1
|
Mfd regulates RNA polymerase association with hard-to-transcribe regions in vivo, especially those with structured RNAs. Proc Natl Acad Sci U S A 2021; 118:2008498118. [PMID: 33443179 DOI: 10.1073/pnas.2008498118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RNA polymerase (RNAP) encounters various roadblocks during transcription. These obstacles can impede RNAP movement and influence transcription, ultimately necessitating the activity of RNAP-associated factors. One such factor is the bacterial protein Mfd, a highly conserved DNA translocase and evolvability factor that interacts with RNAP. Although Mfd is thought to function primarily in the repair of DNA lesions that stall RNAP, increasing evidence suggests that it may also be important for transcription regulation. However, this is yet to be fully characterized. To shed light on Mfd's in vivo functions, we identified the chromosomal regions where it associates. We analyzed Mfd's impact on RNAP association and transcription regulation genome-wide. We found that Mfd represses RNAP association at many chromosomal regions. We found that these regions show increased RNAP pausing, suggesting that they are hard to transcribe. Interestingly, we noticed that the majority of the regions where Mfd regulates transcription contain highly structured regulatory RNAs. The RNAs identified regulate a myriad of biological processes, ranging from metabolism to transfer RNA regulation to toxin-antitoxin (TA) functions. We found that cells lacking Mfd are highly sensitive to toxin overexpression. Finally, we found that Mfd promotes mutagenesis in at least one toxin gene, suggesting that its function in regulating transcription may promote evolution of certain TA systems and other regions containing strong RNA secondary structures. We conclude that Mfd is an RNAP cofactor that is important, and at times critical, for transcription regulation at hard-to-transcribe regions, especially those that express structured regulatory RNAs.
Collapse
|
2
|
Olinares PDB, Kang JY, Llewellyn E, Chiu C, Chen J, Malone B, Saecker RM, Campbell EA, Darst SA, Chait BT. Native Mass Spectrometry-Based Screening for Optimal Sample Preparation in Single-Particle Cryo-EM. Structure 2021; 29:186-195.e6. [PMID: 33217329 PMCID: PMC7867593 DOI: 10.1016/j.str.2020.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/26/2020] [Accepted: 11/02/2020] [Indexed: 01/19/2023]
Abstract
Recent advances in single-particle cryogenic electron microscopy (cryo-EM) have enabled the structural determination of numerous protein assemblies at high resolution, yielding unprecedented insights into their function. However, despite its extraordinary capabilities, cryo-EM remains time-consuming and resource-intensive. It is therefore beneficial to have a means for rapidly assessing and optimizing the quality of samples prior to lengthy cryo-EM analyses. To do this, we have developed a native mass spectrometry (nMS) platform that provides rapid feedback on sample quality and highly streamlined biochemical screening. Because nMS enables accurate mass analysis of protein complexes, it is well suited to routine evaluation of the composition, integrity, and homogeneity of samples prior to their plunge-freezing on EM grids. We demonstrate the utility of our nMS-based platform for facilitating cryo-EM studies using structural characterizations of exemplar bacterial transcription complexes as well as the replication-transcription assembly from the SARS-CoV-2 virus that is responsible for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA.
| | - Jin Young Kang
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Eliza Llewellyn
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Courtney Chiu
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Brandon Malone
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Ruth M Saecker
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
3
|
Abstract
Bacteriophages employ small proteins to usurp host molecular machinery, thereby interfering with central metabolic processes in infected bacteria. Generally, phages inhibit or redirect host transcription to favor transcription of their own genomes. Mechanistic and structural studies of phage-modulated host transcription may provide inspirations for the development of novel antibacterial substances.
Collapse
Affiliation(s)
- Markus C Wahl
- Freie Universität Berlin, Laboratory of Structural Biochemistry, Berlin, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Ranjan Sen
- Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
4
|
Belogurov GA, Artsimovitch I. The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase. J Mol Biol 2019; 431:3975-4006. [PMID: 31153902 DOI: 10.1016/j.jmb.2019.05.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/15/2022]
Abstract
Multi-subunit DNA-dependent RNA polymerases synthesize all classes of cellular RNAs, ranging from short regulatory transcripts to gigantic messenger RNAs. RNA polymerase has to make each RNA product in just one try, even if it takes millions of successive nucleotide addition steps. During each step, RNA polymerase selects a correct substrate, adds it to a growing chain, and moves one nucleotide forward before repeating the cycle. However, RNA synthesis is anything but monotonous: RNA polymerase frequently pauses upon encountering mechanical, chemical and torsional barriers, sometimes stepping back and cleaving off nucleotides from the growing RNA chain. A picture in which these intermittent dynamics enable processive, accurate, and controllable RNA synthesis is emerging from complementary structural, biochemical, computational, and single-molecule studies. Here, we summarize our current understanding of the mechanism and regulation of the on-pathway transcription elongation. We review the details of substrate selection, catalysis, proofreading, and translocation, focusing on rate-limiting steps, structural elements that modulate them, and accessory proteins that appear to control RNA polymerase translocation.
Collapse
Affiliation(s)
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Abstract
In every cell from bacteria to mammals, NusG-like proteins bind transcribing RNA polymerase to modulate the rate of nascent RNA synthesis and to coordinate it with numerous cotranscriptional processes that ultimately determine the transcript fate. Housekeeping NusG factors regulate expression of the bulk of the genome, whereas their highly specialized paralogs control just a few targets. In every cell from bacteria to mammals, NusG-like proteins bind transcribing RNA polymerase to modulate the rate of nascent RNA synthesis and to coordinate it with numerous cotranscriptional processes that ultimately determine the transcript fate. Housekeeping NusG factors regulate expression of the bulk of the genome, whereas their highly specialized paralogs control just a few targets. In Escherichia coli, NusG stimulates silencing of horizontally acquired genes, while its paralog RfaH counters NusG action by activating a subset of these genes. Acting alone or as part of regulatory complexes, NusG factors can promote uninterrupted RNA synthesis, bring about transcription pausing or premature termination, modulate RNA processing, and facilitate translation. Recent structural and mechanistic studies of NusG homologs from all domains of life reveal molecular details of multifaceted interactions that underpin their unexpectedly diverse regulatory roles. NusG proteins share conserved binding sites on RNA polymerase and many effects on the transcription elongation complex but differ in their mechanisms of recruitment, interactions with nucleic acids and secondary partners, and regulatory outcomes. Strikingly, some can alternate between autoinhibited and activated states that possess dramatically different secondary structures to achieve exquisite target specificity.
Collapse
|
6
|
Mustaev A, Roberts J, Gottesman M. Transcription elongation. Transcription 2017; 8:150-161. [PMID: 28301288 PMCID: PMC5501382 DOI: 10.1080/21541264.2017.1289294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/23/2022] Open
Abstract
This review is focused on recent progress in understanding how Escherichia coli RNAP polymerase translocates along the DNA template and the factors that affect this movement. We discuss the fundamental aspects of RNAP translocation, template signals that influence forward or backward movement, and host or phage factors that modulate translocation.
Collapse
Affiliation(s)
- Arkady Mustaev
- PHRI Center, NJMS, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Jeffrey Roberts
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Max Gottesman
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
7
|
Kang JY, Olinares PDB, Chen J, Campbell EA, Mustaev A, Chait BT, Gottesman ME, Darst SA. Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex. eLife 2017; 6. [PMID: 28318486 PMCID: PMC5386594 DOI: 10.7554/elife.25478] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/19/2017] [Indexed: 01/24/2023] Open
Abstract
Coliphage HK022 Nun blocks superinfection by coliphage λ by stalling RNA polymerase (RNAP) translocation specifically on λ DNA. To provide a structural framework to understand how Nun blocks RNAP translocation, we determined structures of Escherichia coli RNAP ternary elongation complexes (TECs) with and without Nun by single-particle cryo-electron microscopy. Nun fits tightly into the TEC by taking advantage of gaps between the RNAP and the nucleic acids. The C-terminal segment of Nun interacts with the RNAP β and β’ subunits inside the RNAP active site cleft as well as with nearly every element of the nucleic acid scaffold, essentially crosslinking the RNAP and the nucleic acids to prevent translocation, a mechanism supported by the effects of Nun amino acid substitutions. The nature of Nun interactions inside the RNAP active site cleft suggests that RNAP clamp opening is required for Nun to establish its interactions, explaining why Nun acts on paused TECs. DOI:http://dx.doi.org/10.7554/eLife.25478.001
Collapse
Affiliation(s)
- Jin Young Kang
- Laboratory of Molecular Biophysics, The Rockefeller University, New York City, United States
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York City, United States
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York City, United States
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York City, United States
| | - Arkady Mustaev
- Public Health Research Institute, Newark, United States.,Department of Microbiology and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, United States.,Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, United States
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York City, United States
| | - Max E Gottesman
- Department of Microbiology and Immunology, Columbia University Medical Center, New York City, United States
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York City, United States
| |
Collapse
|
8
|
Probing the structure of Nun transcription arrest factor bound to RNA polymerase. Proc Natl Acad Sci U S A 2016; 113:8693-8. [PMID: 27436904 DOI: 10.1073/pnas.1601056113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The coliphage HK022 protein Nun transcription elongation arrest factor inhibits RNA polymerase translocation. In vivo, Nun acts specifically to block transcription of the coliphage λ chromosome. Using in vitro assays, we demonstrate that Nun cross-links RNA in an RNA:DNA hybrid within a ternary elongation complex (TEC). Both the 5' and the 3' ends of the RNA cross-link Nun, implying that Nun contacts RNA polymerase both at the upstream edge of the RNA:DNA hybrid and in the vicinity of the catalytic center. This finding suggests that Nun may inhibit translocation by more than one mechanism. Transcription elongation factor GreA efficiently blocked Nun cross-linking to the 3' end of the transcript, whereas the highly homologous GreB factor did not. Surprisingly, both factors strongly suppressed Nun cross-linking to the 5' end of the RNA, suggesting that GreA and GreB can enter the RNA exit channel as well as the secondary channel, where they are known to bind. These findings extend the known action mechanism for these ubiquitous cellular factors.
Collapse
|
9
|
Bacterial Transcription as a Target for Antibacterial Drug Development. Microbiol Mol Biol Rev 2016; 80:139-60. [PMID: 26764017 DOI: 10.1128/mmbr.00055-15] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design.
Collapse
|
10
|
Abstract
The highly conserved Nus factors of bacteria were discovered as essential host proteins for the growth of temperate phage λ in Escherichia coli. Later, their essentiality and functions in transcription, translation, and, more recently, in DNA repair have been elucidated. Close involvement of these factors in various gene networks and circuits is also emerging from recent genomic studies. We have described a detailed overview of their biochemistry, structures, and various cellular functions, as well as their interactions with other macromolecules. Towards the end, we have envisaged different uncharted areas of studies with these factors, including their participation in pathogenicity.
Collapse
|
11
|
Abstract
The Nus factors-NusA, NusB, NusE, and NusG-area set of well-conserved proteins in bacteria and are involved in transcription elongation, termination, antitermination, and translation processes. Originally, Escherichia coli host mutations defective for supporting bacteriophage λ N-mediated antitermination were mapped to the nusA (nusA1), nusB (nusB5, nusB101), and nusE (nusE71) genes, and hence, these genes were named nus for Nutilization substances (Nus). Subsequently,the Nus factors were purified and their roles in different host functions were elucidated. Except for NusB, deletion of which is conditionally lethal, all the other Nus factors are essential for E. coli. Among the Nus factors, NusA has the most varied functions. It specifically binds to RNA polymerase (RNAP), nascent RNA, and antiterminator proteins like N and Q and hence takes part in modulating transcription elongation, termination, and antitermination. It is also involved in DNA repair pathways. NusG interacts with RNAP and the transcription termination factor Rho and therefore is involved in both factor-dependent termination and transcription elongation processes. NusB and NusE are mostly important in antitermination at the ribosomal operon-transcription. NusE is a component of ribosome and may take part in facilitating the coupling between transcription and translation. This chapter emphasizes the structure-function relationship of these factors and their involvement in different fundamental cellular processes from a mechanistic angle.
Collapse
|
12
|
HK022 Nun Requires Arginine-Rich Motif Residues Distinct from λ N. J Bacteriol 2015; 197:3573-82. [PMID: 26350130 DOI: 10.1128/jb.00466-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacteriophage λ N protein binds boxB RNA hairpins in the nut (N utilization) sites of immediate early λ transcripts and interacts with host factors to suppress transcriptional termination at downstream terminators. In opposition to λ N, the Nun protein of HK022 binds the boxBs of coinfecting λ transcripts, interacts with a similar or identical set of host factors, and terminates transcription to suppress λ replication. Comparison of N-boxB and Nun-boxB nuclear magnetic resonance (NMR) structural models suggests similar interactions, though limited mutagenesis of Nun is available. Here, libraries of Nun's arginine-rich motif (ARM) were screened for the ability to exclude λ coinfection, and mutants were assayed for Nun termination with a boxB plasmid reporter system. Several Nun ARM residues appear to be immutable: Asp26, Arg28, Arg29, Arg32, Trp33, and Arg36. Asp26 and Trp33 appear to be unable to contact boxB and are not found at equivalent positions in λ N ARM. To understand if the requirement of Asp26, Trp33, and Arg36 indicated differences between HK022 Nun termination and λ N antitermination complexes, the same Nun libraries were fused to the activation domain of λ N and screened for clones able to complement N-deficient λ. Mutants were assayed for N antitermination. Surprisingly, Asp26 and Trp33 were still essential when Nun ARM was fused to N. Docking suggests that Nun ARM contacts a hydrophobic surface of the NusG carboxy-terminal domain containing residues necessary for Nun function. These findings indicate that Nun ARM relies on distinct contacts in its ternary complex and illustrate how protein-RNA recognition can evolve new regulatory functions. IMPORTANCE λ N protein interacts with host factors to allow λ nut-containing transcripts to elongate past termination signals. A competing bacteriophage, HK022, expresses Nun protein, which causes termination of λ nut transcripts. λ N and HK022 Nun use similar arginine-rich motifs (ARMs) to bind the same boxB RNAs in nut transcripts. Screening libraries of Nun ARM mutants, both in HK022 Nun and in a λ N fusion, revealed amino acids essential to Nun that could bind one or more host factors. Docking suggests that NusG, which is present in both Nun termination and N antitermination, is a plausible partner. These findings could help understand how transcription elongation is regulated and illustrate how subtle differences allow ARMs to evolve new regulatory functions.
Collapse
|
13
|
Washburn RS, Gottesman ME. Regulation of transcription elongation and termination. Biomolecules 2015; 5:1063-78. [PMID: 26035374 PMCID: PMC4496710 DOI: 10.3390/biom5021063] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022] Open
Abstract
This article will review our current understanding of transcription elongation and termination in E. coli. We discuss why transcription elongation complexes pause at certain template sites and how auxiliary host and phage transcription factors affect elongation and termination. The connection between translation and transcription elongation is described. Finally we present an overview indicating where progress has been made and where it has not.
Collapse
Affiliation(s)
- Robert S Washburn
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| | - Max E Gottesman
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
14
|
Vitiello CL, Gottesman ME. Bacteriophage HK022 Nun protein arrests transcription by blocking lateral mobility of RNA polymerase during transcription elongation. BACTERIOPHAGE 2014; 4:e32187. [PMID: 25105061 PMCID: PMC4124055 DOI: 10.4161/bact.32187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/28/2014] [Accepted: 07/28/2014] [Indexed: 11/24/2022]
Abstract
Coliphage HK022 excludes phage λ by subverting the λ antitermination system and arresting transcription on the λ chromosome. The 12 kDa HK022 Nun protein binds to λ nascent transcript through its N-terminal Arginine Rich Motif (ARM), blocking access by λ N and arresting transcription via a C-terminal interaction with RNA polymerase. In a purified in vitro system, we recently demonstrated that Nun arrests transcription by restricting lateral movement of transcription elongation complex (TEC) along the DNA register, thereby freezing the translocation state. We will discuss some of the key experiments that led to this conclusion, as well as present additional results that further support it.
Collapse
Affiliation(s)
- Christal L Vitiello
- Department of Microbiology and Immunology, Columbia University, New York, NY USA
| | - Max E Gottesman
- Department of Microbiology and Immunology, Columbia University, New York, NY USA
| |
Collapse
|
15
|
Coliphage HK022 Nun protein inhibits RNA polymerase translocation. Proc Natl Acad Sci U S A 2014; 111:E2368-75. [PMID: 24853501 DOI: 10.1073/pnas.1319740111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Nun protein of coliphage HK022 arrests RNA polymerase (RNAP) in vivo and in vitro at pause sites distal to phage λ N-Utilization (nut) site RNA sequences. We tested the activity of Nun on ternary elongation complexes (TECs) assembled with templates lacking the λ nut sequence. We report that Nun stabilizes both translocation states of RNAP by restricting lateral movement of TEC along the DNA register. When Nun stabilized TEC in a pretranslocated register, immediately after NMP incorporation, it prevented binding of the next NTP and stimulated pyrophosphorolysis of the nascent transcript. In contrast, stabilization of TEC by Nun in a posttranslocated register allowed NTP binding and nucleotidyl transfer but inhibited pyrophosphorolysis and the next round of forward translocation. Nun binding to and action on the TEC requires a 9-bp RNA-DNA hybrid. We observed a Nun-dependent toe print upstream to the TEC. In addition, mutations in the RNAP β' subunit near the upstream end of the transcription bubble suppress Nun binding and arrest. These results suggest that Nun interacts with RNAP near the 5' edge of the RNA-DNA hybrid. By stabilizing translocation states through restriction of TEC lateral mobility, Nun represents a novel class of transcription arrest factors.
Collapse
|
16
|
Tomar SK, Artsimovitch I. NusG-Spt5 proteins-Universal tools for transcription modification and communication. Chem Rev 2013; 113:8604-19. [PMID: 23638618 PMCID: PMC4259564 DOI: 10.1021/cr400064k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sushil Kumar Tomar
- Department of Microbiology and The Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
17
|
Stagno JR, Altieri AS, Bubunenko M, Tarasov SG, Li J, Court DL, Byrd RA, Ji X. Structural basis for RNA recognition by NusB and NusE in the initiation of transcription antitermination. Nucleic Acids Res 2011; 39:7803-15. [PMID: 21652641 PMCID: PMC3177189 DOI: 10.1093/nar/gkr418] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Processive transcription antitermination requires the assembly of the complete antitermination complex, which is initiated by the formation of the ternary NusB-NusE-BoxA RNA complex. We have elucidated the crystal structure of this complex, demonstrating that the BoxA RNA is composed of 8 nt that are recognized by the NusB-NusE heterodimer. Functional biologic and biophysical data support the structural observations and establish the relative significance of key protein-protein and protein-RNA interactions. Further crystallographic investigation of a NusB-NusE-dsRNA complex reveals a heretofore unobserved dsRNA binding site contiguous with the BoxA binding site. We propose that the observed dsRNA represents BoxB RNA, as both single-stranded BoxA and double-stranded BoxB components are present in the classical lambda antitermination site. Combining these data with known interactions amongst antitermination factors suggests a specific model for the assembly of the complete antitermination complex.
Collapse
Affiliation(s)
- Jason R Stagno
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sevostyanova A, Artsimovitch I. Functional analysis of Thermus thermophilus transcription factor NusG. Nucleic Acids Res 2010; 38:7432-45. [PMID: 20639538 PMCID: PMC2995049 DOI: 10.1093/nar/gkq623] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcription elongation factors from the NusG family are ubiquitous from bacteria to humans and play diverse roles in the regulation of gene expression. These proteins consist of at least two domains. The N-terminal domains directly bind to the largest, β′ in bacteria, subunit of RNA polymerase (RNAP), whereas the C-terminal domains interact with other cellular components and serve as platforms for the assembly of large nucleoprotein complexes. Escherichia coli NusG and its paralog RfaH modify RNAP into a fast, pause-resistant state but the detailed molecular mechanism of this modification remains unclear since no high-resolution structural data are available for the E. coli system. We wanted to investigate whether Thermus thermophilus (Tth) NusG can be used as a model for structural studies of this family of regulators. Here, we show that Tth NusG slows down rather than facilitates transcript elongation by its cognate RNAP. On the other hand, similarly to the E. coli regulators, Tth NusG apparently binds near the upstream end of the transcription bubble, competes with σA, and favors forward translocation by RNAP. Our data suggest that the mechanism of NusG recruitment to RNAP is universally conserved even though the regulatory outcomes among its homologs may appear distinct.
Collapse
Affiliation(s)
- Anastasiya Sevostyanova
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
19
|
Abstract
The elongation phase of transcription by RNA polymerase is highly regulated and modulated. Both general and operon-specific elongation factors determine the local rate and extent of transcription to coordinate the appearance of transcript with its use as a messenger or functional ribonucleoprotein or regulatory element, as well as to provide operon-specific gene regulation.
Collapse
Affiliation(s)
- Jeffrey W Roberts
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
20
|
Washburn RS, Court DL, Gottesman ME. Role of an RNase III binding site in transcription termination at lambda nutL by HK022 Nun protein. J Bacteriol 2006; 188:6824-31. [PMID: 16980485 PMCID: PMC1595529 DOI: 10.1128/jb.00567-06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 07/14/2006] [Indexed: 11/20/2022] Open
Abstract
The phage HK022 Nun protein excludes phage lambda by binding nascent lambda pL and pR transcripts at nutL and nutR, respectively, and inducing transcription termination just downstream of these sites. Termination is more efficient at nutL than at nutR. One difference between nutL and nutR is the presence of RNase III processing sites (rIII) located immediately promoter distal to lambda nutL. We found that deletion of rIII dramatically reduced Nun transcription arrest in vitro but had little effect on termination in vivo. However, consistent with the in vitro results, overexpression of a transcript carrying nutL and rIII efficiently titrated Nun, allowing lambda to grow on a strain that expressed Nun, whereas a transcript carrying only nutL or nutL-rIII with nucleotides 97 to 141 deleted was ineffective. Rnc70, an RNase III mutant that binds but does not cleave rIII, also prevented Nun-mediated lambda exclusion. We propose that rIII enhances the on-rate of Nun at nutL, stimulating Nun-mediated arrest in vitro. We have shown that a specific element in rIII, i.e., box C (G89GUGUGUG), strongly enhances arrest on rIII+ templates. Nun-rIII interactions do not stimulate Nun termination in vivo, presumably because formation of the Nun-nutL complex is normally not rate-limiting in the cell. In contrast to Nun, N is not occluded by Rnc70 and is not efficiently titrated by a nutL-rIII transcript.
Collapse
Affiliation(s)
- Robert S Washburn
- Department of Microbiology and Institute of Cancer Research, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
21
|
Kim HC, Washburn RS, Gottesman ME. Role of E.coli NusA in phage HK022 Nun-mediated transcription termination. J Mol Biol 2006; 359:10-21. [PMID: 16631197 DOI: 10.1016/j.jmb.2006.02.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 02/24/2006] [Accepted: 02/28/2006] [Indexed: 11/17/2022]
Abstract
The 109 amino acid residue Nun protein expressed from prophage HK022 excludes superinfecting phage lambda by arresting transcription on the lambda chromosome near the lambdanut sites. In vitro, the Nun N terminus binds to nascent lambdanutRNA, whereas the C terminus interacts with RNA polymerase and DNA template. Escherichia coli host factors, NusA, NusB, NusE (S10), and NusG, stimulate Nun-arrest. NusA binds the Nun C terminus and enhances formation of the Nun-nutRNA complex. Because of these in vitro activities of NusA, and since a nusA mutation (nusAE136K) blocked Nun in vivo, we assumed that NusA was required for Nun activity. However, using a nusAts strain, we find that NusA is required for termination at nutR but not at nutL. Furthermore, nusAE136K is dominant to nusA(+) for Nun-arrest, both in vitro and in vivo. NusAE136K shows increased affinity for Nun and, unlike NusA(+), can readily be recovered in a ternary complex with Nun and nutRNA. We propose NusAE136K suppresses Nun-arrest when it is a component of the transcription elongation complex, perhaps, in part, by blocking interactions between the Nun C terminus and RNA polymerase and DNA. We also find that in contrast to Nun-arrest, antitermination by lambda N requires NusA.
Collapse
Affiliation(s)
- Hyeong C Kim
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
22
|
Smith AJ, Savery NJ. RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair. Nucleic Acids Res 2005; 33:755-64. [PMID: 15687384 PMCID: PMC548365 DOI: 10.1093/nar/gki225] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The bacterial Mfd protein is a transcription-repair coupling factor that performs two key functions during transcription-coupled DNA repair. The first is to remove RNA polymerase (RNAP) complexes that have been stalled by a DNA lesion from the site of damage, and the second is to mediate the recruitment of DNA repair proteins. Mfd also displaces transcription complexes that have been stalled by protein roadblocks, and catalyses the reactivation of transcription complexes that have become ‘backtracked’. We have identified amino acid substitutions in the β subunit of Escherichia coli RNAP that disrupt a direct interaction between Mfd and RNAP. These substitutions prevent Mfd displacing stalled RNAP from DNA in vivo and in vitro. They define a highly conserved surface-exposed patch on the β1 domain of RNAP that is required by Mfd for the initial step of transcription-coupled repair, the enhancement of roadblock repression and the reactivation of backtracked transcription complexes.
Collapse
Affiliation(s)
| | - N. J. Savery
- To whom correspondence should be addressed. Tel: +44 117 928 9708; Fax: +44 117 928 8274;
| |
Collapse
|
23
|
Vieu E, Rahmouni AR. Dual role of boxB RNA motif in the mechanisms of termination/antitermination at the lambda tR1 terminator revealed in vivo. J Mol Biol 2004; 339:1077-87. [PMID: 15178249 DOI: 10.1016/j.jmb.2004.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 04/02/2004] [Accepted: 04/06/2004] [Indexed: 11/30/2022]
Abstract
Rho-dependent transcription termination at the phage lambda tR1 terminator is governed primarily by the upstream rut element that encodes two RNA regions rutA and rutB. The two regions are separated by the boxB RNA motif, which is believed to be dispensable for Rho activity but serves as a binding site for lambda N protein in the antitermination process. By using a minimal in vivo termination system, we show that the intervening boxB RNA motif has a double function in the mechanisms of termination/antitermination at lambdatR1. As a folded hairpin structure, it acts as a clamp that holds rutA and rutB side by side for optimal interactions with Rho leading to efficient termination. Conversely, the binding of N protein to boxB induces antitermination at lambdatR1 by preventing access of Rho to the rut sequences. This dual role was clearly shown in vivo by studying the effects of multiple mutations within the boxB hairpin stem on transcription termination and by substituting the N/boxB couple with the unrelated coat protein of phage MS2 and its stem-loop RNA binding site.
Collapse
Affiliation(s)
- Erwann Vieu
- Centre de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, France
| | | |
Collapse
|
24
|
Kim HC, Gottesman ME. Transcription termination by phage HK022 Nun is facilitated by COOH-terminal lysine residues. J Biol Chem 2004; 279:13412-7. [PMID: 14742436 DOI: 10.1074/jbc.m313206200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 109-amino acid Nun protein of prophage HK022 excludes superinfecting bacteriophage lambda by blocking transcription elongation on the lambda chromosome. Multiple interactions between Nun and the transcription elongation complex are involved in this reaction. The Nun NH(2)-terminal arginine-rich motif binds BOXB sequence in nascent lambda transcripts, whereas the COOH terminus binds RNA polymerase and contacts DNA template. Nun Trp(108) is required for interaction with DNA and transcription arrest. We analyzed the role of the adjacent Lys(106) and Lys(107) residues in the Nun reaction. Substitution of the lysine residues with arginine (K106R/K107R) had no effect on transcription arrest in vitro or in vivo. Nun K106A/K107A was partially active, whereas Nun K106D/K107D was defective in vitro and failed to exclude lambda. All mutants bound RNA polymerase and BOXB. In contrast to Nun K106R/K107R and K106A/K107A, Nun K106D/K107D did not cross-link DNA template. These results suggest that transcription arrest is facilitated by electrostatic interactions between positively charged Nun residues Lys(106) and Lys(107) and negatively charged DNA phosphate groups. These may assist intercalation of Trp(108) into template.
Collapse
Affiliation(s)
- Hyeong C Kim
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA
| | | |
Collapse
|
25
|
King RA, Weisberg RA. Suppression of factor-dependent transcription termination by antiterminator RNA. J Bacteriol 2004; 185:7085-91. [PMID: 14645267 PMCID: PMC296242 DOI: 10.1128/jb.185.24.7085-7091.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nascent transcripts of the phage HK022 put sites modify the transcription elongation complex so that it terminates less efficiently at intrinsic transcription terminators and accelerates through pause sites. We show here that the modification also suppresses termination in vivo at two factor-dependent terminators, one that depends on the bacterial Rho protein and a second that depends on the HK022-encoded Nun protein. Suppression was efficient when the termination factors were present at physiological levels, but an increase in the intracellular concentration of Nun increased termination both in the presence and absence of put. put-mediated antitermination thus shows no apparent terminator specificity, suggesting that put inhibits a step that is common to termination at the different types of terminator.
Collapse
Affiliation(s)
- Rodney A King
- Section on Microbial Genetics, Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2785, USA
| | | |
Collapse
|
26
|
Stuart AC, Gottesman ME, Palmer AG. The N-terminus is unstructured, but not dynamically disordered, in the complex between HK022 Nun protein and lambda-phage BoxB RNA hairpin. FEBS Lett 2003; 553:95-8. [PMID: 14550553 DOI: 10.1016/s0014-5793(03)00979-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Nun protein of lambdoid phage HK022 excludes lambda-phage superinfection by blocking expression of genes downstream from the lambda nut sequences. Heteronuclear NMR studies have been performed on a Nun peptide comprising residues 1-49 bound to the nutR BoxB RNA. The pattern of (13)C chemical shifts indicates that the arginine-rich motif of Nun forms an induced alpha-helix, consisting of residues 23-43, when bound to BoxB RNA, consistent with the structure of a shorter (residues 22-44) Nun peptide/BoxB RNA complex [Faber, C., Schärpf, M., Becker, T., Sticht, H. and Rösch (2001) J. Biol. Chem. 276, 32064-32070]. The N-terminal extension, residues 1-22, does not show chemical shifts or nuclear Overhauser effects characteristic of stable secondary structure. Nonetheless, (15)N relaxation measurements indicate that this region is not completely disordered, as expected for a random coil peptide. Restriction of conformation flexibility in the N-terminal extension of Nun may be important for binding to other target molecules involved in transcription termination.
Collapse
Affiliation(s)
- Ashley C Stuart
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
27
|
Washburn RS, Wang Y, Gottesman ME. Role of E.coli transcription-repair coupling factor Mfd in Nun-mediated transcription termination. J Mol Biol 2003; 329:655-62. [PMID: 12787667 DOI: 10.1016/s0022-2836(03)00465-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phage HK022 Nun protein excludes phage lambda by binding nascent lambda-nut RNA and inducing termination and transcript release. In contrast, in a purified in vitro system, Nun arrests transcription on lambdaDNA templates without dissociation of the transcription elongation complex (TEC). Our evidence indicates that transcription-repair coupling factor (Mfd) frees Nun-arrested RNA polymerase. The activity of Nun is enhanced in an mfd-null mutant, consistent with prolonged association of Nun with the TEC. Furthermore, expression of lambda nut RNA in the mfd mutant titrates Nun, allowing superinfecting lambda to form plaques. Finally, addition of Mfd releases a Nun-arrested transcription complex in vitro.
Collapse
Affiliation(s)
- Robert S Washburn
- Department of Microbiology and Institute of Cancer Research, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, 9th Floor Rm 914, New York, NY 10032, USA
| | | | | |
Collapse
|
28
|
Kim HC, Gottesman ME. Bacteriophage HK022 Nun Protein: A Specific Transcription Termination Factor that Excludes Bacteriophage λ. Methods Enzymol 2003; 371:351-5. [PMID: 14712713 DOI: 10.1016/s0076-6879(03)71026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Hyeong C Kim
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032-2798, USA
| | | |
Collapse
|
29
|
Affiliation(s)
- Catherine L Squires
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, Massachusetts 02111-1800, USA
| | | | | |
Collapse
|
30
|
Erie DA. The many conformational states of RNA polymerase elongation complexes and their roles in the regulation of transcription. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:224-39. [PMID: 12213654 DOI: 10.1016/s0167-4781(02)00454-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transcription is highly regulated both by protein factors and by specific RNA or DNA sequence elements. Central to this regulation is the ability of RNA polymerase (RNAP) to adopt multiple conformational states during elongation. This review focuses on the mechanism of transcription elongation and the role of different conformational states in the regulation of elongation and termination. The discussion centers primarily on data from structural and functional studies on Escherichia coli RNAP. To introduce the players, a brief introduction to the general mechanism of elongation, the regulatory proteins, and the conformational states is provided. The role of each of the conformational states in elongation is then discussed in detail. Finally, an integrated mechanism of elongation is presented, bringing together the panoply of experiments.
Collapse
Affiliation(s)
- Dorothy A Erie
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.
| |
Collapse
|
31
|
Artsimovitch I, Landick R. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc Natl Acad Sci U S A 2000; 97:7090-5. [PMID: 10860976 PMCID: PMC16504 DOI: 10.1073/pnas.97.13.7090] [Citation(s) in RCA: 336] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcript elongation by RNA polymerase is discontinuous and interrupted by pauses that play key regulatory roles. We show here that two different classes of pause signals punctuate elongation. Class I pauses, discovered in enteric bacteria, depend on interaction of a nascent RNA structure with RNA polymerase to displace the 3' OH away from the catalytic center. Class II pauses, which may predominate in eukaryotes, cause RNA polymerase to slide backwards along DNA and RNA and to occlude the active site with nascent RNA. These pauses differ in their responses to antisense oligonucleotides, pyrophosphate, GreA, and general elongation factors NusA and NusG. In contrast, substitutions in RNA polymerase that increase or decrease the rate of RNA synthesis affect both pause classes similarly. We propose that both pause classes, as well as arrest and termination, arise from a common intermediate that itself binds NTP substrate weakly.
Collapse
Affiliation(s)
- I Artsimovitch
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
32
|
Schärpf M, Sticht H, Schweimer K, Boehm M, Hoffmann S, Rösch P. Antitermination in bacteriophage lambda. The structure of the N36 peptide-boxB RNA complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2397-408. [PMID: 10759866 DOI: 10.1046/j.1432-1327.2000.01251.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The solution structure of a 15-mer nutRboxB RNA hairpin complexed with the 36-mer N-terminal peptide of the N protein (N36) from bacteriophage lambda was determined by 2D and 3D homonuclear and heteronuclear magnetic resonance spectroscopy. These 36 amino acids include the arginine-rich motif of the N protein involved in transcriptional antitermination of phage lambda. Upon complex formation with boxB RNA, the synthetic N36 peptide binds tightly to the major groove of the boxB hairpin through hydrophobic and electrostatic interactions forming a bent alpha helix. Four nucleotides of the GAAAA pentaloop of the boxB RNA adopt a GNRA-like tetraloop fold in the complex. The formation of a GAAA tetraloop involves a loop-closing sheared base pair (G6-A10), base stacking of three adenines (A7, A8, and A10), and extrusion of one nucleotide (A9) from the loop, as observed previously for the complex of N(1-22) peptide and the nutLboxB RNA [Legault, P., Li, J., Mogridge, J., Kay, L.E. & Greenblatt, J. (1998) Cell 93, 289-299]. Stacking of the bases is extended by the indole-ring of Trp18 which also forms hydrophobic contacts to the side-chains of Leu24, Leu25, and Val26. Based on the structure of the complex, three mutant peptides were synthesized and investigated by CD and NMR spectroscopy in order to determine the role of particular residues for complex formation. These studies revealed very distinct amino-acid requirements at positions 3, 4, and 8, while replacement of Trp18 with tyrosine did not result in any gross structural changes.
Collapse
Affiliation(s)
- M Schärpf
- Lehrstuhl für Biopolymere der Universität Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Weisberg RA, Gottesmann ME, Hendrix RW, Little JW. Family values in the age of genomics: comparative analyses of temperate bacteriophage HK022. Annu Rev Genet 2000; 33:565-602. [PMID: 10690418 DOI: 10.1146/annurev.genet.33.1.565] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
HK022 is a temperate coliphage related to phage lambda. Its chromosome has been completely sequenced, and several aspects of its life cycle have been intensively studied. In the overall arrangement, expression, and function of most of its genes, HK022 broadly resembles lambda and other members of the lambda family. Upon closer view, significant differences emerge. The differences reveal alternative strategies used by related phages to cope with similar problems and illuminate previously unknown regulatory and structural motifs. HK022 prophages protect lysogens from superinfection by producing a sequence-specific RNA binding protein that prematurely terminates nascent transcripts of infecting phage. It uses a novel RNA-based mechanism to antiterminate its own early transcription. The HK022 protein shell is strengthened by a complex pattern of covalent subunit interlinking to form a unitary structure that resembles chain-mail armour. Its integrase and repressor proteins are similar to those of lambda, but the differences provide insights into the evolution of biological specificity and the elements needed for construction of a stable genetic switch.
Collapse
Affiliation(s)
- R A Weisberg
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2785, USA.
| | | | | | | |
Collapse
|
34
|
Watnick RS, Herring SC, Palmer AG, Gottesman ME. The carboxyl terminus of phage HK022 Nun includes a novel zinc-binding motif and a tryptophan required for transcription termination. Genes Dev 2000. [DOI: 10.1101/gad.14.6.731] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The amino-terminal arginine-rich motif of the phage HK022 Nun protein binds phage λ nascent mRNA transcripts while the carboxy-terminal domain binds RNA polymerase and arrests transcription. The role of specific residues in the carboxy-terminal domain in transcription termination were investigated by mutagenesis, in vitro and in vivo functional assays, and NMR spectroscopy. Coordination of zinc to three histidine residues in the carboxy-terminus inhibited RNA binding by the amino-terminal domain; however, only two of these histidines were required for transcription arrest. These results suggest that additional zinc-coordinating residues are supplied by RNA polymerase in the context of the Nun–RNA polymerase complex. Substitution of the penultimate carboxy-terminal tryptophan residue with alanine or leucine blocks transcription arrest, whereas a tyrosine substitution is innocuous. Wild-type Nun fails to arrest transcription on single-stranded templates. These results suggest that Nun inhibition of transcription elongation is due in part to interactions between the carboxy-terminal tryptophan of Nun and double-stranded DNA, possibly by intercalation. A model for the termination activity of Nun is developed on the basis of these data.
Collapse
|
35
|
King RA, Madsen PL, Weisberg RA. Constitutive expression of a transcription termination factor by a repressed prophage: promoters for transcribing the phage HK022 nun gene. J Bacteriol 2000; 182:456-62. [PMID: 10629193 PMCID: PMC94296 DOI: 10.1128/jb.182.2.456-462.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lysogens of phage HK022 are resistant to infection by phage lambda. Lambda resistance is caused by the action of the HK022 Nun protein, which prematurely terminates early lambda transcripts. We report here that transcription of the nun gene initiates at a constitutive prophage promoter, P(Nun), located just upstream of the protein coding sequence. The 5' end of the transcript was determined by primer extension analysis of RNA isolated from HK022 lysogens or RNA made in vitro by transcribing a template containing the promoter with purified Escherichia coli RNA polymerase. Inactivation of P(Nun) by mutation greatly reduced Nun activity and Nun antigen in an HK022 lysogen. However, a low level of residual activity was detected, suggesting that a secondary promoter also contributes to nun expression. We found one possible secondary promoter, P(Nun)', just upstream of P(Nun). Neither promoter is likely to increase the expression of other phage genes in a lysogen because their transcripts should be terminated downstream of nun. We estimate that HK022 lysogens in stationary phase contain several hundred molecules of Nun per cell and that cells in exponential phase probably contain fewer.
Collapse
Affiliation(s)
- R A King
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
36
|
Watnick RS, Gottesman ME. Binding of transcription termination protein nun to nascent RNA and template DNA. Science 1999; 286:2337-9. [PMID: 10600743 DOI: 10.1126/science.286.5448.2337] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The amino-terminal arginine-rich motif of coliphage HK022 Nun binds phage lambda nascent transcript, whereas the carboxyl-terminal domain interacts with RNA polymerase (RNAP) and blocks transcription elongation. RNA binding is inhibited by zinc (Zn2+) and stimulated by Escherichia coli NusA. To study these interactions, the Nun carboxyl terminus was extended by a cysteine residue conjugated to a photochemical cross-linker. The carboxyl terminus contacted NusA and made Zn2+-dependent intramolecular contacts. When Nun was added to a paused transcription elongation complex, it cross-linked to the DNA template. Nun may arrest transcription by anchoring RNAP to DNA.
Collapse
Affiliation(s)
- R S Watnick
- Department of Biochemistry and Molecular Biophysics and Institute of Cancer Research, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
37
|
Kameyama L, Fernández L, Calderón J, Ortiz-Rojas A, Patterson TA. Characterization of wild lambdoid bacteriophages: detection of a wide distribution of phage immunity groups and identification of a nus-dependent, nonlambdoid phage group. Virology 1999; 263:100-11. [PMID: 10544086 DOI: 10.1006/viro.1999.9888] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Temperate phages were isolated from fresh human fecal samples. Lambdoid phages were screened for growth on Nus+ but not Nus- bacteria. Approximately 100 independent lysogens of Nus-dependent phages were constructed and tested for immunity to superinfection by the same Nus-dependent phages. This identified 20 different phage immunity groups, 18 of which belonged to the lambdoid phage family. The DNA from the majority of these phages hybridized with a lambda DNA probe, and approximately 50% were recognized by anti-lambda antibodies. Furthermore most were inducible by UV light. Eleven phage recombinants with different immunity were obtained when a phage from each group was coinfected with lambda or its derivative lambdaBLK20. We also identified another immunity group with 48 members. None of these hybridized with either lambda or phi80 DNA probes nor were they recognized by anti-lambda serum. Most were not induced by UV light treatment, and no recombinants were obtained when crossed with either lambda or lambdaBLK20. Consequently, this group of Nus-dependent phages represent a new nonlambdoid phage family.
Collapse
Affiliation(s)
- L Kameyama
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados- IPN, Av. Instituto Politécnico Nacional No. 2508, México, D.F., C.P. 07360, México.
| | | | | | | | | |
Collapse
|
38
|
Burova E, Hung SC, Chen J, Court DL, Zhou JG, Mogilnitskiy G, Gottesman ME. Escherichia coli nusG mutations that block transcription termination by coliphage HK022 Nun protein. Mol Microbiol 1999; 31:1783-93. [PMID: 10209750 DOI: 10.1046/j.1365-2958.1999.01315.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli nusG gene product is required for transcription termination by phage HK022 Nun protein at the lambda nutR site in vivo. We show that it is also essential for Nun termination at lambda nutL. Three recessive mis-sense nusG mutations have been isolated that inhibit termination by Nun at lambda nutR. The mutations are ineffective in a lambda pL nutL fusion, even when lambda nutR replaces lambda nutL. The mutant strains support lambda growth, indicating that lambda N antitermination activity is not impaired. Transcription arrest by Nun in vitro is stimulated by NusG protein at both lambda nutR and lambda nutL. Mutant NusG protein fails to enhance transcriptional arrest by Nun at either site. The mutant protein, like the wild-type protein, suppresses transcriptional pausing by RNA polymerase and stimulates Rho-dependent termination. These results imply that the role of NusG in Nun termination may be distinct from its roles in other transcription reactions.
Collapse
Affiliation(s)
- E Burova
- Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- R A Weisberg
- Section on Microbial Genetics, Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2785, USA.
| | | |
Collapse
|
40
|
Watnick RS, Gottesman ME. Escherichia coli NusA is required for efficient RNA binding by phage HK022 nun protein. Proc Natl Acad Sci U S A 1998; 95:1546-51. [PMID: 9465052 PMCID: PMC19084 DOI: 10.1073/pnas.95.4.1546] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Nun protein of phage HK022 is an RNA binding protein of the arginine-rich motif family. Nun binds the phage lambda boxB RNA sequence (BOXB) on nascent lambda transcripts and arrests transcription elongation. Binding to BOXB is inhibited by Zn2+ and stimulated by the Escherichia coli NusA protein. Deletion of the Nun C-terminal region enhances BOXB binding and makes it independent of Zn2+ and NusA. The C terminus of Nun thus appears to interfere with the N-terminal RNA binding motif. NusA relieves this interference by binding to the Nun C terminus and forming a complex with Nun and BOXB. However, NusA also inhibits transcription arrest in vitro, in the absence of the other Nus factors. Nun deleted for its C terminus fails to bind RNA polymerase (RNAP) (RNAP) or NusA in vitro or to arrest transcription in vivo or in vitro. Our findings are consistent with the idea that NusA inhibits transcription arrest by binding to the Nun C terminus, thus blocking the interaction between Nun and RNAP. NusG, NusB, and NusE factors restore transcription arrest, presumably by promoting transfer of Nun from NusA to RNAP.
Collapse
Affiliation(s)
- R S Watnick
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
41
|
Hung SC, Gottesman ME. The Nun protein of bacteriophage HK022 inhibits translocation of Escherichia coli RNA polymerase without abolishing its catalytic activities. Genes Dev 1997; 11:2670-8. [PMID: 9334329 PMCID: PMC316606 DOI: 10.1101/gad.11.20.2670] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1997] [Accepted: 08/26/1997] [Indexed: 02/05/2023]
Abstract
Bacteriophage HK022 Nun protein blocks transcription elongation by Escherichia coli RNA polymerase in vitro without dissociating the transcription complex. Nun is active on complexes located at any template site tested. Ultimately, only the 3'-OH terminal nucleotide of the nascent transcript in an arrested complex can turn over; it is removed by pyrophosphate and restored with NTPs. This suggests that Nun inhibits the translocation of RNA polymerase without abolishing its catalytic activities. Unlike spontaneously arrested complexes, Nun-arrested complexes cannot be reactivated by transcription factor GreB. The various complexes show distinct patterns of nucleotide incorporation and pyrophosphorolysis before or after treatment with Nun, suggesting that the configuration of RNAP, transcript, and template DNA is different in each complex.
Collapse
Affiliation(s)
- S C Hung
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032 USA
| | | |
Collapse
|
42
|
Su L, Radek JT, Labeots LA, Hallenga K, Hermanto P, Chen H, Nakagawa S, Zhao M, Kates S, Weiss MA. An RNA enhancer in a phage transcriptional antitermination complex functions as a structural switch. Genes Dev 1997; 11:2214-26. [PMID: 9303537 PMCID: PMC275392 DOI: 10.1101/gad.11.17.2214] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antitermination protein N regulates the transcriptional program of phage lambda through recognition of RNA enhancer elements. Binding of an arginine-rich peptide to one face of an RNA hairpin organizes the other, which in turn binds to the host antitermination complex. The induced RNA structure mimics a GNRA hairpin, an organizational element of rRNA and ribozymes. The two faces of the RNA, bridged by a sheared GA base pair, exhibit a specific pattern of base stacking and base flipping. This pattern is extended by stacking of an aromatic amino acid side chain with an unpaired adenine at the N-binding surface. Such extended stacking is coupled to induction of a specific internal RNA architecture and is blocked by RNA mutations associated in vivo with loss of transcriptional antitermination activity. Mimicry of a motif of RNA assembly by an RNA-protein complex permits its engagement within the antitermination machinery.
Collapse
Affiliation(s)
- L Su
- Department of Biochemistry and Molecular Biology and Center for Molecular Oncology, The University of Chicago, Illinois 60637-5419, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Ternary complexes of DNA-dependent RNA polymerase with its DNA template and nascent transcript are central intermediates in transcription. In recent years, several unusual biochemical reactions have been discovered that affect the progression of RNA polymerase in ternary complexes through various transcription units. These reactions can be signaled intrinsically, by nucleic acid sequences and the RNA polymerase, or extrinsically, by protein or other regulatory factors. These factors can affect any of these processes, including promoter proximal and promoter distal pausing in both prokaryotes and eukaryotes, and therefore play a central role in regulation of gene expression. In eukaryotic systems, at least two of these factors appear to be related to cellular transformation and human cancers. New models for the structure of ternary complexes, and for the mechanism by which they move along DNA, provide plausible explanations for novel biochemical reactions that have been observed. These models predict that RNA polymerase moves along DNA without the constant possibility of dissociation and consequent termination. A further prediction of these models is that the polymerase can move in a discontinuous or inchworm-like manner. Many direct predictions of these models have been confirmed. However, one feature of RNA chain elongation not predicted by the model is that the DNA sequence can determine whether the enzyme moves discontinuously or monotonically. In at least two cases, the encounter between the RNA polymerase and a DNA block to elongation appears to specifically induce a discontinuous mode of synthesis. These findings provide important new insights into the RNA chain elongation process and offer the prospect of understanding many significant biological regulatory systems at the molecular level.
Collapse
Affiliation(s)
- S M Uptain
- Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA.
| | | | | |
Collapse
|
44
|
Abstract
A growing number of genetic systems have been shown to be controlled at the level of premature termination of transcription. Genes in this class contain transcription termination signals in the region upstream of the coding sequence. The activity of these regulatory termination signals is controlled through a variety of mechanisms. These include modification of RNA polymerase to a terminator-resistant, or terminator-prone form, and alterations in the structure of the nascent transcript, to determine whether the stem-loop structure of an intrinsic terminator or an alternate antiterminator is formed. Structural alterations in the transcript can be controlled by the kinetics of translation of the RNA, by binding of specific regulatory proteins, and by mRNA-tRNA interactions. This review describes a number of variations on the termination control theme that have been uncovered in prokaryotes.
Collapse
Affiliation(s)
- T M Henkin
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| |
Collapse
|
45
|
Chattopadhyay S, Hung SC, Stuart AC, Palmer AG, Garcia-Mena J, Das A, Gottesman ME. Interaction between the phage HK022 Nun protein and the nut RNA of phage lambda. Proc Natl Acad Sci U S A 1995; 92:12131-12135. [PMID: 8618858 PMCID: PMC40310 DOI: 10.1073/pnas.92.26.12131] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nun gene product of prophage HK022 excludes phage lambda infection by blocking the expression of genes downstream from the lambda nut sequence. The Nun protein functions both by competing with lambda N transcription-antitermination protein and by actively inducing transcription termination on the lambda chromosome. We demonstrate that Nun binds directly to a stem-loop structure within nut RNA, boxB, which is also the target for the N antiterminator. The two proteins show comparable affinities for boxB and they compete with each other. Their interactions with boxB are similar, as shown by RNase protection experiments, NMR spectroscopy, and analysis of boxB mutants. Each protein binds the 5' strand of the boxB stem and the adjacent loop. The stem does not melt upon the binding of Nun or N, as the 3' strand remains sensitive to a double-strand-specific RNase. The binding of RNA partially protects Nun from proteolysis and changes its NMR spectra. Evidently, although Nun and N bind to the same surface of boxB RNA, their respective complexes interact differently with RNA polymerase, inducing transcription termination or antitermination, respectively.
Collapse
Affiliation(s)
- S Chattopadhyay
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030, USA
| | | | | | | | | | | | | |
Collapse
|