1
|
Tersteeg S, Mrozowich T, Henrickson A, Demeler B, Patel TR. Purification and characterization of inorganic pyrophosphatase for in vitro RNA transcription. Biochem Cell Biol 2022; 100:425-436. [PMID: 35926232 PMCID: PMC10311840 DOI: 10.1139/bcb-2022-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inorganic pyrophosphatase (iPPase) is an enzyme that cleaves pyrophosphate into two phosphate molecules. This enzyme is an essential component of in vitro transcription (IVT) reactions for RNA preparation as it prevents pyrophosphate from precipitating with magnesium, ultimately increasing the rate of the IVT reaction. Large-scale RNA production is often required for biochemical and biophysical characterization studies of RNA, therefore requiring large amounts of IVT reagents. Commercially purchased iPPase is often the most expensive component of any IVT reaction. In this paper, we demonstrate that iPPase can be produced in large quantities and high quality using a reasonably generic laboratory facility and that laboratory-purified iPPase is as effective as commercially available iPPase. Furthermore, using size exclusion chromatography coupled with multi-angle light scattering and dynamic light scattering, analytical ultracentrifugation, and small-angle X-ray scattering, we demonstrate that yeast iPPase can form tetramers and hexamers in solution as well as the enzymatically active dimer. Our work provides a robust protocol for laboratories involved with RNA in vitro transcription to efficiently produce active iPPase, significantly reducing the financial strain of large-scale RNA production.
Collapse
Affiliation(s)
- Scott Tersteeg
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Tyler Mrozowich
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Borries Demeler
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Trushar R. Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
2
|
Wu QF, Wang WS, Chen SB, Xu B, Li YD, Chen JH. Crystal Structure of Inorganic Pyrophosphatase From Schistosoma japonicum Reveals the Mechanism of Chemicals and Substrate Inhibition. Front Cell Dev Biol 2021; 9:712328. [PMID: 34458268 PMCID: PMC8386120 DOI: 10.3389/fcell.2021.712328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Soluble inorganic pyrophosphatases (PPases) are essential for facilitating the growth and development of organisms, making them attractive functional proteins. To provide insight into the molecular basis of PPases in Schistosoma japonicum (SjPPase), we expressed the recombinant SjPPase, analyzed the hydrolysis mechanism of inorganic pyrophosphate (PPi), and measured its activity. Moreover, we solved the crystal structure of SjPPase in complex with orthophosphate (Pi) and performed PPi and methylene diphosphonic acid (MDP) docking into the active site. Our results suggest that the SjPPase possesses PPi hydrolysis activity, and the activity declines with increased MDP or NaF concentration. However, the enzyme shows unexpected substrate inhibition properties. Through PPi metabolic pathway analysis, the physiological action of substrate inhibition might be energy saving, adaptably cytoprotective, and biosynthetic rate regulating. Furthermore, the structure of apo-SjPPase and SjPPase with Pi has been solved at 2.6 and 2.3 Å, respectively. The docking of PPi into the active site of the SjPPase-Pi complex revealed that substrate inhibition might result from blocking Pi exit due to excess PPi in the SjPPase-Pi complex of the catalytic cycle. Our results revealed the structural features of apo-SjPPase and the SjPPase-Pi complex by X-ray crystallography, providing novel insights into the physiological functions of PPase in S. japonicum without the PPi transporter and the mechanism of its substrate inhibition.
Collapse
Affiliation(s)
- Qun-Feng Wu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China.,Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, China
| | - Wei-Si Wang
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China
| | - Yong-Dong Li
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China.,Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Shanghai, China.,The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Tezuka Y, Okada M, Tada Y, Yamauchi J, Nishigori H, Sanbe A. Regulation of neurite growth by inorganic pyrophosphatase 1 via JNK dephosphorylation. PLoS One 2013; 8:e61649. [PMID: 23626709 PMCID: PMC3633968 DOI: 10.1371/journal.pone.0061649] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/12/2013] [Indexed: 02/07/2023] Open
Abstract
Neural cell differentiation during development is controlled by multiple signaling pathways, in which protein phosphorylation and dephosphorylation play an important role. In this study, we examined the role of pyrophosphatase1 (PPA1) in neuronal differentiation using the loss and gain of function analysis. Neuronal differentiation induced by external factors was studied using a mouse neuroblastoma cell line (N1E115). The neuronal like differentiation in N1E115 cells was determined by morphological analysis based on neurite growth length. In order to analyze the loss of the PPA1 function in N1E115, si-RNA specifically targeting PPA1 was generated. To study the effect of PPA1 overexpression, an adenoviral gene vector containing the PPA1 gene was utilized to infect N1E115 cells. To address the need for pyrophosphatase activity in PPA1, D117A PPA1, which has inactive pyrophosphatase, was overexpressed in N1E115 cells. We used valproic acid (VPA) as a neuronal differentiator to examine the effect of PPA1 in actively differentiated N1E115 cells. Si-PPA1 treatment reduced the PPA1 protein level and led to enhanced neurite growth in N1E115 cells. In contrast, PPA1 overexpression suppressed neurite growth in N1E115 cells treated with VPA, whereas this effect was abolished in D117A PPA1. PPA1 knockdown enhanced the JNK phosphorylation level, and PPA1 overexpression suppressed it in N1E115 cells. It seems that recombinant PPA1 can dephosphorylate JNK while no alteration of JNK phosphorylation level was seen after treatment with recombinant PPA1 D117A. Enhanced neurite growth by PPA1 knockdown was also observed in rat cortical neurons. Thus, PPA1 may play a role in neuronal differentiation via JNK dephosphorylation.
Collapse
Affiliation(s)
- Yu Tezuka
- Department of Pharmacotherapeutics, School of Pharmacy, Iwate Medical University, Iwate, Japan
| | - Mizuki Okada
- Department of Pharmacotherapeutics, School of Pharmacy, Iwate Medical University, Iwate, Japan
| | - Yuka Tada
- Department of Pharmacotherapeutics, School of Pharmacy, Iwate Medical University, Iwate, Japan
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hideo Nishigori
- Department of Pharmacotherapeutics, School of Pharmacy, Iwate Medical University, Iwate, Japan
| | - Atsushi Sanbe
- Department of Pharmacotherapeutics, School of Pharmacy, Iwate Medical University, Iwate, Japan
- * E-mail:
| |
Collapse
|
4
|
Yang L, Liao RZ, Yu JG, Liu RZ. DFT study on the mechanism of Escherichia coli inorganic pyrophosphatase. J Phys Chem B 2009; 113:6505-10. [PMID: 19366250 DOI: 10.1021/jp810003w] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli inorganic pyrophosphatase (E-PPase) is a tetranuclear divalent metal dependent enzyme that catalyzes the reversible interconversion of pyrophosphate (PPi) and orthophosphate (Pi), with Mg(2+) conferring the highest activity. In the present work, the reaction mechanism of E-PPase is investigated using the hybrid density functional theory (DFT) method B3LYP with a large model of the active site. Our calculated results shed further light on the detailed reaction mechanism. In particular, the important residue Asp67, either protonated or unprotonated, was taken into account in the present calculations. Our calculations indicated that a protonated Asp67 is crucial for the reverse reaction to take place; however, it is lost sight of in the forward reaction. The bridging hydroxide is shown to be capable of performing nucleophilic in-line attack on the substrate from its bridging position in the presence of four Mg(2+) ions. During the catalysis, the roles of the four magnesium ions are suggested to provide a necessary conformation of the active site, facilitate the nucleophile formation and substrate orientation, and stabilize the trigonal bipyramid transition state, thereby lowering the barrier for the nucleophilic attack.
Collapse
Affiliation(s)
- Ling Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | | | | | | |
Collapse
|
5
|
Hsiao YY, Pan YJ, Hsu SH, Huang YT, Liu TH, Lee CH, Lee CH, Liu PF, Chang WC, Wang YK, Chien LF, Pan RL. Functional roles of arginine residues in mung bean vacuolar H+-pyrophosphatase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:965-73. [PMID: 17543272 DOI: 10.1016/j.bbabio.2007.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/26/2007] [Accepted: 04/27/2007] [Indexed: 10/23/2022]
Abstract
Plant vacuolar H+-translocating inorganic pyrophosphatase (V-PPase EC 3.6.1.1) utilizes inorganic pyrophosphate (PPi) as an energy source to generate a H+ gradient potential for the secondary transport of ions and metabolites across the vacuole membrane. In this study, functional roles of arginine residues in mung bean V-PPase were determined by site-directed mutagenesis. Alignment of amino-acid sequence of K+-dependent V-PPases from several organisms showed that 11 of all 15 arginine residues were highly conserved. Arginine residues were individually substituted by alanine residues to produce R-->A-substituted V-PPases, which were then heterologously expressed in yeast. The characteristics of mutant variants were subsequently scrutinized. As a result, most R-->A-substituted V-PPases exhibited similar enzymatic activities to the wild-type with exception that R242A, R523A, and R609A mutants markedly lost their abilities of PPi hydrolysis and associated H+-translocation. Moreover, mutation on these three arginines altered the optimal pH and significantly reduced K+-stimulation for enzymatic activities, implying a conformational change or a modification in enzymatic reaction upon substitution. In particular, R242A performed striking resistance to specific arginine-modifiers, 2,3-butanedione and phenylglyoxal, revealing that Arg242 is most likely the primary target residue for these two reagents. The mutation at Arg242 also removed F- inhibition that is presumably derived from the interfering in the formation of substrate complex Mg2+-PPi. Our results suggest accordingly that active pocket of V-PPase probably contains the essential Arg242 which is embedded in a more hydrophobic environment.
Collapse
Affiliation(s)
- Yi-Yuong Hsiao
- Department of Life Sciences and Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin Chu 30043, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lee MJ, Huang H, Lin W, Yang RR, Liu CL, Huang CY. Activation of Helicobacter pylori inorganic pyrophosphatase and the importance of Cys16 in thermostability, enzyme activation and quaternary structure. Arch Microbiol 2007; 188:473-82. [PMID: 17598086 DOI: 10.1007/s00203-007-0267-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 05/16/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
The inorganic pyrophosphatase from the human pathogen Helicobacter pylori (HpPPase) is a family I PPase. It is a homohexamer consisting of identical 20-kDa subunits. Hydrolysis of inorganic pyrophosphate (PP(i)) by HpPPase relied on the presence of magnesium and followed Michaelis-Menten kinetics, with k (cat) being 344 s(-1) and K (m) being 83 microM at pH 8.0, which was the optimal pH for catalysis. HpPPase was activated by both thiol and non-thiol reductants, distinct from the previously suggested inactivation/reactivation process involving formation and breakage of disulfide bonds. Substitution of Cys16 of HpPPase, which was neither located at the active site nor evolutionarily conserved, resulted in a loss of 50% activity and a reduction in sensitivity to reductants and oxidized glutathione. In addition, the C16S replacement caused a considerable disruption in thermostability, which exceeded that resulted from active-site mutations such as Y140F HpPPase and those of Escherichia coli. Although Cys16 was not located at the subunit interface of the hexameric HpPPase, sedimentation analysis results suggested that the C16S substitution destabilized HpPPase through impairing trimer-trimer interactions. This study provided the first evidences that the single cysteine residue of HpPPase was involved in enzyme activation, thermostability, and stabilization of quaternary structure.
Collapse
Affiliation(s)
- Mon-Juan Lee
- Institute of Biotechnology, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | | | | | | | | | | |
Collapse
|
7
|
Samygina VR, Moiseev VM, Rodina EV, Vorobyeva NN, Popov AN, Kurilova SA, Nazarova TI, Avaeva SM, Bartunik HD. Reversible Inhibition of Escherichia coli Inorganic Pyrophosphatase by Fluoride: Trapped Catalytic Intermediates in Cryo-crystallographic Studies. J Mol Biol 2007; 366:1305-17. [PMID: 17196979 DOI: 10.1016/j.jmb.2006.11.082] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 11/29/2006] [Indexed: 11/22/2022]
Abstract
Here, we describe high-resolution X-ray structures of Escherichia coli inorganic pyrophosphatase (E-PPase) complexed with the substrate, magnesium, or manganese pyrophosphate. The structures correspond to steps in the catalytic synthesis of enzyme-bound pyrophosphate (PP(i)) in the presence of fluoride as an inhibitor of hydrolysis. The catalytic reaction intermediates were trapped applying a new method that we developed for initiating hydrolytic activity in the E-PPase crystal. X-ray structures were obtained for three consecutive states of the enzyme in the course of hydrolysis. Comparative analysis of these structures showed that the Mn2+-supported hydrolysis of the phosphoanhydride bond is followed by a fast release of the leaving phosphate from the P1 site. The electrophilic phosphate P2 is trapped in the "down" conformation. Its movement into the "up" position most likely represents the rate-limiting step of Mn2+-supported hydrolysis. We further determined the crystal structure of the Arg43Gln mutant variant of E-PPase complexed with one phosphate and four Mn ions.
Collapse
Affiliation(s)
- V R Samygina
- A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninsky Pr. 59, 119333 Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Espiau B, Lemercier G, Ambit A, Bringaud F, Merlin G, Baltz T, Bakalara N. A soluble pyrophosphatase, a key enzyme for polyphosphate metabolism in Leishmania. J Biol Chem 2005; 281:1516-23. [PMID: 16291745 DOI: 10.1074/jbc.m506947200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We report the functional characterization in Leishmania amazonensis of a soluble pyrophosphatase (LaVSP1) that localizes in acidocalcisomes, a vesicular acidic compartment. LaVSP1 is preferentially expressed in metacyclic forms. Experiments with dominant negative mutants show the requirement of LaVSP1 functional expression for metacyclogenesis and virulence in mice. Depending on the pH and the cofactors Mg2+ or Zn2+, both present in acidocalcisomes, LaVSP1 hydrolyzes either inorganic pyrophosphate (Km = 92 microM, kcat = 125 s(-1)), tripolyphosphate (Km = 1153 microM, kcat = 131 s(-1)), or polyphosphate of 28 residues (Km = 123 microM, kcat = 8 s(-1)). Predicted structural analysis suggests that the structural orientation of the residue Lys78 in LaVSP1 accounts for the observed increase in Km compared with the yeast pyrophosphatase and for the ability of trypanosomatid VSP1 enzymes to hydrolyze polyphosphate. These results make the VSP1 enzyme an attractive drug target against trypanosomatid parasites.
Collapse
Affiliation(s)
- Benoît Espiau
- Laboratoire de Génomique Fonctionnelle des Trypanosomatides, Université Victor Segalen Bordeaux 2, UMR-CNRS 5162, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Gómez-García MR, Ruiz-Pérez LM, González-Pacanowska D, Serrano A. A novel calcium-dependent soluble inorganic pyrophosphatase from the trypanosomatidLeishmania major. FEBS Lett 2004; 560:158-66. [PMID: 14988016 DOI: 10.1016/s0014-5793(04)00097-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 12/24/2003] [Accepted: 01/21/2004] [Indexed: 11/28/2022]
Abstract
A single-copy gene IPP encoding a putative soluble inorganic pyrophosphatase (LmsPPase, EC 3.6.1.1) was identified in the genome of the parasite protozoan Leishmania major. The full-length coding sequence (ca. 0.8 kb) was obtained from genomic DNA by polymerase chain reaction (PCR) and cloned into an Escherichia coli expression vector, and was overexpressed for functional protein purification and characterization. The recombinant LmsPPase, purified to electrophoretic homogeneity by a two-step chromatography procedure, exhibited a predicted molecular mass of ca. 30 kDa. The enzyme has an absolute requirement for divalent cations, exhibits a pH optimum of 7.5-8.0 and does not hydrolyze polyphosphates or adenosine triphosphate (ATP). LmsPPase differs from previously studied soluble pyrophosphatases with respect to cation selectivity, Ca(2+) being far more effective than Mg(2+). Comparisons to known sPPases show a short N-terminal extension predicted to be a mitochondrial transit peptide, and changes in active-site residues and the neighboring region. Subcellular fractionation of L. major promastigotes suggests a mitochondrial localization. Molecular phylogenetic analysis indicates that LmsPPase is a highly divergent eukaryotic Family I sPPase, perhaps an ancestral class of eukaryotic sPPases functionally adapted to a calcium-rich, probably mitochondrial, environment.
Collapse
Affiliation(s)
- María R Gómez-García
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, c/Ventanilla n degrees 11, 18001 Granada, Spain
| | | | | | | |
Collapse
|
10
|
Kuranova IP, Polyakov KM, Smirnova EA, Höhne WE, Lamzin VS, Meijer R. Three-dimensional structure of Saccharomyces cerevisiae inorganic pyrophosphatase complexed with cobalt and phosphate ions. CRYSTALLOGR REP+ 2003. [DOI: 10.1134/1.1627437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Samygina VR, Popov AN, Rodina EV, Vorobyeva NN, Lamzin VS, Polyakov KM, Kurilova SA, Nazarova TI, Avaeva SM. The structures of Escherichia coli inorganic pyrophosphatase complexed with Ca(2+) or CaPP(i) at atomic resolution and their mechanistic implications. J Mol Biol 2001; 314:633-45. [PMID: 11846572 DOI: 10.1006/jmbi.2001.5149] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two structures of Escherichia coli soluble inorganic pyrophosphatase (EPPase) complexed with calcium pyrophosphate (CaPP(i)-EPPase) and with Ca(2+) (Ca(2+)-EPPase) have been solved at 1.2 and 1.1 A resolution, respectively. In the presence of Mg(2+), this enzyme cleaves pyrophosphate (PP(i)) into two molecules of orthophosphate (P(i)). This work has enabled us to locate PP(i) in the active site of the inorganic pyrophosphatases family in the presence of Ca(2+), which is an inhibitor of EPPase.Upon PP(i) binding, two Ca(2+) at M1 and M2 subsites move closer together and one of the liganded water molecules becomes bridging. The mutual location of PP(i) and the bridging water molecule in the presence of inhibitor cation is catalytically incompetent. To make a favourable PP(i) attack by this water molecule, modelling of a possible hydrolysable conformation of PP(i) in the CaPP(i)-EPPase active site has been performed. The reasons for Ca(2+) being the strong PPase inhibitor and the role in catalysis of each of four metal ions are the mechanistic aspects discussed on the basis of the structures described.
Collapse
Affiliation(s)
- V R Samygina
- A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninski pr. 59, Moscow, 117333, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ahn S, Milner AJ, Fütterer K, Konopka M, Ilias M, Young TW, White SA. The "open" and "closed" structures of the type-C inorganic pyrophosphatases from Bacillus subtilis and Streptococcus gordonii. J Mol Biol 2001; 313:797-811. [PMID: 11697905 DOI: 10.1006/jmbi.2001.5070] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, a new class of soluble inorganic pyrophosphatase (type-C PPase) has been described that is not homologous in amino acid sequence or kinetic properties to the well-studied PPases (types A and B) found in many organisms from bacteria to humans and thought to be essential to the cell. Structural studies of the type-C PPases from Streptococcus gordonii and Bacillus subtilis reveal a homodimeric structure, with each polypeptide folding into two domains joined by a flexible hinge. The active site, formed at the interface between the N and C-terminal domains, binds two manganese ions approximately 3.6 A apart in a conformation resembling binuclear metal centres found in other hydrolytic enzymes. An activated water molecule bridging the two metal ions is likely poised for nucleophilic attack of the substrate. Importantly, the S. gordonii and B. subtilis enzymes have crystallised in strikingly different conformations. In both subunits of the S. gordonii crystal structure (1.5 A resolution) the C-terminal domain is positioned such that the active site is occluded, with a sulphate ion bound in the active site. In contrast, in the B. subtilis structure (3.0 A resolution) the C-terminal domain is rotated by about 90 degrees, leaving the active site wide open and accessible for substrate binding.
Collapse
Affiliation(s)
- S Ahn
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Rodina EV, Vainonen YP, Vorobyeva NN, Kurilova SA, Nazarova TI, Avaeva SM. The role of Asp42 in Escherichia coli inorganic pyrophosphatase functioning. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3851-7. [PMID: 11432753 DOI: 10.1046/j.1432-1327.2001.02299.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Excess of Mg2+ ions is known to inhibit the soluble inorganic pyrophosphatases (PPases). In contrast, the mutant Escherichia coli inorganic pyrophosphatase Asp42-->Asn is three times more active than native and retains its activity at high Mg2+ concentration. In this paper, another two mutant variants with Asp42 replaced by Ala or Glu were investigated to characterize the role of Asp42 in catalysis. pH-independent kinetic parameters of MgPPi hydrolysis and the dissociation constants for the activating and inhibitory Mg2+ ions were calculated. It was shown that Mg2+ inhibition of MgPPi hydrolysis by native PPase exhibited uncompetitive kinetics under the saturating substrate concentration. All three substitutions of Asp42 lead to a sharp decrease of inhibitory Mg2+ affinity to the enzyme. These findings allow determination of the sites of inhibitory and substrate Mg2+ ions binding to PPase. Common features of these mutants allow the conclusion that the function of Asp42 is to accurately coordinate the residues implicated in the substrate and the inhibitory Mg2+ ion binding to PPase active site. Structural analysis of PPase complexed with Mg2+ compared with PPase complexed with Mn2+ and reaction products confirms this supposition.
Collapse
Affiliation(s)
- E V Rodina
- A.N. Belozersky Institute of Physico-Chemical Biology, Department of Protein Chemistry, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
14
|
Zyryanov AB, Pohjanjoki P, Kasho VN, Shestakov AS, Goldman A, Lahti R, Baykov AA. The electrophilic and leaving group phosphates in the catalytic mechanism of yeast pyrophosphatase. J Biol Chem 2001; 276:17629-34. [PMID: 11279052 DOI: 10.1074/jbc.m100343200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of pyrophosphate or two phosphate molecules to the pyrophosphatase (PPase) active site occurs at two subsites, P1 and P2. Mutations at P2 subsite residues (Y93F and K56R) caused a much greater decrease in phosphate binding affinity of yeast PPase in the presence of Mn(2+) or Co(2+) than mutations at P1 subsite residues (R78K and K193R). Phosphate binding was estimated in these experiments from the inhibition of ATP hydrolysis at a sub-K(m) concentration of ATP. Tight phosphate binding required four Mn(2+) ions/active site. These data identify P2 as the high affinity subsite and P1 as the low affinity subsite, the difference in the affinities being at least 250-fold. The time course of five "isotopomers" of phosphate that have from zero to four (18)O during [(18)O]P(i)-[(16)O]H(2)O oxygen exchange indicated that the phosphate containing added water is released after the leaving group phosphate during pyrophosphate hydrolysis. These findings provide support for the structure-based mechanism in which pyrophosphate hydrolysis involves water attack on the phosphorus atom located at the P2 subsite of PPase.
Collapse
Affiliation(s)
- A B Zyryanov
- A. N. Belozersky Institute of Physico-Chemical Biology and School of Chemistry, Moscow State University, Moscow 119899, Russia
| | | | | | | | | | | | | |
Collapse
|
15
|
Hyytiä T, Halonen P, Salminen A, Goldman A, Lahti R, Cooperman BS. Ligand binding sites in Escherichia coli inorganic pyrophosphatase: effects of active site mutations. Biochemistry 2001; 40:4645-53. [PMID: 11294631 DOI: 10.1021/bi010049x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type I soluble inorganic pyrophosphatases (PPases) are well characterized both structurally and mechanistically. Earlier we measured the effects of active site substitutions on pH--rate profiles for the type I PPases from both Escherichia coli (E-PPase) and Saccharomyces cerevisae (Y-PPase). Here we extend these studies by measuring the effects of such substitutions on the more discrete steps of ligand binding to E-PPase, including (a) Mg(2+) and Mn(2+) binding in the absence of added ligand; (b) Mg(2+) binding in the presence of either P(i) or hydroxymethylbisphosphonate (HMBP), a competitive inhibitor of E-PPase; and (c) P(i) binding in the presence of Mn(2+). The active site of a type I PPase has well-defined subsites for the binding of four divalent metal ions (M1--M4) and two phosphates (P1, P2). Our results, considered in light of pertinent results from crystallographic studies on both E-PPase and Y-PPase and parallel functional studies on Y-PPase, allow us to conclude the following: (a) residues E20, D65, D70, and K142 play key roles in the functional organization of the active site; (b) the major structural differences between the product and substrate complexes of E-PPase are concentrated in the lower half of the active site; (c) the M1 subsite is functionally isolated from the rest of the active site; and (d) the M4 subsite is an especially unconstrained part of the active site.
Collapse
Affiliation(s)
- T Hyytiä
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | | | | | |
Collapse
|
16
|
Heikinheimo P, Tuominen V, Ahonen AK, Teplyakov A, Cooperman BS, Baykov AA, Lahti R, Goldman A. Toward a quantum-mechanical description of metal-assisted phosphoryl transfer in pyrophosphatase. Proc Natl Acad Sci U S A 2001; 98:3121-6. [PMID: 11248042 PMCID: PMC30617 DOI: 10.1073/pnas.061612498] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2000] [Accepted: 12/22/2000] [Indexed: 11/18/2022] Open
Abstract
The wealth of kinetic and structural information makes inorganic pyrophosphatases (PPases) a good model system to study the details of enzymatic phosphoryl transfer. The enzyme accelerates metal-complexed phosphoryl transfer 10(10)-fold: but how? Our structures of the yeast PPase product complex at 1.15 A and fluoride-inhibited complex at 1.9 A visualize the active site in three different states: substrate-bound, immediate product bound, and relaxed product bound. These span the steps around chemical catalysis and provide strong evidence that a water molecule (O(nu)) directly attacks PPi with a pK(a) vastly lowered by coordination to two metal ions and D117. They also suggest that a low-barrier hydrogen bond (LBHB) forms between D117 and O(nu), in part because of steric crowding by W100 and N116. Direct visualization of the double bonds on the phosphates appears possible. The flexible side chains at the top of the active site absorb the motion involved in the reaction, which may help accelerate catalysis. Relaxation of the product allows a new nucleophile to be generated and creates symmetry in the elementary catalytic steps on the enzyme. We are thus moving closer to understanding phosphoryl transfer in PPases at the quantum mechanical level. Ultra-high resolution structures can thus tease out overlapping complexes and so are as relevant to discussion of enzyme mechanism as structures produced by time-resolved crystallography.
Collapse
Affiliation(s)
- P Heikinheimo
- Center for Biotechnology, PL 123, FIN-20521 Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pohjanjoki P, Fabrichniy IP, Kasho VN, Cooperman BS, Goldman A, Baykov AA, Lahti R. Probing essential water in yeast pyrophosphatase by directed mutagenesis and fluoride inhibition measurements. J Biol Chem 2001; 276:434-41. [PMID: 11031269 DOI: 10.1074/jbc.m007360200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pattern of yeast pyrophosphatase (Y-PPase) inhibition by fluoride suggests that it replaces active site Mg(2+)-bound nucleophilic water, for which two different locations were proposed previously. To localize the bound fluoride, we investigate here the effects of mutating Tyr(93) and five dicarboxylic amino acid residues forming two metal binding sites in Y-PPase on its inhibition by fluoride and its five catalytic functions (steady-state PP(i) hydrolysis and synthesis, formation of enzyme-bound PP(i) at equilibrium, phosphate-water oxygen exchange, and Mg(2+) binding). D117E substitution had the largest effect on fluoride binding and made the P-O bond cleavage step rate-limiting in the catalytic cycle, consistent with the mechanism in which the nucleophile is coordinated by two metal ions and Asp(117). The effects of the mutations on PP(i) hydrolysis (as characterized by the catalytic constant and the net rate constant for P-O bond cleavage) were in general larger than on PP(i) synthesis (as characterized by the net rate constant for PP(i) release from active site). The effects of fluoride on the Y-PPase variants confirmed that PPase catalysis involves two enzyme.PP(i) intermediates, which bind fluoride with greatly different rates (Baykov, A. A., Fabrichniy, I. P., Pohjanjoki, P., Zyryanov, A. B., and Lahti, R. (2000) Biochemistry 39, 11939-11947). A mechanism for the structural changes underlying the interconversion of the enzyme.PP(i) intermediates is proposed.
Collapse
Affiliation(s)
- P Pohjanjoki
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|