1
|
Miserey-Lenkei S, Bousquet H, Pylypenko O, Bardin S, Dimitrov A, Bressanelli G, Bonifay R, Fraisier V, Guillou C, Bougeret C, Houdusse A, Echard A, Goud B. Coupling fission and exit of RAB6 vesicles at Golgi hotspots through kinesin-myosin interactions. Nat Commun 2017; 8:1254. [PMID: 29093437 PMCID: PMC5665954 DOI: 10.1038/s41467-017-01266-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/04/2017] [Indexed: 01/08/2023] Open
Abstract
The actin and microtubule cytoskeletons play important roles in Golgi structure and function, but how they are connected remain poorly known. In this study, we investigated whether RAB6 GTPase, a Golgi-associated RAB involved in the regulation of several transport steps at the Golgi level, and two of its effectors, Myosin IIA and KIF20A participate in the coupling between actin and microtubule cytoskeleton. We have previously shown that RAB6–Myosin IIA interaction is critical for the fission of RAB6-positive transport carriers from Golgi/TGN membranes. Here we show that KIF20A is also involved in the fission process and serves to anchor RAB6 on Golgi/TGN membranes near microtubule nucleating sites. We provide evidence that the fission events occur at a limited number of hotspots sites. Our results suggest that coupling between actin and microtubule cytoskeletons driven by Myosin II and KIF20A ensures the spatial coordination between RAB6-positive vesicles fission from Golgi/TGN membranes and their exit along microtubules. Actin and microtubules play important roles in Golgi structure and function but how they are connected is poorly understood. Here the authors show that KIF20A is involved in the fission process and, in association with Myosin II, serves to anchor RAB6 on Golgi/TGN membranes near microtubules nucleating sites.
Collapse
Affiliation(s)
- Stéphanie Miserey-Lenkei
- Institut Curie, PSL Research University, CNRS, UMR 144, Molecular Mechanisms of Intracellular Transport, F-75005, Paris, France.
| | - Hugo Bousquet
- Institut Curie, PSL Research University, CNRS, UMR 144, Molecular Mechanisms of Intracellular Transport, F-75005, Paris, France
| | - Olena Pylypenko
- Institut Curie, PSL Research University, CNRS, UMR 144, Structural Motility, F-75005, Paris, France
| | - Sabine Bardin
- Institut Curie, PSL Research University, CNRS, UMR 144, Molecular Mechanisms of Intracellular Transport, F-75005, Paris, France
| | - Ariane Dimitrov
- Institut Curie, PSL Research University, CNRS, UMR 144, Molecular Mechanisms of Intracellular Transport, F-75005, Paris, France
| | - Gaëlle Bressanelli
- Institut Curie, PSL Research University, CNRS, UMR 144, Structural Motility, F-75005, Paris, France
| | - Raja Bonifay
- Institut Curie, PSL Research University, CNRS, UMR 144, Structural Motility, F-75005, Paris, France
| | - Vincent Fraisier
- Institut Curie, PSL Research University, CNRS, UMR 144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France
| | | | | | - Anne Houdusse
- Institut Curie, PSL Research University, CNRS, UMR 144, Structural Motility, F-75005, Paris, France
| | - Arnaud Echard
- Institut Pasteur, CNRS UMR3691, Membrane Traffic and Cell Division, F-75015, Paris, France
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144, Molecular Mechanisms of Intracellular Transport, F-75005, Paris, France.
| |
Collapse
|
2
|
Chandran AV, Jayanthi S, Vijayan M. Structure and interactions of RecA: plasticity revealed by molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:98-111. [PMID: 28049371 DOI: 10.1080/07391102.2016.1268975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Eleven independent simulations, each involving three consecutive molecules in the RecA filament, carried out on the protein from Mycobacterium tuberculosis, Mycobacterium smegmatis and Escherichia coli and their Adenosine triphosphate (ATP) complexes, provide valuable information which is complementary to that obtained from crystal structures, in addition to confirming the robust common structural framework within which RecA molecules from different eubacteria function. Functionally important loops, which are largely disordered in crystal structures, appear to adopt in each simulation subsets of conformations from larger ensembles. The simulations indicate the possibility of additional interactions involving the P-loop which remains largely invariant. The phosphate tail of the ATP is firmly anchored on the loop while the nucleoside moiety exhibits substantial structural variability. The most important consequence of ATP binding is the movement of the 'switch' residue. The relevant simulations indicate the feasibility of a second nucleotide binding site, but the pathway between adjacent molecules in the filament involving the two nucleotide binding sites appears to be possible only in the mycobacterial proteins.
Collapse
Affiliation(s)
- Anu V Chandran
- a Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560012 , India
| | - S Jayanthi
- a Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560012 , India
| | - M Vijayan
- a Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560012 , India
| |
Collapse
|
3
|
Kelso AA, Goodson SD, Chavan S, Say AF, Turchick A, Sharma D, Ledford LL, Ratterman E, Leskoske K, King AV, Attaway CC, Bandera Y, Foulger SH, Mazin AV, Temesvari LA, Sehorn MG. Characterization of the recombination activities of the Entamoeba histolytica Rad51 recombinase. Mol Biochem Parasitol 2016; 210:71-84. [PMID: 27678398 DOI: 10.1016/j.molbiopara.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/10/2016] [Accepted: 09/02/2016] [Indexed: 11/29/2022]
Abstract
The protozoan parasite responsible for human amoebiasis is Entamoeba histolytica. An important facet of the life cycle of E. histolytica involves the conversion of the mature trophozoite to a cyst. This transition is thought to involve homologous recombination (HR), which is dependent upon the Rad51 recombinase. Here, a biochemical characterization of highly purified ehRad51 protein is presented. The ehRad51 protein preferentially binds ssDNA, forms a presynaptic filament and possesses ATP hydrolysis activity that is stimulated by the presence of DNA. Evidence is provided that ehRad51 catalyzes robust DNA strand exchange over at least 5.4 kilobase pairs. Although the homologous DNA pairing activity of ehRad51 is weak, it is strongly enhanced by the presence of two HR accessory cofactors, calcium and Hop2-Mnd1. The biochemical system described herein was used to demonstrate the potential for targeting ehRad51 with two small molecule inhibitors of human RAD51. We show that 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) inhibited ehRad51 by interfering with DNA binding and attenuated encystation in Entamoeba invadens, while B02 had no effect on ehRad51 strand exchange activity. These results provide insight into the underlying mechanism of homology-directed DNA repair in E. histolytica.
Collapse
Affiliation(s)
- Andrew A Kelso
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Steven D Goodson
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Suchitra Chavan
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Amanda F Say
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Audrey Turchick
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Deepti Sharma
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - LeAnna L Ledford
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Erin Ratterman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Kristin Leskoske
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Ada V King
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | | - Yura Bandera
- Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634, USA; Department of Material Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Stephen H Foulger
- Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634, USA; Department of Material Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Lesly A Temesvari
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; Clemson University School of Health Research, Clemson, SC 29634, USA
| | - Michael G Sehorn
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634, USA; Clemson University School of Health Research, Clemson, SC 29634, USA.
| |
Collapse
|
4
|
Šimatović A, Mitrikeski PT, Vlašić I, Sopta M, Brčić-Kostić K. The Walker A motif mutation recA4159 abolishes the SOS response and recombination in a recA730 mutant of Escherichia coli. Res Microbiol 2016; 167:462-71. [PMID: 27130282 DOI: 10.1016/j.resmic.2016.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/20/2022]
Abstract
In bacteria, the RecA protein forms recombinogenic filaments required for the SOS response and DNA recombination. In order to form a recombinogenic filament, wild type RecA needs to bind ATP and to interact with mediator proteins. The RecA730 protein is a mutant version of RecA with superior catalytic abilities, allowing filament formation without the help of mediator proteins. The mechanism of RecA730 filament formation is not well understood, and the question remains as to whether the RecA730 protein requires ATP binding in order to become competent for filament formation. We examined two mutants, recA730,4159 (presumed to be defective for ATP binding) and recA730,2201 (defective for ATP hydrolysis), and show that they have different properties with respect to SOS induction, conjugational recombination and double-strand break repair. We show that ATP binding is essential for all RecA730 functions, while ATP hydrolysis is required only for double-strand break repair. Our results emphasize the similarity of the SOS response and conjugational recombination, neither of which requires ATP hydrolysis by RecA730.
Collapse
Affiliation(s)
- Ana Šimatović
- Laboratory of Evolutionary Genetics, Department of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Petar T Mitrikeski
- Laboratory of Evolutionary Genetics, Department of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; Institute for Research and Development of Sustainable Ecosystems, Faculty of Veterinary Medicine, Heinzelova 55, 10000 Zagreb, Croatia.
| | - Ignacija Vlašić
- Laboratory of Evolutionary Genetics, Department of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Mary Sopta
- Laboratory of Evolutionary Genetics, Department of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Krunoslav Brčić-Kostić
- Laboratory of Evolutionary Genetics, Department of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
5
|
Marsh ME, Scott DE, Ehebauer MT, Abell C, Blundell TL, Hyvönen M. ATP half-sites in RadA and RAD51 recombinases bind nucleotides. FEBS Open Bio 2016; 6:372-85. [PMID: 27419043 PMCID: PMC4856416 DOI: 10.1002/2211-5463.12052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/20/2022] Open
Abstract
Homologous recombination is essential for repair of DNA double-strand breaks. Central to this process is a family of recombinases, including archeal RadA and human RAD51, which form nucleoprotein filaments on damaged single-stranded DNA ends and facilitate their ATP-dependent repair. ATP binding and hydrolysis are dependent on the formation of a nucleoprotein filament comprising RadA/RAD51 and single-stranded DNA, with ATP bound between adjacent protomers. We demonstrate that truncated, monomeric Pyrococcus furiosus RadA and monomerised human RAD51 retain the ability to bind ATP and other nucleotides with high affinity. We present crystal structures of both apo and nucleotide-bound forms of monomeric RadA. These structures reveal that while phosphate groups are tightly bound, RadA presents a shallow, poorly defined binding surface for the nitrogenous bases of nucleotides. We suggest that RadA monomers would be constitutively bound to nucleotides in the cell and that the bound nucleotide might play a structural role in filament assembly.
Collapse
Affiliation(s)
- May E Marsh
- Department of Biochemistry University of Cambridge UK; Present address: Paul Scherrer Institut Villingen Switzerland
| | | | - Matthias T Ehebauer
- Department of Biochemistry University of Cambridge UK; Present address: Target Discovery Institute Nuffield Department of Medicine University of Oxford UK
| | - Chris Abell
- Department of Chemistry University of Cambridge UK
| | | | - Marko Hyvönen
- Department of Biochemistry University of Cambridge UK
| |
Collapse
|
6
|
Hernández-González M, Peñalva MA, Pantazopoulou A. Conditional inactivation ofAspergillus nidulans sarASAR1uncovers the morphogenetic potential of regulating endoplasmic reticulum (ER) exit. Mol Microbiol 2014; 95:491-508. [DOI: 10.1111/mmi.12880] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Miguel Hernández-González
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| | - Miguel A. Peñalva
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| | - Areti Pantazopoulou
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| |
Collapse
|
7
|
Chang HY, Chou CC, Hsu MF, Wang AHJ. Proposed carrier lipid-binding site of undecaprenyl pyrophosphate phosphatase from Escherichia coli. J Biol Chem 2014; 289:18719-35. [PMID: 24855653 DOI: 10.1074/jbc.m114.575076] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Undecaprenyl pyrophosphate phosphatase (UppP), an integral membrane protein, catalyzes the dephosphorylation of undecaprenyl pyrophosphate to undecaprenyl phosphate, which is an essential carrier lipid in the bacterial cell wall synthesis. Sequence alignment reveals two consensus regions, containing glutamate-rich (E/Q)XXXE plus PGXSRSXXT motifs and a histidine residue, specific to the bacterial UppP enzymes. The predicted topological model suggests that both of these regions are localized near the aqueous interface of UppP and face the periplasm, implicating that its enzymatic function is on the outer side of the plasma membrane. The mutagenesis analysis demonstrates that most of the mutations (E17A/E21A, H30A, S173A, R174A, and T178A) within the consensus regions are completely inactive, indicating that the catalytic site of UppP is constituted by these two regions. Enzymatic analysis also shows an absolute requirement of magnesium or calcium ions in enzyme activity. The three-dimensional structural model and molecular dynamics simulation studies have shown a plausible structure of the catalytic site of UppP and thus provides insights into the molecular basis of the enzyme-substrate interaction in membrane bilayers.
Collapse
Affiliation(s)
| | - Chia-Cheng Chou
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis Academia Sinica, Taipei and
| | - Min-Feng Hsu
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis Academia Sinica, Taipei and
| | - Andrew H J Wang
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis Academia Sinica, Taipei and the Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11529, Taiwan
| |
Collapse
|
8
|
Priya R, Kumar A, Manimekalai MSS, Grüber G. Conserved glycine residues in the P-loop of ATP synthases form a doorframe for nucleotide entrance. J Mol Biol 2011; 413:657-66. [PMID: 21925186 DOI: 10.1016/j.jmb.2011.08.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 11/20/2022]
Abstract
The phosphate binding loop (GXXXXGKT(S)) is conserved in several mononucleotide-binding proteins with similar three-dimensional structures. Although variations in other amino acids have been noted, the first glycine and glycine-lysine residues are highly conserved in all enzymes, whose role is yet to be understood. Alanine substitutions for critically positioned glycines-G234, G237, and G239-were generated for the catalytic A-subunit of A-ATP synthase from Pyrococcus horikoshii OT3, and their crystal structures were determined. They showed altered conformation for the phosphate binding loop, with G234A and G237A becoming flat and with G239A taking an intermediate conformation, resulting in the active-site region being closed to nucleotide entry. Furthermore, the essential amino acids S238 and K240, which normally interact with the nucleotide, become inaccessible. These mutant structures demonstrate the role of the strictly conserved glycine residues in guarding the active-site region for nucleotide entrance in archaea-type ATP synthases.
Collapse
Affiliation(s)
- Ragunathan Priya
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | | | | | | |
Collapse
|
9
|
Adikesavan AK, Katsonis P, Marciano DC, Lua R, Herman C, Lichtarge O. Separation of recombination and SOS response in Escherichia coli RecA suggests LexA interaction sites. PLoS Genet 2011; 7:e1002244. [PMID: 21912525 PMCID: PMC3164682 DOI: 10.1371/journal.pgen.1002244] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/29/2011] [Indexed: 12/29/2022] Open
Abstract
RecA plays a key role in homologous recombination, the induction of the DNA damage response through LexA cleavage and the activity of error-prone polymerase in Escherichia coli. RecA interacts with multiple partners to achieve this pleiotropic role, but the structural location and sequence determinants involved in these multiple interactions remain mostly unknown. Here, in a first application to prokaryotes, Evolutionary Trace (ET) analysis identifies clusters of evolutionarily important surface amino acids involved in RecA functions. Some of these clusters match the known ATP binding, DNA binding, and RecA-RecA homo-dimerization sites, but others are novel. Mutation analysis at these sites disrupted either recombination or LexA cleavage. This highlights distinct functional sites specific for recombination and DNA damage response induction. Finally, our analysis reveals a composite site for LexA binding and cleavage, which is formed only on the active RecA filament. These new sites can provide new drug targets to modulate one or more RecA functions, with the potential to address the problem of evolution of antibiotic resistance at its root. In eubacteria, genome integrity is in large part orchestrated by RecA, which directly participates in recombination, induction of DNA damage response through LexA repressor cleavage and error-prone DNA synthesis. Yet, most of the interaction sites necessary for these vital processes are largely unknown. By comparing divergences among RecA sequences and computing putative functional regions, we discovered four functional sites of RecA. Targeted point-mutations were then tested for both recombination and DNA damage induction and reveal distinct RecA functions at each one of these sites. In particular, one new set of mutants is deficient in promoting LexA cleavage and yet maintains the ability to induce the DNA damage response. These results reveal specific amino acid determinants of the RecA–LexA interaction and suggest that LexA binds RecAi and RecAi+6 at a composite site on the RecA filament, which could explain the role of the active filament during LexA cleavage.
Collapse
Affiliation(s)
- Anbu K Adikesavan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | | | | | | | | | | |
Collapse
|
10
|
Residue propensities, discrimination and binding site prediction of adenine and guanine phosphates. BMC BIOCHEMISTRY 2011; 12:20. [PMID: 21569447 PMCID: PMC3113737 DOI: 10.1186/1471-2091-12-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 05/13/2011] [Indexed: 11/15/2022]
Abstract
Background Adenine and guanine phosphates are involved in a number of biological processes such as cell signaling, metabolism and enzymatic cofactor functions. Binding sites in proteins for these ligands are often detected by looking for a previously known motif by alignment based search. This is likely to miss those where a similar binding site has not been previously characterized and when the binding sites do not follow the rule described by predefined motif. Also, it is intriguing how proteins select between adenine and guanine derivative with high specificity. Results Residue preferences for AMP, GMP, ADP, GDP, ATP and GTP have been investigated in details with additional comparison with cyclic variants cAMP and cGMP. We also attempt to predict residues interacting with these nucleotides using information derived from local sequence and evolutionary profiles. Results indicate that subtle differences exist between single residue preferences for specific nucleotides and taking neighbor environment and evolutionary context into account, successful models of their binding site prediction can be developed. Conclusion In this work, we explore how single amino acid propensities for these nucleotides play a role in the affinity and specificity of this set of nucleotides. This is expected to be helpful in identifying novel binding sites for adenine and guanine phosphates, especially when a known binding motif is not detectable.
Collapse
|
11
|
Abstract
The bacterial RecA protein participates in a remarkably diverse set of functions, all of which are involved in the maintenance of genomic integrity. RecA is a central component in both the catalysis of recombinational DNA repair and the regulation of the cellular SOS response. Despite the mechanistic differences of its functions, all require formation of an active RecA/ATP/DNA complex. RecA is a classic allosterically regulated enzyme, and ATP binding results in a dramatic increase in DNA binding affinity and a cooperative assembly of RecA subunits to form an ordered, helical nucleoprotein filament. The molecular events that underlie this ATP-induced structural transition are becoming increasingly clear. This review focuses on descriptions of our current understanding of the molecular design and allosteric regulation of RecA. We present a comprehensive list of all published recA mutants and use the results of various genetic and biochemical studies, together with available structural information, to develop ideas regarding the design of RecA functional domains and their catalytic organization.
Collapse
Affiliation(s)
- Dharia A McGrew
- Department of Biochemistry and Molecular Pharmacology, Aaron Lazare Research Building, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | | |
Collapse
|
12
|
Renzette N, Sandler SJ. Requirements for ATP binding and hydrolysis in RecA function in Escherichia coli. Mol Microbiol 2008; 67:1347-59. [PMID: 18298444 DOI: 10.1111/j.1365-2958.2008.06130.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RecA is essential for recombination, DNA repair and SOS induction in Escherichia coli. ATP hydrolysis is known to be important for RecA's roles in recombination and DNA repair. In vitro reactions modelling SOS induction minimally require ssDNA and non-hydrolyzable ATP analogues. This predicts that ATP hydrolysis will not be required for SOS induction in vivo. The requirement of ATP binding and hydrolysis for SOS induction in vivo is tested here through the study of recA4159 (K72A) and recA2201 (K72R). RecA4159 is thought to have reduced affinity for ATP. RecA2201 binds, but does not hydrolyse ATP. Neither mutant was able to induce SOS expression after UV irradiation. RecA2201, unlike RecA4159, could form filaments on DNA and storage structures as measured with RecA-GFP. RecA2201 was able to form hybrid filaments and storage structures and was either recessive or dominant to RecA(+), depending on the ratio of the two proteins. RecA4159 was unable to enter RecA(+) filaments on DNA or storage structures and was recessive to RecA(+). It is concluded that ATP hydrolysis is essential for SOS induction. It is proposed that ATP binding is essential for storage structure formation and ability to interact with other RecA proteins in a filament.
Collapse
Affiliation(s)
- Nicholas Renzette
- Molecular and Cellular Biology Graduate Program, Morrill Science Center, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | | |
Collapse
|
13
|
Li X, Zhang XP, Solinger JA, Kiianitsa K, Yu X, Egelman EH, Heyer WD. Rad51 and Rad54 ATPase activities are both required to modulate Rad51-dsDNA filament dynamics. Nucleic Acids Res 2007; 35:4124-40. [PMID: 17567608 PMCID: PMC1919488 DOI: 10.1093/nar/gkm412] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rad51 and Rad54 are key proteins that collaborate during homologous recombination. Rad51 forms a presynaptic filament with ATP and ssDNA active in homology search and DNA strand exchange, but the precise role of its ATPase activity is poorly understood. Rad54 is an ATP-dependent dsDNA motor protein that can dissociate Rad51 from dsDNA, the product complex of DNA strand exchange. Kinetic analysis of the budding yeast proteins revealed that the catalytic efficiency of the Rad54 ATPase was stimulated by partial filaments of wild-type and Rad51-K191R mutant protein on dsDNA, unambiguously demonstrating that the Rad54 ATPase activity is stimulated under these conditions. Experiments with Rad51-K191R as well as with wild-type Rad51-dsDNA filaments formed in the presence of ATP, ADP or ATP-γ-S showed that efficient Rad51 turnover from dsDNA requires both the Rad51 ATPase and the Rad54 ATPase activities. The results with Rad51-K191R mutant protein also revealed an unexpected defect in binding to DNA. Once formed, Rad51-K191R-DNA filaments appeared normal upon electron microscopic inspection, but displayed significantly increased stability. These biochemical defects in the Rad51-K191R protein could lead to deficiencies in presynapsis (filament formation) and postsynapsis (filament disassembly) in vivo.
Collapse
Affiliation(s)
- Xuan Li
- Section of Microbiology, University of California, Davis, CA 95616-8665, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 and Section of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
| | - Xiao-Ping Zhang
- Section of Microbiology, University of California, Davis, CA 95616-8665, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 and Section of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
| | - Jachen A. Solinger
- Section of Microbiology, University of California, Davis, CA 95616-8665, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 and Section of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
| | - Konstantin Kiianitsa
- Section of Microbiology, University of California, Davis, CA 95616-8665, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 and Section of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
| | - Xiong Yu
- Section of Microbiology, University of California, Davis, CA 95616-8665, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 and Section of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
| | - Edward H. Egelman
- Section of Microbiology, University of California, Davis, CA 95616-8665, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 and Section of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology, University of California, Davis, CA 95616-8665, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 and Section of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665, USA
- *To whom correspondence should be addressed. Tel.: 530 752 3001; Fax: 530 752 3011
| |
Collapse
|
14
|
Forget AL, Loftus MS, McGrew DA, Bennett BT, Knight KL. The human Rad51 K133A mutant is functional for DNA double-strand break repair in human cells. Biochemistry 2007; 46:3566-75. [PMID: 17302439 PMCID: PMC2952636 DOI: 10.1021/bi062128k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human Rad51 protein requires ATP for the catalysis of DNA strand exchange, as do all Rad51 and RecA-like recombinases. However, understanding the specific mechanistic requirements for ATP binding and hydrolysis has been complicated by the fact that ATP appears to have distinctly different effects on the functional properties of human Rad51 versus yeast Rad51 and bacterial RecA. Here we use RNAi methods to test the function of two ATP binding site mutants, K133R and K133A, in human cells. Unexpectedly, we find that the K133A mutant is functional for repair of DNA double-strand breaks when endogenous Rad51 is depleted. We also find that the K133A protein maintains wild-type-like DNA binding activity and interactions with Brca2 and Xrcc3, properties that undoubtedly promote its DNA repair capability in the cell-based assay used here. Although a Lys to Ala substitution in the Walker A motif is commonly assumed to prevent ATP binding, we show that the K133A protein binds ATP, but with an affinity approximately 100-fold lower than that of wild-type Rad51. Our data suggest that ATP binding and release without hydrolysis by the K133A protein act as a mechanistic surrogate in a catalytic process that applies to all RecA-like recombinases. ATP binding promotes assembly and stabilization of a catalytically active nucleoprotein filament, while ATP hydrolysis promotes filament disassembly and release from DNA.
Collapse
|
15
|
Forget AL, Kudron MM, McGrew DA, Calmann MA, Schiffer C, Knight KL. RecA dimers serve as a functional unit for assembly of active nucleoprotein filaments. Biochemistry 2007; 45:13537-42. [PMID: 17087507 PMCID: PMC2522307 DOI: 10.1021/bi060938q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
All RecA-like recombinase enzymes catalyze DNA strand exchange as elongated filaments on DNA. Despite numerous biochemical and structural studies of RecA and the related Rad51 and RadA proteins, the unit oligomer(s) responsible for nucleoprotein filament assembly and coordinated filament activity remains undefined. We have created a RecA fused dimer protein and show that it maintains in vivo DNA repair and LexA co-protease activities, as well as in vitro ATPase and DNA strand exchange activities. Our results support the idea that dimeric RecA is an important functional unit both for assembly of nucleoprotein filaments and for their coordinated activity during the catalysis of homologous recombination.
Collapse
|
16
|
Fung CW, Fortin GS, Peterson SE, Symington LS. The rad51-K191R ATPase-defective mutant is impaired for presynaptic filament formation. Mol Cell Biol 2006; 26:9544-54. [PMID: 17030607 PMCID: PMC1698519 DOI: 10.1128/mcb.00599-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The nucleoprotein filament formed by Rad51 polymerization on single-stranded DNA is essential for homologous pairing and strand exchange. ATP binding is required for Rad51 nucleoprotein filament formation and strand exchange, but ATP hydrolysis is not required for these functions in vitro. Previous studies have shown that a yeast strain expressing the rad51-K191R allele is sensitive to ionizing radiation, suggesting an important role for ATP hydrolysis in vivo. The recruitment of Rad51-K191R to double-strand breaks is defective in vivo, and this phenotype can be suppressed by elimination of the Srs2 helicase, an antagonist of Rad51 filament formation. The phenotype of the rad51-K191R strain is also suppressed by overexpression of Rad54. In vitro, the Rad51-K191R protein exhibits a slight decrease in binding to DNA, consistent with the defect in presynaptic filament formation. However, the rad51-K191R mutation is dominant in heterozygous diploids, indicating that the defect is not due simply to reduced affinity for DNA. We suggest the Rad51-K191R protein either forms an altered filament or is defective in turnover, resulting in a reduced pool of free protein available for DNA binding.
Collapse
Affiliation(s)
- Cindy W Fung
- Graduate Program in Cellular, Molecular and Biophysical Studies, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | |
Collapse
|
17
|
Wu Y, He Y, Moya IA, Qian X, Luo Y. Crystal structure of archaeal recombinase RADA: a snapshot of its extended conformation. Mol Cell 2004; 15:423-35. [PMID: 15304222 DOI: 10.1016/j.molcel.2004.07.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 06/25/2004] [Accepted: 06/29/2004] [Indexed: 12/18/2022]
Abstract
Homologous recombination of DNA plays crucial roles in repairing severe DNA damage and in generating genetic diversity. The process is facilitated by a superfamily of recombinases: bacterial RecA, archaeal RadA and Rad51, and eukaryal Rad51 and DMC1. These recombinases share a common ATP-dependent filamentous quaternary structure for binding DNA and facilitating strand exchange. We have determined the crystal structure of Methanococcus voltae RadA in complex with the ATP analog AMP-PNP at 2.0 A resolution. The RadA filament is a 106.7 A pitch helix with six subunits per turn. The DNA binding loops L1 and L2 are located in close proximity to the filament axis. The ATP analog is buried between two RadA subunits, a feature similar to that of the active filament of Escherichia coli RecA revealed by electron microscopy. The disposition of the N-terminal domain suggests a role of the Helix-hairpin-Helix motif in binding double-stranded DNA.
Collapse
Affiliation(s)
- Yan Wu
- Department of Biochemistry, University of Saskatchewan, A3 Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | | | |
Collapse
|
18
|
Mitchell MS, Rao VB. Novel and deviant Walker A ATP-binding motifs in bacteriophage large terminase-DNA packaging proteins. Virology 2004; 321:217-21. [PMID: 15051382 DOI: 10.1016/j.virol.2003.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 10/13/2003] [Accepted: 11/06/2003] [Indexed: 11/28/2022]
Abstract
Bacteriophage terminases constitute a very interesting class of viral-coded multifunctional ATPase "motors" that apparently drive directional translocation of DNA into an empty viral capsid. A common Walker A motif and other conserved signatures of a critical ATPase catalytic center are identified in the N-terminal half of numerous large terminase proteins. However, several terminases, including the well-characterized lambda and SPP1 terminases, seem to lack the classic Walker A in the N-terminus. Using sequence alignment approaches, we discovered the presence of deviant Walker A motifs in these and many other phage terminases. One deviation, the presence of a lysine at the beginning of P-loop, may represent a 3D equivalent of the universally conserved lysine in the Walker A GKT/S signature. This and other novel putative Walker A motifs that first came to light through this study help define the ATPase centers of phage and viral terminases as well as elicit important insights into the molecular functioning of this fundamental motif in biological systems.
Collapse
Affiliation(s)
- Michael S Mitchell
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | |
Collapse
|
19
|
French CA, Tambini CE, Thacker J. Identification of functional domains in the RAD51L2 (RAD51C) protein and its requirement for gene conversion. J Biol Chem 2003; 278:45445-50. [PMID: 12966089 DOI: 10.1074/jbc.m308621200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RAD51 protein plays a key part in the process of homologous recombination through its catalysis of homologous DNA pairing and strand exchange. Additionally five novel mammalian RAD51-like proteins have been identified in mammalian cells, but their roles in homologous recombination are much less well established. These RAD51-like proteins form two different complexes, but only the RAD51L2 (RAD51C) protein is a part of both complexes. By using site-directed mutagenesis of RAD51L2, we show that non-conservative mutation of the putative ATP-binding domain severely reduces its function, whereas a conservative mutation shows partial loss of function. We find that the protein is localized to the nucleus by tagging RAD51L2 with the green fluorescent protein and provisionally identify a C-terminal domain that acts as a nuclear localization signal. Further, a RAD51L2-deficient cell line was found to have significantly reduced homology-directed repair of a DNA double-strand break by gene conversion. This recombination defect could be partially restored by ectopic expression of the human RAD51L2 protein. Therefore we have identified protein domains that are important for the correct functioning of RAD51L2 and have shown that there is a specific requirement for RAD51L2 in gene conversion in mammalian cells.
Collapse
Affiliation(s)
- Catherine A French
- Medical Research Council, Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD, England
| | | | | |
Collapse
|
20
|
Mirshad JK, Kowalczykowski SC. Biochemical basis of the constitutive coprotease activity of RecA P67W protein. Biochemistry 2003; 42:5937-44. [PMID: 12741852 DOI: 10.1021/bi027232q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mutation of Pro67 to Trp (P67W) in the Escherichia coli RecA protein results in reduced recombination and constitutive coprotease phenotypes. We examined the biochemical properties of this mutant in an effort to understand these altered behaviors. We find that RecA P67W protein can access single-stranded DNA (ssDNA) binding sites within regions of secondary structure more effectively than wild-type protein, and binding to duplex DNA is both faster and more extensive as well. This mutant is also more effective than wild-type RecA protein in displacing SSB protein from ssDNA. An enhancement in SSB protein displacement has been shown previously for RecA441, RecA730, and RecA803 proteins, and similarly, this improved ability to displace SSB protein for RecA P67W protein correlates with an increased rate of association with ssDNA. As for the aforementioned mutant RecA proteins, we expect that this enhanced activity will allow RecA P67W protein to bind ssDNA naturally occurring in undamaged cells and to constitutively induce the SOS response. The DNA strand exchange activity of RecA P67W protein is also altered. Although the rate of duplex DNA uptake into joint molecules is increased compared to that of wild-type RecA protein, the resolution to the nicked circular dsDNA product is reduced. We suggest that either a limited amount of DNA strand reinvasion or a defect in DNA heteroduplex extension is responsible for the impaired recombination ability of this mutant protein.
Collapse
Affiliation(s)
- Julie K Mirshad
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | |
Collapse
|
21
|
Lusetti SL, Wood EA, Fleming CD, Modica MJ, Korth J, Abbott L, Dwyer DW, Roca AI, Inman RB, Cox MM. C-terminal deletions of the Escherichia coli RecA protein. Characterization of in vivo and in vitro effects. J Biol Chem 2003; 278:16372-80. [PMID: 12598539 DOI: 10.1074/jbc.m212917200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A set of C-terminal deletion mutants of the RecA protein of Escherichia coli, progressively removing 6, 13, 17, and 25 amino acid residues, has been generated, expressed, and purified. In vivo, the deletion of 13 to 17 C-terminal residues results in increased sensitivity to mitomycin C. In vitro, the deletions enhance binding to duplex DNA as previously observed. We demonstrate that much of this enhancement involves the deletion of residues between positions 339 and 346. In addition, the C-terminal deletions cause a substantial upward shift in the pH-reaction profile of DNA strand exchange reactions. The C-terminal deletions of more than 13 amino acid residues result in strong inhibition of DNA strand exchange below pH 7, where the wild-type protein promotes a proficient reaction. However, at the same time, the deletion of 13-17 C-terminal residues eliminates the reduction in DNA strand exchange seen with the wild-type protein at pH values between 7.5 and 9. The results suggest the existence of extensive interactions, possibly involving multiple salt bridges, between the C terminus and other parts of the protein. These interactions affect the pK(a) of key groups involved in DNA strand exchange as well as the direct binding of RecA protein to duplex DNA.
Collapse
Affiliation(s)
- Shelley L Lusetti
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Silvanovich A, Li MG, Serr M, Mische S, Hays TS. The third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding. Mol Biol Cell 2003; 14:1355-65. [PMID: 12686593 PMCID: PMC153106 DOI: 10.1091/mbc.e02-10-0675] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Sequence comparisons and structural analyses show that the dynein heavy chain motor subunit is related to the AAA family of chaperone-like ATPases. The core structure of the dynein motor unit derives from the assembly of six AAA domains into a hexameric ring. In dynein, the first four AAA domains contain consensus nucleotide triphosphate-binding motifs, or P-loops. The recent structural models of dynein heavy chain have fostered the hypothesis that the energy derived from hydrolysis at P-loop 1 acts through adjacent P-loop domains to effect changes in the attachment state of the microtubule-binding domain. However, to date, the functional significance of the P-loop domains adjacent to the ATP hydrolytic site has not been demonstrated. Our results provide a mutational analysis of P-loop function within the first and third AAA domains of the Drosophila cytoplasmic dynein heavy chain. Here we report the first evidence that P-loop-3 function is essential for dynein function. Significantly, our results further show that P-loop-3 function is required for the ATP-induced release of the dynein complex from microtubules. Mutation of P-loop-3 blocks ATP-mediated release of dynein from microtubules, but does not appear to block ATP binding and hydrolysis at P-loop 1. Combined with the recent recognition that dynein belongs to the family of AAA ATPases, the observations support current models in which the multiple AAA domains of the dynein heavy chain interact to support the translocation of the dynein motor down the microtubule lattice.
Collapse
Affiliation(s)
- Andre Silvanovich
- University of Minnesota, Department of Genetics, Cell Biology, and Development, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
23
|
Datta S, Ganesh N, Chandra NR, Muniyappa K, Vijayan M. Structural studies on MtRecA-nucleotide complexes: insights into DNA and nucleotide binding and the structural signature of NTP recognition. Proteins 2003; 50:474-85. [PMID: 12557189 DOI: 10.1002/prot.10315] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RecA protein plays a crucial role in homologous recombination and repair of DNA. Central to all activities of RecA is its binding to Mg(+2)-ATP. The active form of the protein is a helical nucleoprotein filament containing the nucleotide cofactor and single-stranded DNA. The stability and structure of the helical nucleoprotein filament formed by RecA are modulated by nucleotide cofactors. Here we report crystal structures of a MtRecA-ADP complex, complexes with ATPgammaS in the presence and absence of magnesium as well as a complex with dATP and Mg+2. Comparison with the recently solved crystal structures of the apo form as well as a complex with ADP-AlF4 confirms an expansion of the P-loop region in MtRecA, compared to its homologue in Escherichia coli, correlating with the reduced affinity of MtRecA for ATP. The ligand bound structures reveal subtle variations in nucleotide conformations among different nucleotides that serve in maintaining the network of interactions crucial for nucleotide binding. The nucleotide binding site itself, however, remains relatively unchanged. The analysis also reveals that ATPgammaS rather than ADP-AlF4 is structurally a better mimic of ATP. From among the complexed structures, a definition for the two DNA-binding loops L1 and L2 has clearly emerged for the first time and provides a basis to understand DNA binding by RecA. The structural information obtained from these complexes correlates well with the extensive biochemical data on mutants available in the literature, contributing to an understanding of the role of individual residues in the nucleotide binding pocket, at the molecular level. Modeling studies on the mutants again point to the relative rigidity of the nucleotide binding site. Comparison with other NTP binding proteins reveals many commonalties in modes of binding by diverse members in the structural family, contributing to our understanding of the structural signature of NTP recognition.
Collapse
Affiliation(s)
- S Datta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | | | |
Collapse
|
24
|
Morgan EA, Shah N, Symington LS. The requirement for ATP hydrolysis by Saccharomyces cerevisiae Rad51 is bypassed by mating-type heterozygosity or RAD54 in high copy. Mol Cell Biol 2002; 22:6336-43. [PMID: 12192033 PMCID: PMC135622 DOI: 10.1128/mcb.22.18.6336-6343.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2002] [Revised: 03/26/2002] [Accepted: 06/20/2002] [Indexed: 11/20/2022] Open
Abstract
Rad51 can promote extensive strand exchange in vitro in the absence of ATP hydrolysis, and the Rad51-K191R mutant protein, which can bind but poorly hydrolyze ATP, also promotes strand exchange. A haploid strain expressing the rad51-K191R allele showed an equivalent sensitivity at low doses of ionizing radiation to rad51-K191A or rad51 null mutants and was defective in spontaneous and double-strand break-induced mitotic recombination. However, the rad51-K191R/rad51-K191R diploid sporulated and the haploid spores showed high viability, indicating no apparent defect in meiotic recombination. The DNA repair defect caused by the rad51-K191R allele was suppressed in diploids and by mating-type heterozygosity in haploids. RAD54 expressed from a high-copy-number plasmid also suppressed the gamma-ray sensitivity of rad51-K191R haploids. The suppression by mating-type heterozygosity of the DNA repair defect conferred by the rad51-K191R allele could occur by elevated expression of factors that act to stabilize, or promote catalysis, by the partially functional Rad51-K191R protein.
Collapse
Affiliation(s)
- Elizabeth A Morgan
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
25
|
Kawaguchi M, Miura Y, Ido A, Morinaga T, Sakata N, Oya T, Hashimoto-Tamaoki T, Sasahara M, Koizumi F, Tamaoki T. DNA/RNA-dependent ATPase activity is associated with ATBF1, a multiple homeodomain-zinc finger protein. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1550:164-74. [PMID: 11755205 DOI: 10.1016/s0167-4838(01)00284-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The AT motif-binding factor 1 (ATBF1)-A is a large transcription factor containing four homeodomains and 23 zinc finger motifs. It has a number of motifs involved in transcriptional regulation, and in addition, several motifs found in enzymes, such as ATPases and helicases. In this study, we examined whether ATPase activity is associated with the ATBF1-A molecule. A 263-amino acid segment of the ATBF1-A molecule, termed AHZ, which contains the ATPase A-motif, homeodomain IV and zinc finger 21, was expressed in Escherichia coli in the form of glutathione S-transferase fusion protein and analyzed for ATPase activity. We found that AHZ was able to hydrolyze ATP with K(m) 10.6 microM and K(cat) 0.055 min(-1) at 5 mM Mg(2+) and pH 7.75. AHZ retained bacterial DNA and removal of the DNA resulted in 70% decrease in ATPase activity. The addition of double- or single-stranded DNAs restored 70-75% ATPase activity and that of RNA restored 50-55% activity. Site-directed mutagenesis of the A-motif resulted in 34% reduction of ATPase activity with no significant loss of bound DNA. In contrast, mutation of homeodomain IV and zinc finger 21 resulted in 90 and 80% reduction of ATPase, respectively, with the loss of the ability to bind to DNA and RNA. These results show that ATBF1 has at least one enzyme activity in addition to regulation of DNA transcription. The ATPase activity associated with ATBF1-A is DNA/RNA-dependent and unique in that it requires both homeodomain and zinc finger motifs.
Collapse
Affiliation(s)
- M Kawaguchi
- Department of Pathology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rao VB, Mitchell MS. The N-terminal ATPase site in the large terminase protein gp17 is critically required for DNA packaging in bacteriophage T4. J Mol Biol 2001; 314:401-11. [PMID: 11846554 DOI: 10.1006/jmbi.2001.5169] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Double-stranded DNA packaging in bacteriophages is apparently driven by the most powerful molecular motor ever measured. Although it is widely accepted that a translocating ATPase powers the DNA packaging machine, the identity of the ATPase that generates this driving force is unknown. Evidence suggests that the large terminase protein gp17, which possesses two consensus ATP binding motifs and an ATPase activity, is a strong candidate for the translocating ATPase in bacteriophage T4. This hypothesis was tested by a PCR-directed combinatorial mutagenesis approach in which mutant libraries consisting of all possible codon combinations were constructed at the signature residues of the ATP binding motifs. The impact on gp17 function of each randomly selected mutant was evaluated by phenotypic analysis following recombinational transfer into the viral genome. The precise mutation giving rise to a particular phenotype was determined by DNA sequencing. The data showed that the N-terminal ATP binding site I (SRQLGKT(161-167)), but not the ATP binding site II (TAAVEGKS(299-306)), is critical for gp17 function. Even conservative substitutions such as G165A, K166R, and T167A were not tolerated at the GKT signature residues, which are predicted to interact with the ATP substrate. Biochemical analyses of the mutants showed a complete loss of in vitro DNA packaging activity but not the terminase (DNA-cutting) activity. The purified K166G mutant showed a loss of gp17-ATPase activity. The data, for the first time, implicated a specific ATPase center in the viral dsDNA packaging.
Collapse
Affiliation(s)
- V B Rao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | | |
Collapse
|
27
|
Logan KM, Forget AL, Verderese JP, Knight KL. ATP-mediated changes in cross-subunit interactions in the RecA protein. Biochemistry 2001; 40:11382-9. [PMID: 11560486 DOI: 10.1021/bi011081u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RecA protein undergoes ATP- and DNA-induced conformational changes that result in different helical parameters for free protein filaments versus RecA/ATP/DNA nucleoprotein filaments. Previous mutational studies of a particular region of the RecA oligomeric interface suggested that cross-subunit contacts made by residues K6 and R28 were more important for stabilization of free protein oligomers than nucleoprotein filaments [Eldin, S., et al. (2000) J. Mol. Biol. 299, 91-101]. Using mutant proteins with specifically engineered Cys substitutions, we show here that the efficiency of cross-subunit disulfide bond formation at certain positions in this region changes in the presence of ATP or ATP/DNA. Our results support the idea that specific cross-subunit interactions that occur within this region of the subunit interface are different in free RecA protein versus RecA/ATP/DNA nucleoprotein filaments.
Collapse
Affiliation(s)
- K M Logan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655-0103, USA
| | | | | | | |
Collapse
|
28
|
Berger MD, Lee AM, Simonette RA, Jackson BE, Roca AI, Singleton SF. Design and evaluation of a tryptophanless RecA protein with wild type activity. Biochem Biophys Res Commun 2001; 286:1195-203. [PMID: 11527427 DOI: 10.1006/bbrc.2001.5525] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The C-terminal domain of the Escherichia coli RecA protein contains two tryptophan residues whose native fluorescence emission provides an interfering background signal when other fluorophores such as 1,N(6)-ethenoadenine, 2-aminopurine and other tryptophan residues are used to probe the protein's activities. Replacement of the wild type tryptophans with nonfluorescent residues is not trivial because one tryptophan is highly conserved and the C-terminal domain functions in both DNA binding as well as interfilament protein-protein contact. We undertook the task of creating a tryptophanless RecA protein with WT RecA activity by selecting suitable amino acid replacements for Trp290 and Trp308. Mutant proteins were screened in vivo using assays of SOS induction and cell survival following UV irradiation. Based on its activity in these assays, the W290H-W308F W-less RecA was purified for in vitro characterization and functioned like WT RecA in DNA-dependent ATPase and DNA strand exchange assays. Spectrofluorometry indicates that the W290H-W308F RecA protein generates no significant emission when excited with 295-nm light. Based on its ability to function as wild type protein in vivo and in vitro, this dark RecA protein will be useful for future fluorescence experiments.
Collapse
Affiliation(s)
- M D Berger
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | |
Collapse
|
29
|
O'Regan P, Wilson C, Townsend S, Thacker J. XRCC2 is a nuclear RAD51-like protein required for damage-dependent RAD51 focus formation without the need for ATP binding. J Biol Chem 2001; 276:22148-53. [PMID: 11301337 DOI: 10.1074/jbc.m102396200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human XRCC2 gene was recently identified by its ability to complement a hamster cell line, irs1, which is sensitive to DNA-damaging agents and shows genetic instability. The XRCC2 protein is highly conserved in mammalian species and has structural features, including a putative ATP-binding domain (P-loop), consistent with membership of the RecA/RAD51 family of recombination-repair proteins. We show that a hybrid XRCC2-green fluorescent protein, which was found to be functional by complementation, localizes to the nucleus. We have established a functional link between XRCC2 and RAD51 by looking at damage-dependent RAD51 focus formation in the irs1 cell line. Little or no formation of RAD51 foci occurred in irs1. This effect was specific to the loss of XRCC2 because transfection of the gene into irs1 restored normal levels of focus formation. Surprisingly, XRCC2 genes carrying site-specific mutations in P-loop residues were found to be able to complement the XRCC2-deficient irs1 line for a number of different end points. We conclude that XRCC2 is important in the early stages of homologous recombination in mammalian cells to facilitate RAD51-dependent recombination repair but that it does not make use of ATP binding to promote this function.
Collapse
Affiliation(s)
- P O'Regan
- Radiation and Genome Stability Unit, Medical Research Council, Harwell, Oxfordshire OX11 0RD, United Kingdom
| | | | | | | |
Collapse
|
30
|
Eldin S, Forget AL, Lindenmuth DM, Logan KM, Knight KL. Mutations in the N-terminal region of RecA that disrupt the stability of free protein oligomers but not RecA-DNA complexes. J Mol Biol 2000; 299:91-101. [PMID: 10860724 DOI: 10.1006/jmbi.2000.3721] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have introduced targeted mutations in two areas that make up part of the RecA subunit interface. In the RecA crystal structure, cross-subunit interactions are observed between the Lys6 and Asp139 side-chains, and between the Arg28 and Asn113 side-chains. Unexpectedly, we find that mutations at Lys6 and Arg28 impose sever defects on the oligomeric stability of free RecA protein, whereas mutations at Asn113 or Asp139 do not. However, Lys6 and Arg28 mutant proteins showed an apparent normal formation of RecA-DNA complexes. These results suggest that cross-subunit contacts in this region of the protein are different for free RecA protein filaments versus RecA-DNA nucleoprotein filaments. Mutant proteins with substitutions at either Lys6 or Arg28 show partial inhibition of DNA strand exchange activity, yet the mechanistic reasons for this inhibition appear to be distinct. Although Lys6 and Arg28 appear to be more important to the stability of free RecA protein, as opposed to the stability of the catalytically active nucleoprotein filament, our results support the idea that the cross-subunit interactions made by each residue play an important role in optimizing the catalytic organization of the active RecA oligomer.
Collapse
Affiliation(s)
- S Eldin
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Medical Center, Worcester, MA 01655-0103, USA
| | | | | | | | | |
Collapse
|
31
|
Konola JT, Sargent KE, Gow JB. Efficient repair of hydrogen peroxide-induced DNA damage by Escherichia coli requires SOS induction of RecA and RuvA proteins. Mutat Res 2000; 459:187-94. [PMID: 10812330 DOI: 10.1016/s0921-8777(99)00073-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The survival of Escherichia coli following treatment with a low dose (1-3 mM) of hydrogen peroxide (H(2)O(2)) that causes extensive mode-one killing of DNA repair mutants is stimulated by the induction of the SOS regulon. Results for various mutants indicate that induction of recA and RecA protein-mediated recombination are critical factors contributing to the repair of H(2)O(2)-induced oxidative DNA damage. However, because DNA damage activates RecA protein's coprotease activity essential to cleavage of LexA repressor protein and derepression of all SOS genes, it is unclear to what extent induction of RecA protein stimulates this repair. To make this determination, we examined mode-one killing of DeltarecA cells carrying plasmid-borne recA (P(tac)-recA(+)) and constitutively expressing a fully induced level of wild-type RecA protein when SOS genes other than recA are non-inducible in a lexA3 (Ind(-)) genetic background or inducible in a lexA(+) background. At a H(2)O(2) dose resulting in maximal killing, DeltarecA lexA3 (Ind(-)) cells with P(tac)-recA(+) show 40-fold greater survival than lexA3 (Ind(-)) cells with chromosomal recA having a low, non-induced level of RecA protein. However, they still show 10- to 15-fold lower survival than wild-type cells and DeltarecA lexA(+) cells with P(tac)-recA(+). To determine if the inducible RuvA protein stimulates survival, we examined a ruvA60 mutant that is defective for the repair of UV-induced DNA damage. This mutant also shows 10- to 15-fold lower survival than wild-type cells. We conclude that while induction of RecA protein has a pronounced stimulatory effect on the recombinational repair of H(2)O(2)-induced oxidative DNA damage, the induction of other SOS proteins such as RuvA is essential for wild-type repair.
Collapse
Affiliation(s)
- J T Konola
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
32
|
Morrison C, Shinohara A, Sonoda E, Yamaguchi-Iwai Y, Takata M, Weichselbaum RR, Takeda S. The essential functions of human Rad51 are independent of ATP hydrolysis. Mol Cell Biol 1999; 19:6891-7. [PMID: 10490626 PMCID: PMC84684 DOI: 10.1128/mcb.19.10.6891] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic recombination and the repair of double-strand DNA breaks in Saccharomyces cerevisiae require Rad51, a homologue of the Escherichia coli RecA protein. In vitro, Rad51 binds DNA to form an extended nucleoprotein filament and catalyzes the ATP-dependent exchange of DNA between molecules with homologous sequences. Vertebrate Rad51 is essential for cell proliferation. Using site-directed mutagenesis of highly conserved residues of human Rad51 (hRad51) and gene targeting of the RAD51 locus in chicken DT40 cells, we examined the importance of Rad51's highly conserved ATP-binding domain. Mutant hRad51 incapable of ATP hydrolysis (hRad51K-133R) binds DNA less efficiently than the wild type but catalyzes strand exchange between homologous DNAs. hRad51 does not need to hydrolyze ATP to allow vertebrate cell proliferation, form nuclear foci, or repair radiation-induced DNA damage. However, cells expressing hRad51K-133R show greatly reduced targeted integration frequencies. These findings show that ATP hydrolysis is involved in DNA binding by hRad51 and suggest that the extent of DNA complexed with hRad51 in nucleoprotein influences the efficiency of recombination.
Collapse
Affiliation(s)
- C Morrison
- Bayer-Chair Department of Molecular Immunology and Allergology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Zaitsev EN, Kowalczykowski SC. Enhanced monomer-monomer interactions can suppress the recombination deficiency of the recA142 allele. Mol Microbiol 1999; 34:1-9. [PMID: 10540281 DOI: 10.1046/j.1365-2958.1999.01552.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RecA142 protein, in which valine is substituted for isoleucine-225, is defective for genetic recombination in vivo and for DNA strand exchange activity in vitro under conventional growth and reaction conditions respectively. However, we show that mildly acidic conditions restore both the in vitro DNA strand exchange activity and the in vivo function of RecA142 protein, suggesting that recombination function can be restored by a slight change in protein structure elicited by protonation. Indeed, we identified an intragenic suppressor of the recombination deficiency of the recA142 allele. This suppressor mutation is a substitution of leucine for glutamine at position 124. Based on the three-dimensional structure, the Q-124L substitution is predicted to make a new monomer-monomer contact with residue phenylalanine-21 of the adjacent RecA monomer. The Q-124L mutation is not allele specific, because it also suppresses the recombination deficiency of a recA deletion (Delta9), lacking nine amino acids at the amino-terminus, presumably by reinforcing the monomer-monomer interactions that are attenuated by the Delta9 deletion. Expression of RecA(Q-124L) protein is toxic to Escherichia coli, presumably because of enhanced affinity for DNA. We speculate as to how enhanced monomer-monomer interactions and acidic pH conditions can restore the recombination activity of some defective recA alleles.
Collapse
Affiliation(s)
- E N Zaitsev
- Division of Biological Sciences, Sections of Microbiology and of Molecular and Cell Biology, University of California, Davis, CA 95616-8665, USA
| | | |
Collapse
|
34
|
Skiba MC, Logan KM, Knight KL. Intersubunit proximity of residues in the RecA protein as shown by engineered disulfide cross-links. Biochemistry 1999; 38:11933-41. [PMID: 10508396 DOI: 10.1021/bi991118z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutational studies of regions that make up the oligomeric interface within the RecA protein filament structure have shown that F217 is an important determinant of RecA function and oligomer stability. All substitutions, other than Tyr and Cys, completely inhibit RecA activities and exhibit a substantial decrease in protein filament stability [Skiba, M. C., and Knight, K. L. (1994) J. Biol. Chem. 269, 3823-3828; Logan, K. M., et al. (1997) J. Mol. Biol. 266, 306-316]. Although the RecA crystal structure exhibits no obvious constraints that explain this mutational stringency, the structure does reveal a hydrophobic pocket in the neighboring monomer that may accommodate the F217 side chain. Together with the F217C mutation, we have introduced a series of Cys substitutions within the interacting surface on the neighboring monomer and have tested for disulfide formation under various conditions, e.g., with or without ATP and ssDNA. We show that the location of F217 in the crystal structure is in general agreement with its position in the catalytically active RecA-ATP-DNA complex. Functional studies with the mutant proteins support the idea that ATP-induced movement of the wild-type F217 side chain toward this hydrophobic pocket is important in mediating allosteric changes in the RecA protein structure.
Collapse
Affiliation(s)
- M C Skiba
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01655-0103, USA
| | | | | |
Collapse
|
35
|
Klimke WA, Frost LS. Genetic analysis of the role of the transfer gene, traN, of the F and R100-1 plasmids in mating pair stabilization during conjugation. J Bacteriol 1998; 180:4036-43. [PMID: 9696748 PMCID: PMC107396 DOI: 10.1128/jb.180.16.4036-4043.1998] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1998] [Accepted: 06/03/1998] [Indexed: 11/20/2022] Open
Abstract
Mating pair stabilization occurs during conjugative DNA transfer whereby the donor and recipient cells form a tight junction which requires pili as well as TraN and TraG in the donor cell. The role of the outer membrane protein, TraN, during conjugative transfer was examined by introduction of a chloramphenicol resistance cassette into the traN gene on an F plasmid derivative, pOX38, to produce pOX38N1::CAT. pOX38N1::CAT was greatly reduced in its ability to transfer DNA, indicating that TraN plays a greater role in conjugation than previously thought. F and R100-1 traN were capable of complementing pOX38N1::CAT transfer equally well when wild-type recipients were used. F traN, but not R100-1 traN, supported a much lower level of transfer when there was an ompA mutation or lipopolysaccharide (LPS) deficiency in the recipient cell, suggesting receptor specificity. The R100-1 traN gene was sequenced, and the gene product was found to exhibit 82.3% overall similarity with F TraN. The differences were mainly located within a central region of the proteins (amino acids 162 to 333 of F and 162 to 348 of R100-1). Deletion analysis of F traN suggested that this central portion might be responsible for the receptor specificity displayed by TraN. TraN was not responsible for TraT-dependent surface exclusion. Thus, TraN, and not the F pilus, appears to interact with OmpA and LPS moieties during conjugation, resulting in mating pair stabilization, the first step in efficient mobilization of DNA.
Collapse
Affiliation(s)
- W A Klimke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | |
Collapse
|
36
|
Deyrup AT, Krishnan S, Cockburn BN, Schwartz NB. Deletion and site-directed mutagenesis of the ATP-binding motif (P-loop) in the bifunctional murine ATP-sulfurylase/adenosine 5'-phosphosulfate kinase enzyme. J Biol Chem 1998; 273:9450-6. [PMID: 9545271 DOI: 10.1074/jbc.273.16.9450] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The P-loop is a common motif found in ATP- and GTP-binding proteins. The recently cloned murine ATP-sulfurylase/adenosine 5'-phosphosulfate (APS) kinase contains a P-loop (residues 59-66) in the APS kinase portion of the bifunctional protein. A series of enzymatic assays covering the multiplicity of functions of this unique protein (reverse ATP-sulfurylase, APS kinase, and an overall assay) were used to determine the effect of deleting or altering specific residues constituting this motif. In addition to the full-length cDNA construct (1MSK), two deletion mutants that progressively shortened the N terminus by 34 amino acids (2MSK) and 70 amino acids (3MSK) were designed to examine the effects of translation initiation before (2MSK) and after (3MSK) the P-loop. The 2MSK protein possessed sulfurylase and kinase activity equivalent to the full-length construct, but 3MSK exhibited no kinase activity and reduced sulfurylase activity. In light of the evident importance of this motif, a number of site-directed mutants were designed to investigate the contribution of key residues. Mutation of a highly conserved lysine in the P-loop to alanine (K65A) or arginine (K65R) or the following threonine (T66A) to alanine ablated APS kinase activity while leaving ATP-sulfurylase activity intact. Three mutations (G59A, G62A, and G64A) addressed the role of the conserved glycines as follows: G64A showed diminished APS kinase activity only, whereas G62A had no effect on either activity. G59A caused a significant decrease in ATP-sulfurylase activity without effect on APS kinase activity. A series of highly conserved flanking cysteines (Cys-53, Cys-77, and Cys-83) were mutated to alanine, but none of these mutations showed any effect on either enzyme activity.
Collapse
Affiliation(s)
- A T Deyrup
- Department of Pediatrics, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
37
|
Abstract
We have previously reported that a defect in Myo2p, a myosin in budding yeast (Saccharomyces cerevisiae), can be partially corrected by overexpression of Smy1p, which is by sequence a kinesin-related protein (Lillie, S.H., and S.S. Brown. 1992. Nature. 356:358- 361). Such a functional link between putative actin- and microtubule-based motors is surprising, so here we have tested the prediction that Smy1p indeed acts as a microtubule-based motor. Unexpectedly, we found that abolition of microtubules by nocodazole does not interfere with the ability of Smy1p to correct the mutant Myo2p defect, nor does it interfere with the ability of Smy1p to localize properly. In addition, other perturbations of microtubules, such as treatment with benomyl or introduction of tubulin mutations, do not exacerbate the Myo2p defect. Furthermore, a mutation in SMY1 strongly predicted to destroy motor activity does not destroy Smy1p function. We have also observed a genetic interaction between SMY1 and two of the late SEC mutations, sec2 and sec4. This indicates that Smy1p can play a role even when Myo2p is wild type, and that Smy1p acts at a specific step of the late secretory pathway. We conclude that Smy1p does not act as a microtubule-based motor to localize properly or to compensate for defective Myo2p, but that it must instead act in some novel way.
Collapse
Affiliation(s)
- S H Lillie
- Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0616, USA
| | | |
Collapse
|
38
|
Konola JT, Guzzo A, Gow JB, Walker GC, Knight KL. Differential cleavage of LexA and UmuD mediated by recA Pro67 mutants: implications for common LexA and UmuD binding sites on RecA. J Mol Biol 1998; 276:405-15. [PMID: 9512712 DOI: 10.1006/jmbi.1997.1531] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Escherichia coli, RecA-mediated cleavage of LexA repressor is a key regulatory event required for expression of SOS genes involved in the repair of DNA damage. RecA also mediates the cleavage of UmuD protein to UmuD, a form active in SOS mutagenesis. To determine whether LexA and UmuD have common binding determinants on RecA, we have compared the ability of several recA mutants to function in the cleavage of LexA versus UmuD in vivo. The data reveal that while some recA mutations at Pro67 have a similar effect on LexA and UmuD cleavage, others have striking differential effects. For example, a Pro67-->Trp mutation results in a high level of constitutive cleavage of both proteins. However, Pro67-->Asp and Glu mutations promote constitutive cleavage of LexA and reduce induction of UmuD cleavage to just 5 to 10% of wild-type activity. In contrast, Pro67-->Arg prevents LexA cleavage while allowing nearly 50% of wild-type induction of UmuD cleavage. These results are consistent with the idea that Pro67 is located at a site in the nucleoprotein filament where both LexA and UmuD contact RecA.
Collapse
Affiliation(s)
- J T Konola
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | |
Collapse
|
39
|
Tichy M, Vermaas W. Functional analysis of combinatorial mutants altered in a conserved region in loop E of the CP47 protein in Synechocystis sp. PCC 6803. Biochemistry 1998; 37:1523-31. [PMID: 9484222 DOI: 10.1021/bi9723818] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regions in the large lumenally exposed region (loop E) of CP47 affect properties of the watersplitting system in photosystem II (PS II). To investigate the role of these regions, we developed a method for functional complementation of obligate photoheterotrophic mutants carrying a deletion in one such region. Using an obligate photoheterotrophic mutant that carries a short deletion (delta (D440-P447) in loop E of CP47, completely degenerate sequences of eight codons in length were introduced at the site of the deletion. Transformants that were complemented to photoautotrophic growth were selected, and 20 such mutants were studied. Sequence analysis revealed that, as expected, in each of them CP47 had been restored to its wild-type length. However, none of the amino acid residues in the deleted region were found to be critical for function. A negatively charged residue at position 440 and a positively charged one at position 444 were favored but not required. Photoautotrophic growth of mutants obtained varied from almost normal to significantly impaired. The mutants contained 20-100% of the amount of PS II present in the wild type, with PS II amounts correlating with the initial rates of oxygen evolution. The mutants had a high rate of photoinactivation, and many mutants showed an up to 1000-fold increase in chloride requirement for photoautotrophic growth. These phenotypic effects were a direct consequence of the CP47 mutations and were not caused by altered binding of one of the extrinsic proteins. No particular amino acid residues in positions 440-447 of CP47 were found to be indispensable for photoautotrophic growth, and many amino acid combinations in this region support PS II function. However, the mutagenized region is shown to interact with the oxygen-evolving site of PS II and appears to have a direct role in chloride binding.
Collapse
Affiliation(s)
- M Tichy
- Department of Plant Biology, Arizona State University, Tempe 85287-1601, USA
| | | |
Collapse
|
40
|
Bertrand L, Vertommen D, Depiereux E, Hue L, Rider MH, Feytmans E. Modelling the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase on adenylate kinase. Biochem J 1997; 321 ( Pt 3):615-21. [PMID: 9032445 PMCID: PMC1218114 DOI: 10.1042/bj3210615] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Simultaneous multiple alignment of available sequences of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase revealed several segments of conserved residues in the 2-kinase domain. The sequence of the kinase domain was also compared with proteins of known three-dimensional structure. No similarity was found between the kinase domain of 6-phosphofructo-2-kinase and 6-phosphofructo-1-kinase. This questions the modelling of the 2-kinase domain on bacterial 6-phosphofructo-1-kinase that has previously been proposed [Bazan, Fletterick and Pilkis (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646]. However, sequence similarities were found between the 2-kinase domain and several nucleotide-binding proteins, the most similar being adenylate kinase. A structural model of the 2-kinase domain based on adenylate kinase is proposed. It accommodates all the results of site-directed mutagenesis studies carried out to date on residues in the 2-kinase domain. It also allows residues potentially involved in catalysis and/or substrate binding to be predicted.
Collapse
Affiliation(s)
- L Bertrand
- Facultés Universitaires Notre-Dame de la Paix, Department of Biology, Namur, Belgium
| | | | | | | | | | | |
Collapse
|
41
|
Roca AI, Cox MM. RecA protein: structure, function, and role in recombinational DNA repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:129-223. [PMID: 9187054 DOI: 10.1016/s0079-6603(08)61005-3] [Citation(s) in RCA: 324] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A I Roca
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
42
|
Marszalek J, Zhang W, Hupp TR, Margulies C, Carr KM, Cherry S, Kaguni JM. Domains of DnaA protein involved in interaction with DnaB protein, and in unwinding the Escherichia coli chromosomal origin. J Biol Chem 1996; 271:18535-42. [PMID: 8702501 DOI: 10.1074/jbc.271.31.18535] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
DnaA protein of Escherichia coli is a sequence-specific DNA-binding protein required for the initiation of DNA replication from the chromosomal origin, oriC. It is also required for replication of several plasmids including pSC101, F, P-1, and R6K. A collection of monoclonal antibodies to DnaA protein has been produced and the primary epitopes recognized by them have been determined. These antibodies have also been examined for the ability to inhibit activities of DNA binding, ATP binding, unwinding of oriC, and replication of both an oriC plasmid, and an M13 single-stranded DNA with a proposed hairpin structure containing a DnaA protein-binding site. Replication of the latter DNA is dependent on DnaA protein by a mechanism termed ABC priming. These studies suggest regions of DnaA protein involved in interaction with DnaB protein, and in unwinding of oriC, or low-affinity binding of ATP.
Collapse
Affiliation(s)
- J Marszalek
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Karlin S, Brocchieri L. Evolutionary conservation of RecA genes in relation to protein structure and function. J Bacteriol 1996; 178:1881-94. [PMID: 8606161 PMCID: PMC177882 DOI: 10.1128/jb.178.7.1881-1894.1996] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Functional and structural regions inferred from the Escherichia coli R ecA protein crystal structure and mutation studies are evaluated in terms of evolutionary conservation across 63 RecA eubacterial sequences. Two paramount segments invariant in specific amino acids correspond to the ATP-binding A site and the functionally unassigned segment from residues 145 to 149 immediately carboxyl to the ATP hydrolysis B site. Not only are residues 145 to 149 conserved individually, but also all three-dimensional structural neighbors of these residues are invariant, strongly attesting to the functional or structural importance of this segment. The conservation of charged residues at the monomer-monomer interface, emphasizing basic residues on one surface and acidic residues on the other, suggests that RecA monomer polymerization is substantially mediated by electrostatic interactions. Different patterns of conservation also allow determination of regions proposed to interact with DNA, of LexA binding sites, and of filament-filament contact regions. Amino acid conservation is also compared with activities and properties of certain RecA protein mutants. Arginine 243 and its strongly cationic structural environment are proposed as the major site of competition for DNA and LexA binding to RecA. The conserved acidic and glycine residues of the disordered loop L1 and its proximity to the RecA acidic monomer interface suggest its involvement in monomer-monomer interactions rather than DNA binding. The conservation of various RecA positions and regions suggests a model for RecA-double-stranded DNA interaction and other functional and structural assignments.
Collapse
Affiliation(s)
- S Karlin
- Department of Mathematics, Stanford University, Stanford, California 94305-2125, USA
| | | |
Collapse
|
44
|
Johnson RD, Symington LS. Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57. Mol Cell Biol 1995; 15:4843-50. [PMID: 7651402 PMCID: PMC230729 DOI: 10.1128/mcb.15.9.4843] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The genes of the Saccharomyces cerevisiae RAD52 epistasis group are required for the repair of ionizing radiation-induced DNA damage. Three of these genes, RAD51, RAD55, and RAD57, have been identified as putative RecA homologs. An important feature of RecA is its ability to bind and hydrolyze ATP. RAD55 and RAD57 contain putative nucleotide binding motifs, and the importance of these motifs was determined by constructing site-directed mutations of the conserved lysine residue within the Walker A-box. Changing the lysine residue to arginine or alanine resulted in a mutant phenotype in DNA repair and sporulation for Rad55 but not for Rad57. Protein-protein interactions among Rad51, Rad55, and Rad57 were tested for by the two-hybrid system. Rad55 was shown to interact with Rad51 and Rad57 but not with itself. Additionally, no interaction between Rad57 and Rad51 or between Rad57 and itself was detected. Consistent with the hypothesis that Rad55 and Rad57 may function within, or stabilize, a protein complex, we found that RAD51 expressed from a high-copy-number plasmid suppresses the DNA repair defect of strains carrying rad55 and rad57 mutations. These data, in conjunction with other reports, demonstrate the importance of protein-protein interactions in the process of DNA repair.
Collapse
Affiliation(s)
- R D Johnson
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
45
|
Konola JT, Nastri HG, Logan KM, Knight KL. Mutations at Pro67 in the RecA protein P-loop motif differentially modify coprotease function and separate coprotease from recombination activities. J Biol Chem 1995; 270:8411-9. [PMID: 7721735 DOI: 10.1074/jbc.270.15.8411] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The functional significance of residues in the RecA protein P-loop motif was assessed by analyzing 100 unique mutants with single amino acid substitutions in this region. Comparison of the effects on the LexA coprotease and recombination activities shows that Pro67 is unique among these residues because only at this position did we find substitutions that caused differential effects on these functions. One mutant, Pro67-->Trp, displays high constitutive coprotease activity and a moderate inhibitory effect on recombination functions. Glu and Asp substitutions result in low level constitutive coprotease activity but dramatically reduce recombination activity. The purified Pro67-->Trp protein shows a completely relaxed specificity for NTP cofactors in LexA cleavage assays and can use shorter length oligonucleotides as cofactors for cleavage of lambda cI repressor than can wild type RecA. Interestingly, both the mutant protein and wild type RecA can use very short oligonucleotides, e.g. (dA)6 and (dT)6, as cofactors for LexA cleavage. We have also found two mutations at position 67, which are completely defective for LexA coprotease activity in vivo but still maintain recombinational DNA repair (Pro67-->Lys) and homologous recombination (Pro67-->Lys and Pro67-->Arg) activities. These findings show that the recombination activities of RecA are mutationally separable from the coprotease function and that Pro67 is located in a functionally important position in the RecA structure.
Collapse
Affiliation(s)
- J T Konola
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | |
Collapse
|
46
|
Nastri HG, Knight KL. Identification of residues in the L1 region of the RecA protein which are important to recombination or coprotease activities. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47195-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Structure of REC2, a recombinational repair gene of Ustilago maydis, and its function in homologous recombination between plasmid and chromosomal sequences. Mol Cell Biol 1994. [PMID: 8065360 DOI: 10.1128/mcb.14.9.6287] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutation in the REC2 gene of Ustilago maydis leads to defects in DNA repair, recombination, and meiosis. Analysis of the primary sequence of the Rec2 protein reveals a region with significant homology to bacterial RecA protein and to the yeast recombination proteins Dmc1, Rad51, and Rad57. This homologous region in the U. maydis Rec2 protein was found to be functionally sensitive to mutation, lending support to the hypothesis that Rec2 has a functional RecA-like domain essential for activity in recombination and repair. Homologous recombination between plasmid and chromosomal DNA sequences is reduced substantially in the rec2 mutant following transformation. The frequency can be restored to a level approaching, but not exceeding, that observed in the wild-type strain if transformation is performed with cells containing multiple copies of REC2.
Collapse
|
48
|
Rubin BP, Ferguson DO, Holloman WK. Structure of REC2, a recombinational repair gene of Ustilago maydis, and its function in homologous recombination between plasmid and chromosomal sequences. Mol Cell Biol 1994; 14:6287-96. [PMID: 8065360 PMCID: PMC359155 DOI: 10.1128/mcb.14.9.6287-6296.1994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mutation in the REC2 gene of Ustilago maydis leads to defects in DNA repair, recombination, and meiosis. Analysis of the primary sequence of the Rec2 protein reveals a region with significant homology to bacterial RecA protein and to the yeast recombination proteins Dmc1, Rad51, and Rad57. This homologous region in the U. maydis Rec2 protein was found to be functionally sensitive to mutation, lending support to the hypothesis that Rec2 has a functional RecA-like domain essential for activity in recombination and repair. Homologous recombination between plasmid and chromosomal DNA sequences is reduced substantially in the rec2 mutant following transformation. The frequency can be restored to a level approaching, but not exceeding, that observed in the wild-type strain if transformation is performed with cells containing multiple copies of REC2.
Collapse
Affiliation(s)
- B P Rubin
- Department of Microbiology, Cornell University Medical College, New York, New York 10021
| | | | | |
Collapse
|
49
|
Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 1994; 58:401-65. [PMID: 7968921 PMCID: PMC372975 DOI: 10.1128/mr.58.3.401-465.1994] [Citation(s) in RCA: 785] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination.
Collapse
Affiliation(s)
- S C Kowalczykowski
- Division of Biological Sciences, University of California, Davis 95616-8665
| | | | | | | | | |
Collapse
|
50
|
Skiba M, Knight K. Functionally important residues at a subunit interface site in the RecA protein from Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41934-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|