and selectively binding the N-terminal tail of histone H3. Importantly, we discovered that the four tandem MBT repeats of hSFMBT were sufficient for nuclear matrix-association, N-terminal tail H3 binding, and required for transcriptional repression. These findings indicate that the tandem MBT repeats form a functional structure required for biological activity of hSFMBT and predict similar properties for other MBT domain-containing proteins.
Collapse
Affiliation(s)
- Shumin Wu
- University of Southern California Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
16
|
Takada Y, Isono KI, Shinga J, Turner JMA, Kitamura H, Ohara O, Watanabe G, Singh PB, Kamijo T, Jenuwein T, Burgoyne PS, Koseki H. Mammalian Polycomb Scmh1 mediates exclusion of Polycomb complexes from the XY body in the pachytene spermatocytes. Development 2007; 134:579-90. [PMID: 17215307 DOI: 10.1242/dev.02747] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The product of the Scmh1 gene, a mammalian homolog of Drosophila Sex comb on midleg, is a constituent of the mammalian Polycomb repressive complexes 1 (Prc1). We have identified Scmh1 as an indispensable component of the Prc1. During progression through pachytene, Scmh1 was shown to be excluded from the XY body at late pachytene, together with other Prc1 components such as Phc1, Phc2, Rnf110 (Pcgf2), Bmi1 and Cbx2. We have identified the role of Scmh1 in mediating the survival of late pachytene spermatocytes. Apoptotic elimination of Scmh1(-/-) spermatocytes is accompanied by the preceding failure of several specific chromatin modifications at the XY body, whereas synapsis of homologous autosomes is not affected. It is therefore suggested that Scmh1 is involved in regulating the sequential changes in chromatin modifications at the XY chromatin domain of the pachytene spermatocytes. Restoration of defects in Scmh1(-/-) spermatocytes by Phc2 mutation indicates that Scmh1 exerts its molecular functions via its interaction with Prc1. Therefore, for the first time, we are able to indicate a functional involvement of Prc1 during the meiotic prophase of male germ cells and a regulatory role of Scmh1 for Prc1, which involves sex chromosomes.
Collapse
Affiliation(s)
- Yuki Takada
- RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Peterson AJ, Mallin DR, Francis NJ, Ketel CS, Stamm J, Voeller RK, Kingston RE, Simon JA. Requirement for sex comb on midleg protein interactions in Drosophila polycomb group repression. Genetics 2005; 167:1225-39. [PMID: 15280237 PMCID: PMC1470928 DOI: 10.1534/genetics.104.027474] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila Sex Comb on Midleg (SCM) protein is a transcriptional repressor of the Polycomb group (PcG). Although genetic studies establish SCM as a crucial PcG member, its molecular role is not known. To investigate how SCM might link to PcG complexes, we analyzed the in vivo role of a conserved protein interaction module, the SPM domain. This domain is found in SCM and in another PcG protein, Polyhomeotic (PH), which is a core component of Polycomb repressive complex 1 (PRC1). SCM-PH interactions in vitro are mediated by their respective SPM domains. Yeast two-hybrid and in vitro binding assays were used to isolate and characterize >30 missense mutations in the SPM domain of SCM. Genetic rescue assays showed that SCM repressor function in vivo is disrupted by mutations that impair SPM domain interactions in vitro. Furthermore, overexpression of an isolated, wild-type SPM domain produced PcG loss-of-function phenotypes in flies. Coassembly of SCM with a reconstituted PRC1 core complex shows that SCM can partner with PRC1. However, gel filtration chromatography showed that the bulk of SCM is biochemically separable from PH in embryo nuclear extracts. These results suggest that SCM, although not a core component of PRC1, interacts and functions with PRC1 in gene silencing.
Collapse
Affiliation(s)
- Aidan J Peterson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
In development, cells pass on established gene expression patterns to daughter cells over multiple rounds of cell division. The cellular memory of the gene expression state is termed maintenance, and the proteins required for this process are termed maintenance proteins. The best characterized are proteins of the Polycomb and trithorax Groups that are required for silencing and maintenance of activation of target loci, respectively. These proteins act through DNA elements termed maintenance elements. Here, we re-examine the genetics and molecular biology of maintenance proteins. We discuss molecular models for the maintenance of activation and silencing, and the establishment of epigenetic marks, and suggest that maintenance proteins may play a role in propagating the mark through DNA synthesis.
Collapse
Affiliation(s)
- Hugh W Brock
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
19
|
Bench AJ, Li J, Huntly BJP, Delabesse E, Fourouclas N, Hunt AR, Deloukas P, Green AR. Characterization of the imprinted polycomb geneL3MBTL, a candidate 20q tumour suppressor gene, in patients with myeloid malignancies. Br J Haematol 2004; 127:509-18. [PMID: 15566354 DOI: 10.1111/j.1365-2141.2004.05278.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Chromosome 20q deletion is a recurrent chromosomal abnormality associated with myeloid malignancies. L3MBTL represents a strong candidate tumour suppressor gene since it lies within the common deleted region, is a member of the Polycomb-like family, encodes the human homologue of a Drosophila tumour suppressor and is expressed within haematopoietic progenitor cells. We describe the structure of L3MBTL, identify two putative promoters each associated with two CpG islands and characterize a complex pattern of alternative splicing events. Mutation analysis of the gene in patients with and without a 20q deletion identified several polymorphisms but no acquired mutations. The two CpG islands spanning promoter 2 undergo monoallelic methylation in normal haematopoietic cells consistent with imprinting of L3MBTL. Samples from patients with a 20q deletion retained either the methylated or unmethylated allele but retention of the methylated allele did not correlate with reduction in L3MBTL mRNA levels. The absence of a correlation between L3MBTL methylation and transcription could be shown to reflect loss of imprinting in one patient. In addition, our results demonstrate that inactivation of L3MBTL is not a common occurrence in patients with a 20q deletion or in cytogenetically normal patients with polycythaemia vera.
Collapse
Affiliation(s)
- Anthony J Bench
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, UK
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Craig IW, Mill J, Craig GM, Loat C, Schalkwyk LC. Application of microarrays to the analysis of the inactivation status of human X-linked genes expressed in lymphocytes. Eur J Hum Genet 2004; 12:639-46. [PMID: 15114374 DOI: 10.1038/sj.ejhg.5201212] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Dosage compensation in mammalian females is achieved by the random inactivation of one X chromosome early in development; however, inactivation is not complete. In addition to a majority of pseudoautosomal loci, there are genes that are expressed from both the active and the inactive X chromosomes, and which are interspersed among other genes subject to regular dosage compensation. The patterns of X-linked gene expression in different tissues are of great significance for interpreting their impact on sex differences in development. We have examined the suitability and sensitivity of a microarray approach for determining the inactivation status of X-linked genes. Biotinylated cRNA from six female and six male lymphocyte samples were hybridised to Affymetrix HG-U133A microarrays. A total of 36 X-linked targets detected significantly higher levels of female transcripts, suggesting that these corresponded to sequences from loci that escaped, at least partly, from inactivation. These included genes for which previous experimental evidence, or circumstantial evidence, existed for their escape, and some novel candidates. Six of the targets were represented by more than one probe set, which gave independent support for the conclusions reached.
Collapse
Affiliation(s)
- Ian W Craig
- SGDP Centre, Institute of Psychiatry, Box PO 82, Denmark Hill, London SE5, UK.
| | | | | | | | | |
Collapse
|
21
|
MacGrogan D, Kalakonda N, Alvarez S, Scandura JM, Boccuni P, Johansson B, Nimer SD. Structural integrity and expression of the L3MBTL gene in normal and malignant hematopoietic cells. Genes Chromosomes Cancer 2004; 41:203-13. [PMID: 15334543 DOI: 10.1002/gcc.20087] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The human L3MBTL gene is located in 20q12, a region that is commonly deleted in myeloproliferative disorders (MPD), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). L3MBTL is highly homologous to the D-lethal(3) malignant brain tumor [D-l(3)mbt] gene, which is a putative tumor-suppressor gene (TSG) identified in Drosophila and which is closely related to the Drosophila sex combs on midleg (SCM) protein, a member of the Polycomb group (PcG) family of transcriptional repressors. To examine whether L3MBTL functions as a "classic" TSG in human hematologic malignancies, we screened a panel of 17 myeloid leukemia cell lines and peripheral blood or bone marrow samples from 29 MDS and 13 MPD patients for mutations in the entire L3MBTL coding sequence, including intron/exon splice junctions. No mutations were identified, although two single nucleotide differences were found (in intron 14 and in exon 15), which were interpreted as polymorphic changes. We used real-time RT-PCR to quantify the level of L3MBTL mRNA in various normal myeloid and lymphoid cell populations. L3MBTL is expressed in normal CD34+ bone marrow cells, and we found that the pattern of L3MBTL expression was similar to that of BMI1, a well-studied PcG gene with oncogenic activity, suggesting that L3MBTL and BMI1 may be co-regulated during hematopoiesis. The expression of L3MBTL mRNA in 30 of 35 cell lines and 13 of 15 AML samples was comparable to the level of L3MBTL expression in the normal cell populations. However, five leukemia cell lines showed no L3MBTL expression, and two of the AML samples showed aberrant L3MBTL expression. These data suggest that L3MBTL is not mutated in MDS or MPD. However, given the known dosage effects of PcG proteins in regulating gene expression, reduced or absent L3MBTL expression may be relevant in some cases of myeloid leukemia.
Collapse
Affiliation(s)
- Donal MacGrogan
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan Kettering Institute, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Li J, Bench AJ, Vassiliou GS, Fourouclas N, Ferguson-Smith AC, Green AR. Imprinting of the human L3MBTL gene, a polycomb family member located in a region of chromosome 20 deleted in human myeloid malignancies. Proc Natl Acad Sci U S A 2004; 101:7341-6. [PMID: 15123827 PMCID: PMC409920 DOI: 10.1073/pnas.0308195101] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
L3MBTL encodes a member of the Polycomb family of proteins, which, together with Trithorax group proteins, is responsible for the coordinated regulation of patterns of gene activity. Members of the Polycomb family also regulate self renewal of normal and malignant hematopoietic stem cells. L3MBTL lies in a region of chromosome 20, deletion of which is associated with myeloid malignancies and represents a good candidate for a 20q target gene. However, mutations of L3MBTL have not been identified in patients with 20q deletions or in cytogenetically normal patients. Here we demonstrate that monoallelic methylation of two CpG islands correlates with transcriptional silencing of L3MBTL, and that L3MBTL transcription occurs from the paternally derived allele in five individuals from two families. Expression of the paternally derived allele was observed in multiple hematopoietic cell types as well as in bone marrow derived mesenchymal cells. Deletions of 20q associated with myeloid malignancies resulted in loss of either the unmethylated or methylated allele. Our results demonstrate that L3MBTL represents a previously undescribed imprinted locus, a vertebrate Polycomb group gene shown to be regulated by this mechanism, and has implications for the pathogenesis of myeloid malignancies associated with 20q deletions.
Collapse
Affiliation(s)
- Juan Li
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | |
Collapse
|
23
|
Kanapin A, Batalov S, Davis MJ, Gough J, Grimmond S, Kawaji H, Magrane M, Matsuda H, Schönbach C, Teasdale RD, Yuan Z. Mouse proteome analysis. Genome Res 2003; 13:1335-44. [PMID: 12819131 PMCID: PMC403658 DOI: 10.1101/gr.978703] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2002] [Accepted: 03/05/2003] [Indexed: 11/25/2022]
Abstract
A general overview of the protein sequence set for the mouse transcriptome produced during the FANTOM2 sequencing project is presented here. We applied different algorithms to characterize protein sequences derived from a nonredundant representative protein set (RPS) and a variant protein set (VPS) of the mouse transcriptome. The functional characterization and assignment of Gene Ontology terms was done by analysis of the proteome using InterPro. The Superfamily database analyses gave a detailed structural classification according to SCOP and provide additional evidence for the functional characterization of the proteome data. The MDS database analysis revealed new domains which are not presented in existing protein domain databases. Thus the transcriptome gives us a unique source of data for the detection of new functional groups. The data obtained for the RPS and VPS sets facilitated the comparison of different patterns of protein expression. A comparison of other existing mouse and human protein sequence sets (e.g., the International Protein Index) demonstrates the common patterns in mammalian proteomes. The analysis of the membrane organization within the transcriptome of multiple eukaryotes provides valuable statistics about the distribution of secretory and transmembrane proteins
Collapse
Affiliation(s)
- Alexander Kanapin
- EMBL Outstation-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Boccuni P, MacGrogan D, Scandura JM, Nimer SD. The human L(3)MBT polycomb group protein is a transcriptional repressor and interacts physically and functionally with TEL (ETV6). J Biol Chem 2003; 278:15412-20. [PMID: 12588862 DOI: 10.1074/jbc.m300592200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H-L(3)MBT, the human homolog of the Drosophila lethal(3)malignant brain tumor protein, is a member of the polycomb group (PcG) of proteins, which function as transcriptional regulators in large protein complexes. Homozygous mutations in the l(3)mbt gene cause brain tumors in Drosophila, identifying l(3)mbt as a tumor suppressor gene. The h-l(3)mbt gene maps to chromosome 20q12, within a common deleted region associated with myeloid hematopoietic malignancies. H-L(3)MBT contains three repeats of 100 residues called MBT repeats, whose function is unknown, and a C-terminal alpha-helical structure, the SPM (SCM, PH, MBT domain, which is structurally similar to the SAM (sterile alpha motif) protein-protein interaction domain, found in several ETS transcription factors, including TEL (translocation Ets leukemia). We report that H-L(3)MBT is a transcriptional repressor and that its activity is largely dependent on the presence of a region containing the three MBT repeats. H-L(3)MBT acts as a histone deacetylase-independent transcriptional repressor, based on its lack of sensitivity to trichostatin A. We found that H-L(3)MBT binds in vivo to TEL, and we have mapped the region of interaction to their respective SPM/SAM domains. We show that the ability of TEL to repress TEL-responsive promoters is enhanced by the presence of H-L(3)MBT, an effect dependent on the H-L(3)MBT and the TEL interacting domains. These experiments suggest that histone deacetylase-independent transcriptional repression by TEL depends on the recruitment of PcG proteins. We speculate that the interaction of TEL with H-L(3)MBT can direct a PcG complex to genes repressed by TEL, stabilizing their repressed state.
Collapse
Affiliation(s)
- Piernicola Boccuni
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan Kettering Institute for Cancer Research, New York, New York 10021, USA
| | | | | | | |
Collapse
|
25
|
Toutain A, Dessay B, Ronce N, Ferrante MI, Tranchemontagne J, Newbury-Ecob R, Wallgren-Pettersson C, Burn J, Kaplan J, Rossi A, Russo S, Walpole I, Hartsfield JK, Oyen N, Nemeth A, Bitoun P, Trump D, Moraine C, Franco B. Refinement of the NHS locus on chromosome Xp22.13 and analysis of five candidate genes. Eur J Hum Genet 2002; 10:516-20. [PMID: 12173028 DOI: 10.1038/sj.ejhg.5200846] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2002] [Revised: 05/07/2002] [Accepted: 05/13/2002] [Indexed: 11/08/2022] Open
Abstract
Nance-Horan syndrome (NHS) is an X-linked condition characterised by congenital cataracts, dental abnormalities, dysmorphic features, and mental retardation in some cases. Previous studies have mapped the disease gene to a 2 cM interval on Xp22.2 between DXS43 and DXS999. We report additional linkage data resulting from the analysis of eleven independent NHS families. A maximum lod score of 9.94 (theta=0.00) was obtained at the RS1 locus and a recombination with locus DXS1195 on the telomeric side was observed in two families, thus refining the location of the gene to an interval of around 1 Mb on Xp22.13. Direct sequencing or SSCP analysis of the coding exons of five genes (SCML1, SCML2, STK9, RS1 and PPEF1), considered as candidate genes on the basis of their location in the critical interval, failed to detect any mutation in 12 unrelated NHS patients, thus making it highly unlikely that these genes are implicated in NHS.
Collapse
Affiliation(s)
- Annick Toutain
- Service de Génétique, Hôpital Bretonneau, Centre Hospitalo-Universitaire, Tours, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Martinez-Garay I, Jablonka S, Sutajova M, Steuernagel P, Gal A, Kutsche K. A new gene family (FAM9) of low-copy repeats in Xp22.3 expressed exclusively in testis: implications for recombinations in this region. Genomics 2002; 80:259-67. [PMID: 12213195 DOI: 10.1006/geno.2002.6834] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Illegitimate recombinations between low-copy repetitive elements (LCR) have been implicated in the pathogenesis of various chromosomal rearrangements. Two such duplicons have been reported previously on Xp22.3, the CRI-S232 elements, involved in the generation of deletions in the steroidsulfatase gene and five members of the G1.3 (DXF22S) repetitive sequence family. By molecular characterization of an Xp22/10q24 translocation, we identified one duplicon of the G1.3 family in the breakpoint region in Xp22.3. We show that G1.3 elements harbor at least three expressed genes, FAM9A, FAM9B, and FAM9C, and three putative pseudogenes, all mapped to Xp22.33-p22.31. The deduced amino acid sequence of the three novel proteins shows homology to SYCP3, a component of the synaptonemal complex located along the paired chromosomes during meiosis. FAM9A, FAM9B, and FAM9C are expressed exclusively in testis; their proteins are located in the nucleus, and FAM9A localizes to the nucleolus. The presence of genes within duplicons may represent putative recombination-promoting factors for actively transcribed genes in meiotic cells, with the resulting open chromatin structure facilitating unequal crossing-over events and chromosomal rearrangements.
Collapse
|
27
|
Yamaki M, Isono K, Takada Y, Abe K, Akasaka T, Tanzawa H, Koseki H. The mouse Edr2 (Mph2) gene has two forms of mRNA encoding 90- and 36-kDa polypeptides. Gene 2002; 288:103-10. [PMID: 12034499 DOI: 10.1016/s0378-1119(02)00458-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The vertebrate Polycomb Group (PcG) genes encode proteins that form large multimeric and chromatin-associated complexes implicated in the stable repression of developmentally essential genes. Here we have isolated a 2.5-kb cDNA for Edr2, a mouse homolog of the Drosophila PcG gene Ph, although it was originally identified as a 3.8-kb cDNA. However, little is known about molecular basis of the 3.8-kb cDNA. Genomic and RNA analyses have shown that Edr2 locates on Chromosome 4 as a single copy gene and is transcribed into at least two transcript isoforms about 3.0 and 4.4 kb in length, most likely corresponding to the 2.5- and 3.8-kb cDNAs, respectively. The largest open reading frames in the 2.5- and 3.8-kb cDNAs encode 36- and 90-kDa polypeptides, respectively. The 36-kDa protein is a truncated form lacking of the N-terminal region of the 90-kDa protein. Interestingly, it has been demonstrated that the 3.0-kb mRNA accumulates at a much higher level than the 3.8-kb mRNA in mouse embryos and mature tissues. Immunostaining assay of mammalian cells has shown that the 36-kDa form tagged with HA colocalizes with the other PcG protein Mel18 in nuclei, suggesting that the smaller protein is capable of forming maltimeric complex with other PcG proteins. Therefore, the 36-kDa protein might function generally as a PcG protein.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromosome Mapping
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drosophila Proteins
- Embryo, Mammalian/metabolism
- Exons
- Female
- Gene Expression
- Gene Expression Regulation, Developmental
- Genes/genetics
- Introns
- Male
- Mice
- Molecular Sequence Data
- Molecular Weight
- Nucleoproteins/genetics
- Peptides/chemistry
- Peptides/genetics
- Peptides/metabolism
- Polycomb Repressive Complex 1
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Makoto Yamaki
- Department of Molecular Embryology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Polycomb proteins form DNA-binding protein complexes with gene-suppressing activity. They maintain cell identity but, also, contribute to the regulation of cell proliferation. Mice with mutated Polycomb-group genes exhibit various hematological disorders, ranging from the loss of mature B and T cells to development of lymphomas. Lymphopoiesis in humans is associated with characteristic expression patterns of Polycomb-group genes in defined lymphocyte populations. Collectively, these results indicate that Polycomb-group genes encode novel gene regulators involved in the differentiation of lymphocytes. The underlying mechanism is related, most probably, to gene silencing by chromatin modification, and might affect proliferative behavior and account for the irreversibility of lineage choice.
Collapse
Affiliation(s)
- F M Raaphorst
- VU Medical Center, Department of Pathology, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
29
|
|
30
|
Roseman RR, Morgan K, Mallin DR, Roberson R, Parnell TJ, Bornemann DJ, Simon JA, Geyer PK. Long-range repression by multiple polycomb group (PcG) proteins targeted by fusion to a defined DNA-binding domain in Drosophila. Genetics 2001; 158:291-307. [PMID: 11333237 PMCID: PMC1461647 DOI: 10.1093/genetics/158.1.291] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A tethering assay was developed to study the effects of Polycomb group (PcG) proteins on gene expression in vivo. This system employed the Su(Hw) DNA-binding domain (ZnF) to direct PcG proteins to transposons that carried the white and yellow reporter genes. These reporters constituted naive sensors of PcG effects, as bona fide PcG response elements (PREs) were absent from the constructs. To assess the effects of different genomic environments, reporter transposons integrated at nearly 40 chromosomal sites were analyzed. Three PcG fusion proteins, ZnF-PC, ZnF-SCM, and ZnF-ESC, were studied, since biochemical analyses place these PcG proteins in distinct complexes. Tethered ZnF-PcG proteins repressed white and yellow expression at the majority of sites tested, with each fusion protein displaying a characteristic degree of silencing. Repression by ZnF-PC was stronger than ZnF-SCM, which was stronger than ZnF-ESC, as judged by the percentage of insertion lines affected and the magnitude of the conferred repression. ZnF-PcG repression was more effective at centric and telomeric reporter insertion sites, as compared to euchromatic sites. ZnF-PcG proteins tethered as far as 3.0 kb away from the target promoter produced silencing, indicating that these effects were long range. Repression by ZnF-SCM required a protein interaction domain, the SPM domain, which suggests that this domain is not primarily used to direct SCM to chromosomal loci. This targeting system is useful for studying protein domains and mechanisms involved in PcG repression in vivo.
Collapse
Affiliation(s)
- R R Roseman
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Usui H, Ichikawa T, Kobayashi K, Kumanishi T. Cloning of a novel murine gene Sfmbt, Scm-related gene containing four mbt domains, structurally belonging to the Polycomb group of genes. Gene 2000; 248:127-35. [PMID: 10806358 DOI: 10.1016/s0378-1119(00)00131-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel cDNA clone encoding a protein structurally related to the transcriptional repressor Polycomb group (PcG) proteins, which regulate homeotic genes and others, was isolated from mouse and rat brain. The coding protein contained the SPM domain and mbt repeats, both of which are characteristic of the PcG proteins, and showed significant similarity in amino acid sequence to the Drosophila Sex comb on midleg (Scm) protein. Since this novel protein contains the mbt repeats in four tandem copies, we designated this murine gene as Sfmbt for Scm-related gene containing four mbt domains. Cloning and characterization of the mouse Sfmbt gene revealed that the coding sequence comprised 20 exons, dispersed along approximately 40kb, and mapped to the proximal part of Chromosome 14. Northern blot analysis showed that the Sfmbt mRNAs were expressed most abundantly in the adult testis, and less intensively in all other tissues examined.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Chromosome Mapping
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- Exons
- Female
- Genes/genetics
- Introns
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muridae
- Polycomb-Group Proteins
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Repressor Proteins/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- H Usui
- Department of Molecular Neuropathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata, Japan.
| | | | | | | |
Collapse
|
32
|
Perry J, Short KM, Romer JT, Swift S, Cox TC, Ashworth A. FXY2/MID2, a gene related to the X-linked Opitz syndrome gene FXY/MID1, maps to Xq22 and encodes a FNIII domain-containing protein that associates with microtubules. Genomics 1999; 62:385-94. [PMID: 10644436 DOI: 10.1006/geno.1999.6043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Opitz G/BBB syndrome (OS) is a genetically heterogeneous disorder with an X-linked locus and an autosomal locus linked to 22q11.2. OS affects multiple organ systems with often variable severity even between siblings. The clinical features, which include hypertelorism, cleft lip and palate, defects of cardiac septation, hypospadias, and anorectal anomalies, indicate an underlying disturbance of the developing ventral midline of the embryo. The gene responsible for X-linked OS, FXY/MID1, is located on the short arm of the human X chromosome within Xp22.3 and encodes a protein with both an RBCC (RING finger, B-box, coiled coil) and a B30.2 domain. The Fxy gene in mice is also located on the X chromosome but spans the pseudoautosomal boundary in this species. Here we describe a gene closely related to FXY/MID1, called FXY2, which also maps to the X chromosome within Xq22. The mouse Fxy2 gene is located on the distal part of the mouse X chromosome within a region syntenic to Xq22. Analysis of genes flanking both FXY/MID1 and FXY2 (as well as their counterparts in mouse) suggests that these regions may have arisen as a result of an intrachromosomal duplication on an ancestral X chromosome. We have also identified in both FXY2 and FXY/MID1 proteins a conserved fibronectin type III domain located between the RBCC and B30.2 domains that has implications for understanding protein function. The FXY/MID1 protein has previously been shown to colocalize with microtubules, and here we show that the FXY2 protein similarly associates with microtubules in a manner that is dependent on the carboxy-terminal B30.2 domain.
Collapse
Affiliation(s)
- J Perry
- Section of Gene Function and Regulation, Chester Beatty Laboratories, The Institute of Cancer Research, Fulham Road, London, SW3 6JB, United Kingdom
| | | | | | | | | | | |
Collapse
|