1
|
Meng Z, Wilsey MK, Müller AM. Role of LiOH in Aqueous Electrocatalytic Defluorination of Perfluorooctanoic Sulfonate: Efficient Li-F Ion Pairing Prevents Anode Fouling by Produced Fluoride. ACS Catal 2024; 14:16577-16588. [PMID: 39569161 PMCID: PMC11574766 DOI: 10.1021/acscatal.4c04523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose a significant environmental and health threat due to their high toxicity, widespread use, and persistence in the environment. Electrochemical methods have emerged as promising approaches for PFAS destruction, offering cost-effective and energy-efficient solutions. We established recently that electrocatalysis with nonprecious materials enabled the complete defluorination of perfluorooctanesulfonate (PFOS) in aqueous 8.0 M LiOH. Here, we reveal the mechanistic role of LiOH in the efficient aqueous electrocatalytic PFOS defluorination. Our results demonstrate that synergistic effects of high lithium and high hydroxide ion concentrations are essential for complete PFOS defluorination. Two-dimensional NMR data of electrolytes post pulsed electrolysis provide experimental evidence for Li-F ion pairing, which plays a crucial role in preventing anode fouling by produced fluoride, thus enabling sustained C-F bond cleavage. This Li-F ion pairing was increased at high pH, and elevated temperatures enhanced diffusion of Li-F ion pairs into the bulk electrolyte. High hydroxide ion concentrations additionally removed fluoride from the anode surface by competitive adsorption, corroborated by XPS data. Our findings provide quantitative mechanistic insights into the electrocatalytic defluorination process and offer a general route of enhancing the efficiency of anodic PFAS defluorination.
Collapse
Affiliation(s)
- Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Astrid M Müller
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
2
|
Díaz-Casado L, Santana AG, Gómez-Pinto I, Villacampa A, Corzana F, Jiménez-Barbero J, González C, Asensio JL. Binding-driven reactivity attenuation enables NMR identification of selective drug candidates for nucleic acid targets. Commun Chem 2022; 5:137. [PMID: 36697799 PMCID: PMC9814457 DOI: 10.1038/s42004-022-00755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 01/28/2023] Open
Abstract
NMR methods, and in particular ligand-based approaches, are among the most robust and reliable alternatives for binding detection and consequently, they have become highly popular in the context of hit identification and drug discovery. However, when dealing with DNA/RNA targets, these techniques face limitations that have precluded widespread application in medicinal chemistry. In order to expand the arsenal of spectroscopic tools for binding detection and to overcome the existing difficulties, herein we explore the scope and limitations of a strategy that makes use of a binding indicator previously unexploited by NMR: the perturbation of the ligand reactivity caused by complex formation. The obtained results indicate that ligand reactivity can be utilised to reveal association processes and identify the best binders within mixtures of significant complexity, providing a conceptually different reactivity-based alternative within NMR screening methods.
Collapse
Affiliation(s)
- Laura Díaz-Casado
- grid.419121.e0000 0004 1761 1887Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Andrés G. Santana
- grid.419121.e0000 0004 1761 1887Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Irene Gómez-Pinto
- grid.429036.a0000 0001 0805 7691Instituto de Química-Física Rocasolano (IQFR-CSIC), Madrid, 28006 Spain
| | - Alejandro Villacampa
- grid.419121.e0000 0004 1761 1887Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Francisco Corzana
- grid.119021.a0000 0001 2174 6969Dept. Química and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26005 La Rioja, Spain
| | - Jesús Jiménez-Barbero
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC-bioGUNE). Derio, 48160 Bizkaia, Spain
| | - Carlos González
- grid.429036.a0000 0001 0805 7691Instituto de Química-Física Rocasolano (IQFR-CSIC), Madrid, 28006 Spain
| | - Juan Luis Asensio
- grid.419121.e0000 0004 1761 1887Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
3
|
Joshi S, Singh A, Kukreti S. Porphyrin induced structural destabilization of a parallel DNA G-quadruplex in human MRP1 gene promoter. J Mol Recognit 2022; 35:e2950. [PMID: 34990028 DOI: 10.1002/jmr.2950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023]
Abstract
Porphyrins are among the first ligands that have been tested for their quadruplex binding and stabilization potential. We report the differential interaction of the positional cationic porphyrin isomers TMPyP3 and TMPyP4 with a parallel G-quadruplex (GQ) formed by 33-mer (TP) regulatory sequence present in the promoter region of the human multidrug resistance protein 1 (MRP1) transporter gene. This GQ element encompasses the three evolutionary conserved SP1 transcription factor binding sites. Taking into account that SP1 binds to a non-canonical GQ motif with higher affinity than to a canonical duplex DNA consensus motif, it is suggestive that GQ distortion by cationic porphyrin will have important implications in the regulation of MRP1 expression. Herein, we employed biophysical analysis using circular dichroism, visible absorption, UV-thermal melting and steady-state fluorescence spectroscopy, reporting destabilization of MRP1 GQ by cationic porphyrins. Results suggest that TMPyP4 and TMPyP3 interact with GQ with a binding affinity of 106 to 107 M-1 . Thermodynamic analysis indicated a significant decrease in melting temperature of GQ (ΔTm of 15.5°C-23.5°C), in the presence of 2 times excess of porphyrins. This study provides the biophysical evidence indicating the destabilisation of a parallel DNA G-quadruplex by cationic porphyrins.
Collapse
Affiliation(s)
- Savita Joshi
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| | - Anju Singh
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| |
Collapse
|
4
|
Parameswaran P, Arora Y, Patidar R, Ranjan N. Bacterial rRNA A-site recognition by DAPI: Signatures of intercalative binding. Biophys Chem 2021; 274:106589. [PMID: 33901777 DOI: 10.1016/j.bpc.2021.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
The bacterial A-site RNA is one of the key targets towards the development of new antibacterials including new treatment options for tuberculosis. Using DAPI as a prototype, we have explored the potential of bisamidines as a potential chemical motif for bacterial A-site recognition. We have demonstrated that the binding of DAPI shows a concentration-dependent thermal stabilization of the bacterial A-site RNA (ΔTm = 9.9 °C). The binding, however, does not show pH-dependent changes upon lowering of pH. Both UV-vis and CD experiments show that the DAPI binding involves base stacking with the RNA bases in a manner that is analogous to intercalation. Scatchard analysis of the UV-vis titration data revealed a micromolar affinity of the DAPI to the bacterial rRNA A-Site (Ka = 1.14 × 106 M-1) which was corroborated by the FID-based relative binding affinity comparison with aminoglycosides. The molecular docking studies showed binding poses consistent with polar and stacking interactions with the RNA. These studies highlight the role of amidines in bacterial A-site recognition and the need for the development of their structural analogs towards the making of aminoglycoside mimics.
Collapse
Affiliation(s)
- Preethi Parameswaran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Yashaswina Arora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Rajesh Patidar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh 226002, India.
| |
Collapse
|
5
|
An artificial cationic oligosaccharide combined with phosphorothioate linkages strongly improves siRNA stability. Sci Rep 2020; 10:14845. [PMID: 32908235 PMCID: PMC7481297 DOI: 10.1038/s41598-020-71896-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/21/2020] [Indexed: 11/08/2022] Open
Abstract
Small interfering RNAs (siRNAs) are potential tools for gene-silencing therapy, but their instability is one of the obstacles in the development of siRNA-based drugs. To improve siRNA stability, we synthesised a double-stranded RNA-binding cationic oligodiaminogalactose 4mer (ODAGal4) and investigated here its characteristics for siRNA stabilisation in vitro. ODAGal4 improved the resistance of various siRNAs against serum degradation. The effect of ODAGal4 on siRNA stabilisation was further amplified by introduction of modified nucleotides into the siRNA. In particular, a combination of ODAGal4 and incorporation of phosphorothioate linkages into the siRNA prominently prevented degradation by serum. The half-lives of fully phosphorothioate-modified RNA duplexes with ODAGal4 were more than 15 times longer than those of unmodified siRNAs without ODAGal4; this improvement in serum stability was superior to that observed for other chemical modifications. Serum degradation assays of RNAs with multiple chemical modifications showed that ODAGal4 preferentially improves the stability of RNAs with phosphorothioate modification among chemical modifications. Furthermore, melting temperature analysis showed that ODAGal4 greatly increases the thermal stability of phosphorothioate RNAs. Importantly, ODAGal4 did not interrupt gene-silencing activity of all the RNAs tested. Collectively, these findings demonstrate that ODAGal4 is a potent stabiliser of siRNAs, particularly nucleotides with phosphorothioate linkages, representing a promising tool in the development of gene-silencing therapies.
Collapse
|
6
|
Singh A, Joshi S, Kukreti S. Cationic porphyrins as destabilizer of a G-quadruplex located at the promoter of human MYH7 β gene. J Biomol Struct Dyn 2019; 38:4801-4816. [PMID: 31809672 DOI: 10.1080/07391102.2019.1689850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
G-quadruplex (GQ) architecture is adopted by guanine rich sequences, present throughout the eukaryotic genome including promoter locations and telomeric ends. The in vivo presence indicates their involvement and role in various biological processes. Various small ligands have been developed to interact and stabilize/destabilize G-quadruplex structures. Cationic porphyrins are among the most studied ligands, reported to bind and stabilize G-quadruplexes. Herein, we report the recognition and destabilization of a parallel G-quadruplex by porphyrins (TMPyP3 and TMPyP4). This G-quadruplex forming 23-nt G-rich sequence is in the promoter region of Human Myosin Heavy Chain β gene (MYH7β). Presence of various putative regulatory sequence elements (TATA Box, CCAAT, SP-1) located in the vicinity of this quadruplex motif, highlight its regulatory implications. Biophysical methods as Circular Dichroism Spectroscopy, UV-Absorption Spectroscopy, UV-Thermal Denaturation and Fluorescence Spectroscopy (steady as well as Time Resolved) have been used for studying the interaction and binding parameters. It is proposed that porphyrins have a destabilizing effect on the G-quadruplexes with parallel topology and a stronger binding specifically via intercalation mode is needed to cause destabilization. The study deals with better understanding and insights of DNA-Drug interactions in biological systems.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anju Singh
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| | - Savita Joshi
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| |
Collapse
|
7
|
Naro Y, Ankenbruck N, Thomas M, Tivon Y, Connelly CM, Gardner L, Deiters A. Small Molecule Inhibition of MicroRNA miR-21 Rescues Chemosensitivity of Renal-Cell Carcinoma to Topotecan. J Med Chem 2018; 61:5900-5909. [PMID: 29993250 DOI: 10.1021/acs.jmedchem.7b01891] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemical probes of microRNA (miRNA) function are potential tools for understanding miRNA biology that also provide new approaches for discovering therapeutics for miRNA-associated diseases. MicroRNA-21 (miR-21) is an oncogenic miRNA that is overexpressed in most cancers and has been strongly associated with driving chemoresistance in cancers such as renal cell carcinoma (RCC). Using a cell-based luciferase reporter assay to screen small molecules, we identified a novel inhibitor of miR-21 function. Following structure-activity relationship studies, an optimized lead compound demonstrated cytotoxicity in several cancer cell lines. In a chemoresistant-RCC cell line, inhibition of miR-21 via small molecule treatment rescued the expression of tumor-suppressor proteins and sensitized cells to topotecan-induced apoptosis. This resulted in a >10-fold improvement in topotecan activity in cell viability and clonogenic assays. Overall, this work reports a novel small molecule inhibitor for perturbing miR-21 function and demonstrates an approach to enhancing the potency of chemotherapeutics specifically for cancers derived from oncomir addiction.
Collapse
Affiliation(s)
- Yuta Naro
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Nicholas Ankenbruck
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Meryl Thomas
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Yaniv Tivon
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Colleen M Connelly
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Laura Gardner
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Alexander Deiters
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|
8
|
Ranjan N, Arya DP. Linker dependent intercalation of bisbenzimidazole-aminosugars in an RNA duplex; selectivity in RNA vs. DNA binding. Bioorg Med Chem Lett 2016; 26:5989-5994. [PMID: 27884695 PMCID: PMC6201841 DOI: 10.1016/j.bmcl.2016.10.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/08/2023]
Abstract
Neomycin and Hoechst 33258 are two well-known nucleic acid binders that interact with RNA and DNA duplexes with high affinities respectively. In this manuscript, we report that covalent attachment of bisbenzimidazole unit derived from Hoechst 33258 to neomycin leads to intercalative binding of the bisbenzimidazole unit (oriented at 64-74° with respected to the RNA helical axis) in a linker length dependent manner. The dual binding and intercalation of conjugates were supported by thermal denaturation, CD, LD and UV-Vis absorption experiments. These studies highlight the importance of linker length in dual recognition by conjugates, for effective RNA recognition, which can lead to novel ways of recognizing RNA structures. Additionally, the ligand library screens also identify DNA and RNA selective compounds, with compound 9, containing a long linker, showing a 20.3°C change in RNA duplex Tm with only a 13.0°C change in Tm for the corresponding DNA duplex. Significantly, the shorter linker in compound 3 shows almost the reverse trend, a 23.8°C change in DNA Tm, with only a 9.1°C change in Tm for the corresponding RNA duplex.
Collapse
Affiliation(s)
- Nihar Ranjan
- Laboratory of Bioorganic and Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Dev P Arya
- Laboratory of Bioorganic and Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
9
|
Yang WY, Gao R, Southern M, Sarkar PS, Disney MD. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10. Nat Commun 2016; 7:11647. [PMID: 27248057 PMCID: PMC4895354 DOI: 10.1038/ncomms11647] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells. Expanded RNA repeats in non-coding region of a gene represent a hallmark of several diseases. Here, the authors identify two small molecules that selectively bind AU repeats and use them to design a compound that targets the pathogenic RNA associated with spinocerebellar ataxia type 10.
Collapse
Affiliation(s)
- Wang-Yong Yang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA
| | - Rui Gao
- Mitchell Center for Neurodegenerative Disorders, Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Mark Southern
- Informatics Core, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA
| | - Partha S Sarkar
- Mitchell Center for Neurodegenerative Disorders, Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA
| |
Collapse
|
10
|
Leeder WM, Reuss AJ, Brecht M, Kratz K, Wachtveitl J, Göringer HU. Charge reduction and thermodynamic stabilization of substrate RNAs inhibit RNA editing. PLoS One 2015; 10:e0118940. [PMID: 25742417 PMCID: PMC4350841 DOI: 10.1371/journal.pone.0118940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/07/2015] [Indexed: 01/04/2023] Open
Abstract
African trypanosomes cause a parasitic disease known as sleeping sickness. Mitochondrial transcript maturation in these organisms requires a RNA editing reaction that is characterized by the insertion and deletion of U-nucleotides into otherwise non-functional mRNAs. Editing represents an ideal target for a parasite-specific therapeutic intervention since the reaction cycle is absent in the infected host. In addition, editing relies on a macromolecular protein complex, the editosome, that only exists in the parasite. Therefore, all attempts to search for editing interfering compounds have been focused on molecules that bind to proteins of the editing machinery. However, in analogy to other RNA-driven biochemical pathways it should be possible to stall the reaction by targeting its substrate RNAs. Here we demonstrate inhibition of editing by specific aminoglycosides. The molecules bind into the major groove of the gRNA/pre-mRNA editing substrates thereby causing a stabilization of the RNA molecules through charge compensation and an increase in stacking. The data shed light on mechanistic details of the editing process and identify critical parameters for the development of new trypanocidal compounds.
Collapse
Affiliation(s)
- W.-Matthias Leeder
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Andreas J. Reuss
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Michael Brecht
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Katja Kratz
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - H. Ulrich Göringer
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
- * E-mail:
| |
Collapse
|
11
|
Dudek M, Romanowska J, Wituła T, Trylska J. Interactions of amikacin with the RNA model of the ribosomal A-site: computational, spectroscopic and calorimetric studies. Biochimie 2014; 102:188-202. [PMID: 24769038 DOI: 10.1016/j.biochi.2014.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
Amikacin is a 2-deoxystreptamine aminoglycoside antibiotic possessing a unique l-HABA (l-(-)-γ-amino-α-hydroxybutyric acid) group and applied in the treatment of hospital-acquired infections. Amikacin influences bacterial translation by binding to the decoding region of the small ribosomal subunit that overlaps with the binding site of aminoacylated-tRNA (A-site). Here, we have characterized thermodynamics of interactions of amikacin with a 27-mer RNA oligonucleotide mimicking the aminoglycoside binding site in the bacterial ribosome. We applied isothermal titration and differential scanning calorimetries, circular dichroism and thermal denaturation experiments, as well as computer simulations. Thermal denaturation studies have shown that amikacin affects only slightly the melting temperatures of the A-site mimicking RNA model suggesting a moderate stabilization of RNA by amikacin. Isothermal titration calorimetry gives the equilibrium dissociation constants for the binding reaction between amikacin and the A-site oligonucleotide in the micromolar range with a favorable enthalpic contribution. However, for amikacin we observe a positive entropic contribution to binding, contrary to other aminoglycosides, paromomycin and ribostamycin. Circular dichroism spectra suggest that the observed increase in entropy is not caused by structural changes of RNA because amikacin binding does not destabilize the helicity of the RNA model. To investigate the origins of this positive entropy change we performed all-atom molecular dynamics simulations in explicit solvent for the 27-mer RNA oligonucleotide mimicking one A-site and the crystal structure of an RNA duplex containing two A-sites. We observed that the diversity of the conformational states of the l-HABA group sampled in the simulations of the complex was larger than for the free amikacin in explicit water. Therefore, the larger flexibility of the l-HABA group in the bound form may contribute to an increase of entropy upon binding.
Collapse
Affiliation(s)
- Marta Dudek
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; First Faculty of Medicine, Department of Hematology, Oncology and Internal Diseases, Medical University of Warsaw, Al. Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Julia Romanowska
- Department of Biophysics, Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland; Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Tomasz Wituła
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland.
| |
Collapse
|
12
|
Nikolaus N, Strehlitz B. DNA-aptamers binding aminoglycoside antibiotics. SENSORS 2014; 14:3737-55. [PMID: 24566637 PMCID: PMC3958260 DOI: 10.3390/s140203737] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/20/2014] [Accepted: 01/30/2014] [Indexed: 02/05/2023]
Abstract
Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.
Collapse
Affiliation(s)
- Nadia Nikolaus
- Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Germany.
| | - Beate Strehlitz
- Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Germany.
| |
Collapse
|
13
|
Hanessian S, Saavedra OM, Vilchis-Reyes MA, Llaguno-Rueda AM. Synthesis of 4′-deoxy-4′-fluoro neamine and 4′-deoxy-4′-fluoro 4′-epi neamine. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00072b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The syntheses of 4′-deoxy-4′-fluoro neamine and 4′-deoxy-4′-fluoro 4′-epi neamine from the readily available neamine and paromamine are described.
Collapse
|
14
|
Shirinfar B, Ahmed N, Park YS, Cho GS, Youn IS, Han JK, Nam HG, Kim KS. Selective Fluorescent Detection of RNA in Living Cells by Using Imidazolium-Based Cyclophane. J Am Chem Soc 2012; 135:90-3. [DOI: 10.1021/ja3112274] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Bahareh Shirinfar
- Center
for Superfunctional Materials, Department of Chemistry and §Department of Life
Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Center
for Core Research Facilities and ∥Department of New Biology, DGIST, Daegu 711-873, Korea
| | - Nisar Ahmed
- Center
for Superfunctional Materials, Department of Chemistry and §Department of Life
Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Center
for Core Research Facilities and ∥Department of New Biology, DGIST, Daegu 711-873, Korea
| | - Yu Shin Park
- Center
for Superfunctional Materials, Department of Chemistry and §Department of Life
Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Center
for Core Research Facilities and ∥Department of New Biology, DGIST, Daegu 711-873, Korea
| | - Gun-Sik Cho
- Center
for Superfunctional Materials, Department of Chemistry and §Department of Life
Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Center
for Core Research Facilities and ∥Department of New Biology, DGIST, Daegu 711-873, Korea
| | - Il Seung Youn
- Center
for Superfunctional Materials, Department of Chemistry and §Department of Life
Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Center
for Core Research Facilities and ∥Department of New Biology, DGIST, Daegu 711-873, Korea
| | - Jin-Kwan Han
- Center
for Superfunctional Materials, Department of Chemistry and §Department of Life
Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Center
for Core Research Facilities and ∥Department of New Biology, DGIST, Daegu 711-873, Korea
| | - Hong Gil Nam
- Center
for Superfunctional Materials, Department of Chemistry and §Department of Life
Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Center
for Core Research Facilities and ∥Department of New Biology, DGIST, Daegu 711-873, Korea
| | - Kwang S. Kim
- Center
for Superfunctional Materials, Department of Chemistry and §Department of Life
Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Center
for Core Research Facilities and ∥Department of New Biology, DGIST, Daegu 711-873, Korea
| |
Collapse
|
15
|
Xi H, Davis E, Ranjan N, Xue L, Hyde-Volpe D, Arya DP. Thermodynamics of nucleic acid "shape readout" by an aminosugar. Biochemistry 2011; 50:9088-113. [PMID: 21863895 PMCID: PMC3673541 DOI: 10.1021/bi201077h] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recognition of nucleic acids is important for our understanding of nucleic acid structure as well as for our understanding of nucleic acid-protein interactions. In addition to the direct readout mechanisms of nucleic acids such as H-bonding, shape recognition of nucleic acids is being increasingly recognized as playing an equally important role in DNA recognition. Competition dialysis, UV, flourescent intercalator displacement (FID), computational docking, and calorimetry studies were conducted to study the interaction of neomycin with a variety of nucleic acid conformations (shapes). At pH 5.5, the results suggest the following. (1) Neomycin binds three RNA structures [16S A site rRNA, poly(rA)·poly(rA), and poly(rA)·poly(rU)] with high affinities (K(a) ~ 10(7) M(-1)). (2) The binding of neomycin to A-form GC-rich oligomer d(A(2)G(15)C(15)T(2))(2) has an affinity comparable to those of RNA structures. (3) The binding of neomycin to DNA·RNA hybrids shows a 3-fold variance that can be attributed to their structural differences [for poly(dA)·poly(rU), K(a) = 9.4 × 10(6) M(-1), and for poly(rA)·poly(dT), K(a) = 3.1 × 10(6) M(-1)]. (4) The interaction of neomycin with DNA triplex poly(dA)·2poly(dT) yields a binding affinity (K(a)) of 2.4 × 10(5) M(-1). (5) Poly(dA-dT)(2) shows the lowest association constant for all nucleic acids studied (K(a) < 10(5)). (6) Neomycin binds to G-quadruplexes with K(a) values of ~10(4)-10(5) M(-1). (7) Computational studies show that the decrease in major groove width in the B to A transition correlates with increasing neomycin affinity. Neomycin's affinity for various nucleic acid structures can be ranked as follows: RNAs and GC-rich d(A(2)G(15)C(15)T(2))(2) structures > poly(dA)·poly(rU) > poly(rA)·poly(dT) > T·A-T triplex, G-quadruplex, B-form AT-rich, or GC-rich DNA sequences. The results illustrate the first example of a small molecule-based "shape readout" of different nucleic acid conformations.
Collapse
Affiliation(s)
- Hongjuan Xi
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Erik Davis
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Nihar Ranjan
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Liang Xue
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - David Hyde-Volpe
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
16
|
Iwata R, Sudo M, Nagafuji K, Wada T. Synthesis of oligodiaminosaccharides having α-glycoside bonds and their interactions with oligonucleotide duplexes. J Org Chem 2011; 76:5895-906. [PMID: 21688799 DOI: 10.1021/jo200951p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Syntheses of the novel oligodiaminosaccharides, α-(1→4)-linked-2,6-diamino-2,6-dideoxy-D-glucopyranose oligomers, and their interactions with nucleic acid duplexes DNA-DNA, RNA-RNA, and DNA-RNA are described. Monomers to tetramers of oligodiaminoglucose derivatives having α-glycosyl bonds were successfully synthesized using a chain elongation cycle including glycosylation reactions of a 6-phthalimide glycosyl donor. UV melting experiments for a variety of nucleic acid duplexes in the absence and presence of the oligodiaminosaccharides were performed. The synthesized oligodiaminosaccharides exhibited notable thermodynamic stabilization effects on A-type RNA-RNA and DNA-RNA duplexes, whereas B-type DNA-DNA duplexes were not stabilized by the synthesized oligodiaminosaccharides. Among the oligodiaminosaccharides, the tetramer exhibited the highest ability to stabilize A-type duplexes, and the increase in T(m) values induced by the tetramer were higher than those induced by neomycin B and tobramycin, which are known aminoglycosides having ability to bind and stabilize a variety of RNA molecules. CD spectrometry experiments revealed that the oligodiaminosaccharides caused small structural changes in RNA-RNA duplexes, whereas no appreciable changes were observed in the structure of DNA-DNA duplexes. ITC (isothermal titration calorimetry) experiments demonstrated that the amount of heat generated by the interaction between RNA-RNA duplexes and the tetradiaminosaccharides was approximately double that generated by that between DNA-DNA duplexes and the tetradiaminosaccharides. These results strongly suggested the existence of an A-type nucleic acid specific-binding mode of the oligodiaminosaccharides, which bind to these duplexes and cause small structural changes.
Collapse
Affiliation(s)
- Rintaro Iwata
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Building 702, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | |
Collapse
|
17
|
Fenley MO, Harris RC, Jayaram B, Boschitsch AH. Revisiting the association of cationic groove-binding drugs to DNA using a Poisson-Boltzmann approach. Biophys J 2010; 99:879-86. [PMID: 20682266 DOI: 10.1016/j.bpj.2010.04.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/15/2010] [Accepted: 04/27/2010] [Indexed: 11/26/2022] Open
Abstract
Proper modeling of nonspecific salt-mediated electrostatic interactions is essential to understanding the binding of charged ligands to nucleic acids. Because the linear Poisson-Boltzmann equation (PBE) and the more approximate generalized Born approach are applied routinely to nucleic acids and their interactions with charged ligands, the reliability of these methods is examined vis-à-vis an efficient nonlinear PBE method. For moderate salt concentrations, the negative derivative, SK(pred), of the electrostatic binding free energy, DeltaG(el), with respect to the logarithm of the 1:1 salt concentration, [M(+)], for 33 cationic minor groove drugs binding to AT-rich DNA sequences is shown to be consistently negative and virtually constant over the salt range considered (0.1-0.4 M NaCl). The magnitude of SK(pred) is approximately equal to the charge on the drug, as predicted by counterion condensation theory (CCT) and observed in thermodynamic binding studies. The linear PBE is shown to overestimate the magnitude of SK(pred), whereas the nonlinear PBE closely matches the experimental results. The PBE predictions of SK(pred) were not correlated with DeltaG(el) in the presence of a dielectric discontinuity, as would be expected from the CCT. Because this correlation does not hold, parameterizing the PBE predictions of DeltaG(el) against the reported experimental data is not possible. Moreover, the common practice of extracting the electrostatic and nonelectrostatic contributions to the binding of charged ligands to biopolyelectrolytes based on the simple relation between experimental SK values and the electrostatic binding free energy that is based on CCT is called into question by the results presented here. Although the rigid-docking nonlinear PB calculations provide reliable predictions of SK(pred), at least for the charged ligand-nucleic acid complexes studied here, accurate estimates of DeltaG(el) will require further development in theoretical and experimental approaches.
Collapse
Affiliation(s)
- Marcia O Fenley
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA.
| | | | | | | |
Collapse
|
18
|
Ranjan N, Andreasen KF, Kumar S, Hyde-Volpe D, Arya DP. Aminoglycoside binding to Oxytricha nova telomeric DNA. Biochemistry 2010; 49:9891-903. [PMID: 20886815 DOI: 10.1021/bi101517e] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Telomeric DNA sequences have been at the center stage of drug design for cancer treatment in recent years. The ability of these DNA structures to form four-stranded nucleic acid structures, called G-quadruplexes, has been perceived as target for inhibiting telomerase activity vital for the longevity of cancer cells. Being highly diverse in structural forms, these G-quadruplexes are subjects of detailed studies of ligand-DNA interactions of different classes, which will pave the way for logical design of more potent ligands in future. The binding of aminoglycosides was investigated with Oxytricha nova quadruplex forming DNA sequence (GGGGTTTTGGGG)(2). Isothermal titration calorimetry (ITC) determined ligand to quadruplex binding ratio shows 1:1 neomycin:quadruplex binding with association constants (K(a)) ∼ 10(5) M(-1) while paromomycin was found to have a 2-fold weaker affinity than neomycin. The CD titration experiments with neomycin resulted in minimal changes in the CD signal. FID assays, performed to determine the minimum concentration required to displace half of the fluorescent probe bound, showed neomycin as the best of the all aminoglycosides studied for quadruplex binding. Initial NMR footprint suggests that ligand-DNA interactions occur in the wide groove of the quadruplex. Computational docking studies also indicate that aminoglycosides bind in the wide groove of the quadruplex.
Collapse
Affiliation(s)
- Nihar Ranjan
- Laboratories of Medicinal Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | | | | | | | |
Collapse
|
19
|
Xi H, Kumar S, Dosen-Micovic L, Arya DP. Calorimetric and spectroscopic studies of aminoglycoside binding to AT-rich DNA triple helices. Biochimie 2010; 92:514-29. [PMID: 20167243 PMCID: PMC3977217 DOI: 10.1016/j.biochi.2010.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 02/08/2010] [Indexed: 11/21/2022]
Abstract
Calorimetric and fluorescence techniques were used to characterize the binding of aminoglycosides-neomycin, paromomycin, and ribostamycin, with 5'-dA(12)-x-dT(12)-x-dT(12)-3' intramolecular DNA triplex (x = hexaethylene glycol) and poly(dA).2poly(dT) triplex. Our results demonstrate the following features: (1) UV thermal analysis reveals that the T(m) for triplex decreases with increasing pH value in the presence of neomycin, while the T(m) for the duplex remains unchanged. (2) The binding affinity of neomycin decreases with increased pH, although there is an increase in observed binding enthalpy. (3) ITC studies conducted in two buffers (sodium cacodylate and MOPS) yield the number of protonated drug amino groups (Deltan) as 0.29 and 0.40 for neomycin and paromomycin interaction with 5'-dA(12)-x-dT(12)-x-dT(12)-3', respectively. (4) The specific heat capacity change (DeltaC(p)) determined by ITC studies is negative, with more negative values at lower salt concentrations. From 100 mM to 250 mM KCl, the DeltaC(p) ranges from -402 to -60 cal/(mol K) for neomycin. At pH 5.5, a more positive DeltaC(p) is observed, with a value of -98 cal/(mol K) at 100 mM KCl. DeltaC(p) is not significantly affected by ionic strength. (5) Salt dependence studies reveal that there are at least three amino groups of neomycin participating in the electrostatic interactions with the triplex. (6) FID studies using thiazole orange were used to derive the AC(50) (aminoglycoside concentration needed to displace 50% of the dye from the triplex) values. Neomycin shows a seven fold higher affinity than paromomycin and eleven fold higher affinity than ribostamycin at pH 6.8. (7) Modeling studies, consistent with UV and ITC results, show the importance of an additional positive charge in triplex recognition by neomycin. The modeling and thermodynamic studies indicate that neomycin binding to the DNA triplex depends upon significant contributions from charge as well as shape complementarity of the drug to the DNA triplex Watson-Hoogsteen groove.
Collapse
Affiliation(s)
- Hongjuan Xi
- Contribution from the Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Sunil Kumar
- Contribution from the Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Ljiljana Dosen-Micovic
- Contribution from the Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Dev P. Arya
- Contribution from the Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
20
|
Willis B, Arya DP. Triple recognition of B-DNA by a neomycin-Hoechst 33258-pyrene conjugate. Biochemistry 2010; 49:452-69. [PMID: 20000367 DOI: 10.1021/bi9016796] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent developments have indicated that aminoglycoside binding is not limited to RNA, but to nucleic acids that, like RNA, adopt conformations similar to its A-form. We further sought to expand the utility of aminoglycoside binding to B-DNA structures by conjugating neomycin, an aminoglycoside antibiotic, with the B-DNA minor groove binding ligand Hoechst 33258. Envisioning a dual groove binding mode, we have extended the potential recognition process to include a third, intercalative moiety. Similar conjugates, which vary in the number of binding moieties but maintain identical linkages to allow direct comparisons to be made, have also been prepared. We report herein novel neomycin- and Hoechst 33258-based conjugates developed in our laboratories for exploring the recognition potential with B-DNA. Spectroscopic studies such as UV melting, differential scanning calorimetry, isothermal fluorescence titrations, and circular dichroism together illustrate the triple recognition of the novel conjugate containing neomycin, Hoechst 33258, and pyrene. This study represents the first example of DNA molecular recognition capable of minor versus major groove recognition in conjunction with intercalation.
Collapse
Affiliation(s)
- Bert Willis
- Laboratories of Medicinal Chemistry, Clemson University, Clemson, South Carolina 29634, USA
| | | |
Collapse
|
21
|
Kren V, Rezanka T. Sweet antibiotics - the role of glycosidic residues in antibiotic and antitumor activity and their randomization. FEMS Microbiol Rev 2008; 32:858-89. [PMID: 18647177 DOI: 10.1111/j.1574-6976.2008.00124.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A large number of antibiotics are glycosides. In numerous cases the glycosidic residues are crucial to their activity; sometimes, glycosylation only improves their pharmacokinetic parameters. Recent developments in molecular glycobiology have improved our understanding of aglycone vs. glycoside activities and made it possible to develop new, more active or more effective glycodrugs based on these findings - a very illustrative recent example is vancomycin. The majority of attention has been devoted to glycosidic antibiotics including their past, present, and probably future position in antimicrobial therapy. The role of the glycosidic residue in the biological activity of glycosidic antibiotics, and the attendant targeting and antibiotic selectivity mediated by glycone and aglycone in antibiotics some antitumor agents is discussed here in detail. Chemical and enzymatic modifications of aglycones in antibiotics, including their synthesis, are demonstrated on various examples, with particular emphasis on the role of specific and mutant glycosyltransferases and glycorandomization in the preparation of these compounds. The last section of this review describes and explains the interactions of the glycone moiety of the antibiotics with DNA and especially the design and structure-activity relationship of glycosidic antibiotics, including their classification based on their aglycone and glycosidic moiety. The new enzymatic methodology 'glycorandomization' enabled the preparation of glycoside libraries and opened up new ways to prepare optimized or entirely novel glycoside antibiotics.
Collapse
Affiliation(s)
- Vladimír Kren
- Centre of Biocatalysis and Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | |
Collapse
|
22
|
Affiliation(s)
- Jason R Thomas
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61822, USA
| | | |
Collapse
|
23
|
Wang B, Wilkinson KA, Weeks KM. Complex Ligand-Induced Conformational Changes in tRNAAsp Revealed by Single-Nucleotide Resolution SHAPE Chemistry. Biochemistry 2008; 47:3454-61. [DOI: 10.1021/bi702372x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bin Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Kevin A. Wilkinson
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| |
Collapse
|
24
|
Zhou J, Wang G, Zhang LH, Ye XS. Modifications of aminoglycoside antibiotics targeting RNA. Med Res Rev 2007; 27:279-316. [PMID: 16892199 DOI: 10.1002/med.20085] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The increased awareness of the central role of RNA has led to realization that RNA, as structural and functional information accumulation, is also drug target to small molecular therapy. Aminoglycosides are a group of well-known antibiotics, which function through binding to specific sites in prokaryotic ribosomal RNA (rRNA) and affecting the fidelity of protein synthesis. Unfortunately, their clinical practice has been curtailed by toxicity and rapid increasing number of resistant strains. Therefore, it is highly desirable to design new modified aminoglycosides that will overcome the undesirable properties of natural occurring aminoglycosides. On the other hand, aminoglycosides as potential antiviral (HIV) agents were also reported. Herein, we survey the current efforts to develop new aminoglycoside derivatives with modification and reconstruction on each sugar ring and review the latest advances in structure-activity relationships (SAR).
Collapse
Affiliation(s)
- Jian Zhou
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | | | | | | |
Collapse
|
25
|
Rosu F, Nguyen CH, De Pauw E, Gabelica V. Ligand binding mode to duplex and triplex DNA assessed by combining electrospray tandem mass spectrometry and molecular modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1052-62. [PMID: 17459721 DOI: 10.1016/j.jasms.2007.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 05/15/2023]
Abstract
In this paper, we report the analysis of seven benzopyridoindole and benzopyridoquinoxaline drugs binding to different duplex DNA and triple helical DNA, using an approach combining electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (MS/MS), and molecular modeling. The ligands were ranked according to the collision energy (CE(50)) necessary to dissociate 50% of the complex with the duplex or the triplex in tandem MS. To determine the probable ligand binding site and binding mode, molecular modeling was used to calculate relative ligand binding energies in different binding sites and binding modes. For duplex DNA binding, the ligand-DNA interaction energies are roughly correlated with the experimental CE(50), with the two benzopyridoindole ligands more tightly bound than the benzopyridoquinoxaline ligands. There is, however, no marked AT versus GC base preference in binding, as supported both by the ESI-MS and the calculated ligand binding energies. Product ion spectra of the complexes with triplex DNA show only loss of neutral ligand for the benzopyridoquinoxalines, and loss of the third strand for the benzopyridoindoles, the ligand remaining on the duplex part. This indicates a higher binding energy of the benzopyridoindoles, and also shows that the ligands interact with the triplex via the duplex. The ranking of the ligand interaction energies compared with the CE(50) values obtained by MS/MS on the complexes with the triplex clearly indicates that the ligands intercalate via the minor groove of the Watson-Crick duplex. Regarding triplex versus duplex selectivity, our experiments have demonstrated that the most selective drugs for triplex share the same heteroaromatic core.
Collapse
Affiliation(s)
- Frédéric Rosu
- Laboratory of Mass Spectrometry, University of Liège, Liège, Belgium
| | | | | | | |
Collapse
|
26
|
Fu PKL, Abuzakhm S, Turro C. Photoinduced DNA Cleavage and Cellular Damage in Human Dermal Fibroblasts by 2,3-Diaminophenazine¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb01526.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Ironmonger A, Whittaker B, Baron AJ, Clique B, Adams CJ, Ashcroft AE, Stockley PG, Nelson A. Scanning conformational space with a library of stereo- and regiochemically diverse aminoglycoside derivatives: the discovery of new ligands for RNA hairpin sequences. Org Biomol Chem 2007; 5:1081-6. [PMID: 17377661 PMCID: PMC7612281 DOI: 10.1039/b618683a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A library of stereo- and regiochemically diverse aminoglycoside derivatives was screened at 1 microM using surface plasmon resonance (SPR) against RNA hairpin models of the bacterial A-site, and the HIV viral TAR and RRE sequences. In order to double the stereochemical diversity of the library, the compounds were screened against both enantiomers of each of these sequences. Remarkably, this initial screen suggested that the same four aminoglycoside derivatives bound most tightly to all three of the RNAs, suggesting that these compounds were good RNA binders which, nonetheless, discriminated poorly between the RNA sequences. The interactions between selected isomeric aminoglycoside derivatives and the RNA hairpins were then studied in more detail using an SPR assay. Three isomeric tight-binding aminoglycoside derivatives, which had been identified from the initial screen, were found to bind more tightly to the RNA hairpins (with K(D) values in the range 0.23 to 4.7 microM) than a fourth isomeric derivative (which had K(D) values in the range 6.0 to 30 microM). The magnitude of the tightest RNA-aminoglycoside interactions stemmed, in large part, from remarkably slow dissociation of the aminoglycosides from the RNA targets. The three tight-binding aminoglycoside derivatives were found, however, to discriminate rather poorly between alternative RNA sequences with, at best, around a twenty-fold difference in affinity for alternative RNA hairpin sequences. Within the aminoglycoside derivative library studied, high affinity for an RNA target was not accompanied by good discrimination between alternative RNA sequences.
Collapse
Affiliation(s)
- Alan Ironmonger
- School of Chemistry, University of Leeds, Leeds, UK LS2 9JT
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Benjamin Whittaker
- School of Chemistry, University of Leeds, Leeds, UK LS2 9JT
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Andrew J. Baron
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Blandine Clique
- School of Chemistry, University of Leeds, Leeds, UK LS2 9JT
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Chris J. Adams
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | - Adam Nelson
- School of Chemistry, University of Leeds, Leeds, UK LS2 9JT
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
- Corresponding author:
| |
Collapse
|
28
|
Kang G, Lin X. RNA Modified Electrodes for Simultaneous Determination of Dopamine and Uric Acid in the Presence of High Amounts of Ascorbic Acid. ELECTROANAL 2006. [DOI: 10.1002/elan.200603701] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Nguyen B, Stanek J, Wilson WD. Binding-linked protonation of a DNA minor-groove agent. Biophys J 2006; 90:1319-28. [PMID: 16299076 PMCID: PMC1367283 DOI: 10.1529/biophysj.105.071381] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 11/01/2005] [Indexed: 11/18/2022] Open
Abstract
The energetics for binding of a diphenyl diamidine antitrypanosomal agent CGP 40215A to DNA have been studied by spectroscopy, isothermal titration calorimetry, and surface plasmon resonance biosensor methods. Both amidines are positively charged under experimental conditions, but the linking group for the two phenyl amidines has a pK(a) of 6.3 that is susceptible to a protonation process. Spectroscopic studies indicate an increase of 2.7 pK(a) units in the linking group when the compound binds to an A/T minor-groove site. Calorimetric titrations in different buffers and pH conditions support the proton-linkage process and are in a good agreement with spectroscopic titrations. The two methods established a proton-uptake profile as a function of pH. The exothermic enthalpy of complex formation varies with different pH conditions. The observed binding enthalpy increases as a function of temperature indicating a negative heat capacity change that is typical for DNA minor-groove binders. Solvent accessible surface area calculations suggest that surface burial accounts for about one-half of the observed intrinsic negative heat capacity change. Biosensor and calorimetric experiments indicate that the binding affinities vary with pH values and salt concentrations due to protonation and electrostatic interactions. The surface plasmon resonance binding studies indicate that the charge density per phosphate in DNA hairpins is smaller than that in polymers. Energetic contributions from different factors were also estimated for the ligand/DNA complex.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
30
|
Kaiser M, Sainlos M, Lehn JM, Bombard S, Teulade-Fichou MP. Aminoglycoside-Quinacridine Conjugates: Towards Recognition of the P6.1 Element of Telomerase RNA. Chembiochem 2006; 7:321-9. [PMID: 16408312 DOI: 10.1002/cbic.200500354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A modular synthesis has been developed which allows easy and rapid attachment of one or two aminoglycoside units to a quinacridine intercalator, thereby leading to monomeric and dimeric conjugates. Melting temperature (Tm) experiments show that the tobramycin dimeric conjugate TD1 exhibits strong binding to the P6.1 element of human telomerase RNA. By contrast, tobramycin alone is much less efficient and the monomeric compound TM1 elicits a poor binding ability. Monitoring of the interaction by an electrophoretic mobility shift assay shows a 1:1 stoichiometry for the binding of the dimeric compound to the hairpin structure and confirms the lower affinity for a control duplex. Protection experiments with RNase T1 indicate interaction of the drug both in the stem and in the loop of the hairpin. Taken together, the data suggest a binding of TD1 inside the hairpin at the stem-loop junction. The same trends are observed with paromomycin and kanamycin analogues but with a lower affinity.
Collapse
Affiliation(s)
- Markus Kaiser
- Laboratoire de Chimie des Interactions Moléculaires, CNRS UPR 285, Collège de France
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Bert Willis
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | | |
Collapse
|
32
|
Barbieri CM, Pilch DS. Complete thermodynamic characterization of the multiple protonation equilibria of the aminoglycoside antibiotic paromomycin: a calorimetric and natural abundance 15N NMR study. Biophys J 2005; 90:1338-49. [PMID: 16326918 PMCID: PMC1367285 DOI: 10.1529/biophysj.105.075028] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The binding of aminoglycoside antibiotics to a broad range of macromolecular targets is coupled to protonation of one or more of the amino groups that typify this class of drugs. Determining how and to what extent this linkage influences the energetics of the aminoglycoside-macromolecule binding reaction requires a detailed understanding of the thermodynamics associated with the protonation equilibria of the aminoglycoside amino groups. In recognition of this need, a calorimetric- and NMR-based approach for obtaining the requisite thermodynamic information is presented using paromomycin as the model aminoglycoside. Temperature- and pH-dependent 15N NMR studies provide pK(a) values for the five paromomycin amino groups, as well as the temperature dependence of these pK(a) values. These studies also indicate that the observed pK(a) values associated with the free base form of paromomycin are lower in magnitude than the corresponding values associated with the sulfate salt form of the drug. This difference in pK(a) is due to drug interactions with the sulfate counterions at the high drug concentrations (> or = 812 mM) used in the 15N NMR studies. Isothermal titration calorimetry studies conducted at drug concentrations < or = 45 microM reveal that the extent of paromomycin protonation linked to the binding of the drug to its pharmacologically relevant target, the 16 S rRNA A-site, is consistent with the pK(a) values of the free base and not the sulfate salt form of the drug. Temperature- and pH-dependent isothermal titration calorimetry studies yield exothermic enthalpy changes (deltaH) for protonation of the five paromomycin amino groups, as well as positive heat capacity changes (deltaC(p)) for three of the five amino groups. Regarded as a whole, the results presented here represent an important first step toward establishing a thermodynamic database that can be used to predict how aminoglycoside-macromolecule binding energetics will be influenced by conditions such as temperature, pH, and ionic strength. Such a predictive capability is a critical component of any drug design strategy.
Collapse
Affiliation(s)
- Christopher M Barbieri
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | |
Collapse
|
33
|
Zhang X, Wang X, Liu C. Molecular docking and 3D-QSAR study of pyranmycin derivatives against 16S rRNA A site. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2005.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Sainlos M, Hauchecorne M, Oudrhiri N, Zertal-Zidani S, Aissaoui A, Vigneron JP, Lehn JM, Lehn P. Kanamycin A-derived cationic lipids as vectors for gene transfection. Chembiochem 2005; 6:1023-33. [PMID: 15883979 DOI: 10.1002/cbic.200400344] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cationic lipids nowadays constitute a promising alternative to recombinant viruses for gene transfer. We have recently explored the transfection potential of a new class of lipids based upon the use of aminoglycosides as cationic polar headgroups. The encouraging results obtained with a first cholesterol derivative of kanamycin A prompted us to investigate this family of vectors further, by modulating the constituent structural units of the cationic lipid. For this study, we have investigated the transfection properties of a series of new derivatives based on a kanamycin A scaffold. The results primarily confirm that aminoglycoside-based lipids are efficient vectors for gene transfection both in vitro and in vivo (mouse airways). Furthermore, a combination of transfection and physicochemical data revealed that some modifications of the constitutive subunits of kanamycin A-based vectors were associated with substantial changes in their transfection properties.
Collapse
Affiliation(s)
- Matthieu Sainlos
- Laboratoire de Chimie des Interactions Moléculaires, Collège de France, CNRS UPR 285, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Xu H, Liang Y, Zhang P, Du F, Zhou BR, Wu J, Liu JH, Liu ZG, Ji LN. Biophysical studies of a ruthenium(II) polypyridyl complex binding to DNA and RNA prove that nucleic acid structure has significant effects on binding behaviors. J Biol Inorg Chem 2005; 10:529-38. [PMID: 16091935 PMCID: PMC7087908 DOI: 10.1007/s00775-005-0007-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 07/03/2005] [Indexed: 11/22/2022]
Abstract
The interactions of a metal complex [Ru(phen)(2)PMIP](2+) {Ru=ruthenium, phen=1,10-phenanthroline, PMIP=2-(4-methylphenyl)imidazo[4,5-f]1,10-phenanthroline} with yeast tRNA and calf thymus DNA (CT DNA) have been investigated comparatively by UV-vis spectroscopy, fluorescence spectroscopy, viscosity measurements, isothermal titration calorimetry (ITC), as well as equilibrium dialysis and circular dichroism (CD). Spectroscopic studies together with ITC and viscosity measurements indicate that both binding modes of the Ru(II) polypyridyl complex to yeast tRNA and CT DNA are intercalation and yeast tRNA binding of the complex is stronger than CT DNA binding. ITC experiments show that the interaction of the complex with yeast tRNA is driven by a moderately favorable enthalpy decrease in combination with a moderately favorable entropy increase, while the binding of the complex to CT DNA is driven by a large favorable enthalpy decrease with a less favorable entropy increase. The results from equilibrium dialysis and CD suggest that both interactions are enantioselective and the Delta enantiomer of the complex may bind more favorably to both yeast tRNA and CT DNA than the Lambda enantiomer does, and that the complex is a better candidate for an enantioselective binder to yeast tRNA than to CT DNA. Taken together, these results indicate that the structures of nucleic acids have significant effects on the binding behaviors of metal complexes.
Collapse
Affiliation(s)
- Hong Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, 430072 Wuhan, China
- Department of Chemistry and Biology, Normal College, Shenzhen University, 518060 Shenzhen, China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093 China
| | - Yi Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Peng Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Fen Du
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Bing-Rui Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Jun Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Jian-Hong Liu
- Department of Chemistry and Biology, Normal College, Shenzhen University, 518060 Shenzhen, China
| | - Zhi-Gang Liu
- Department of Chemistry and Biology, Normal College, Shenzhen University, 518060 Shenzhen, China
| | - Liang-Nian Ji
- Key Laboratory of Gene Engineering of Ministry of Education, Zhongshan University, Guangzhou, 510275 China
| |
Collapse
|
36
|
Verhelst SHL, Michiels PJA, van der Marel GA, van Boeckel CAA, van Boom JH. Surface plasmon resonance evaluation of various aminoglycoside-RNA hairpin interactions reveals low degree of selectivity. Chembiochem 2005; 5:937-42. [PMID: 15239050 DOI: 10.1002/cbic.200300819] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aminoglycoside antibiotics, which are able to selectively bind to RNA, are considered to be an important lead in RNA-targeting drug discovery. In this study, surface plasmon resonance (SPR) was employed to explore the interaction of aminoglycosides with known tobramycin-binding RNA hairpins (aptamers) and an unrelated RNA hairpin. It was established that aminoglycosides have multiple interactions with RNA hairpins. Unexpectedly, the different hairpins showed comparable affinity for a set of related aminoglycosides. The observed absence of selectivity presents an extra hurdle in the discovery of novel aminoglycosides as specific drugs that target defined RNA hairpins.
Collapse
Affiliation(s)
- Steven H L Verhelst
- Leiden Institute of Chemistry, Gorlaeus Laboratories, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Fu PKL, Abuzakhm S, Turro C. Photoinduced DNA Cleavage and Cellular Damage in Human Dermal Fibroblasts by 2,3-Diaminophenazine¶. Photochem Photobiol 2005. [DOI: 10.1562/2004-07-20-ra-237.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Abstract
RNA is known to have multiple roles in critical cellular functions. Thus, there is great potential for RNA-binding small molecules as both therapeutic agents and cellular probes. Unfortunately, the multiple secondary structures that RNA can adopt have caused difficulty in the development of a general paradigm for RNA-small molecule binding. In particular, the standard RNA-binding compounds such as aminoglycosides do not generally bind RNA hairpin loops, a widespread and vitally important secondary structural motif. In this manuscript we report that dimers of deoxystreptamine bind to RNA hairpin loops with affinities rivaling that of RNA-aminoglycoside interactions.
Collapse
Affiliation(s)
- Xianjun Liu
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
39
|
Bryan MC, Wong CH. Aminoglycoside array for the high-throughput analysis of small molecule–RNA interactions. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.03.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Childs JL, Poole AW, Turner DH. Inhibition of Escherichia coli RNase P by oligonucleotide directed misfolding of RNA. RNA (NEW YORK, N.Y.) 2003; 9:1437-45. [PMID: 14624000 PMCID: PMC1370498 DOI: 10.1261/rna.5780503] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Oligonucleotide directed misfolding of RNA (ODMiR) uses short oligonucleotides to inhibit RNA function by exploiting the ability of RNA to fold into different structures with similar free energies. It is shown that the 2'-O-methyl oligonucleotide, m(CAGCCUACCCGG), can trap Escherichia coli RNase P RNA (M1 RNA) in a nonfunctional structure in a transcription mixture containing RNase P protein (C5 protein). At about 200 nM, the 12-mer thus inhibits 50% of pre-tRNA processing by RNase P. Roughly 10-fold more 12-mer is required to inhibit RNase P containing full-length, renatured RNase P RNA. Diethyl pyrocarbonate modification in the presence of 12-mer reveals increased modification of sites in and interacting with P4, suggesting a structural rearrangement of a large pseudoknot important for catalytic activity. Thus, the ODMiR method can be applied to RNAs even when folding is facilitated by a cognate protein.
Collapse
Affiliation(s)
- Jessica L Childs
- Departments of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | | | | |
Collapse
|
41
|
Luedtke NW, Hwang JS, Nava E, Gut D, Kol M, Tor Y. The DNA and RNA specificity of eilatin Ru(II) complexes as compared to eilatin and ethidium bromide. Nucleic Acids Res 2003; 31:5732-40. [PMID: 14500837 PMCID: PMC206458 DOI: 10.1093/nar/gkg758] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eilatin-containing ruthenium complexes bind to a broad range of different nucleic acids including: calf thymus (CT) DNA, tRNA(Phe), polymeric RNAs and DNAs, and viral RNAs including the HIV-1 RRE and TAR. The nucleic acid specificity of Lambda- and Delta-[Ru(bpy)2eilatin]2+ have been compared to that of the 'free' eilatin ligand, and to the classic intercalating agent ethidium bromide. Interestingly, all four compounds appear to bind to nucleic acids by intercalation, but the trends in nucleic acid binding specificity are highly diverse. Unlike ethidium bromide, both eilatin and the eilatin-containing coordination complexes bind to certain single-stranded RNAs with high affinity (K(d) < or = 1 microM). Eilatin itself is selective for electron-poor polymeric purines, while the eilatin-coordination complexes exhibit preference for the polypyrimidine r(U). These results show how the binding specificity of an intercalating ligand can change upon its incorporation into an octahedral metal complex.
Collapse
Affiliation(s)
- Nathan W Luedtke
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA and. School of Chemistry, Tel Aviv University, Ramat Aviv, 69978, Israel
| | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA.
| |
Collapse
|
43
|
Abstract
2-Deoxystreptamine (2-DOS) aminoglycosides are a family of structurally related broad-spectrum antibiotics that are used widely in the treatment of infections caused by aerobic Gram-negative bacilli. Their antibiotic activities are ascribed to their abilities to bind a highly conserved A site in the 16 S rRNA of the 30 S ribosomal subunit and interfere with protein synthesis. The abilities of the 2-DOS aminoglycosides to recognize a specific subdomain of a large RNA molecule make these compounds archetypical models for RNA-targeting drugs. This article presents a series of calorimetric, spectroscopic, osmotic stress, and computational studies designed to evaluate the thermodynamics (DeltaG, DeltaH, DeltaS, DeltaCp) of aminoglycoside-rRNA interactions, as well as the hydration changes that accompany these interactions. In conjunction with the current structural database, the results of these studies provide important insights into the molecular forces that dictate and control the rRNA binding affinities and specificities of the aminoglycosides. Significantly, identification of these molecular driving forces [which include binding-linked drug protonation reactions, polyelectrolyte contributions from counterion release, conformational changes, hydration effects, and molecular interactions (e.g., hydrogen bonds and van der Waals interactions)], as well as the relative magnitudes of their contributions to the binding free energy, could not be achieved by consideration of structural data alone, highlighting the importance of acquiring both thermodynamic and structural information for developing a complete understanding of the drug-RNA binding process. The results presented here begin to establish a database that can be used to predict, over a range of conditions, the relative affinity of a given aminoglycoside or aminoglycoside mimetic for a targeted RNA site vs binding to potential competing secondary sites. This type of predictive capability is essential for establishment of a rational design approach to the development of new RNA-targeted drugs.
Collapse
Affiliation(s)
- Daniel S Pilch
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA.
| | | | | | | |
Collapse
|
44
|
Kaul M, Barbieri CM, Kerrigan JE, Pilch DS. Coupling of drug protonation to the specific binding of aminoglycosides to the A site of 16 S rRNA: elucidation of the number of drug amino groups involved and their identities. J Mol Biol 2003; 326:1373-87. [PMID: 12595251 DOI: 10.1016/s0022-2836(02)01452-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
2-Deoxystreptamine (2-DOS) aminoglycoside antibiotics bind specifically to the central region of the 16S rRNA A site and interfere with protein synthesis. Recently, we have shown that the binding of 2-DOS aminoglycosides to an A site model RNA oligonucleotide is linked to the protonation of drug amino groups. Here, we extend these studies to define the number of amino groups involved as well as their identities. Specifically, we use pH-dependent 15N NMR spectroscopy to determine the pK(a) values of the amino groups in neomycin B, paromomycin I, and lividomycin A sulfate, with the resulting pK(a) values ranging from 6.92 to 9.51. For each drug, the 3-amino group was associated with the lowest pK(a), with this value being 6.92 in neomycin B, 7.07 in paromomycin I, and 7.24 in lividomycin A. In addition, we use buffer-dependent isothermal titration calorimetry (ITC) to determine the number of protons linked to the complexation of the three drugs with the A site model RNA oligomer at pH 5.5, 8.8, or 9.0. At pH 5.5, the binding of the three drugs to the host RNA is independent of drug protonation effects. By contrast, at pH 9.0, the RNA binding of paromomycin I and neomycin B is coupled to the uptake of 3.25 and 3.80 protons, respectively, with the RNA binding of lividomycin A at pH 8.8 being coupled to the uptake of 3.25 protons. A comparison of these values with the protonation states of the drugs predicted by our NMR-derived pK(a) values allows us to identify the specific drug amino groups whose protonation is linked to complexation with the host RNA. These determinations reveal that the binding of lividomycin A to the host RNA is coupled to the protonation of all five of its amino groups, with the RNA binding of paromomycin I and neomycin B being linked to the protonation of four and at least five amino groups, respectively. For paromomycin I, the protonation reactions involve the 1-, 3-, 2'-, and 2"'-amino groups, while, for neomycin B, the binding-linked protonation reactions involve at least the 1-, 3-, 2', 6'-, and 2"'-amino groups. Our results clearly identify drug protonation reactions as important thermodynamic participants in the specific binding of 2-DOS aminoglycosides to the A site of 16S rRNA.
Collapse
Affiliation(s)
- Malvika Kaul
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| | | | | | | |
Collapse
|
45
|
Vicens Q, Westhof E. Crystal structure of a complex between the aminoglycoside tobramycin and an oligonucleotide containing the ribosomal decoding a site. CHEMISTRY & BIOLOGY 2002; 9:747-55. [PMID: 12079787 DOI: 10.1016/s1074-5521(02)00153-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Aminoglycoside antibiotics target the decoding aminoacyl site (A site) on the 16S ribosomal RNA and induce miscoding during translation. Here, we present the crystal structure, at 2.54 A resolution, of an RNA oligonucleotide containing the A site sequence complexed to the 4,6-disubstituted 2-deoxystreptamine aminoglycoside tobramycin. The three aminosugar rings making up tobramycin interact with the deep-groove atoms directly or via water molecules and stabilize a fully bulged-out conformation of adenines A(1492) and A(1493). The comparison between this structure and the one previously solved in the presence of paromomycin confirms the importance of the functional groups on the common neamine part of these two antibiotics for binding to RNA. Furthermore, the analysis of the present structure provides a molecular explanation to some of the resistance mechanisms that have spread among bacteria and rendered aminoglycoside antibiotics inefficient.
Collapse
Affiliation(s)
- Quentin Vicens
- Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Modélisation et Simulations des Acides Nucléiques, UPR 9002, Université Louis Pasteur, 15 Rue René Descartes, 67084 Strasbourg Cedex, France
| | | |
Collapse
|
46
|
Carneiro FA, Bianconi ML, Weissmüller G, Stauffer F, Da Poian AT. Membrane recognition by vesicular stomatitis virus involves enthalpy-driven protein-lipid interactions. J Virol 2002; 76:3756-64. [PMID: 11907215 PMCID: PMC136106 DOI: 10.1128/jvi.76.8.3756-3764.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesicular stomatitis virus (VSV) infection depends on the fusion of viral and cellular membranes, which is mediated by virus spike glycoprotein G at the acidic environment of the endosomal compartment. VSV G protein does not contain a hydrophobic amino acid sequence similar to the fusion peptides found among other viral glycoproteins, suggesting that membrane recognition occurs through an alternative mechanism. Here we studied the interaction between VSV G protein and liposomes of different phospholipid composition by force spectroscopy, isothermal titration calorimetry (ITC), and fluorescence spectroscopy. Force spectroscopy experiments revealed the requirement for negatively charged phospholipids for VSV binding to membranes, suggesting that this interaction is electrostatic in nature. In addition, ITC experiments showed that VSV binding to liposomes is an enthalpically driven process. Fluorescence data also showed the lack of VSV interaction with the vesicles as well as inhibition of VSV-induced membrane fusion at high ionic strength. Intrinsic fluorescence measurements showed that the extent of G protein conformational changes depends on the presence of phosphatidylserine (PS) on the target membrane. Although the increase in PS content did not change the binding profile, the rate of the fusion reaction was remarkably increased when the PS content was increased from 25 to 75%. On the basis of these data, we suggest that G protein binding to the target membrane essentially depends on electrostatic interactions, probably between positive charges on the protein surface and negatively charged phospholipids in the cellular membrane. In addition, the fusion is exothermic, indicating no entropic constraints to this process.
Collapse
Affiliation(s)
- Fabiana A Carneiro
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | |
Collapse
|
47
|
Walter F, Pütz J, Giegé R, Westhof E. Binding of tobramycin leads to conformational changes in yeast tRNA(Asp) and inhibition of aminoacylation. EMBO J 2002; 21:760-8. [PMID: 11847123 PMCID: PMC125865 DOI: 10.1093/emboj/21.4.760] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides inhibit translation in bacteria by binding to the A site in the ribosome. Here, it is shown that, in yeast, aminoglycosides can also interfere with other processes of translation in vitro. Steady-state aminoacylation kinetics of unmodified yeast tRNA(Asp) transcript indicate that the complex between tRNA(Asp) and tobramycin is a competitive inhibitor of the aspartylation reaction with an inhibition constant (K(I)) of 36 nM. Addition of an excess of heterologous tRNAs did not reverse the charging of tRNA(Asp), indicating a specific inhibition of the aspartylation reaction. Although magnesium ions compete with the inhibitory effect, the formation of the aspartate adenylate in the ATP-PP(i) exchange reaction by aspartyl-tRNA synthetase in the absence of the tRNA is not inhibited. Ultraviolet absorbance melting experiments indicate that tobramycin interacts with and destabilizes the native L-shaped tertiary structure of tRNA(Asp). Fluorescence anisotropy using fluorescein-labelled tobramycin reveals a stoichiometry of one molecule bound to tRNA(Asp) with a K(D) of 267 nM. The results indicate that aminoglycosides are biologically effective when their binding induces a shift in a conformational equilibrium of the RNA.
Collapse
Affiliation(s)
| | | | | | - Eric Westhof
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
Corresponding author e-mail:
| |
Collapse
|