1
|
Nanoemulsion: A Review on Mechanisms for the Transdermal Delivery of Hydrophobic and Hydrophilic Drugs. Sci Pharm 2019. [DOI: 10.3390/scipharm87030017] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nanoemulsions (NEs) are colloidal dispersions of two immiscible liquids, oil and water, in which one is dispersed in the other with the aid of a surfactant/co-surfactant mixture, either forming oil-in-water (o/w) or water-in-oil (w/o) nanodroplets systems, with droplets 20–200 nm in size. NEs are easy to prepare and upscale, and they show high variability in their components. They have proven to be very viable, non-invasive, and cost-effective nanocarriers for the enhanced transdermal delivery of a wide range of active compounds that tend to metabolize heavily or suffer from undesirable side effects when taken orally. In addition, the anti-microbial and anti-viral properties of NE components, leading to preservative-free formulations, make NE a very attractive approach for transdermal drug delivery. This review focuses on how NEs mechanistically deliver both lipophilic and hydrophilic drugs through skin layers to reach the blood stream, exerting the desired therapeutic effect. It highlights the mechanisms and strategies executed to effectively deliver drugs, both with o/w and w/o NE types, through the transdermal way. However, the mechanisms reported in the literature are highly diverse, to the extent that a definite mechanism is not conclusive.
Collapse
|
2
|
Štimac A, Cvitaš JT, Frkanec L, Vugrek O, Frkanec R. Design and syntheses of mono and multivalent mannosyl-lipoconjugates for targeted liposomal drug delivery. Int J Pharm 2016; 511:44-56. [PMID: 27363934 DOI: 10.1016/j.ijpharm.2016.06.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 12/21/2022]
Abstract
Multivalent mannosyl-lipoconjugates may be of interest for glycosylation of liposomes and targeted drug delivery because the mannose specifically binds to C-type lectin receptors on the particular cells. In this paper syntheses of two types of novel O-mannosides are presented. Conjugates 1 and 2 with a COOH- and NH2-functionalized spacer and the connection to a lysine and FmocNH-PEG-COOH, are described. The coupling reactions of prepared intermediates 6 and 4 with a PEGylated-DSPE or palmitic acid, respectively, are presented. Compounds 5, mono-, 8, di- and 12, tetravalent mannosyl-lipoconjugates, were synthesized. The synthesized compounds were incorporated into liposomes and liposomal preparations featuring exposed mannose units were characterized. Carbohydrate liposomal quartz crystal microbalance based assay has been established for studying carbohydrate-lectin binding. It was demonstrated that liposomes with incorporated mannosyl-lipoconjugates were effectively recognized by Con A and have great potential to be used for targeted liposomal drug delivery systems.
Collapse
Affiliation(s)
- Adela Štimac
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia
| | | | - Leo Frkanec
- Institute Rudjer BoškoviĿ, BijeniĿka cesta 54, 10000 Zagreb, Croatia
| | - Oliver Vugrek
- Institute Rudjer BoškoviĿ, BijeniĿka cesta 54, 10000 Zagreb, Croatia
| | - Ruža Frkanec
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| |
Collapse
|
3
|
Hao N, Neranon K, Ramström O, Yan M. Glyconanomaterials for biosensing applications. Biosens Bioelectron 2016; 76:113-30. [PMID: 26212205 PMCID: PMC4637221 DOI: 10.1016/j.bios.2015.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 02/08/2023]
Abstract
Nanomaterials constitute a class of structures that have unique physiochemical properties and are excellent scaffolds for presenting carbohydrates, important biomolecules that mediate a wide variety of important biological events. The fabrication of carbohydrate-presenting nanomaterials, glyconanomaterials, is of high interest and utility, combining the features of nanoscale objects with biomolecular recognition. The structures can also produce strong multivalent effects, where the nanomaterial scaffold greatly enhances the relatively weak affinities of single carbohydrate ligands to the corresponding receptors, and effectively amplifies the carbohydrate-mediated interactions. Glyconanomaterials are thus an appealing platform for biosensing applications. In this review, we discuss the chemistry for conjugation of carbohydrates to nanomaterials, summarize strategies, and tabulate examples of applying glyconanomaterials in in vitro and in vivo sensing applications of proteins, microbes, and cells. The limitations and future perspectives of these emerging glyconanomaterials sensing systems are furthermore discussed.
Collapse
Affiliation(s)
- Nanjing Hao
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Kitjanit Neranon
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA; Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| |
Collapse
|
4
|
Luo Y, Liu T, Zhu J, Kong L, Wang W, Tan L. Label-Free and Sensitive Detection of Thrombomodulin, a Marker of Endothelial Cell Injury, Using Quartz Crystal Microbalance. Anal Chem 2015; 87:11277-84. [DOI: 10.1021/acs.analchem.5b02447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yiqun Luo
- Key Laboratory of Chemical
Biology and Traditional Chinese Medicine Research (Ministry of Education
of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People’s Republic of China
| | - Tong Liu
- Key Laboratory of Chemical
Biology and Traditional Chinese Medicine Research (Ministry of Education
of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People’s Republic of China
| | - Jiaming Zhu
- Key Laboratory of Chemical
Biology and Traditional Chinese Medicine Research (Ministry of Education
of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People’s Republic of China
| | - Liyan Kong
- Key Laboratory of Chemical
Biology and Traditional Chinese Medicine Research (Ministry of Education
of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People’s Republic of China
| | - Wen Wang
- Key Laboratory of Chemical
Biology and Traditional Chinese Medicine Research (Ministry of Education
of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People’s Republic of China
| | - Liang Tan
- Key Laboratory of Chemical
Biology and Traditional Chinese Medicine Research (Ministry of Education
of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People’s Republic of China
| |
Collapse
|
5
|
Barboiu M, Mouline Z, Silion M, Licsandru E, Simionescu BC, Mahon E, Pinteala M. Multivalent recognition of concanavalin A by {Mo₁₃₂ } glyconanocapsules--toward biomimetic hybrid multilayers. Chemistry 2014; 20:6678-83. [PMID: 24756773 DOI: 10.1002/chem.201402187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Indexed: 11/07/2022]
Abstract
Herein, we consider Müller's spherical, porous, anionic, molybdenum oxide based capsule, (NH4)42[{(Mo(VI))Mo(VI)5O21(H2O)6}12{Mo(V)2O4(CH3COO)}30]⋅10 CH3COONH4⋅300 H2O≡(NH4)42⋅1 a⋅crystal ingredients≡1, {Mo132}, as an effective sugar-decorated nanoplatform for multivalent lectin recognition. The ion-exchange of NH4(+) ions of 1 with cationic-sugars, D-mannose-ammonium chloride (2) or D-glucose-ammonium chloride (3) results in the formation of glyconanocapsules (NH4)(42-n)2n⋅1 a and (NH4)(42-m)3m⋅1 a. The Mannose (NH4)(42-n)2n⋅1 a capsules bind selectively Concanavalin A (Con A) in aqueous solution, giving an association avidity constant of K(a)(multi)=4.6×10(4) M(-1) and an enhancement factor of β=K(a)(multi)/K(ass)(mono)=21.9, reminiscent of the formation of "glycoside clusters" on the external surface of glyconanocapsule. The glyconanocapsules (NH4)(42-n)2n⋅1 a and (NH4)(42-m)3m⋅1 a self-assemble in "hybrid multilayers" by successive layer-by-layer deposition of (NH4)(42-n)2n⋅1 a or (NH4)(42-m)3m⋅1 a and Con A. These architectures, reminiscent of versatile mimics of artificial tissues, can be easily prepared and quantified by using quartz crystal microgravimetry (QCM). The "biomimetic hybrid multilayers" described here are stable under a continual water flow and they may serve as artificial networks for a greater depth of understanding of various biological mechanisms, which can directly benefit the fields of chemical separations, sensors or storage-delivery devices.
Collapse
Affiliation(s)
- Mihail Barboiu
- Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes, ENSCM-UMII-CNRS UMR-5635, Place Eugène Bataillon, CC 047, F-34095, Montpellier (France), Fax: : (+33) 467149119.
| | | | | | | | | | | | | |
Collapse
|
6
|
Mouline Z, Mahon E, Gomez E, Barragan-Montero V, Montero JL, Barboiu M. Entropy-driven lectin-recognition of multivalent glycovesicles. Chem Commun (Camb) 2014; 50:731-3. [DOI: 10.1039/c3cc47941b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Freichels H, Pourcelle V, Auzély-Velty R, Marchand-Brynaert J, Jérôme C. Synthesis of poly(lactide-co-glycolide-co-ε-caprolactone)-graft-mannosylated poly(ethylene oxide) copolymers by combination of "clip" and "click" chemistries. Biomacromolecules 2012; 13:760-8. [PMID: 22329463 DOI: 10.1021/bm201690w] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) is extensively used in pharmaceutical applications, for example, in targeted drug delivery, because of biocompatibility and degradation rate, which is easily tuned by the copolymer composition. Nevertheless, synthesis of sugar-labeled amphiphilic copolymers with a PLGA backbone is quite a challenge because of high sensitivity to hydrolytic degradation. This Article reports on the synthesis of a new amphiphilic copolymer of PLGA grafted by mannosylated poly(ethylene oxide) (PEO). A novel building block, that is, α-methoxy-ω-alkyne PEO-clip-N-hydroxysuccinimide (NHS) ester, was prepared on purpose by photoreaction of a diazirine containing molecular clip. This PEO block was mannosylated by reaction of the NHS ester groups with an aminated sugar, that is, 2-aminoethyl-α-d-mannopyroside. Then, the alkyne ω-end-group of PEO was involved in a copper alkyne- azide coupling (CuAAC) with the pendent azides of the aliphatic copolyester. The targeted mannose-labeled poly(lactide-co-glycolide-co-ε-caprolactone)-graft-poly(ethylene oxide) copolymer was accordingly formed. Copolymerization of d,l-lactide and glycolide with α-chloro-ε-caprolactone, followed by substitution of chlorides by azides provided the azido-functional PLGA backbone. Finally, micelles of the amphiphilic mannosylated graft copolymer were prepared in water, and their interaction with Concanavalin A (ConA), a glyco-receptor protein, was studied by quartz crystal microbalance. This study concluded to the prospect of using this novel bioconjugate in targeted drug delivery.
Collapse
Affiliation(s)
- Hélène Freichels
- Center for Education and Research on Macromolecules (CERM), University of Liège , Sart-Tilman B6, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
8
|
Dynamic Nanoplatforms in Biosensor and Membrane Constitutional Systems. CONSTITUTIONAL DYNAMIC CHEMISTRY 2011; 322:139-63. [DOI: 10.1007/128_2011_199] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Vermette P. Liposome characterization by quartz crystal microbalance measurements and atomic force microscopy. Methods Enzymol 2010; 465:43-73. [PMID: 19913161 DOI: 10.1016/s0076-6879(09)65003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
This chapter reviews liposome characterization by quartz crystal microbalance (QCM) measurements and atomic force microscopy (AFM). In many studies, AFM imaging is simply used to image liposomes with resolution often that does not allow morphological analysis. Although liposome size can be obtained by processing AFM images, it is found that liposomes flatten upon surface adsorption or immobilization. Liposome stability and stiffness have been characterized by using AFM imaging or AFM force measurements, although the latter method, using a microsphere attached on the AFM cantilever, seems more appropriate to limit liposome damage and to obtain more quantitative analysis, such as the Young's modulus. Investigation of liposome layers by QCM revealed that liposomes can be detected from a combined analysis of frequency and bandwidth shifts. However, QCM by itself provides only limited information on liposomes. QCM can be used to assess the presence of a layer and also to discriminate between rigid and viscoelastic ones. Liposome properties have been derived from QCM curves, but often this requires making hypotheses that are difficult to assess. AFM and QCM analyses need to be combined with other techniques to provide complementary information.
Collapse
Affiliation(s)
- Patrick Vermette
- Laboratoire de Bioingénierie et de Biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
10
|
Mahon E, Aastrup T, Barboiu M. Multivalent recognition of lectins by glyconanoparticle systems. Chem Commun (Camb) 2010; 46:5491-3. [DOI: 10.1039/c002652b] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Mahon E, Aastrup T, Barboiu M. Dynamic glycovesicle systems for amplified QCM detection of carbohydrate-lectin multivalent biorecognition. Chem Commun (Camb) 2010; 46:2441-3. [DOI: 10.1039/b924766a] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Immobilization of intact liposomes on solid surfaces: A quartz crystal microbalance study. J Colloid Interface Sci 2009; 336:902-7. [DOI: 10.1016/j.jcis.2009.04.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 11/23/2022]
|
13
|
Pedroso MM, Watanabe AM, Roque-Barreira MC, Bueno PR, Faria RC. Quartz Crystal Microbalance monitoring the real-time binding of lectin with carbohydrate with high and low molecular mass. Microchem J 2008. [DOI: 10.1016/j.microc.2008.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Pei Y, Yu H, Pei Z, Theurer M, Ammer C, André S, Gabius HJ, Yan M, Ramström O. Photoderivatized polymer thin films at quartz crystal microbalance surfaces: sensors for carbohydrate-protein interactions. Anal Chem 2007; 79:6897-902. [PMID: 17705448 PMCID: PMC4487674 DOI: 10.1021/ac070740r] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Photoderivatized polymer-coated gold surfaces have been developed following a perfluorophenylazide-based double ligation strategy. Gold-plated quartz crystal microbalance (QCM) crystals were initially covalently functionalized with a monolayer of poly(ethylene glycol) (PEG), using photo- or thermolytic nitrene formation and insertion. The polymer surfaces were subsequently used as substrates for photoinsertion of carbohydrate-derivatized photoprobes, yielding different recognition motifs for selective protein binding. The resulting robust and biocompatible sensor surfaces were applied to a flow-through QCM instrument for monitoring lectin-carbohydrate interactions in real time. The results clearly show the predicted lectin selectivity, demonstrating the applicability of the approach.
Collapse
Affiliation(s)
- Yuxin Pei
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Hui Yu
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Zhichao Pei
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Matthias Theurer
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Carolin Ammer
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Sabine André
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians University, Veterinärstrasse 13, D-80539 Munich, Germany
| | - Hans-Joachim Gabius
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians University, Veterinärstrasse 13, D-80539 Munich, Germany
| | - Mingdi Yan
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751
| |
Collapse
|
15
|
Cooper MA, Singleton VT. A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. J Mol Recognit 2007; 20:154-84. [PMID: 17582799 DOI: 10.1002/jmr.826] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The widespread exploitation of biosensors in the analysis of molecular recognition has its origins in the mid-1990s following the release of commercial systems based on surface plasmon resonance (SPR). More recently, platforms based on piezoelectric acoustic sensors (principally 'bulk acoustic wave' (BAW), 'thickness shear mode' (TSM) sensors or 'quartz crystal microbalances' (QCM)), have been released that are driving the publication of a large number of papers analysing binding specificities, affinities, kinetics and conformational changes associated with a molecular recognition event. This article highlights salient theoretical and practical aspects of the technologies that underpin acoustic analysis, then reviews exemplary papers in key application areas involving small molecular weight ligands, carbohydrates, proteins, nucleic acids, viruses, bacteria, cells and lipidic and polymeric interfaces. Key differentiators between optical and acoustic sensing modalities are also reviewed.
Collapse
Affiliation(s)
- Matthew A Cooper
- Akubio Ltd., 181 Cambridge Science Park, Cambridge, United Kingdom, UK.
| | | |
Collapse
|
16
|
Lebed K, Kulik AJ, Forró L, Lekka M. Lectin–carbohydrate affinity measured using a quartz crystal microbalance. J Colloid Interface Sci 2006; 299:41-8. [PMID: 16529761 DOI: 10.1016/j.jcis.2006.01.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 01/26/2006] [Accepted: 01/27/2006] [Indexed: 11/23/2022]
Abstract
The association of two molecules is described by two parameters, association equilibrium and association rate constants, which are characteristic for a given type of interaction. Usually, they are determined for interacting molecules dissolved in solution. However, for many applications one type of molecules is immobilized on a substrate, which may influence the binding kinetics. The studied complex of concanavalin A and carboxypeptidase Y belongs to the lectin-carbohydrate type of interaction involving the recognition of oligosaccharide moieties. The concanavalin A was immobilized on a gold electrode of quartz crystal, while carboxypeptidase Y was added to a buffer (Tris-buffered saline). The constants describing the association of the investigated molecules were determined on the basis of measurements performed using a quartz crystal microbalance in liquid. The obtained values were (0.59+/-0.01)x10(6) M(-1) for the association equilibrium constant and (5.6+/-0.1)x10(4) M(-1)s(-1) for the association rate constant. The saturation binding experiment gave another value of the association constant, (2.7+/-0.02)x10(6) M(-1). The comparison of obtained values with previously published ones verifies that the molecule orientation and binding site accessibility for specific ligands could influence the association equilibrium constant value. The presented measurements demonstrate the ability of a quartz crystal microbalance to detect and to evaluate the association process occurring between molecules.
Collapse
Affiliation(s)
- Kateryna Lebed
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland.
| | | | | | | |
Collapse
|
17
|
Electrochemical piezoelectric quartz crystal impedance study on the interaction between concanavalin A and glycogen at Au electrodes. Bioelectrochemistry 2006; 70:348-55. [PMID: 16809074 DOI: 10.1016/j.bioelechem.2006.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 05/03/2006] [Accepted: 05/05/2006] [Indexed: 10/24/2022]
Abstract
The carbohydrate research has emerged as a "new frontier" in chemical/biological field. The binding of lectin with carbohydrate is one of the important courses of life activities. The report studies concanavalin A (Con A)-glycogen interaction on gold electrode surfaces by electrochemical piezoelectric quartz crystal impedance (EPQCI) method. The piezoelectric quartz crystal (PQC) parameters, resonant frequency shift (Deltaf(0)) and the motional resistance change (DeltaR(1)), and the electrochemical impedance (EI) parameters, electrolyte resistance change (DeltaR(s)) and the double layer capacitance change (DeltaC(s)), were measured and discussed simultaneously. Two methods were adopted for measuring the Con A-glycogen association. Based on EPQCI measurement during Con A reaction with glycogen adsorbed on Au electrode, association constant K(a) and the amount of the binding sites s calculated are 1.48 x 10(6) M(-1) and 4.09, respectively. Based on single PQC measurement of glycogen reaction with Con A assembled on Au electrode, K(a) was estimated to be 1.26 x 10(6) M(-1).
Collapse
|
18
|
Pei Z, Anderson H, Aastrup T, Ramström O. Study of real-time lectin-carbohydrate interactions on the surface of a quartz crystal microbalance. Biosens Bioelectron 2004; 21:60-6. [PMID: 15967351 DOI: 10.1016/j.bios.2004.10.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 10/11/2004] [Accepted: 10/11/2004] [Indexed: 11/29/2022]
Abstract
A quartz crystal microbalance (QCM) biosensor system for lectin-carbohydrate interactions has been developed. Yeast mannan was immobilised on polystyrene-coated quartz crystals, and interactions tested with the lectin concanavalin A (Con A). The biosensor could be easily operated, where mannan immobilisation and all binding analyses were performed in real-time using a flow-through system. The apparent binding constant for yeast mannan to Con A was estimated to be 0.4 microM, well in accordance to reported literature values. In addition, the effective concentration values (EC50-values) for a series of mannose/mannoside ligands, acting as competitors to the mannan/Con A interaction, were determined to range from 0.18 to 5.3 mM, in good correlation with a related enzyme-labelled lectin assay (ELLA) protocol.
Collapse
Affiliation(s)
- Zhichao Pei
- KTH-Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm, Sweden
| | | | | | | |
Collapse
|
19
|
Literature Alerts. J Microencapsul 2003. [DOI: 10.3109/02652040309178054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|