1
|
Heider J, Hege D. The aldehyde dehydrogenase superfamilies: correlations and deviations in structure and function. Appl Microbiol Biotechnol 2025; 109:106. [PMID: 40301148 PMCID: PMC12041015 DOI: 10.1007/s00253-025-13467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 05/01/2025]
Abstract
Aldehyde dehydrogenases participate in many biochemical pathways, either by degrading organic substrates via organic acids or by producing reactive aldehyde intermediates in many biosynthetic pathways, and are becoming increasingly important for constructing synthetic metabolic pathways. Although they consist of simple and highly conserved basic structural motifs, they exhibit a surprising variability in the reactions catalyzed. We attempt here to give an overview of the known enzymes of two superfamilies comprising the known aldehyde dehydrogenases, focusing on their structural similarities and the residues involved in the catalytic reactions. The analysis reveals that the enzymes of the two superfamilies share many common traits and probably have a common evolutionary origin. While all enzymes catalyzing irreversible aldehyde oxidation to acids exhibit a universally conserved reaction mechanism with shared catalytic active-site residues, the enzymes capable of reducing activated acids to aldehydes deviate from this mechanism, displaying different active-site modifications required to allow these reactions which apparently evolved independently in different enzyme subfamilies. KEY POINTS: • The two aldehyde dehydrogenase superfamilies share significant similarities. • Catalytic amino acids of irreversibly acting AlDH are universally conserved. • Reductive or reversible reactions are enabled by water exclusion via the loss of conserved residues.
Collapse
Affiliation(s)
- Johann Heider
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany.
- Center for Synthetic Microbiology, Marburg, Germany.
| | - Dominik Hege
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| |
Collapse
|
2
|
Aziz I, Rashid N, Ashraf R, Siddiqui MA, Imanaka T, Akhtar M. Pcal_0632, a phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Pyrobaculum calidifontis. Extremophiles 2017; 22:121-129. [DOI: 10.1007/s00792-017-0982-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/20/2017] [Indexed: 11/25/2022]
|
3
|
Zhang K, Sun W, Huang L, Zhu K, Pei F, Zhu L, Wang Q, Lu Y, Zhang H, Jin H, Zhang LH, Zhang L, Yue J. Identifying Glyceraldehyde 3-Phosphate Dehydrogenase as a Cyclic Adenosine Diphosphoribose Binding Protein by Photoaffinity Protein-Ligand Labeling Approach. J Am Chem Soc 2017; 139:156-170. [PMID: 27936653 DOI: 10.1021/jacs.6b08088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cyclic adenosine diphosphoribose (cADPR), an endogenous nucleotide derived from nicotinamide adenine dinucleotide (NAD+), mobilizes Ca2+ release from endoplasmic reticulum (ER) via ryanodine receptors (RyRs), yet the bridging protein(s) between cADPR and RyRs remain(s) unknown. Here we synthesized a novel photoaffinity labeling (PAL) cADPR agonist, PAL-cIDPRE, and subsequently applied it to purify its binding proteins in human Jurkat T cells. We identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as one of the cADPR binding protein(s), characterized the binding affinity between cADPR and GAPDH in vitro by surface plasmon resonance (SPR) assay, and mapped cADPR's binding sites in GAPDH. We further demonstrated that cADPR induces the transient interaction between GAPDH and RyRs in vivo and that GAPDH knockdown abolished cADPR-induced Ca2+ release. However, GAPDH did not catalyze cADPR into any other known or novel compound(s). In summary, our data clearly indicate that GAPDH is the long-sought-after cADPR binding protein and is required for cADPR-mediated Ca2+ mobilization from ER via RyRs.
Collapse
Affiliation(s)
- Kehui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Wei Sun
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China , Shenzhen 518052, China
| | - Lihong Huang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Kaiyuan Zhu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Fen Pei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Longchao Zhu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Qian Wang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Yingying Lu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Hongmin Zhang
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China , Shenzhen 518052, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Li-He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| |
Collapse
|
4
|
Abstract
Aside from its well-established role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been shown to possess many key functions in cells. These functions are regulated by protein oligomerization , biomolecular interactions, post-translational modifications , and variations in subcellular localization . Several GAPDH functions and regulatory mechanisms overlap with one another and converge around its role in intermediary metabolism. Several structural determinants of the protein dictate its function and regulation. GAPDH is ubiquitously expressed and is found in all domains of life. GAPDH has been implicated in many diseases, including those of pathogenic, cardiovascular, degenerative, diabetic, and tumorigenic origins. Understanding the mechanisms by which GAPDH can switch between its functions and how these functions are regulated can provide insights into ways the protein can be modulated for therapeutic outcomes.
Collapse
|
5
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
6
|
Comparative analysis of two glyceraldehyde-3-phosphate dehydrogenases from a thermoacidophilic archaeon, Sulfolobus tokodaii. FEBS Lett 2012; 586:3097-103. [PMID: 22841742 DOI: 10.1016/j.febslet.2012.07.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/13/2012] [Accepted: 07/15/2012] [Indexed: 11/20/2022]
Abstract
Sulfolobus tokodaii, a thermoacidophilic archaeon, possesses two structurally and functionally different enzymes that catalyze the oxidation of glyceraldehyde-3-phosphate (GAP): non-phosphorylating GAP dehydrogenase (St-GAPN) and phosphorylating GAP dehydrogenase (St-GAPDH). In contrast to previously characterized GAPN from Sulfolobus solfataricus, which exhibits V-type allosterism, St-GAPN showed K-type allosterism in which the positive cooperativity was abolished with concomitant activation by glucose 1-phosphate (G1P). St-GAPDH catalyzed the reversible oxidation of GAP to 1,3-bisphosphoglycerate (1,3-BPG) with high gluconeogenic activity, which was specific for NADPH, while both NAD(+) and NADP(+) were utilized in the glycolytic direction.
Collapse
|
7
|
Baker P, Carere J, Seah SYK. Substrate specificity, substrate channeling, and allostery in BphJ: an acylating aldehyde dehydrogenase associated with the pyruvate aldolase BphI. Biochemistry 2012; 51:4558-67. [PMID: 22574886 DOI: 10.1021/bi300407y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BphJ, a nonphosphorylating acylating aldehyde dehydrogenase, catalyzes the conversion of aldehydes to form acyl-coenzyme A in the presence of NAD(+) and coenzyme A (CoA). The enzyme is structurally related to the nonacylating aldehyde dehydrogenases, aspartate-β-semialdehyde dehydrogenase and phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Cys-131 was identified as the catalytic thiol in BphJ, and pH profiles together with site-specific mutagenesis data demonstrated that the catalytic thiol is not activated by an aspartate residue, as previously proposed. In contrast to the wild-type enzyme that had similar specificities for two- or three-carbon aldehydes, an I195A variant was observed to have a 20-fold higher catalytic efficiency for butyraldehyde and pentaldehyde compared to the catalytic efficiency of the wild type toward its natural substrate, acetaldehyde. BphJ forms a heterotetrameric complex with the class II aldolase BphI that channels aldehydes produced in the aldol cleavage reaction to the dehydrogenase via a molecular tunnel. Replacement of Ile-171 and Ile-195 with bulkier amino acid residues resulted in no more than a 35% reduction in acetaldehyde channeling efficiency, showing that these residues are not critical in gating the exit of the channel. Likewise, the replacement of Asn-170 in BphJ with alanine and aspartate did not substantially alter aldehyde channeling efficiencies. Levels of activation of BphI by BphJ N170A, N170D, and I171A were reduced by ≥3-fold in the presence of NADH and ≥4.5-fold when BphJ was undergoing turnover, indicating that allosteric activation of the aldolase has been compromised in these variants. The results demonstrate that the dehydrogenase coordinates the catalytic activity of BphI through allostery rather than through aldehyde channeling.
Collapse
Affiliation(s)
- Perrin Baker
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
8
|
Biochemical characterization of glyceraldehyde-3-phosphate dehydrogenase from Thermococcus kodakarensis KOD1. Extremophiles 2011; 15:337-46. [PMID: 21409597 DOI: 10.1007/s00792-011-0365-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an essential role in glycolysis by catalyzing the conversion of D-glyceraldehyde 3-phosphate (D-G3P) to 1,3-diphosphoglycerate using NAD(+) as a cofactor. In this report, the GAPDH gene from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (GAPDH-tk) was cloned and the protein was purified to homogeneity. GAPDH-tk exists as a homotetramer with a native molecular mass of 145 kDa; the subunit molecular mass was 37 kDa. GAPDH-tk is a thermostable protein with a half-life of 5 h at 80-90°C. The apparent K (m) values for NAD(+) and D-G3P were 77.8 ± 7.5 μM and 49.3 ± 3.0 μM, respectively, with V (max) values of 45.1 ± 0.8 U/mg and 59.6 ± 1.3 U/mg, respectively. Transmission electron microscopy (TEM) and image processing confirmed that GAPDH-tk has a tetrameric structure. Interestingly, GAPDH-tk migrates as high molecular mass forms (~232 kDa and ~669 kDa) in response to oxidative stress.
Collapse
|
9
|
Anderson I, Djao ODN, Misra M, Chertkov O, Nolan M, Lucas S, Lapidus A, Del Rio TG, Tice H, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Brambilla E, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Sikorski J, Spring S, Rohde M, Eichinger K, Huber H, Wirth R, Göker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC. Complete genome sequence of Methanothermus fervidus type strain (V24S). Stand Genomic Sci 2010; 3:315-24. [PMID: 21304736 PMCID: PMC3035299 DOI: 10.4056/sigs.1283367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Methanothermus fervidus Stetter 1982 is the type strain of the genus Methanothermus. This hyperthermophilic genus is of a thought to be endemic in Icelandic hot springs. M. fervidus was not only the first characterized organism with a maximal growth temperature (97°C) close to the boiling point of water, but also the first archaeon in which a detailed functional analysis of its histone protein was reported and the first one in which the function of 2,3-cyclodiphosphoglycerate in thermoadaptation was characterized. Strain V24S(T) is of interest because of its very low substrate ranges, it grows only on H(2) + CO(2). This is the first completed genome sequence of the family Methanothermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,243,342 bp long genome with its 1,311 protein-coding and 50 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
10
|
Malay AD, Bessho Y, Ellis MJ, Antonyuk SV, Strange RW, Hasnain SS, Shinkai A, Padmanabhan B, Yokoyama S. Structure of glyceraldehyde-3-phosphate dehydrogenase from the archaeal hyperthermophile Methanocaldococcus jannaschii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1227-33. [PMID: 20054117 DOI: 10.1107/s1744309109047046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 11/07/2009] [Indexed: 11/10/2022]
Abstract
The X-ray crystal structure of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the hyperthermophilic archaeon Methanocaldococcus jannaschii (Mj-GAPDH) was determined to 1.81 A resolution. The crystal belonged to space group C222(1), with unit-cell parameters a = 83.4, b = 152.0, c = 118.6 A. The structure was solved by molecular replacement and was refined to a final R factor of 17.1% (R(free) = 19.8%). The final structure included the cofactor NADP(+) at the nucleotide-binding site and featured unoccupied inorganic and substrate phosphate-binding sites. A comparison with GAPDH structures from mesophilic sources suggested that Mj-GAPDH is stabilized by extensive electrostatic interactions between the C-terminal alpha-helices and various distal loop regions, which are likely to contribute to thermal stability. The key phosphate-binding residues in the active site of Mj-GAPDH are conserved in other archaeal GAPDH proteins. These residues undergo a conformational shift in response to occupancy of the inorganic phosphate site.
Collapse
Affiliation(s)
- Ali D Malay
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Erales J, Gontero B, Maberly SC. SPECIFICITY AND FUNCTION OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE IN A FRESHWATER DIATOM, ASTERIONELLA FORMOSA (BACILLARIOPHYCEAE)(1). JOURNAL OF PHYCOLOGY 2008; 44:1455-1464. [PMID: 27039860 DOI: 10.1111/j.1529-8817.2008.00600.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The plastidic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the only reductive step in the Calvin cycle and exists as different forms of which GapC1 enzyme is present in chromalveolates, such as diatoms. Biochemical studies on diatoms are still fragmentary, and, thus, in this report, GAPDH from the freshwater diatom Asterionella formosa Hassall has been purified and kinetically characterized. It is a homotetrameric enzyme with a molecular mass of ~150 ± 15 kDa. The enzyme showed Michaelis-Menten kinetics with respect to both cofactors, NADPH and NADH, with a 16-fold greater catalytic constant for NADPH. The Km for NADPH was 140 μM, the lowest affinity reported, while the catalytic constant, 815 s(-1) , is the highest reported. The Km for NADH was 93 μM, and the catalytic constant was 50 s(-1) , both are similar to reported values for other types of GAPDH. The GapC1 enzyme, like the Chlamydomonas reinhardtii A4 GAPDH, exhibits a cooperative behavior toward the substrate, 1,3-bisphosphoglyceric acid (BPGA), with both cofactors. Mass spectrometry analysis showed that when GapC1 enzyme was purified without reducing agents, it copurified with a small protein with a mass of 8.2 kDa. This protein was recognized by antibodies against CP12. When associated with this protein, GAPDH displayed a lag that disappeared upon incubation with reducing agent in the presence of either BPGA or NADPH as a consequence of dissociation of the GAPDH/CP12 complex. Thus, as in other species of algae and higher plants, regulation of GapC1 enzyme in A. formosa may occur through association-dissociation processes linked to dark-light transitions.
Collapse
Affiliation(s)
- Jenny Erales
- Laboratoire de Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13 402 Marseille Cedex 20 FranceCentre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - Brigitte Gontero
- Laboratoire de Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13 402 Marseille Cedex 20 FranceCentre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - Stephen C Maberly
- Laboratoire de Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13 402 Marseille Cedex 20 FranceCentre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| |
Collapse
|
12
|
Marx JC, Poncin J, Simorre JP, Ramteke PW, Feller G. The noncatalytic triad of alpha-amylases: a novel structural motif involved in conformational stability. Proteins 2008; 70:320-8. [PMID: 17729287 DOI: 10.1002/prot.21594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chloride-activated alpha-amylases contain a noncatalytic triad, independent of the glycosidic active site, perfectly mimicking the catalytic triad of serine-proteases and of other active serine hydrolytic enzymes. Mutagenesis of Glu, His, and Ser residues in various alpha-amylases shows that this pattern is a structural determinant of the enzyme conformation that cannot be altered without losing the intrinsic stability of the protein. (1)H-(15)N NMR spectra of a bacterial alpha-amylase reveal proton signals that are identical with the NMR signature of catalytic triads and especially a deshielded proton involving a protonated histidine and displaying properties similar to that of a low barrier hydrogen bond. It is proposed that the H-bond between His and Glu of the noncatalytic triad is an unusually strong interaction, responsible for the observed NMR signal and for the weak stability of the triad mutants. Furthermore, a stringent template-based search of the Protein Data Bank demonstrated that this motif is not restricted to alpha-amylases, but is also found in 80 structures from 33 different proteins, amongst which SH2 domain-containing proteins are the best representatives.
Collapse
Affiliation(s)
- Jean-Claude Marx
- Laboratory of Biochemistry, University of Liège, Liège, Sart-Tilman, Belgium
| | | | | | | | | |
Collapse
|
13
|
Wang ZJ, Xu XP, Fan KQ, Jia CJ, Yang KQ. Sample preparation for two-dimensional blue native/SDS polyacrylamide gel electrophoresis in the identification of Streptomyces coelicolor cytoplasmic protein complexes. ACTA ACUST UNITED AC 2007; 70:565-72. [PMID: 17399796 DOI: 10.1016/j.jbbm.2007.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 11/28/2006] [Accepted: 01/07/2007] [Indexed: 10/23/2022]
Abstract
Ammonium sulfate precipitation was tested as a sample preparation step for BN-PAGE analyses of S. coelicolor cytoplasmic protein complexes. A procedure of sample preparation compatible with two-dimensional BN/SDS-PAGE was established and used to visualize protein complexes. To validate the sample preparation procedure, representative protein complexes were identified. Several previously characterized protein complexes were rediscovered and their reported oligomeric states reconfirmed. In addition, we identified new but plausible interactions that have never been reported before. Our work provides useful reference for the wide application of BN-PAGE in protein interaction study.
Collapse
Affiliation(s)
- Zhi-Jun Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, PR China.
| | | | | | | | | |
Collapse
|
14
|
Kitatani T, Nakamura Y, Wada K, Kinoshita T, Tamoi M, Shigeoka S, Tada T. Structure of apo-glyceraldehyde-3-phosphate dehydrogenase from Synechococcus PCC7942. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:727-30. [PMID: 16880542 PMCID: PMC2242934 DOI: 10.1107/s1744309106027916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 07/19/2006] [Indexed: 11/10/2022]
Abstract
The crystal structure of NADP-dependent apo-glyceraldehyde-3-phosphate dehydrogenase (apo-GAPDH) from Synechococcus PCC 7942 is reported. The crystal structure was solved by molecular replacement and refined to an R of 21.7% and R(free) of 27.5% at 2.9 angstroms resolution. The structural features of apo-GAPDH are as follows. The S-loop has an extremely flexible conformation and the sulfate ion is only taken into the classical P(i) site. A structural comparison with holo-GAPDHs indicated that the S-loop fixation is essential in the discrimination of NADP and NAD molecules.
Collapse
Affiliation(s)
- Tomoya Kitatani
- Department of Applied Biochemistry, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
| | - Yoshihiro Nakamura
- Department of Applied Biochemistry, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
| | - Kei Wada
- Department of Applied Biochemistry, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
| | - Takayoshi Kinoshita
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
| | - Masahiro Tamoi
- Department of Food and Nutrition, Faculty of Agriculture, Kinki University, Nakamachi, Nara 631-8505, Japan
| | - Shigeru Shigeoka
- Department of Food and Nutrition, Faculty of Agriculture, Kinki University, Nakamachi, Nara 631-8505, Japan
| | - Toshiji Tada
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
- Correspondence e-mail:
| |
Collapse
|
15
|
Kitatani T, Nakamura Y, Wada K, Kinoshita T, Tamoi M, Shigeoka S, Tada T. Structure of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Synechococcus PCC7942 complexed with NADP. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:315-9. [PMID: 16582475 PMCID: PMC2222582 DOI: 10.1107/s1744309106007378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 03/01/2006] [Indexed: 11/10/2022]
Abstract
The crystal structure of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH) from Synechococcus PCC 7942 (S. 7942) in complex with NADP was solved by molecular replacement and refined to an R factor of 19.1% and a free R factor of 24.0% at 2.5 A resolution. The overall structure of NADP-GAPDH from S. 7942 was quite similar to those of other bacterial and eukaryotic GAPDHs. The nicotinamide ring of NADP, which is involved in the redox reaction, was oriented toward the catalytic site. The 2'-phosphate O atoms of NADP exhibited hydrogen bonds to the hydroxyl groups of Ser194 belonging to the S-loop and Thr37. These residues are therefore considered to be essential in the discrimination between NADP and NAD molecules. The C-terminal region was estimated to have an extremely flexible conformation and to play an important role in the formation of the supramolecular complex phosphoribulokinase (PRK)-regulatory peptide (CP12)-GAPDH, which regulates enzyme activities.
Collapse
Affiliation(s)
- Tomoya Kitatani
- Department of Applied Biochemistry, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Yoshihiro Nakamura
- Department of Applied Biochemistry, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Kei Wada
- Department of Applied Biochemistry, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Takayoshi Kinoshita
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Masahiro Tamoi
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara 631-8505, Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara 631-8505, Japan
| | - Toshiji Tada
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
16
|
Siebers B, Schönheit P. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr Opin Microbiol 2005; 8:695-705. [PMID: 16256419 DOI: 10.1016/j.mib.2005.10.014] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 10/13/2005] [Indexed: 11/29/2022]
Abstract
Sugar-utilizing hyperthermophilic and halophilic Archaea degrade glucose and glucose polymers to acetate or to CO2 using O2, nitrate, sulfur or sulfate as electron acceptors. Comparative analyses of glycolytic pathways in these organisms indicate a variety of differences from the classical Emden-Meyerhof and Entner-Doudoroff pathways that are operative in Bacteria and Eukarya, respectively. The archaeal pathways are characterized by the presence of numerous novel enzymes and enzyme families that catalyze, for example, the phosphorylation of glucose and of fructose 6-phosphate, the isomerization of glucose 6-phosphate, the cleavage of fructose 1,6-bisphosphate, the oxidation of glyceraldehyde 3-phosphate and the conversion of acetyl-CoA to acetate. Recent major advances in deciphering the complexity of archaeal central carbohydrate metabolism were gained by combination of classical biochemical and genomic-based approaches.
Collapse
Affiliation(s)
- Bettina Siebers
- Universität Duisburg-Essen, Campus Essen, FB Biologie und Geografie, Mikrobiologie, Universitätsstr.5, D-45117 Essen, Germany
| | | |
Collapse
|
17
|
Faehnle CR, Ohren JF, Viola RE. A new branch in the family: structure of aspartate-beta-semialdehyde dehydrogenase from Methanococcus jannaschii. J Mol Biol 2005; 353:1055-68. [PMID: 16225889 DOI: 10.1016/j.jmb.2005.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 09/01/2005] [Accepted: 09/02/2005] [Indexed: 11/17/2022]
Abstract
The structure of aspartate-beta-semialdehyde dehydrogenase (ASADH) from Methanococcus jannaschii has been determined to 2.3 angstroms resolution using multiwavelength anomalous diffraction (MAD) phasing of a selenomethionine-substituted derivative to define a new branch in the family of ASADHs. This new structure has a similar overall fold and domain organization despite less than 10% conserved sequence identity with the bacterial enzymes. However, the entire repertoire of functionally important active site amino acid residues is conserved, suggesting an identical catalytic mechanism but with lower catalytic efficiency. A new coenzyme-binding conformation and dual NAD/NADP coenzyme specificity further distinguish this archaeal branch from the bacterial ASADHs. Several structural differences are proposed to account for the dramatically enhanced thermostability of this archaeal enzyme. Finally, the intersubunit communication channel connecting the active sites in the bacterial enzyme dimer has been disrupted in the archaeal ASADHs by amino acid changes that likely prevent the alternating sites reactivity previously proposed for the bacterial ASADHs.
Collapse
Affiliation(s)
- Christopher R Faehnle
- Department of Chemistry, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | | | | |
Collapse
|
18
|
Sakasegawa SI, Hagemeier CH, Thauer RK, Essen LO, Shima S. Structural and functional analysis of the gpsA gene product of Archaeoglobus fulgidus: a glycerol-3-phosphate dehydrogenase with an unusual NADP+ preference. Protein Sci 2005; 13:3161-71. [PMID: 15557260 PMCID: PMC2287311 DOI: 10.1110/ps.04980304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
NAD(+)-dependent glycerol-3-phosphate dehydrogenase (G3PDH) is generally absent in archaea, because archaea, unlike eukaryotes and eubacteria, utilize glycerol-1-phosphate instead of glycerol-3-phosphate for the biosynthesis of membrane lipids. Surprisingly, the genome of the hyperthermophilic archaeon Archaeoglobus fulgidus comprises a G3PDH ortholog, gpsA, most likely due to horizontal gene transfer from a eubacterial organism. Biochemical characterization proved G3PDH-like activity of the recombinant gpsA gene product. However, unlike other G3PDHs, the up to 85 degrees C thermostable A. fulgidus G3PDH exerted a 15-fold preference for NADPH over NADH. The A. fulgidus G3PDH bears the hallmarks of adaptation to halotolerance and thermophilicity, because its 1.7-A crystal structure showed a high surface density for negative charges and 10 additional intramolecular salt bridges compared to a mesophilic G3PDH structure. Whereas all amino acid residues required for dihydroxyacetone phosphate binding and reductive catalysis are highly conserved, the binding site for the adenine moiety of the NAD(P) cosubstrate shows a structural variation that reflects the observed NADPH preference, for example, by a putative salt bridge between R49 and the 2'-phosphate.
Collapse
Affiliation(s)
- Shin-Ichi Sakasegawa
- Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps Universität, Marburg, Germany
| | | | | | | | | |
Collapse
|
19
|
Walden H, Taylor GL, Lorentzen E, Pohl E, Lilie H, Schramm A, Knura T, Stubbe K, Tjaden B, Hensel R. Structure and Function of a Regulated Archaeal Triosephosphate Isomerase Adapted to High Temperature. J Mol Biol 2004; 342:861-75. [PMID: 15342242 DOI: 10.1016/j.jmb.2004.07.067] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 06/28/2004] [Accepted: 07/08/2004] [Indexed: 11/19/2022]
Abstract
Triosephophate isomerase (TIM) is a dimeric enzyme in eucarya, bacteria and mesophilic archaea. In hyperthermophilic archaea, however, TIM exists as a tetramer composed of monomers that are about 10% shorter than other eucaryal and bacterial TIM monomers. We report here the crystal structure of TIM from Thermoproteus tenax, a hyperthermophilic archaeon that has an optimum growth temperature of 86 degrees C. The structure was determined from both a hexagonal and an orthorhombic crystal form to resolutions of 2.5A and 2.3A, and refined to R-factors of 19.7% and 21.5%, respectively. In both crystal forms, T.tenax TIM exists as a tetramer of the familiar (betaalpha)(8)-barrel. In solution, however, and unlike other hyperthermophilic TIMs, the T.tenax enzyme exhibits an equilibrium between inactive dimers and active tetramers, which is shifted to the tetramer state through a specific interaction with glycerol-1-phosphate dehydrogenase of T.tenax. This observation is interpreted in physiological terms as a need to reduce the build-up of thermolabile metabolic intermediates that would be susceptible to destruction by heat. A detailed structural comparison with TIMs from organisms with growth optima ranging from 15 degrees C to 100 degrees C emphasizes the importance in hyperthermophilic proteins of the specific location of ionic interactions for thermal stability rather than their numbers, and shows a clear correlation between the reduction of heat-labile, surface-exposed Asn and Gln residues with thermoadaptation. The comparison confirms the increase in charged surface-exposed residues at the expense of polar residues.
Collapse
Affiliation(s)
- Helen Walden
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Clark AT, McCrary BS, Edmondson SP, Shriver JW. Thermodynamics of core hydrophobicity and packing in the hyperthermophile proteins Sac7d and Sso7d. Biochemistry 2004; 43:2840-53. [PMID: 15005619 DOI: 10.1021/bi0358263] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of core hydrophobicity and packing on the structure and stability of the hyperthermophile proteins Sac7d and Sso7d have been studied by calorimetry, circular dichroism, and NMR. Valine 30 is positioned in Sac7d to allow a cavity-filling Val --> Ile substitution which occurs naturally in the homologous more thermostable Sso7d. The cavity-filling mutation in Sac7d has been characterized and compared to the reciprocal Ile --> Val mutation in Sso7d. A detailed analysis of the stability of the proteins was obtained by globally fitting the variation of DSC parameters and circular dichroism intensities as a function of temperature (0-100 degrees C), salt (0-0.3 M), and pH (0-8). A global analysis over such a range of conditions permitted an unusually precise measure of the thermodynamic parameters, as well as the separation of the thermodynamics of the intrinsic unfolding reaction from the linked effects of protonation and chloride binding associated with acid-induced folding. The results indicate differences in the energetics of unfolding Sac7d and Sso7d that would not be apparent from an analysis of DSC data alone using conventional methods. The sign and magnitude of the changes in DeltaG, DeltaH, TDeltaS, and DeltaC(P) of unfolding resulting from core Ile/Val substitutions in the two proteins were consistent with differences in hydrophobicity of Val and Ile and negligible changes in packing (van der Waals) interactions. The benefit of increased hydrophobicity of the core increased with temperature, with maximal effect around 116 degrees C. Increased hydrophobicity of the core achieved not only an increase in the free energy of unfolding, but also a lateral shift of the temperature of maximal stability to higher temperature.
Collapse
Affiliation(s)
- Andrew T Clark
- Laboratory for Structural Biology, Departments of Chemistry and Biological Sciences, Graduate Program in Biotechnology and Bioengineering, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | | | | | | |
Collapse
|
21
|
Falini G, Fermani S, Ripamonti A, Sabatino P, Sparla F, Pupillo P, Trost P. Dual coenzyme specificity of photosynthetic glyceraldehyde-3-phosphate dehydrogenase interpreted by the crystal structure of A4 isoform complexed with NAD. Biochemistry 2003; 42:4631-9. [PMID: 12705826 DOI: 10.1021/bi0272149] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Spinacia oleracea belongs to a wide group of GAPDHs found in most organisms displaying oxygenic photosynthesis, including cyanobacteria, green and red algae, and higher plants. As a major catalytic difference with respect to glycolytic GAPDH, photosynthetic GAPDH exhibits dual cofactor specificity toward pyridine nucleotides with a preference for NADP(H). Here we report the crystal structure of NAD-complexed recombinant A(4)-GAPDH (NAD-A(4)-GAPDH) from Spinacia oleracea, expressed in Escherichia coli. Its superimposition onto native A(4)-GAPDH complexed with NADP (NADP-A(4)-GAPDH) pinpoints specific conformational changes resulting from cofactor replacement. In photosynthetic NAD-A(4)-GAPDH, the side chain of Asp32 is oriented toward the coenzyme to interact with the adenine ribose diol, similar to glycolytic GAPDHs (NAD-specific). On the contrary, in NADP-A(4)-GAPDH Asp32 moves away to accommodate the additional 2'-phosphate group of the coenzyme and to minimize electrostatic repulsion. Asp32 rotation is allowed by the presence of the small residue Ala40, conserved in most photosynthetic GAPDHs, replacing bulky amino acid side chains in glycolytic GAPDHs. While in NADP-A(4)-GAPDH two amino acids, Thr33 and Ser188, are involved in hydrogen bonds with the 2'-phosphate group of NADP, in the NAD-complexed enzyme these interactions are lacking. The crystallographic structure of NAD-A(4)-GAPDH highlights that four residues, Thr33, Ala40, Ser188, and Ala187 (Leu, Leu, Pro, and Leu respectively, in glycolytic Bacillus stearothermophilus GAPDH sequence) are of primary importance for the dual cofactor specificity of photosynthetic GAPDH. These modifications seem to trace the minimum evolutionary route for a primitive NAD-specific GAPDH to be converted into the NADP-preferring enzyme of oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- Giuseppe Falini
- Dipartimento di Chimica G. Ciamician, Alma Mater Studiorum Università di Bologna, 40126 Bologna, Italia
| | | | | | | | | | | | | |
Collapse
|
22
|
Charron C, Vitoux B, Aubry A. Comparative analysis of thermoadaptation within the archaeal glyceraldehyde-3-phosphate dehydrogenases from mesophilic Methanobacterium bryantii and thermophilic Methanothermus fervidus. Biopolymers 2002; 65:263-73. [PMID: 12382287 DOI: 10.1002/bip.10235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To gain insight into the molecular determinants of thermoadaptation within the family of archaeal glyceraldehyde-3-phosphate dehydrogenases (GAPDH), a homology-based 3-D model of the mesophilic GAPDH from Methanobacterium bryantii was built and compared with the crystal structure of the thermophilic GAPDH from Methanothermus fervidus. The homotetrameric model of the holoenzyme was initially assembled from identical subunits completed with NADP molecules. The structure was then refined by energy minimization and simulated-annealing procedures. PROCHECK and the 3-D profile method were used to appraise the model reliability. Striking molecular features underlying the difference in stability between the enzymes were deduced from their structural comparison. First, both the increase in hydrophobic contacts and the decrease in accessibility to the protein core were shown to discriminate in favor of the thermophilic enzyme. Besides, but to a lesser degree, the number of ion pairs involved in cooperative clusters appeared to correlate with thermostability. Finally, the decreased stability of the mesophilic enzyme was also predicted to proceed from both the lack of charge-dipole interactions within alpha-helices and the enhanced entropy of unfolding due to an increase in chain flexibility. Thus, archaeal GAPDHs appear to be governed by thermoadaptation rules that differ in some aspects from those previously observed within their eubacterial counterparts.
Collapse
Affiliation(s)
- Christophe Charron
- Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques, Groupe Biocristallographie, UMR CNRS 7036, Université Henri Poincaré, Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy, Cedex, France
| | | | | |
Collapse
|
23
|
Fermani S, Ripamonti A, Sabatino P, Zanotti G, Scagliarini S, Sparla F, Trost P, Pupillo P. Crystal structure of the non-regulatory A(4 )isoform of spinach chloroplast glyceraldehyde-3-phosphate dehydrogenase complexed with NADP. J Mol Biol 2001; 314:527-42. [PMID: 11846565 DOI: 10.1006/jmbi.2001.5172] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here, we report the first crystal structure of a photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) complexed with NADP. The enzyme, purified from spinach chloroplasts, is constituted of a single type of subunit (A) arranged in homotetramers. It shows non-regulated NADP-dependent and NAD-dependent activities, with a preference for NADP. The structure has been solved to 3.0 A resolution by molecular replacement. The crystals belong to space group C222 with three monomers in the asymmetric unit. One of the three monomers generates a tetramer using the space group 222 point symmetry and a very similar tetramer is generated by the other two monomers, related by a non-crystallographic symmetry, using a crystallographic 2-fold axis. The protein reveals a large structural homology with known GAPDHs both in the cofactor-binding domain and in regions of the catalytic domain. Like all other GAPDHs investigated so far, the A(4)-GAPDH belongs to the Rossmann fold family of dehydrogenases. However, unlike most dehydrogenases of this family, the adenosine 2'-phosphate group of NADP does not form a salt-bridge with any positively charged residue in its surroundings, being instead set in place by hydrogen bonds with a threonine residue belonging to the Rossmann fold and a serine residue located in the S-loop of a symmetry-related monomer. While increasing our knowledge of an important photosynthetic enzyme, these results contribute to a general understanding of NADP versus NAD recognition in pyridine nucleotide-dependent enzymes. Although the overall structure of A(4)-GAPDH is similar to that of the cytosolic GAPDH from bacteria and eukaryotes, the chloroplast tetramer is peculiar, in that it can actually be considered a dimer of dimers, since monomers are bound in pairs by a disulphide bridge formed across Cys200 residues. This bridge is not found in other cytosolic or chloroplast GAPDHs from animals, bacteria, or plants other than spinach.
Collapse
Affiliation(s)
- S Fermani
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, Bologna, 40126, Italia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Walden H, Bell GS, Russell RJ, Siebers B, Hensel R, Taylor GL. Tiny TIM: a small, tetrameric, hyperthermostable triosephosphate isomerase. J Mol Biol 2001; 306:745-57. [PMID: 11243785 DOI: 10.1006/jmbi.2000.4433] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparative structural studies on proteins derived from organisms with growth optima ranging from 15 to 100 degrees C are beginning to shed light on the mechanisms of protein thermoadaptation. One means of sustaining hyperthermostability is for proteins to exist in higher oligomeric forms than their mesophilic homologues. Triosephosphate isomerase (TIM) is one of the most studied enzymes, whose fold represents one of nature's most common protein architectures. Most TIMs are dimers of approximately 250 amino acid residues per monomer. Here, we report the 2.7 A resolution crystal structure of the extremely thermostable TIM from Pyrococcus woesei, a hyperthermophilic archaeon growing optimally at 100 degrees C, representing the first archaeal TIM structure. P. woesei TIM exists as a tetramer comprising monomers of only 228 amino acid residues. Structural comparisons with other less thermostable TIMs show that although the central beta-barrel is largely conserved, severe pruning of several helices and truncation of some loops give rise to a much more compact monomer in the small hyperthermophilic TIM. The classical TIM dimer formation is conserved in P. woesei TIM. The extreme thermostability of PwTIM appears to be achieved by the creation of a compact tetramer where two classical TIM dimers interact via an extensive hydrophobic interface. The tetramer is formed through largely hydrophobic interactions between some of the pruned helical regions. The equivalent helical regions in less thermostable dimeric TIMs represent regions of high average temperature factor. The PwTIM seems to have removed these regions of potential instability in the formation of the tetramer. This study of PwTIM provides further support for the role of higher oligomerisation states in extreme thermal stabilisation.
Collapse
Affiliation(s)
- H Walden
- Centre for Biomolecular Sciences, The University of St Andrews, Fife, KY16 9ST, Scotland
| | | | | | | | | | | |
Collapse
|
25
|
Arnott MA, Michael RA, Thompson CR, Hough DW, Danson MJ. Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus. J Mol Biol 2000; 304:657-68. [PMID: 11099387 DOI: 10.1006/jmbi.2000.4240] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Citrate synthases from Thermoplasma acidophilum (optimal growth at 55 degrees C) and Pyrococcus furiosus (100 degrees C) are homo-dimeric enzymes that show a high degree of structural homology with each other, and thermostabilities commensurate with the environmental temperatures in which their host cells are found. A comparison of their atomic structures with citrate synthases from mesophilic and psychrophilic organisms has indicated the potential importance of inter-subunit contacts for thermostability, and here we report the construction and analysis of site-directed mutants of the two citrate synthases to investigate the contribution of these interactions. Three sets of mutants were made: (a) chimeric mutants where the large (inter-subunit contact) and small (catalytic) domains of the T. acidophilum and P. furiosus enzymes were swapped; (b) mutants of the P. furiosus citrate synthase where the inter-subunit ionic network is disrupted; and (c) P. furiosus citrate synthase mutants in which the C-terminal arms that wrap around their partner subunits have been deleted. All three sets of mutant enzymes were expressed as recombinant proteins in Escherichia coli and were found to be catalytically active. Kinetic parameters and the dependence of catalytic activity on temperature were determined, and the stability of each enzyme was analysed by irreversible thermal inactivation experiments. The chimeric mutants indicate that the thermostability of the whole enzyme is largely determined by the origin of the large, inter-subunit domain, whereas the dependence of catalytic activity on temperature is a function of the small domain. Disruption of the inter-subunit ionic network and prevention of the C-terminal interactions both generated enzymes that were substantially less thermostable. Taken together, these data demonstrate the crucial importance of the subunit contacts to the stability of these oligomeric enzymes. Additionally, they also provide a clear distinction between thermostability and thermoactivity, showing that stability is necessary for, but does not guarantee, catalytic activity at elevated temperatures.
Collapse
Affiliation(s)
- M A Arnott
- Centre for Extremophile Research, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | | | | | | | | |
Collapse
|