1
|
Sweeney BA, Roy P, Leontis NB. An introduction to recurrent nucleotide interactions in RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:17-45. [PMID: 25664365 DOI: 10.1002/wrna.1258] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RNA secondary structure diagrams familiar to molecular biologists summarize at a glance the folding of RNA chains to form Watson–Crick paired double helices. However, they can be misleading: First of all, they imply that the nucleotides in loops and linker segments, which can amount to 35% to 50% of a structured RNA, do not significantly interact with other nucleotides. Secondly, they give the impression that RNA molecules are loosely organized in three-dimensional (3D) space. In fact, structured RNAs are compactly folded as a result of numerous long-range, sequence-specific interactions, many of which involve loop or linker nucleotides. Here, we provide an introduction for students and researchers of RNA on the types, prevalence, and sequence variations of inter-nucleotide interactions that structure and stabilize RNA 3D motifs and architectures, using Escherichia coli (E. coli) 16S ribosomal RNA as a concrete example. The picture that emerges is that almost all nucleotides in structured RNA molecules, including those in nominally single-stranded loop or linker regions, form specific interactions that stabilize functional structures or mediate interactions with other molecules. The small number of noninteracting, ‘looped-out’ nucleotides make it possible for the RNA chain to form sharp turns. Base-pairing is the most specific interaction in RNA as it involves edge-to-edge hydrogen bonding (H-bonding) of the bases. Non-Watson–Crick base pairs are a significant fraction (30% or more) of base pairs in structured RNAs.
Collapse
|
2
|
Chaulk SG, Fahlman RP. Tertiary structure mapping of the pri-miRNA miR-17~92. Methods Mol Biol 2015; 1182:43-55. [PMID: 25055900 DOI: 10.1007/978-1-4939-1062-5_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The understanding of RNA in regulating gene expression has exploded over the past 15 years. MicroRNAs (miRNAs) have vastly expanded the role of RNA in gene regulation beyond spliceosomal, ribosomal, and messenger RNAs. Approximately one half of miRNAs are polycistronic, where two or more miRNAs are encoded on a single pri-miRNA transcript, termed a miRNA cluster. The six miRNAs of the miR-17~92 cluster are contained within a ~800 nucleotide region within intron 3 of the cl13orf25 ~7 kb pri-miRNA transcript. We recently reported on the tertiary structured domain of miR-17~92 and its role in modulating miRNA biogenesis. The key finding was that the cluster structure explained the differential processing of the miRNA hairpins by Drosha. This work demonstrated the need to consider pri-miRNA tertiary structure in miRNA biogenesis. Since biochemical structure probing is typically performed on relatively short RNAs (≤200 nucleotides), we had to adapt these methodologies for application on large RNAs (~800 nucleotide miR-17~92 pri-miRNA). We present here our adaptation of a protection footprinting method using ribonucleases to probe the structure of the ~800 nucleotide miR-17~92 pri-miRNA. We outline the technical difficulties involved in probing large RNAs and data visualization using denaturing polyacrylamide gel electrophoresis and how we adapted the existing approaches to probe large RNAs. The methodology outlined here is generally applicable to large RNAs including long noncoding RNAs (lncRNA).
Collapse
Affiliation(s)
- Steven G Chaulk
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 474 Medical Sciences Building, Edmonton, AB, Canada, T6G 2H7
| | | |
Collapse
|
3
|
Ge P, Zhang S. Computational analysis of RNA structures with chemical probing data. Methods 2015; 79-80:60-6. [PMID: 25687190 DOI: 10.1016/j.ymeth.2015.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/16/2015] [Accepted: 02/09/2015] [Indexed: 11/28/2022] Open
Abstract
RNAs play various roles, not only as the genetic codes to synthesize proteins, but also as the direct participants of biological functions determined by their underlying high-order structures. Although many computational methods have been proposed for analyzing RNA structures, their accuracy and efficiency are limited, especially when applied to the large RNAs and the genome-wide data sets. Recently, advances in parallel sequencing and high-throughput chemical probing technologies have prompted the development of numerous new algorithms, which can incorporate the auxiliary structural information obtained from those experiments. Their potential has been revealed by the secondary structure prediction of ribosomal RNAs and the genome-wide ncRNA function annotation. In this review, the existing probing-directed computational methods for RNA secondary and tertiary structure analysis are discussed.
Collapse
Affiliation(s)
- Ping Ge
- Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816-2362, USA
| | - Shaojie Zhang
- Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816-2362, USA.
| |
Collapse
|
4
|
Clatterbuck Soper SF, Dator RP, Limbach PA, Woodson SA. In vivo X-ray footprinting of pre-30S ribosomes reveals chaperone-dependent remodeling of late assembly intermediates. Mol Cell 2013; 52:506-16. [PMID: 24207057 DOI: 10.1016/j.molcel.2013.09.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/20/2013] [Accepted: 09/19/2013] [Indexed: 12/27/2022]
Abstract
Assembly of 30S ribosomal subunits from their protein and RNA components requires extensive refolding of the 16S rRNA and is assisted by 10-20 assembly factors in bacteria. We probed the structures of 30S assembly intermediates in E. coli cells, using a synchrotron X-ray beam to generate hydroxyl radical in the cytoplasm. Widespread differences between mature and pre-30S complexes in the absence of assembly factors RbfA and RimM revealed global reorganization of RNA-protein interactions prior to maturation of the 16S rRNA and showed how RimM reduces misfolding of the 16S 3' domain during transcription in vivo. Quantitative (14)N/(15)N mass spectrometry of affinity-purified pre-30S complexes confirmed the absence of tertiary assembly proteins and showed that N-terminal acetylation of proteins S18 and S5 correlates with correct folding of the platform and central pseudoknot. Our results indicate that cellular factors delay specific RNA folding steps to ensure the quality of assembly.
Collapse
Affiliation(s)
- Sarah F Clatterbuck Soper
- Cell, Molecular, and Developmental Biology and Biophysics Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | | | | | | |
Collapse
|
5
|
Abstract
5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.
Collapse
Affiliation(s)
- G M Gongadze
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| |
Collapse
|
6
|
HUANG HSIENDA, HORNG JORNGTZONG, WU LICHENG, FANG SHUFEN. DISCOVERING COMMON STRUCTURAL MOTIFS OF RIBOSOMAL RNA SECONDARY STRUCTURES IN PROKARYOTES. INT J ARTIF INTELL T 2011. [DOI: 10.1142/s0218213005002296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Certain structural motifs, like tetra-loops, in ribosomal RNA are known to functionally implicate in virtually every aspect of protein synthesis. Ribosomal RNA molecules were also widely used as a tool in molecular evolutionary studies because of their ubiquity, size and low evolutionary rate. In this study, we adapt a data mining approach to discover common structural motifs, and then we use a machine learning approach to identify discriminating CSMs from groups of organisms. Finally, we construct phylogeneitc trees to investigate the evolution of ribosomal RNA by serving the CSMs discovered as targets, which are used to estimate the evolutionary relatedness between organisms. The aim of this study is to discover common structural motifs (CSMs), i.e., those single-strain regions shared in ribosomal RNA secondary structures by several organisms, which are related to specific domains or functions. We discover a set of common structural motifs from several data sets of Archaea and Bacteria. Significant CSMs are then induced by a decision tree. Furthermore, phylogenetic trees are constructed based on CSMs and primary sequences of SSU 16 S ribosomal RNA.
Collapse
Affiliation(s)
- HSIEN-DA HUANG
- Department of Biological Science and Technology, Institute of Bioinformatics, National Chiao Tung University, Hsin-Chu 300, Taiwan, ROC
| | - JORNG-TZONG HORNG
- Department of Life Science, Department of Computer Science and Information Engineering, National Central University, Chung-Li 320, Taiwan, ROC
| | - LI-CHENG WU
- Department of Computer Science and Information Engineering, National Central University, Chung-Li 320, Taiwan, ROC
| | - SHU-FEN FANG
- Department of Computer Science and Information Engineering, National Central University, Chung-Li 320, Taiwan, ROC
| |
Collapse
|
7
|
Kladwang W, Cordero P, Das R. A mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA. RNA (NEW YORK, N.Y.) 2011; 17:522-34. [PMID: 21239468 PMCID: PMC3039151 DOI: 10.1261/rna.2516311] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/13/2010] [Indexed: 05/21/2023]
Abstract
We present a rapid experimental strategy for inferring base pairs in structured RNAs via an information-rich extension of classic chemical mapping approaches. The mutate-and-map method, previously applied to a DNA/RNA helix, systematically searches for single mutations that enhance the chemical accessibility of base-pairing partners distant in sequence. To test this strategy for structured RNAs, we have carried out mutate-and-map measurements for a 35-nt hairpin, called the MedLoop RNA, embedded within an 80-nt sequence. We demonstrate the synthesis of all 105 single mutants of the MedLoop RNA sequence and present high-throughput DMS, CMCT, and SHAPE modification measurements for this library at single-nucleotide resolution. The resulting two-dimensional data reveal visually clear, punctate features corresponding to RNA base pair interactions as well as more complex features; these signals can be qualitatively rationalized by comparison to secondary structure predictions. Finally, we present an automated, sequence-blind analysis that permits the confident identification of nine of the 10 MedLoop RNA base pairs at single-nucleotide resolution, while discriminating against all 1460 false-positive base pairs. These results establish the accuracy and information content of the mutate-and-map strategy and support its feasibility for rapidly characterizing the base-pairing patterns of larger and more complex RNA systems.
Collapse
Affiliation(s)
- Wipapat Kladwang
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
8
|
Calidas D, Culver GM. Interdependencies govern multidomain architecture in ribosomal small subunit assembly. RNA (NEW YORK, N.Y.) 2011; 17:263-277. [PMID: 21156960 PMCID: PMC3022276 DOI: 10.1261/rna.2332511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/05/2010] [Indexed: 05/27/2023]
Abstract
The 30S subunit is composed of four structural domains, the body, platform, head, and penultimate/ultimate stems. The functional integrity of the 30S subunit is dependent upon appropriate assembly and precise orientation of all four domains. We examined 16S rRNA conformational changes during in vitro assembly using directed hydroxyl radical probing mediated by Fe(II)-derivatized ribosomal protein (r-protein) S8. R-protein S8 binds the central domain of 16S rRNA directly and independently and its iron derivatized substituents have been shown to mediate cleavage in three domains of 16S rRNA, thus making it an ideal probe to monitor multidomain orientation during assembly. Cleavages in minimal ribonucleoprotein (RNP) particles formed with Fe(II)-S8 and 16S rRNA alone were compared with that in the context of the fully assembled subunit. The minimal binding site of S8 at helix 21 exists in a structure similar to that observed in the mature subunit, in the absence of other r-proteins. However, the binding site of S8 at the junction of helices 25-26a, which is transcribed after helix 21, is cleaved with differing intensities in the presence and absence of other r-proteins. Also, assembly of the body helps establish an architecture approximating, but perhaps not identical, to the 30S subunit at helix 12 and the 5' terminus. Moreover, the assembly or orientation of the neck is dependent upon assembly of both the head and the body. Thus, a complex interrelationship is observed between assembly events of independent domains and the incorporation of primary binding proteins during 30S subunit formation.
Collapse
Affiliation(s)
- Deepika Calidas
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | |
Collapse
|
9
|
Abstract
Chemical footprinting methods are widely used to probe the solution structures of nucleic acids and their complexes. Among the many available modifying reagents, hydroxyl radical is exceptional in its ability to provide nucleotide-level information on the solvent accessibility of the nucleic acid backbone. Until recently, hydroxyl radical footprinting has been limited to in vitro experiments. We describe the use of synchrotron X-radiation to generate hydroxyl radicals within cells for effective footprinting of RNA-protein complexes in vivo. This technique gives results that are consistent with in vitro footprinting experiments, with differences reflecting apparent structural changes to the RNA in vivo.
Collapse
|
10
|
Abstract
The ribosome is a dynamic machine that undergoes many conformational rearrangements during the initiation of protein synthesis. Significant differences exist between the process of protein synthesis initiation in eubacteria and eukaryotes. In particular, the initiation of eukaryotic protein synthesis requires roughly an order of magnitude more initiation factors to promote efficient mRNA recruitment and ribosomal recognition of the start codon than are needed for eubacterial initiation. The mechanisms by which these initiation factors promote ribosome conformational changes during stages of initiation have been studied using cross-linking, footprinting, site-directed probing, cryo-electron microscopy, X-ray crystallography, fluorescence spectroscopy and single-molecule techniques. Here, we review how the results of these different approaches have begun to converge to yield a detailed molecular understanding of the dynamic motions that the eukaryotic ribosome cycles through during the initiation of protein synthesis.
Collapse
|
11
|
Xu Z, O'Farrell HC, Rife JP, Culver GM. A conserved rRNA methyltransferase regulates ribosome biogenesis. Nat Struct Mol Biol 2008; 15:534-6. [PMID: 18391965 DOI: 10.1038/nsmb.1408] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 02/26/2008] [Indexed: 11/09/2022]
Abstract
In contrast to the diversity of most ribosomal RNA modification patterns and systems, the KsgA methyltransferase family seems to be nearly universally conserved along with the modifications it catalyzes. Our data reveal that KsgA interacts with small ribosomal subunits near functional sites, including Initiation factor 3 and 50S subunit binding sites. These findings suggest a checkpoint role for this modification system and offer a functional rationale for the unprecedented level of conservation.
Collapse
Affiliation(s)
- Zhili Xu
- Department of Biology, Hutchison Hall 301, University of Rochester, Rochester, New York 14627, USA
| | | | | | | |
Collapse
|
12
|
Tijerina P, Mohr S, Russell R. DMS footprinting of structured RNAs and RNA-protein complexes. Nat Protoc 2008; 2:2608-23. [PMID: 17948004 DOI: 10.1038/nprot.2007.380] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe a protocol in which dimethyl sulfate (DMS) modification of the base-pairing faces of unpaired adenosine and cytidine nucleotides is used for structural analysis of RNAs and RNA-protein complexes (RNPs). The protocol is optimized for RNAs of small to moderate size (< or = 500 nt). The RNA or RNP is first exposed to DMS under conditions that promote formation of the folded structure or complex, as well as 'control' conditions that do not allow folding or complex formation. The positions and extents of modification are then determined by primer extension, polyacrylamide gel electrophoresis and quantitative analysis. From changes in the extent of modification upon folding or protein binding (appearance of a 'footprint'), it is possible to detect local changes in the secondary and tertiary structure of RNA, as well as the formation of RNA-protein contacts. This protocol takes 1.5-3 d to complete, depending on the type of analysis used.
Collapse
Affiliation(s)
- Pilar Tijerina
- Department of Chemistry and Biochemistry and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
13
|
Xaplanteri MA, Papadopoulos G, Leontiadou F, Choli-Papadopoulou T, Kalpaxis DL. The Contribution of the Zinc-Finger Motif to the Function of Thermus thermophilus Ribosomal Protein S14. J Mol Biol 2007; 369:489-97. [PMID: 17442343 DOI: 10.1016/j.jmb.2007.03.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/16/2007] [Accepted: 03/19/2007] [Indexed: 12/31/2022]
Abstract
In the crystal structure of the 30S ribosomal subunit from Thermus thermophilus, cysteine 24 of ribosomal protein S14 (TthS14) occupies the first position in a CXXC-X12-CXXC motif that coordinates a zinc ion. The structural and functional importance of cysteine 24, which is widely conserved from bacteria to humans, was studied by its replacement with serine and by incorporating the resulting mutant into Escherichia coli ribosomes. The capability of such modified ribosomes in binding tRNA at the P and A-sites was equal to that obtained with ribosomes incorporating wild-type TthS14. In fact, both chimeric ribosomal species exhibited 20% lower tRNA affinity compared with native E. coli ribosomes. In addition, replacement of the native E. coli S14 by wild-type, and particularly by mutant TthS14, resulted in reduced capability of the 30S subunit for association with 50S subunits. Nevertheless, ribosomes from transformed cells sedimented normally and had a full complement of proteins. Unexpectedly, the peptidyl transferase activity in the chimeric ribosomes bearing mutant TthS14 was much lower than that measured in ribosomes incorporating wild-type TthS14. The catalytic center of the ribosome is located within the 50S subunit and, therefore, it is unlikely to be directly affected by changes in the structure of S14. More probably, the perturbing effects of S14 mutation on the catalytic center seem to be propagated by adjacent intersubunit bridges or the P-site tRNA molecule, resulting in weak donor-substrate reactivity. This hypothesis was verified by molecular dynamics simulation analysis.
Collapse
Affiliation(s)
- Maria A Xaplanteri
- Laboratory of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| | | | | | | | | |
Collapse
|
14
|
Kirthi N, Roy-Chaudhuri B, Kelley T, Culver GM. A novel single amino acid change in small subunit ribosomal protein S5 has profound effects on translational fidelity. RNA (NEW YORK, N.Y.) 2006; 12:2080-91. [PMID: 17053085 PMCID: PMC1664723 DOI: 10.1261/rna.302006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 09/22/2006] [Indexed: 05/03/2023]
Abstract
S5 is a small subunit ribosomal protein (r-protein) linked to the functional center of the 30S ribosomal subunit. In this study we have identified a unique amino acid mutation in Escherichia coli S5 that produces spectinomycin-resistance and cold sensitivity. This mutation significantly alters cell growth, folding of 16S ribosomal RNA, and translational fidelity. While translation initiation is not affected, both +1 and -1 frameshifting and nonsense suppression are greatly enhanced in the mutant strain. Interestingly, this S5 ribosome ambiguity-like mutation is spatially remote from previously identified S5 ribosome ambiguity (ram) mutations. This suggests that the mechanism responsible for ram phenotypes in the novel mutant strain is possibly distinct from those proposed for other known S5 (and S4) ram mutants. This study highlights the importance of S5 in ribosome function and cell physiology, and suggests that translational fidelity can be regulated in multiple ways.
Collapse
Affiliation(s)
- Narayanaswamy Kirthi
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
15
|
Kubarenko A, Sergiev P, Wintermeyer W, Dontsova O, Rodnina MV. Involvement of helix 34 of 16 S rRNA in decoding and translocation on the ribosome. J Biol Chem 2006; 281:35235-44. [PMID: 16990269 DOI: 10.1074/jbc.m608060200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Helix 34 of 16 S rRNA is located in the head of the 30 S ribosomal subunit close to the decoding center and has been invoked in a number of ribosome functions. In the present work, we have studied the effects of mutations in helix 34 both in vivo and in vitro. Several nucleotides in helix 34 that are either highly conserved or form important tertiary contacts in 16 S rRNA (U961, C1109, A1191, and A1201) were mutated, and the mutant ribosomes were expressed in the Escherichia coli MC250 Delta7 strain that lacks all seven chromosomal rRNA operons. Mutations at positions A1191 and U961 reduced the efficiency of subunit association and resulted in structural rearrangements in helix 27 (position 908) and helix 31 (position 974) of 16 S rRNA. All mutants exhibited increased levels of frameshifting and nonsense readthrough. The effects on frameshifting were specific in that -1 frameshifting was enhanced with mutant A1191G and +1 frameshifting with the other mutants. Mutations of A1191 moderately (approximately 2-fold) inhibited tRNA translocation. No significant effects were found on efficiency and rate of initiation, misreading of sense codons, or binding of tRNA to the E site. The data indicate that helix 34 is involved in controlling the maintenance of the reading frame and in tRNA translocation.
Collapse
Affiliation(s)
- Andrew Kubarenko
- Institute of Physical Biochemistry, University of Witten/Herdecke, 58448 Witten, Germany
| | | | | | | | | |
Collapse
|
16
|
Johansen SK, Maus CE, Plikaytis BB, Douthwaite S. Capreomycin Binds across the Ribosomal Subunit Interface Using tlyA-Encoded 2′-O-Methylations in 16S and 23S rRNAs. Mol Cell 2006; 23:173-82. [PMID: 16857584 DOI: 10.1016/j.molcel.2006.05.044] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 04/11/2006] [Accepted: 05/30/2006] [Indexed: 11/30/2022]
Abstract
The cyclic peptide antibiotics capreomycin and viomycin are generally effective against the bacterial pathogen Mycobacterium tuberculosis. However, recent virulent isolates have become resistant by inactivation of their tlyA gene. We show here that tlyA encodes a 2'-O-methyltransferase that modifies nucleotide C1409 in helix 44 of 16S rRNA and nucleotide C1920 in helix 69 of 23S rRNA. Loss of these previously unidentified rRNA methylations confers resistance to capreomycin and viomycin. Many bacterial genera including enterobacteria lack a tlyA gene and the ensuing methylations and are less susceptible than mycobacteria to capreomycin and viomycin. We show that expression of recombinant tlyA in Escherichia coli markedly increases susceptibility to these drugs. When the ribosomal subunits associate during translation, the two tlyA-encoded methylations are brought into close proximity at interbridge B2a. The location of these methylations indicates the binding site and inhibitory mechanism of capreomycin and viomycin at the ribosome subunit interface.
Collapse
MESH Headings
- Antibiotics, Antitubercular/pharmacology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Capreomycin/pharmacology
- Cloning, Molecular
- Drug Resistance, Bacterial/genetics
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Mass Spectrometry
- Methylation
- Molecular Sequence Data
- Mutation
- Mycobacteriaceae/drug effects
- Nucleic Acid Conformation
- RNA, Bacterial/drug effects
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Shanna K Johansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
17
|
Brandi L, Fabbretti A, Di Stefano M, Lazzarini A, Abbondi M, Gualerzi CO. Characterization of GE82832, a peptide inhibitor of translocation interacting with bacterial 30S ribosomal subunits. RNA (NEW YORK, N.Y.) 2006; 12:1262-70. [PMID: 16699167 PMCID: PMC1484444 DOI: 10.1261/rna.61206] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
GE82832, a secondary metabolite produced by Streptosporangium cinnabarinum (strain GE82832), has been identified as a translational inhibitor by in vitro screening of a library of natural products. Secondary functional tests specific for individual steps of the translational pathway demonstrated that translocation is the specific target of GE82832. Chemical probing in situ demonstrated that this antibiotic protects bases A1324 and A1333 and exposes C1336 of 16S rRNA, thereby indicating that its binding site is located on the head of the 30S ribosomal subunit. The ribosomal location of GE82832, near ribosomal protein S13 and G1338, two elements of the small subunit that are part of or close to the B1a intrasubunit bridge, suggests that translocation inhibition results from an altered dynamics of 30S-50S ribosomal subunit interaction.
Collapse
Affiliation(s)
- Letizia Brandi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Adilakshmi T, Lease RA, Woodson SA. Hydroxyl radical footprinting in vivo: mapping macromolecular structures with synchrotron radiation. Nucleic Acids Res 2006; 34:e64. [PMID: 16682443 PMCID: PMC1458516 DOI: 10.1093/nar/gkl291] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We used a high flux synchrotron X-ray beam to map the structure of 16S rRNA and RNase P in viable bacteria in situ. A 300 ms exposure to the X-ray beam was sufficient for optimal cleavage of the phosphodiester backbone. The in vivo footprints of the 16S rRNA in frozen cells were similar to those obtained in vitro and were consistent with the predicted accessibility of the RNA backbone to hydroxyl radical. Protection or enhanced cleavage of certain nucleotides in vivo can be explained by interactions with tRNA and perturbation of the subunit interface. Thus, short exposures to a synchrotron X-ray beam can footprint the tertiary structure and protein contacts of RNA–protein complexes with nucleotide resolution in living cells.
Collapse
Affiliation(s)
| | | | - Sarah A. Woodson
- To whom correspondence should be addressed. Tel: +1 410 516 2015; Fax: +1 410 516 4118;
| |
Collapse
|
19
|
Nguyenle T, Laurberg M, Brenowitz M, Noller HF. Following the dynamics of changes in solvent accessibility of 16 S and 23 S rRNA during ribosomal subunit association using synchrotron-generated hydroxyl radicals. J Mol Biol 2006; 359:1235-48. [PMID: 16725154 DOI: 10.1016/j.jmb.2006.04.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/10/2006] [Accepted: 04/12/2006] [Indexed: 11/22/2022]
Abstract
We have probed the structure and dynamics of ribosomal RNA in the Escherichia coli ribosome using equilibrium and time-resolved hydroxyl radical (OH) RNA footprinting to explore changes in the solvent-accessible surface of the rRNA with single-nucleotide resolution. The goal of these studies is to better understand the structural transitions that accompany association of the 30 S and 50 S subunits and to build a foundation for the quantitative analysis of ribosome structural dynamics during translation. Clear portraits of the subunit interface surfaces for 16 S and 23 S rRNA were obtained by constructing difference maps between the OH protection maps of the free subunits and that of the associated ribosome. In addition to inter-subunit contacts consistent with the crystal structure, additional OH protections are evident in regions at or near the subunit interface that reflect association-induced conformational changes. Comparison of these data with the comparable difference maps of the solvent-accessible surface of the rRNA calculated for the Thermus thermophilus X-ray crystal structures shows extensive agreement but also distinct differences. As a prelude to time-resolved OH footprinting studies, the reactivity profiles obtained using Fe(II)EDTA and X-ray generated OH were comprehensively compared. The reactivity patterns are similar except for a small number of nucleotides that have decreased reactivity to OH generated from Fe(II)EDTA compared to X-rays. These nucleotides are generally close to ribosomal proteins, which can quench diffusing radicals by virtue of side-chain oxidation. Synchrotron X-ray OH footprinting was used to monitor the kinetics of association of the 30 S and 50 S subunits. The rates individually measured for the inter-subunit contacts are comparable within experimental error. The application of this approach to the study of ribosome dynamics during the translation cycle is discussed.
Collapse
Affiliation(s)
- Thuylinh Nguyenle
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, 95064, USA
| | | | | | | |
Collapse
|
20
|
Pulk A, Maiväli U, Remme J. Identification of nucleotides in E. coli 16S rRNA essential for ribosome subunit association. RNA (NEW YORK, N.Y.) 2006; 12:790-6. [PMID: 16556933 PMCID: PMC1440916 DOI: 10.1261/rna.2275906] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The ribosome consists of two unequal subunits, which associate via numerous intersubunit contacts. Medium-resolution structural studies have led to grouping of the intersubunit contacts into 12 directly visualizable intersubunit bridges. Most of the intersubunit interactions involve RNA. We have used an RNA modification interference approach to determine Escherichia coli 16S rRNA positions that are essential for the association of functionally active 70S ribosomes. Modification of the N1 position of A702, A1418, and A1483 with DMS, and of the N3 position of U793, U1414, and U1495 with CMCT in 30S subunits strongly interferes with 70S ribosome formation. Five of these positions localize into previously recognized intersubunit bridges, namely, B2a (U1495), B2b (U793), B3 (A1483), B5 (A1418), and B7a (A702). The remaining position displaying interference, U1414, forms a base pair with G1486, which is a part of bridge B3. We contend that these five intersubunit bridges are essential for reassociation of the 70S ribosome, thus forming the functional core of the intersubunit contacts.
Collapse
MESH Headings
- Centrifugation, Density Gradient
- Dimethyl Sulfoxide/pharmacology
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Models, Biological
- Models, Molecular
- Nucleic Acid Conformation
- Nucleotides/chemistry
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Solvents/pharmacology
Collapse
Affiliation(s)
- Arto Pulk
- Institute of Molecular and Cell Biology, Tartu University, Riia, Estonia
| | | | | |
Collapse
|
21
|
Brunelle JL, Youngman EM, Sharma D, Green R. The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. RNA (NEW YORK, N.Y.) 2006; 12:33-9. [PMID: 16373492 PMCID: PMC1370883 DOI: 10.1261/rna.2256706] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ribosomal variants carrying mutations in active site nucleotides are severely compromised in their ability to catalyze peptide bond formation (PT) with minimal aminoacyl tRNA substrates such as puromycin. However, catalysis of PT by these same ribosomes with intact aminoacyl tRNA substrates is uncompromised. These data suggest that these active site nucleotides play an important role in the positioning of minimal aminoacyl tRNA substrates but are not essential for catalysis per se when aminoacyl tRNAs are positioned by more remote interactions with the ribosome. Previously reported biochemical studies and atomic resolution X-ray structures identified a direct Watson-Crick interaction between C75 of the A-site substrate and G2553 of the 23S rRNA. Here we show that the addition of this single cytidine residue (the C75 equivalent) to puromycin is sufficient to suppress the deficiencies of active site ribosomal variants, thus restoring "tRNA-like" behavior to this minimal substrate. Studies of the binding parameters and the pH-dependence of catalysis with this minimal substrate indicate that the interaction between C75 and the ribosomal A loop is an essential feature for robust catalysis and further suggest that the observed effects of C75 on peptidyl transfer activity reflect previously reported conformational rearrangements in this active site.
Collapse
Affiliation(s)
- Julie L Brunelle
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 702A PCTB, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
22
|
Shenvi CL, Dong KC, Friedman EM, Hanson JA, Cate JHD. Accessibility of 18S rRNA in human 40S subunits and 80S ribosomes at physiological magnesium ion concentrations--implications for the study of ribosome dynamics. RNA (NEW YORK, N.Y.) 2005; 11:1898-908. [PMID: 16314459 PMCID: PMC1370877 DOI: 10.1261/rna.2192805] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 09/21/2005] [Indexed: 05/05/2023]
Abstract
Protein biosynthesis requires numerous conformational rearrangements within the ribosome. The structural core of the ribosome is composed of RNA and is therefore dependent on counterions such as magnesium ions for function. Many steps of translation can be compromised or inhibited if the concentration of Mg(2+) is too low or too high. Conditions previously used to probe the conformation of the mammalian ribosome in vitro used high Mg(2+) concentrations that we find completely inhibit translation in vitro. We have therefore probed the conformation of the small ribosomal subunit in low concentrations of Mg(2+) that support translation in vitro and compared it with the conformation of the 40S subunit at high Mg(2+) concentrations. In low Mg(2+) concentrations, we find significantly more changes in chemical probe accessibility in the 40S subunit due to subunit association or binding of the hepatitis C internal ribosomal entry site (HCV IRES) than had been observed before. These results suggest that the ribosome is more dynamic in its functional state than previously appreciated.
Collapse
Affiliation(s)
- Christina L Shenvi
- Department of Chemistry, University of California, 202 Melvin Calvin Lab, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
23
|
Holmes KL, Culver GM. Analysis of Conformational Changes in 16S rRNA During the Course of 30S Subunit Assembly. J Mol Biol 2005; 354:340-57. [PMID: 16246364 DOI: 10.1016/j.jmb.2005.09.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 09/16/2005] [Accepted: 09/16/2005] [Indexed: 11/19/2022]
Abstract
Ribosome biogenesis involves an integrated series of binding events coupled with conformational changes that ultimately result in the formation of a functional macromolecular complex. In vitro, Escherichia coli 30 S subunit assembly occurs in a cooperative manner with the ordered addition of 20 ribosomal proteins (r-proteins) with 16 S rRNA. The assembly pathway for 30 S subunits has been dissected in vitro into three steps, where specific r-proteins associate with 16 S rRNA early in 30 S subunit assembly, followed by a mid-assembly conformational rearrangement of the complex that then enables the remaining r-proteins to associate in the final step. Although the three steps of 30 S subunit assembly have been known for some time, few details have been elucidated about changes that occur as a result of these three specific stages. Here, we present a detailed analysis of the concerted early and late stages of small ribosomal subunit assembly. Conformational changes, roles for base-pairing and r-proteins at specific stages of assembly, and a polar nature to the assembly process have been revealed. This work has allowed a more comprehensive and global view of E.coli 30 S ribosomal subunit assembly to be obtained.
Collapse
Affiliation(s)
- Kristi L Holmes
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
24
|
Ivanova N, Pavlov MY, Bouakaz E, Ehrenberg M, Schiavone LH. Mapping the interaction of SmpB with ribosomes by footprinting of ribosomal RNA. Nucleic Acids Res 2005; 33:3529-39. [PMID: 15972795 PMCID: PMC1156966 DOI: 10.1093/nar/gki666] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/06/2005] [Accepted: 06/06/2005] [Indexed: 12/01/2022] Open
Abstract
In trans-translation transfer messenger RNA (tmRNA) and small protein B (SmpB) rescue ribosomes stalled on truncated or in other ways problematic mRNAs. SmpB promotes the binding of tmRNA to the ribosome but there is uncertainty about the number of participating SmpB molecules as well as their ribosomal location. Here, the interaction of SmpB with ribosomal subunits and ribosomes was studied by isolation of SmpB containing complexes followed by chemical modification of ribosomal RNA with dimethyl sulfate, kethoxal and hydroxyl radicals. The results show that SmpB binds 30S and 50S subunits with 1:1 molar ratios and the 70S ribosome with 2:1 molar ratio. SmpB-footprints are similar on subunits and the ribosome. In the 30S subunit, SmpB footprints nucleotides that are in the vicinity of the P-site facing the E-site, and in the 50S subunit SmpB footprints nucleotides that are located below the L7/L12 stalk in the 3D structure of the ribosome. Based on these results, we suggest a mechanism where two molecules of SmpB interact with tmRNA and the ribosome during trans-translation. The first SmpB molecule binds near the factor-binding site on the 50S subunit helping tmRNA accommodation on the ribosome, whereas the second SmpB molecule may functionally substitute for a missing anticodon stem-loop in tmRNA during later steps of trans-translation.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Models, Molecular
- Molecular Sequence Data
- Protein Biosynthesis
- Protein Footprinting
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA-Binding Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Natalia Ivanova
- Department of Cell and Molecular Biology, BMC, Uppsala UniversityBox 596, S-75 124 Uppsala, Sweden
- Cell Biology Unit, Department of Life SciencesSödertörns Högskola, S-141 89 Huddinge, Sweden
| | - Michael Y. Pavlov
- Department of Cell and Molecular Biology, BMC, Uppsala UniversityBox 596, S-75 124 Uppsala, Sweden
- Cell Biology Unit, Department of Life SciencesSödertörns Högskola, S-141 89 Huddinge, Sweden
| | - Elli Bouakaz
- Department of Cell and Molecular Biology, BMC, Uppsala UniversityBox 596, S-75 124 Uppsala, Sweden
- Cell Biology Unit, Department of Life SciencesSödertörns Högskola, S-141 89 Huddinge, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, BMC, Uppsala UniversityBox 596, S-75 124 Uppsala, Sweden
- Cell Biology Unit, Department of Life SciencesSödertörns Högskola, S-141 89 Huddinge, Sweden
| | | |
Collapse
|
25
|
Ghosh S, Joseph S. Nonbridging phosphate oxygens in 16S rRNA important for 30S subunit assembly and association with the 50S ribosomal subunit. RNA (NEW YORK, N.Y.) 2005; 11:657-67. [PMID: 15811917 PMCID: PMC1370752 DOI: 10.1261/rna.7224305] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 02/16/2005] [Indexed: 05/23/2023]
Abstract
Ribosomes are composed of RNA and protein molecules that associate together to form a supramolecular machine responsible for protein biosynthesis. Detailed information about the structure of the ribosome has come from the recent X-ray crystal structures of the ribosome and the ribosomal subunits. However, the molecular interactions between the rRNAs and the r-proteins that occur during the intermediate steps of ribosome assembly are poorly understood. Here we describe a modification-interference approach to identify nonbridging phosphate oxygens within 16S rRNA that are important for the in vitro assembly of the Escherichia coli 30S small ribosomal subunit and for its association with the 50S large ribosomal subunit. The 30S small subunit was reconstituted from phosphorothioate-substituted 16S rRNA and small subunit proteins. Active 30S subunits were selected by their ability to bind to the 50S large subunit and form 70S ribosomes. Analysis of the selected population shows that phosphate oxygens at specific positions in the 16S rRNA are important for either subunit assembly or for binding to the 50S subunit. The X-ray crystallographic structures of the 30S subunit suggest that some of these phosphate oxygens participate in r-protein binding, coordination of metal ions, or for the formation of intersubunit bridges in the mature 30S subunit. Interestingly, however, several of the phosphate oxygens identified in this study do not participate in any interaction in the mature 30S subunit, suggesting that they play a role in the early steps of the 30S subunit assembly.
Collapse
MESH Headings
- Electrophoresis, Gel, Two-Dimensional
- Escherichia coli/genetics
- Models, Molecular
- Nucleic Acid Conformation
- Phosphates/metabolism
- Protein Binding
- Protein Subunits/chemistry
- Protein Subunits/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Srikanta Ghosh
- 4102 Urey Hall, Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA
| | | |
Collapse
|
26
|
Cukras AR, Green R. Multiple effects of S13 in modulating the strength of intersubunit interactions in the ribosome during translation. J Mol Biol 2005; 349:47-59. [PMID: 15876367 PMCID: PMC1687178 DOI: 10.1016/j.jmb.2005.03.075] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 03/25/2005] [Accepted: 03/25/2005] [Indexed: 11/20/2022]
Abstract
The ribosomal protein S13 is found in the head region of the small subunit, where it interacts with the central protuberance of the large ribosomal subunit and with the P site-bound tRNA through its extended C terminus. The bridging interactions between the large and small subunits are dynamic, and are thought to be critical in orchestrating the molecular motions of the translation cycle. S13 provides a direct link between the tRNA-binding site and the movements in the head of the small subunit seen during translocation, thereby providing a possible pathway of signal transduction. We have created and characterized an rpsM(S13)-deficient strain of Escherichia coli and have found significant defects in subunit association, initiation and translocation through in vitro assays of S13-deficient ribosomes. Targeted mutagenesis of specific bridge and tRNA contact elements in S13 provides evidence that these two interaction domains play critical roles in maintaining the fidelity of translation. This ribosomal protein thus appears to play a non-essential, yet important role by modulating subunit interactions in multiple steps of the translation cycle.
Collapse
|
27
|
Abstract
Hydroxyl radical footprinting is a widely used method for following the folding of RNA molecules in solution. This method has the unique ability to provide experimental information on the solvent accessibility of each nucleotide in an RNA molecule, so that the folding of all domains of the RNA species can be followed simultaneously at single-nucleotide resolution. In recent work, hydroxyl radical footprinting has been used, often in combination with other global measures of structure, to work out detailed folding pathways and three-dimensional structures for increasingly large and complicated RNA molecules. These include synthetic ribozymes, and group I and group II ribozymes, from yeast, the Azoarcus cyanobacterium and Tetrahymena thermophila. Advances have been made in methods for analysis of hydroxyl radical data, so that the large datasets that result from kinetic folding experiments can be analyzed in a semi-automated and quantitative manner.
Collapse
Affiliation(s)
- Thomas D Tullius
- Department of Chemistry, Boston University, Boston MA 02215, USA.
| | | |
Collapse
|
28
|
Hennelly SP, Antoun A, Ehrenberg M, Gualerzi CO, Knight W, Lodmell JS, Hill WE. A time-resolved investigation of ribosomal subunit association. J Mol Biol 2005; 346:1243-58. [PMID: 15713478 DOI: 10.1016/j.jmb.2004.12.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 12/23/2004] [Accepted: 12/29/2004] [Indexed: 11/19/2022]
Abstract
The notion that the ribosome is dynamic has been supported by various biochemical techniques, as well as by differences observed in high-resolution structures of ribosomal complexes frozen in various functional states. Yet, the mechanisms and extent of rRNA dynamics are still largely unknown. We have used a novel, fast chemical-modification technique to provide time-resolved details of 16 S rRNA structural changes that occur as bridges are formed between the ribosomal subunits as they associate. Association of different 16 S rRNA regions was found to be a sequential, multi-step process involving conformational rearrangements within the 30 S subunit. Our results suggest that key regions of 16 S rRNA, necessary for decoding and tRNA A-site binding, are structurally altered in a time-dependent manner by association with the 50 S ribosomal subunits.
Collapse
MESH Headings
- Base Pairing
- Binding Sites
- Crystallography, X-Ray
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Ribosomes/metabolism
- Time Factors
Collapse
Affiliation(s)
- Scott P Hennelly
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Bélanger F, Gagnon MG, Steinberg SV, Cunningham PR, Brakier-Gingras L. Study of the Functional Interaction of the 900 Tetraloop of 16S Ribosomal RNA with Helix 24 within the Bacterial Ribosome. J Mol Biol 2004; 338:683-93. [PMID: 15099737 DOI: 10.1016/j.jmb.2004.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/08/2004] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
The 900 tetraloop that caps helix 27 of 16S ribosomal RNA (rRNA) is amongst the most conserved regions of rRNA. This tetraloop forms a GNRA motif that docks into the minor groove of three base-pairs at the bottom of helix 24 of 16S rRNA in the 30S subunit. Both the tetraloop and its receptor in helix 24 contact the 23S rRNA, forming the intersubunit bridge B2c. Here, we investigated the interaction between the 900 tetraloop and its receptor by genetic complementation. We used a specialized ribosome system in combination with an in vivo instant evolution approach to select mutations in helix 24 compensating for a mutation in the 900 tetraloop (A900G) that severely decreases ribosomal activity, impairing subunit association and translational fidelity. We selected two mutants where the G769-C810 base-pair of helix 24 was substituted with either U-A or C x A. When these mutations in helix 24 were investigated in the context of a wild-type 900 tetraloop, the C x A but not the U-A mutation severely impaired ribosome activity, interfering with subunit association and decreasing translational fidelity. In the presence of the A900G mutation, both mutations in helix 24 increased the ribosome activity to the same extent. Subunit association and translational fidelity were increased to the same level. Computer modeling was used to analyze the effect of the mutations in helix 24 on the interaction between the tetraloop and its receptor. This study demonstrates the functional importance of the interaction between the 900 tetraloop and helix 24.
Collapse
Affiliation(s)
- François Bélanger
- Département de Biochimie, Université de Montréal, Montréal, Qué., Canada H3T 1J4
| | | | | | | | | |
Collapse
|
30
|
Maiväli U, Remme J. Definition of bases in 23S rRNA essential for ribosomal subunit association. RNA (NEW YORK, N.Y.) 2004; 10:600-4. [PMID: 15037769 PMCID: PMC1370550 DOI: 10.1261/rna.5220504] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Accepted: 01/09/2004] [Indexed: 05/20/2023]
Abstract
The ribosome is a two-subunit molecular machine, sporting a working cycle that involves coordinated movements of the subunits. Recent structural studies of the 70S ribosome describe a rather large number of intersubunit contacts, some of which are dynamic during translocation. We set out to determine which intersubunit contacts are functionally indispensable for the association of ribosome subunits by using a modification interference approach. Modification of the N-1 position of A715, A1912, or A1918 in Escherichia coli 50S subunits is strongly detrimental to 70S ribosome formation. This result points to 23S rRNA helices 34 and 69, and thus bridges B2a and B4, as essential for ensuring stability of the 70S ribosome.
Collapse
Affiliation(s)
- Ulo Maiväli
- Department of Molecular Biology, Tartu University, Tartu, Estonia
| | | |
Collapse
|
31
|
Jagannathan I, Culver GM. Ribosomal protein-dependent orientation of the 16 S rRNA environment of S15. J Mol Biol 2004; 335:1173-85. [PMID: 14729335 DOI: 10.1016/j.jmb.2003.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribosomal protein S15 binds specifically to the central domain of 16 S ribosomal RNA (16 S rRNA) and directs the assembly of four additional proteins to this domain. The central domain of 16 S rRNA along with these five proteins form the platform of the 30 S subunit. Previously, directed hydroxyl radical probing from Fe(II)-S15 in small ribonucleoprotein complexes was used to study assembly of the central domain of 16 S rRNA. Here, this same approach was used to understand the 16 S rRNA environment of Fe(II)-S15 in 30 S subunits and to determine the ribosomal proteins that are involved in forming the mature S15-16 S rRNA environment. We have identified additional sites of Fe(II)-S15-directed cleavage in 30S subunits compared to the binary complex of Fe(II)-S15/16 S rRNA. Along with novel targets in the central domain, sites within the 5' and 3' minor domains are also cleaved. This suggests that during the course of 30S subunit assembly these elements are positioned in the vicinity of S15. Besides the previously determined role for S8, roles for S5, S6+S18, and S16 in altering the 16 S rRNA environment of S15 were established. These studies reveal that ribosomal proteins can alter the assembly of regions of the 30 S subunit from a considerable distance and influence the overall conformation of this ribonucleoprotein particle.
Collapse
Affiliation(s)
- Indu Jagannathan
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 4258 Molecular Biology Building, Ames, IA 50011, USA
| | | |
Collapse
|
32
|
Abstract
Yeast ribosomal protein S14 (rpS14) binds to two different RNA molecules: (1). helix 23 of 18S rRNA during its assembly into 40S ribosomal subunits and (2). a stem-loop structure in RPS14B pre-mRNA to repress expression of the RPS14B gene. We used the three-dimensional structure of Thermus thermophilus ribosomal protein S11, a bacterial homologue of rpS14, as a guide to identify conserved, surface-exposed amino acid residues that are likely to contact RNA. Eight residues that met these criteria were mutated to alanine. Most of these mutations affected interaction of rpS14 with either helix 23 or the RPS14B stem-loop RNA or both. Assembly of 40S ribosomal subunits and repression of RPS14B were also affected. S11 contains an extended carboxy-terminal domain rich in basic amino acids, which interacts with rRNA. We systematically evaluated the importance of each of the last ten amino acid residues in the basic, carboxy-terminal tail of yeast rpS14 for binding to RNA, by mutating each to alanine. Mutations in nine of these residues decreased binding of rpS14 to one or both of its RNA ligands. In addition, we examined the importance of four structural motifs in helix 23 of 18S rRNA for binding to rpS14. Mutations that altered either the terminal loop, the G-U base-pair closing the terminal loop, or the internal loop affected binding of rpS14 to helix 23.
Collapse
Affiliation(s)
- Pamela Antúnez de Mayolo
- Department of Biological Sciences, Carnegie Mellon University, 616 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
33
|
Noller HF, Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Lancaster L, Dallas A, Fredrick K, Earnest TN, Cate JH. Structure of the ribosome at 5.5 A resolution and its interactions with functional ligands. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:57-66. [PMID: 12762008 DOI: 10.1101/sqb.2001.66.57] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- H F Noller
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California at Santa Cruz, California 95064, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Scarlett DJG, McCaughan KK, Wilson DN, Tate WP. Mapping functionally important motifs SPF and GGQ of the decoding release factor RF2 to the Escherichia coli ribosome by hydroxyl radical footprinting. Implications for macromolecular mimicry and structural changes in RF2. J Biol Chem 2003; 278:15095-104. [PMID: 12458201 DOI: 10.1074/jbc.m211024200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the decoding release factor (RF) in translation termination is to couple cognate recognition of the stop codon in the mRNA with hydrolysis of the completed polypeptide from its covalently linked tRNA. For this to occur, the RF must interact with specific A-site components of the active centers within both the small and large ribosomal subunits. In this work, we have used directed hydroxyl radical footprinting to map the ribosomal binding site of the Escherichia coli class I release factor RF2, during translation termination. In the presence of the cognate UGA stop codon, residues flanking the universally conserved (250)GGQ(252) motif of RF2 were each shown to footprint to the large ribosomal subunit, specifically to conserved elements of the peptidyltransferase and GTPase-associated centers. In contrast, residues that flank the putative "peptide anticodon" of RF2, (205)SPF(207), were shown to make a footprint in the small ribosomal subunit at positions within well characterized 16 S rRNA motifs in the vicinity of the decoding center. Within the recently solved crystal structure of E. coli RF2, the GGQ and SPF motifs are separated by 23 A only, a distance that is incompatible with the observed cleavage sites that are up to 100 A apart. Our data suggest that RF2 may undergo gross conformational changes upon ribosome binding, the implications of which are discussed in terms of the mechanism of RF-mediated termination.
Collapse
Affiliation(s)
- Debbie-Jane G Scarlett
- Department of Biochemistry and Centre for Gene Research, University of Otago, P. O. Box 56, Dunedin, New Zealand
| | | | | | | |
Collapse
|
35
|
Disney MD, Haidaris CG, Turner DH. Uptake and antifungal activity of oligonucleotides in Candida albicans. Proc Natl Acad Sci U S A 2003; 100:1530-4. [PMID: 12552085 PMCID: PMC149866 DOI: 10.1073/pnas.0337462100] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is a significant cause of disease in immunocompromised humans. Because the number of people infected by fungal pathogens is increasing, strategies are being developed to target RNAs in fungi. This work shows that oligonucleotides can serve as therapeutics against C. albicans. In particular, oligonucleotides are taken up from cell culture medium in an energy-dependent process. After uptake, oligonucleotides, including RNA, remain mostly intact after 12 h in culture. For culture conditions designed for mammalian cells, intracellular concentrations of oligonucleotides in C. albicans exceed those in COS-7 mammalian cells, suggesting that uptake can provide selective targeting of fungi over human cells. A 19-mer 2'OMe (oligonucleotide with a 2'-O-methyl backbone) hairpin is described that inhibits growth of a C. albicans strain at pH < 4.0. This pH is easily tolerated in some parts of the body subject to C. albicans infections. In vivo dimethyl sulfate modification of ribosomal RNA and the decreased rate of protein synthesis suggest that this hairpin's activity may be due to targeting the ribosome in a way that does not depend on base pairing. Addition of anti-C. albicans oligonucleotides to COS-7 mammalian cells has no effect on cell growth. Evidently, oligonucleotides can selectively serve as therapeutics toward C. albicans and, presumably, other pathogens. Information from genome sequencing and functional genomics studies on C. albicans and other pathogens should allow rapid design and testing of other approaches for oligonucleotide therapies.
Collapse
Affiliation(s)
- Matthew D Disney
- Department of Chemistry and Center for Human Genetics and Molecular Pediatric Disease, University of Rochester, Rochester, NY 14627-0216, USA
| | | | | |
Collapse
|
36
|
Southworth DR, Brunelle JL, Green R. EFG-independent translocation of the mRNA:tRNA complex is promoted by modification of the ribosome with thiol-specific reagents. J Mol Biol 2002; 324:611-23. [PMID: 12460565 DOI: 10.1016/s0022-2836(02)01196-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Translation of polyphenylalanine from a polyuridine template by the ribosome in the absence of the elongation factors EFG and EFTu (and the energy derived from GTP hydrolysis) is promoted by modification of the ribosome with thiol-specific reagents such as para-chloromercuribenzoate (pCMB). Here, we examine the translational cycle of modified ribosomes and show that peptide bond formation and tRNA binding are largely unaffected, whereas translocation of the mRNA:tRNA complex is substantially promoted by pCMB modification. The translocation movements that we observe are authentic by multiple criteria including the processivity of translation, accuracy of movement (three-nucleotide) along a defined mRNA template and sensitivity to antibiotics. Characterization of the modified ribosomes reveals that the protein content of the ribosomes is not depleted but that their subunit association properties are severely compromised. These data suggest that molecular targets (ribosomal proteins) in the interface region of the ribosome are critical barriers that influence the translocation of the mRNA:tRNA complex.
Collapse
Affiliation(s)
- Daniel R Southworth
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
37
|
Ganoza MC, Kiel MC, Aoki H. Evolutionary conservation of reactions in translation. Microbiol Mol Biol Rev 2002; 66:460-85, table of contents. [PMID: 12209000 PMCID: PMC120792 DOI: 10.1128/mmbr.66.3.460-485.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current X-ray diffraction and cryoelectron microscopic data of ribosomes of eubacteria have shed considerable light on the molecular mechanisms of translation. Structural studies of the protein factors that activate ribosomes also point to many common features in the primary sequence and tertiary structure of these proteins. The reconstitution of the complex apparatus of translation has also revealed new information important to the mechanisms. Surprisingly, the latter approach has uncovered a number of proteins whose sequence and/or structure and function are conserved in all cells, indicating that the mechanisms are indeed conserved. The possible mechanisms of a new initiation factor and two elongation factors are discussed in this context.
Collapse
Affiliation(s)
- M Clelia Ganoza
- C. H. Best Institute, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6.
| | | | | |
Collapse
|
38
|
Bélanger F, Léger M, Saraiya AA, Cunningham PR, Brakier-Gingras L. Functional studies of the 900 tetraloop capping helix 27 of 16S ribosomal RNA. J Mol Biol 2002; 320:979-89. [PMID: 12126619 DOI: 10.1016/s0022-2836(02)00550-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 900 tetraloop (positions 898-901) of Escherichia coli 16S rRNA caps helix 27, which is involved in a conformational switch crucial for the decoding function of the ribosome. This tetraloop forms a GNRA motif involved in intramolecular RNA-RNA interactions with its receptor in helix 24 of 16S rRNA. It is involved also in an intersubunit bridge, via an interaction with helix 67 in domain IV of 23S rRNA. Using a specialized ribosome system and an instant-evolution procedure, the four nucleotides of this loop were randomized and 15 functional mutants were selected in vivo. Positions 899 and 900, responsible for most of the tetraloop/receptor interactions, were found to be the most critical for ribosome activity. Functional studies showed that mutations in the 900 tetraloop impair subunit association and decrease translational fidelity. Computer modeling of the mutations allows correlation of the effect of mutations with perturbations of the tetraloop/receptor interactions.
Collapse
Affiliation(s)
- François Bélanger
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
39
|
Amarantos I, Zarkadis IK, Kalpaxis DL. The identification of spermine binding sites in 16S rRNA allows interpretation of the spermine effect on ribosomal 30S subunit functions. Nucleic Acids Res 2002; 30:2832-43. [PMID: 12087167 PMCID: PMC117059 DOI: 10.1093/nar/gkf404] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2002] [Revised: 05/13/2002] [Accepted: 05/13/2002] [Indexed: 11/14/2022] Open
Abstract
A photoreactive analogue of spermine, N1-azidobenzamidino (ABA)-spermine, was covalently attached after irradiation to Escherichia coli 30S ribosomal subunits or naked 16S rRNA. By means of RNase H digestion and primer extension, the cross-linking sites of ABA-spermine in naked 16S rRNA were characterised and compared with those identified in 30S subunits. The 5' domain, the internal and terminal loops of helix H24, as well as the upper part of helix H44 in naked 16S rRNA, were found to be preferable binding sites for polyamines. Association of 16S rRNA with ribosomal proteins facilitated its interaction with photoprobe, except for 530 stem-loop nt, whose modification by ABA-spermine was abolished. Association of 30S with 50S subunits, poly(U) and AcPhe-tRNA (complex C) further altered the susceptibility of ABA-spermine cross-linking to 16S rRNA. Complex C, modified in its 30S subunit by ABA-spermine, reacted with puromycin similarly to non-photolabelled complex. On the contrary, poly(U)-programmed 70S ribosomes reconstituted from photolabelled 30S subunits and untreated 50S subunits bound AcPhe-tRNA more efficiently than untreated ribosomes, but were less able to recognise and reject near cognate aminoacyl-tRNA. The above can be interpreted in terms of conformational changes in 16S rRNA, induced by the incorporation of ABA-spermine.
Collapse
MESH Headings
- Azides/chemistry
- Azides/metabolism
- Azides/pharmacology
- Binding Sites/genetics
- Cross-Linking Reagents
- Kinetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Phe/metabolism
- Ribonuclease H/metabolism
- Ribosomes/drug effects
- Ribosomes/metabolism
- Spermine/analogs & derivatives
- Spermine/chemistry
- Spermine/metabolism
- Spermine/pharmacology
- Tritium
Collapse
Affiliation(s)
- Ioannis Amarantos
- Laboratory of Biochemistry and Laboratory of Biology, School of Medicine, University of Patras, GR-26500 Patras, Greece
| | | | | |
Collapse
|
40
|
Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J. Structure of the 80S ribosome from Saccharomyces cerevisiae--tRNA-ribosome and subunit-subunit interactions. Cell 2001; 107:373-86. [PMID: 11701127 DOI: 10.1016/s0092-8674(01)00539-6] [Citation(s) in RCA: 387] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A cryo-EM reconstruction of the translating yeast 80S ribosome was analyzed. Computationally separated rRNA and protein densities were used for docking of appropriately modified rRNA models and homology models of yeast ribosomal proteins. The core of the ribosome shows a remarkable degree of conservation. However, some significant differences in functionally important regions and dramatic changes in the periphery due to expansion segments and additional ribosomal proteins are evident. As in the bacterial ribosome, bridges between the subunits are mainly formed by RNA contacts. Four new bridges are present at the periphery. The position of the P site tRNA coincides precisely with its prokaryotic counterpart, with mainly rRNA contributing to its molecular environment. This analysis presents an exhaustive inventory of an eukaryotic ribosome at the molecular level.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cryoelectron Microscopy/methods
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 5.8S/chemistry
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- C M Spahn
- Howard Hughes Medical Institute, Health Research Inc., Albany, NY 12201, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Hydroxyl radical footprinting and directed probing from Fe(II)-derivatized IF3 have been used to map the interaction of IF3 relative to 16S rRNA and tRNA(Met)(f) in the 30S ribosomal subunit. Our results place the two domains of IF3 on opposite sides of the initiator tRNA, with the C domain at the platform interface and the N domain at the E site. The C domain coincides with the location of helix 69 of 23S rRNA, explaining the ability of IF3 to block subunit association. The N domain neighbors proteins S7 and S11 and may interfere with E site tRNA binding. Our model suggests that IF3 influences initiator tRNA selection indirectly.
Collapse
Affiliation(s)
- A Dallas
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
42
|
Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF. Crystal structure of the ribosome at 5.5 A resolution. Science 2001; 292:883-96. [PMID: 11283358 DOI: 10.1126/science.1060089] [Citation(s) in RCA: 1448] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We describe the crystal structure of the complete Thermus thermophilus 70S ribosome containing bound messenger RNA and transfer RNAs (tRNAs) at 5.5 angstrom resolution. All of the 16S, 23S, and 5S ribosomal RNA (rRNA) chains, the A-, P-, and E-site tRNAs, and most of the ribosomal proteins can be fitted to the electron density map. The core of the interface between the 30S small subunit and the 50S large subunit, where the tRNA substrates are bound, is dominated by RNA, with proteins located mainly at the periphery, consistent with ribosomal function being based on rRNA. In each of the three tRNA binding sites, the ribosome contacts all of the major elements of tRNA, providing an explanation for the conservation of tRNA structure. The tRNAs are closely juxtaposed with the intersubunit bridges, in a way that suggests coupling of the 20 to 50 angstrom movements associated with tRNA translocation with intersubunit movement.
Collapse
MESH Headings
- Anticodon
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Crystallography, X-Ray
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Thermus thermophilus/chemistry
- Thermus thermophilus/ultrastructure
Collapse
Affiliation(s)
- M M Yusupov
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Morosyuk SV, SantaLucia J, Cunningham PR. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA. III. Functional analysis of the 690 loop. J Mol Biol 2001; 307:213-28. [PMID: 11243815 DOI: 10.1006/jmbi.2000.4432] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An instant-evolution experiment was performed on the eight nucleotides comprising the loop region of the 690 hairpin in Escherichia coli 16 S ribosomal RNA. Positions 690 to 697 were randomly mutated and 101 unique functional mutants were isolated, sequenced and analyzed for function in vivo. Non-random nucleotide distributions were observed at each of the mutated positions except 693 and 694. Nucleotide identity significantly affected ribosome function at positions 690, 695, 696 and 697. Pyrimidines were absent at position 696 in the instant-evolution pool as were C at position 691 and G at position 697. A highly significant covariation was observed between nucleotides 690 and 697. No functional double mutants at positions 691 and 696 were obtained from the instant-evolution pool. In our NMR structure of the 690 loop, both the G690.U697 and G691.A696 form sheared hydrogen-bonded mismatches. To further examine the functional constraints between these paired nucleotides, one set of site-directed mutations was constructed at positions 690:697 and another set was constructed at positions 691:696. Functional analysis of the site-directed mutants is consistent with our instant-evolution findings and revealed constraints on the placement of specific functional groups observed in the NMR structure. Ten instant-evolution mutants were isolated that are more functional than the wild-type. Hyperactivity in these mutants correlates with a single mutation at position 693.
Collapse
MESH Headings
- Base Pair Mismatch/physiology
- Conserved Sequence
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/physiology
- Evolution, Molecular
- Magnetic Resonance Spectroscopy
- Models, Molecular
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Phylogeny
- Protons
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/classification
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/physiology
Collapse
Affiliation(s)
- S V Morosyuk
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
44
|
Morosyuk SV, Cunningham PR, SantaLucia J. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA. II. NMR solution structure. J Mol Biol 2001; 307:197-211. [PMID: 11243814 DOI: 10.1006/jmbi.2000.4431] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solution structure of the conserved 690 hairpin from Escherichia coli 16 S rRNA was determined by NMR spectroscopy. The 690 loop is located at the surface of the 30 S subunit in the platform region and has been implicated in interactions with P-site bound tRNA, E-site mRNA, S11 binding, IF3 binding, and in RNA-RNA interactions with the 790 loop of 16 S rRNA and domain IV of 23 S rRNA. The structure reveals a novel sheared type G690.U697 base-pair with a single hydrogen bond from the G690 amino to U697-04. G691 and A696 also form a sheared pair and U692 forms a U-turn with an H-bond to the A695 non-bridging phosphate oxygen. The sheared pairs and U-turn result in the continuous single-stranded stacking of five residues from 6693 to U697 with their Watson-Crick functional groups exposed in the minor groove. The overall fold of the 690 hairpin is similar to the anticodon loop of tRNA. The structure provides an explanation for chemical protection patterns in the loop upon interaction with tRNA, the 50 S subunit, and S11. In vivo genetic studies demonstrate the functional importance of the motifs observed in the solution structure of the 690 hairpin.
Collapse
Affiliation(s)
- S V Morosyuk
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
45
|
Abstract
Chemical cleavage is developing into a powerful tool for analysis and characterization of nucleic acids. Phenanthroline-Cu(II) cleavage has been used extensively for studies of DNA for the last two decades, but recently has been applied to structural studies of RNA as well. This approach has been used to study the structure and structural changes occurring in ribosomal RNA within the ribosomes. In this article we discuss the mechanism by which phenanthroline cleaves, the applications possible using this approach, and the results that can be obtained. Protocols for use of phenanthroline are outlined as well.
Collapse
Affiliation(s)
- G W Muth
- Division of Biological Sciences and Department of Chemistry, University of Montana, Missoula, Montana 59812, USA
| | | |
Collapse
|
46
|
Serganov A, Bénard L, Portier C, Ennifar E, Garber M, Ehresmann B, Ehresmann C. Role of conserved nucleotides in building the 16 S rRNA binding site for ribosomal protein S15. J Mol Biol 2001; 305:785-803. [PMID: 11162092 DOI: 10.1006/jmbi.2000.4354] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribosomal protein S15 recognizes a highly conserved target on 16 S rRNA, which consists of two distinct binding regions. Here, we used extensive site-directed mutagenesis on a Escherichia coli 16 S rRNA fragment containing the S15 binding site, to investigate the role of conserved nucleotides in protein recognition and to evaluate the relative contribution of the two sites. The effect of mutations on S15 recognition was studied by measuring the relative binding affinity, RNA probing and footprinting. The crystallographic structure of the Thermus thermophilus complex allowed molecular modelling of the E. coli complex and facilitated interpretation of biochemical data. Binding is essentially driven by site 1, which includes a three-way junction constrained by a conserved base triple and cross-strand stacking. Recognition is based mainly on shape complementarity, and the role of conserved nucleotides is to maintain a unique backbone geometry. The wild-type base triple is absolutely required for protein interaction, while changes in the conserved surrounding nucleotides are partially tolerated. Site 2, which provides functional groups in a conserved G-U/G-C motif, contributes only modestly to the stability of the interaction. Binding to this motif is dependent on binding at site 1 and is allowed only if the two sites are in the correct relative orientation. Non-conserved bulged nucleotides as well as a conserved purine interior loop, although not directly involved in recognition, are used to provide an appropriate flexibility between the two sites. In addition, correct binding at the two sites triggers conformational adjustments in the purine interior loop and in a distal region, which are known to be involved for subsequent binding of proteins S6 and S18. Thus, the role of site 1 is to anchor S15 to the rRNA, while binding at site 2 is aimed to induce a cascade of events required for subunit assembly.
Collapse
Affiliation(s)
- A Serganov
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Hartsch T, Wimberly BT, Ramakrishnan V. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 2001; 291:498-501. [PMID: 11228145 DOI: 10.1126/science.1057766] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Initiation of translation at the correct position on messenger RNA is essential for accurate protein synthesis. In prokaryotes, this process requires three initiation factors: IF1, IF2, and IF3. Here we report the crystal structure of a complex of IF1 and the 30S ribosomal subunit. Binding of IF1 occludes the ribosomal A site and flips out the functionally important bases A1492 and A1493 from helix 44 of 16S RNA, burying them in pockets in IF1. The binding of IF1 causes long-range changes in the conformation of H44 and leads to movement of the domains of 30S with respect to each other. The structure explains how localized changes at the ribosomal A site lead to global alterations in the conformation of the 30S subunit.
Collapse
Affiliation(s)
- A P Carter
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Kelley ST, Akmaev VR, Stormo GD. Improved statistical methods reveal direct interactions between 16S and 23S rRNA. Nucleic Acids Res 2000; 28:4938-43. [PMID: 11121485 PMCID: PMC115233 DOI: 10.1093/nar/28.24.4938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent biochemical studies have indicated a number of regions in both the 16S and 23S rRNA that are exposed on the ribosomal subunit surface. In order to predict potential interactions between these regions we applied novel phylogenetically-based statistical methods to detect correlated nucleotide changes occurring between the rRNA molecules. With these methods we discovered a number of highly significant correlated changes between different sets of nucleotides in the two ribosomal subunits. The predictions with the highest correlation values belong to regions of the rRNA subunits that are in close proximity according to recent crystal structures of the entire ribosome. We also applied a new statistical method of detecting base triple interactions within these same rRNA subunit regions. This base triple statistic predicted a number of new base triples not detected by pair-wise interaction statistics within the rRNA molecules. Our results suggest that these statistical methods may enhance the ability to detect novel structural elements both within and between RNA molecules.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Computational Biology
- Databases as Topic
- Genes, Archaeal/genetics
- Genes, Bacterial/genetics
- Molecular Sequence Data
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Sequence Alignment
- Statistics as Topic
Collapse
Affiliation(s)
- S T Kelley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.
| | | | | |
Collapse
|
49
|
Noah JW, Shapkina T, Wollenzien P. UV-induced crosslinks in the 16S rRNAs of Escherichia coli, Bacillus subtilis and Thermus aquaticus and their implications for ribosome structure and photochemistry. Nucleic Acids Res 2000; 28:3785-92. [PMID: 11000271 PMCID: PMC110760 DOI: 10.1093/nar/28.19.3785] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2000] [Revised: 07/31/2000] [Accepted: 07/31/2000] [Indexed: 11/13/2022] Open
Abstract
Sixteen long-range crosslinks are induced in Escherichia coli 16S rRNA by far-UV irradiation. Crosslinking patterns in two other organisms, Bacillus subtilis and Thermus aquaticus, were investigated to determine if the number and location of crosslinks in E.coli occur because of unusually photoreactive nucleotides at particular locations in the rRNA sequence. Thirteen long-range crosslinks in B.subtilis and 15 long-range crosslinks in T.aquaticus were detected by gel electrophoresis and 10 crosslinks in each organism were identified completely by reverse transcription analysis. Of the 10 identified crosslinks in B.subtilis, eight correspond exactly to E.coli crosslinks and two crosslinks are formed close to sites of crosslinks in E.coli. Of the 10 identified crosslinks in T.aquaticus, five correspond exactly to E.coli crosslinks, three are formed close to E.coli crosslinking sites, one crosslink corresponds to a UV laser irradiation-induced crosslink in E.coli and the last is not seen in E.coli. The overall similarity of crosslink positions in the three organisms suggests that the crosslinks arise from tertiary interactions that are highly conserved but with differences in detail in some regions.
Collapse
MESH Headings
- Bacillus subtilis/cytology
- Bacillus subtilis/genetics
- Bacillus subtilis/radiation effects
- Base Composition
- Base Sequence
- Binding Sites
- Conserved Sequence/genetics
- Conserved Sequence/radiation effects
- Escherichia coli/cytology
- Escherichia coli/genetics
- Escherichia coli/radiation effects
- Hot Temperature
- Lasers
- Molecular Sequence Data
- Nucleic Acid Conformation/radiation effects
- Nucleotides/chemistry
- Nucleotides/genetics
- Nucleotides/metabolism
- Nucleotides/radiation effects
- Photochemistry
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Bacterial/radiation effects
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 16S/radiation effects
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/radiation effects
- Thermus/cytology
- Thermus/genetics
- Thermus/radiation effects
- Transcription, Genetic
- Ultraviolet Rays
Collapse
Affiliation(s)
- J W Noah
- Department of Biochemistry, 128 Polk Hall, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | | | |
Collapse
|
50
|
Gutell RR, Cannone JJ, Konings D, Gautheret D. Predicting U-turns in ribosomal RNA with comparative sequence analysis. J Mol Biol 2000; 300:791-803. [PMID: 10891269 DOI: 10.1006/jmbi.2000.3900] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The U-turn is a well-known RNA motif characterized by a sharp reversal of the RNA backbone following a single-stranded uridine base. In experimentally determined U-turn motifs, the nucleotides 3' to the turn are frequently involved in tertiary interactions, rendering this motif particularly attractive in RNA modeling and functional studies. The U-turn signature is composed of an UNR sequence pattern flanked by a Y:Y, Y:A (Y=pyrimidine) or G:A base juxtaposition. We have identified 33 potential UNR-type U-turns and 25 related GNRA-type U-turns in a large set of aligned 16 S and 23 S rRNA sequences. U-turn candidates occur in hairpin loops (34 times) as well as in internal and multi-stem loops (24 times). These are classified into ten families based on loop type, sequence pattern (UNR or GNRA) and the nature of the closing base juxtaposition. In 13 cases, the bases on the 3' side of the turn, or on the immediate 5' side, are involved in tertiary covariations, making these sites strong candidates for tertiary interactions.
Collapse
MESH Headings
- Animals
- Anticodon/chemistry
- Anticodon/genetics
- Base Pairing/genetics
- Base Sequence
- Chloroplasts/genetics
- Consensus Sequence/genetics
- Hydrogen Bonding
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- Sequence Alignment
Collapse
Affiliation(s)
- R R Gutell
- Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway, Austin, TX, 78712-1095, USA.
| | | | | | | |
Collapse
|