1
|
Royzenblat SK, Freddolino L. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. EcoSal Plus 2024; 12:eesp00012022. [PMID: 38864557 PMCID: PMC11636183 DOI: 10.1128/ecosalplus.esp-0001-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.
Collapse
Affiliation(s)
- Sonya K. Royzenblat
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Jing Kay Lam K, Zhang Z, Saier Jr MH. Histone-like Nucleoid Structuring (H-NS) Protein Silences the beta-glucoside (bgl) Utilization Operon in Escherichia coli by Forming a DNA Loop. Comput Struct Biotechnol J 2022; 20:6287-6301. [DOI: 10.1016/j.csbj.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
|
3
|
H-NS and ToxT Inversely Control Cholera Toxin Production by Binding to Overlapping DNA Sequences. J Bacteriol 2021; 203:e0018721. [PMID: 34228499 DOI: 10.1128/jb.00187-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae infects human hosts following ingestion of contaminated food or water, resulting in the severe diarrheal disease cholera. The watery diarrhea that is characteristic of the disease is directly caused by the production of cholera toxin (CT). A complex regulatory cascade controls the production of CT and other virulence factors. However, ultimately, a single protein, ToxT, directly binds to virulence gene promoters and activates their transcription. Previously, we identified two ToxT binding sites, or toxboxes, within the cholera toxin promoter (PctxAB). The toxboxes overlap the two promoter-proximal GATTTTT heptad repeats found within PctxAB in classical biotype V. cholerae strain O395. These heptad repeats were previously found to be located within a large DNA region bound by H-NS, a global transcriptional repressor present in Gram-negative bacteria. The current model for the control of PctxAB transcription proposes complete H-NS displacement from the DNA by ToxT, followed by direct activation by ToxT-RNA polymerase (RNAP) contacts. The goal of this study was to determine more precisely where H-NS binds to PctxAB and test the hypothesis that ToxT completely displaces H-NS from the PctxAB promoter before activating transcription. The results suggest that H-NS binds only to the region of PctxAB encompassing the heptad repeats and that ToxT displaces H-NS only from its most promoter-proximal binding sites, calling for a revision of the current model involving H-NS and ToxT at PctxAB. IMPORTANCE H-NS is a global negative regulator of transcription in Gram-negative bacteria, particularly in horizontally acquired genetic islands. Previous work in Vibrio cholerae suggested that H-NS represses the transcription of cholera toxin genes by binding to a large region upstream of its promoter and that the virulence activator ToxT derepresses transcription by removing H-NS from the promoter. Here, new data support a revised model in which ToxT displaces only H-NS bound to the most promoter-proximal DNA sites that overlap the ToxT binding sites, leaving the upstream sites occupied by H-NS. This introduces a higher-resolution mechanism for the antirepression of H-NS in the control of cholera toxin production.
Collapse
|
4
|
Ishihama A, Shimada T. Hierarchy of transcription factor network in Escherichia coli K-12: H-NS-mediated silencing and Anti-silencing by global regulators. FEMS Microbiol Rev 2021; 45:6312496. [PMID: 34196371 DOI: 10.1093/femsre/fuab032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Transcriptional regulation for genome expression determines growth and adaptation of single-cell bacteria that are directly exposed to environment. The transcriptional apparatus in Escherichia coli K-12 is composed of RNA polymerase core enzyme and two groups of its regulatory proteins, seven species of promoter-recognition subunit sigma and about 300 species of transcription factors. The identification of regulatory targets for all these regulatory proteins is critical toward understanding the genome regulation as a whole. For this purpose, we performed a systematic search in vitro of the whole set of binding sites for each factor by gSELEX system. This review summarizes the accumulated knowledge of regulatory targets for more than 150 TFs from E. coli K-12. Overall TFs could be classified into four families: nucleoid-associated bifunctional TFs; global regulators; local regulators; and single-target regulators, in which the regulatory functions remain uncharacterized for the nucleoid-associated TFs. Here we overview the regulatory targets of two nucleoid-associated TFs, H-NS and its paralog StpA, both together playing the silencing role of a set of non-essential genes. Participation of LeuO and other global regulators have been indicated for the anti-silencing. Finally, we propose the hierarchy of TF network as a key framework of the bacterial genome regulation.
Collapse
Affiliation(s)
- Akira Ishihama
- Hosei University, Research Institute for Micro-Nano Technology, Koganei, Tokyo 184-0003, Japan
| | - Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
5
|
Japaridze A, Yang W, Dekker C, Nasser W, Muskhelishvili G. DNA sequence-directed cooperation between nucleoid-associated proteins. iScience 2021; 24:102408. [PMID: 33997690 PMCID: PMC8099737 DOI: 10.1016/j.isci.2021.102408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/05/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023] Open
Abstract
Nucleoid-associated proteins (NAPs) are a class of highly abundant DNA-binding proteins in bacteria and archaea. While both the composition and relative abundance of the NAPs change during the bacterial growth cycle, surprisingly little is known about their crosstalk in mutually binding and stabilizing higher-order nucleoprotein complexes in the bacterial chromosome. Here, we use atomic force microscopy and solid-state nanopores to investigate long-range nucleoprotein structures formed by the binding of two major NAPs, FIS and H-NS, to DNA molecules with distinct binding site arrangements. We find that spatial organization of the protein binding sites can govern the higher-order architecture of the nucleoprotein complexes. Based on sequence arrangement the complexes differed in their global shape and compaction as well as the extent of FIS and H-NS binding. Our observations highlight the important role the DNA sequence plays in driving structural differentiation within the bacterial chromosome. The location of protein binding sites along DNA is important for 3D organization FIS protein forms DNA loops while H-NS forms compact DNA plectonemes FIS DNA loops inhibit H-NS from spreading over the DNA FIS and H-NS competition creates regions of ‘open’ and ‘closed’ DNA
Collapse
Affiliation(s)
- Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wayne Yang
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - William Nasser
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Georgi Muskhelishvili
- School of Natural Sciences, Agricultural University of Georgia, Davit Aghmashenebeli Alley 240, 0159 Tbilisi, Georgia
| |
Collapse
|
6
|
Lippa AM, Gebhardt MJ, Dove SL. H-NS-like proteins in Pseudomonas aeruginosa coordinately silence intragenic transcription. Mol Microbiol 2020; 115:1138-1151. [PMID: 33245158 DOI: 10.1111/mmi.14656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/22/2023]
Abstract
The H-NS-like proteins MvaT and MvaU act coordinately as global repressors in Pseudomonas aeruginosa by binding to AT-rich regions of the chromosome. Although cells can tolerate loss of either protein, identifying their combined regulatory effects has been challenging because the loss of both proteins is lethal due to induction of prophage Pf4 and subsequent superinfection of the cell. In other bacteria, H-NS promotes the cellular fitness by inhibiting intragenic transcription from AT-rich target regions, preventing them from sequestering RNA polymerase; however, it is not known whether MvaT and MvaU function similarly. Here, we utilize a parental strain that cannot be infected by Pf4 phage to define the collective MvaT and MvaU regulon and demonstrate that the combined loss of both MvaT and MvaU leads to increased intragenic transcription from loci directly controlled by these proteins. We further show that the loss of MvaT and MvaU leads to a striking redistribution of RNA polymerase containing σ70 to genomic regions vacated by these proteins. Our findings suggest that the ability of H-NS-like proteins to repress intragenic transcription is a universal function of these proteins and point to a second mechanism by which MvaT and MvaU may contribute to the growth of P. aeruginosa.
Collapse
Affiliation(s)
- Andrew M Lippa
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Gebhardt
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Abstract
Temperature is an important parameter in bioprocesses, influencing the structure and functionality of almost every biomolecule, as well as affecting metabolic reaction rates. In industrial biotechnology, the temperature is usually tightly controlled at an optimum value. Smart variation of the temperature to optimize the performance of a bioprocess brings about multiple complex and interconnected metabolic changes and is so far only rarely applied. Mathematical descriptions and models facilitate a reduction in complexity, as well as an understanding, of these interconnections. Starting in the 19th century with the “primal” temperature model of Svante Arrhenius, a variety of models have evolved over time to describe growth and enzymatic reaction rates as functions of temperature. Data-driven empirical approaches, as well as complex mechanistic models based on thermodynamic knowledge of biomolecular behavior at different temperatures, have been developed. Even though underlying biological mechanisms and mathematical models have been well-described, temperature as a control variable is only scarcely applied in bioprocess engineering, and as a conclusion, an exploitation strategy merging both in context has not yet been established. In this review, the most important models for physiological, biochemical, and physical properties governed by temperature are presented and discussed, along with application perspectives. As such, this review provides a toolset for future exploitation perspectives of temperature in bioprocess engineering.
Collapse
|
8
|
Qin L, Erkelens AM, Ben Bdira F, Dame RT. The architects of bacterial DNA bridges: a structurally and functionally conserved family of proteins. Open Biol 2019; 9:190223. [PMID: 31795918 PMCID: PMC6936261 DOI: 10.1098/rsob.190223] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Every organism across the tree of life compacts and organizes its genome with architectural chromatin proteins. While eukaryotes and archaea express histone proteins, the organization of bacterial chromosomes is dependent on nucleoid-associated proteins. In Escherichia coli and other proteobacteria, the histone-like nucleoid structuring protein (H-NS) acts as a global genome organizer and gene regulator. Functional analogues of H-NS have been found in other bacterial species: MvaT in Pseudomonas species, Lsr2 in actinomycetes and Rok in Bacillus species. These proteins complement hns- phenotypes and have similar DNA-binding properties, despite their lack of sequence homology. In this review, we focus on the structural and functional characteristics of these four architectural proteins. They are able to bridge DNA duplexes, which is key to genome compaction, gene regulation and their response to changing conditions in the environment. Structurally the domain organization and charge distribution of these proteins are conserved, which we suggest is at the basis of their conserved environment responsive behaviour. These observations could be used to find and validate new members of this protein family and to predict their response to environmental changes.
Collapse
Affiliation(s)
- L. Qin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - A. M. Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - F. Ben Bdira
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - R. T. Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
9
|
Wüllner D, Haupt A, Prochnow P, Leontiev R, Slusarenko AJ, Bandow JE. Interspecies Comparison of the Bacterial Response to Allicin Reveals Species-Specific Defense Strategies. Proteomics 2019; 19:e1900064. [PMID: 31622046 DOI: 10.1002/pmic.201900064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/16/2019] [Indexed: 12/22/2022]
Abstract
Allicin, a broad-spectrum antimicrobial agent from garlic, disrupts thiol and redox homeostasis, proteostasis, and cell membrane integrity. Since medicine demands antimicrobials with so far unexploited mechanisms, allicin is a promising lead structure. While progress is being made in unraveling its mode of action, little is known on bacterial adaptation strategies. Some isolates of Pseudomonas aeruginosa and Escherichia coli withstand exposure to high allicin concentrations due to as yet unknown mechanisms. To elucidate resistance and sensitivity-conferring cellular processes, the acute proteomic responses of a resistant P. aeruginosa strain and the sensitive species Bacillus subtilis are compared to the published proteomic response of E. coli to allicin treatment. The cellular defense strategies share functional features: proteins involved in translation and maintenance of protein quality, redox homeostasis, and cell envelope modification are upregulated. In both Gram-negative species, protein synthesis of the majority of proteins is downregulated while the Gram-positive B. subtilis responded by upregulation of multiple regulons. A comparison of the B. subtilis proteomic response to a library of responses to antibiotic treatment reveals 30 proteins specifically upregulated by allicin. Upregulated oxidative stress proteins are shared with nitrofurantoin and diamide. Microscopy-based assays further indicate that in B. subtilis cell wall integrity is impaired.
Collapse
Affiliation(s)
- Dominik Wüllner
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Annika Haupt
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Pascal Prochnow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Roman Leontiev
- Department of Plant Physiology (Bio III), RWTH Aachen University, 52056, Aachen, Germany.,Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66041, Saarbrücken, Germany
| | - Alan J Slusarenko
- Department of Plant Physiology (Bio III), RWTH Aachen University, 52056, Aachen, Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| |
Collapse
|
10
|
Shahul Hameed UF, Liao C, Radhakrishnan AK, Huser F, Aljedani SS, Zhao X, Momin AA, Melo FA, Guo X, Brooks C, Li Y, Cui X, Gao X, Ladbury JE, Jaremko Ł, Jaremko M, Li J, Arold ST. H-NS uses an autoinhibitory conformational switch for environment-controlled gene silencing. Nucleic Acids Res 2019; 47:2666-2680. [PMID: 30597093 PMCID: PMC6411929 DOI: 10.1093/nar/gky1299] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
As an environment-dependent pleiotropic gene regulator in Gram-negative bacteria, the H-NS protein is crucial for adaptation and toxicity control of human pathogens such as Salmonella, Vibrio cholerae or enterohaemorrhagic Escherichia coli. Changes in temperature affect the capacity of H-NS to form multimers that condense DNA and restrict gene expression. However, the molecular mechanism through which H-NS senses temperature and other physiochemical parameters remains unclear and controversial. Combining structural, biophysical and computational analyses, we show that human body temperature promotes unfolding of the central dimerization domain, breaking up H-NS multimers. This unfolding event enables an autoinhibitory compact H-NS conformation that blocks DNA binding. Our integrative approach provides the molecular basis for H-NS-mediated environment-sensing and may open new avenues for the control of pathogenic multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Umar F Shahul Hameed
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Chenyi Liao
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Anand K Radhakrishnan
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Franceline Huser
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Safia S Aljedani
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Xiaochuan Zhao
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Afaque A Momin
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Fernando A Melo
- Department of Physics (IBILCE), São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Xianrong Guo
- King Abdullah University of Science and Technology (KAUST), Imaging and Characterization Core Lab, Thuwal, 23955-6900, Saudi Arabia
| | - Claire Brooks
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Yu Li
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Xuefeng Cui
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Łukasz Jaremko
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Jianing Li
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| |
Collapse
|
11
|
Boudreau BA, Hron DR, Qin L, van der Valk RA, Kotlajich MV, Dame RT, Landick R. StpA and Hha stimulate pausing by RNA polymerase by promoting DNA-DNA bridging of H-NS filaments. Nucleic Acids Res 2018; 46:5525-5546. [PMID: 29718386 PMCID: PMC6009659 DOI: 10.1093/nar/gky265] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022] Open
Abstract
In enterobacteria, AT-rich horizontally acquired genes, including virulence genes, are silenced through the actions of at least three nucleoid-associated proteins (NAPs): H-NS, StpA and Hha. These proteins form gene-silencing nucleoprotein filaments through direct DNA binding by H-NS and StpA homodimers or heterodimers. Both linear and bridged filaments, in which NAPs bind one or two DNA segments, respectively, have been observed. Hha can interact with H-NS or StpA filaments, but itself lacks a DNA-binding domain. Filaments composed of H-NS alone can inhibit transcription initiation and, in the bridged conformation, slow elongating RNA polymerase (RNAP) by promoting backtracking at pause sites. How the other NAPs modulate these effects of H-NS is unknown, despite evidence that they help regulate subsets of silenced genes in vivo (e.g. in pathogenicity islands). Here we report that Hha and StpA greatly enhance H-NS-stimulated pausing by RNAP at 20°C. StpA:H-NS or StpA-only filaments also stimulate pausing at 37°C, a temperature at which Hha:H-NS or H-NS-only filaments have much less effect. In addition, we report that both Hha and StpA greatly stimulate DNA-DNA bridging by H-NS filaments. Together, these observations indicate that Hha and StpA can affect H-NS-mediated gene regulation by stimulating bridging of H-NS/DNA filaments.
Collapse
Affiliation(s)
- Beth A Boudreau
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Daniel R Hron
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Liang Qin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Ramon A van der Valk
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Matthew V Kotlajich
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
12
|
Tsibulskaya D, Mokina O, Kulikovsky A, Piskunova J, Severinov K, Serebryakova M, Dubiley S. The Product of Yersinia pseudotuberculosis mcc Operon Is a Peptide-Cytidine Antibiotic Activated Inside Producing Cells by the TldD/E Protease. J Am Chem Soc 2017; 139:16178-16187. [PMID: 29045133 DOI: 10.1021/jacs.7b07118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microcin C is a heptapeptide-adenylate antibiotic produced by some strains of Escherichia coli. Its peptide part is responsible for facilitated transport inside sensitive cells where it is proteolyzed with release of a toxic warhead-a nonhydrolyzable aspartamidyl-adenylate, which inhibits aspartyl-tRNA synthetase. Recently, a microcin C homologue from Bacillus amyloliquefaciens containing a longer peptide part modified with carboxymethyl-cytosine instead of adenosine was described, but no biological activity of this compound was revealed. Here, we characterize modified peptide-cytidylate from Yersinia pseudotuberculosis. As reported for B. amyloliquefaciens homologue, the initially synthesized compound contains a long peptide that is biologically inactive. This compound is subjected to endoproteolytic processing inside producing cells by the evolutionary conserved TldD/E protease. As a result, an 11-amino acid long peptide with C-terminal modified cytosine residue is produced. This compound is exported outside the producing cell and is bioactive, inhibiting sensitive cells in the same way as E. coli microcin C. Proteolytic processing inside producing cells is a novel strategy of peptide-nucleotide antibiotics biosynthesis that may help control production levels and avoid toxicity to the producer.
Collapse
Affiliation(s)
- Darya Tsibulskaya
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| | - Olga Mokina
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| | - Alexey Kulikovsky
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia.,Department of Biochemistry, University of Illinois at Urbana-Champaign , 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Julia Piskunova
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| | - Konstantin Severinov
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia.,Waksman Institute for Microbiology , 190 Frelinghuysen Road, Piscataway, New Jersey 08854-8020, United States
| | - Marina Serebryakova
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Leninskie Gory 1, Bldg. 40, Moscow 119991, Russia
| | - Svetlana Dubiley
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| |
Collapse
|
13
|
van der Valk RA, Vreede J, Qin L, Moolenaar GF, Hofmann A, Goosen N, Dame RT. Mechanism of environmentally driven conformational changes that modulate H-NS DNA-bridging activity. eLife 2017; 6:e27369. [PMID: 28949292 PMCID: PMC5647153 DOI: 10.7554/elife.27369] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteria frequently need to adapt to altered environmental conditions. Adaptation requires changes in gene expression, often mediated by global regulators of transcription. The nucleoid-associated protein H-NS is a key global regulator in Gram-negative bacteria and is believed to be a crucial player in bacterial chromatin organization via its DNA-bridging activity. H-NS activity in vivo is modulated by physico-chemical factors (osmolarity, pH, temperature) and interaction partners. Mechanistically, it is unclear how functional modulation of H-NS by such factors is achieved. Here, we show that a diverse spectrum of H-NS modulators alter the DNA-bridging activity of H-NS. Changes in monovalent and divalent ion concentrations drive an abrupt switch between a bridging and non-bridging DNA-binding mode. Similarly, synergistic and antagonistic co-regulators modulate the DNA-bridging efficiency. Structural studies suggest a conserved mechanism: H-NS switches between a 'closed' and an 'open', bridging competent, conformation driven by environmental cues and interaction partners.
Collapse
Affiliation(s)
| | - Jocelyne Vreede
- Computational ChemistryVan ‘t Hoff Institute for Molecular Sciences, University of AmsterdamAmsterdamNetherlands
| | - Liang Qin
- Leiden Institute of ChemistryLeiden UniversityLeidenNetherlands
| | | | - Andreas Hofmann
- Institute for Theoretical PhysicsUniversity of HeidelbergHeidelbergGermany
| | - Nora Goosen
- Leiden Institute of ChemistryLeiden UniversityLeidenNetherlands
| | - Remus T Dame
- Leiden Institute of ChemistryLeiden UniversityLeidenNetherlands
- Centre for Microbial Cell BiologyLeiden UniversityLeidenNetherlands
| |
Collapse
|
14
|
Genome-Wide Transcriptional Response to Varying RpoS Levels in Escherichia coli K-12. J Bacteriol 2017; 199:JB.00755-16. [PMID: 28115545 DOI: 10.1128/jb.00755-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/12/2017] [Indexed: 01/31/2023] Open
Abstract
The alternative sigma factor RpoS is a central regulator of many stress responses in Escherichia coli The level of functional RpoS differs depending on the stress. The effect of these differing concentrations of RpoS on global transcriptional responses remains unclear. We investigated the effect of RpoS concentration on the transcriptome during stationary phase in rich media. We found that 23% of genes in the E. coli genome are regulated by RpoS, and we identified many RpoS-transcribed genes and promoters. We observed three distinct classes of response to RpoS by genes in the regulon: genes whose expression changes linearly with increasing RpoS level, genes whose expression changes dramatically with the production of only a little RpoS ("sensitive" genes), and genes whose expression changes very little with the production of a little RpoS ("insensitive"). We show that sequences outside the core promoter region determine whether an RpoS-regulated gene is sensitive or insensitive. Moreover, we show that sensitive and insensitive genes are enriched for specific functional classes and that the sensitivity of a gene to RpoS corresponds to the timing of induction as cells enter stationary phase. Thus, promoter sensitivity to RpoS is a mechanism to coordinate specific cellular processes with growth phase and may also contribute to the diversity of stress responses directed by RpoS.IMPORTANCE The sigma factor RpoS is a global regulator that controls the response to many stresses in Escherichia coli Different stresses result in different levels of RpoS production, but the consequences of this variation are unknown. We describe how changing the level of RpoS does not influence all RpoS-regulated genes equally. The cause of this variation is likely the action of transcription factors that bind the promoters of the genes. We show that the sensitivity of a gene to RpoS levels explains the timing of expression as cells enter stationary phase and that genes with different RpoS sensitivities are enriched for specific functional groups. Thus, promoter sensitivity to RpoS is a mechanism that coordinates specific cellular processes in response to stresses.
Collapse
|
15
|
H-NS, Its Family Members and Their Regulation of Virulence Genes in Shigella Species. Genes (Basel) 2016; 7:genes7120112. [PMID: 27916940 PMCID: PMC5192488 DOI: 10.3390/genes7120112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/04/2022] Open
Abstract
The histone-like nucleoid structuring protein (H-NS) has played a key role in shaping the evolution of Shigella spp., and provides the backdrop to the regulatory cascade that controls virulence by silencing many genes found on the large virulence plasmid. H-NS and its paralogue StpA are present in all four Shigella spp., but a second H-NS paralogue, Sfh, is found in the Shigella flexneri type strain 2457T, which is routinely used in studies of Shigella pathogenesis. While StpA and Sfh have been proposed to serve as “molecular backups” for H-NS, the apparent redundancy of these proteins is questioned by in vitro studies and work done in Escherichia coli. In this review, we describe the current understanding of the regulatory activities of the H-NS family members, the challenges associated with studying these proteins and their role in the regulation of virulence genes in Shigella.
Collapse
|
16
|
Abstract
The H-NS family of DNA-binding proteins is the subject of intense study due to its important roles in the regulation of horizontally acquired genes critical for virulence, antibiotic resistance, and metabolism. Xenogeneic silencing proteins, typified by the H-NS protein of Escherichia coli, specifically target and downregulate expression from AT-rich genes by selectively recognizing specific structural features unique to the AT-rich minor groove. In doing so, these proteins facilitate bacterial evolution; enabling these cells to engage in horizontal gene transfer while buffering potential any detrimental fitness consequences that may result from it. Xenogeneic silencing and counter-silencing explain how bacterial cells can evolve effective gene regulatory strategies in the face of rampant gene gain and loss and it has extended our understanding of bacterial gene regulation beyond the classic operon model. Here we review the structures and mechanisms of xenogeneic silencers as well as their impact on bacterial evolution. Several H-NS-like proteins appear to play a role in facilitating gene transfer by other mechanisms including by regulating transposition, conjugation, and participating in the activation of virulence loci like the locus of enterocyte effacement pathogenicity island of pathogenic strains of E. coli. Evidence suggests that the critical determinants that dictate whether an H-NS-like protein will be a silencer or will perform a different function do not lie in the DNA-binding domain but, rather, in the domains that control oligomerization. This suggests that H-NS-like proteins are transcription factors that both recognize and alter the shape of DNA to exert specific effects that include but are not limited to gene silencing.
Collapse
|
17
|
Rammohan J, Ruiz Manzano A, Garner AL, Prusa J, Stallings CL, Galburt EA. Cooperative stabilization of Mycobacterium tuberculosis rrnAP3 promoter open complexes by RbpA and CarD. Nucleic Acids Res 2016; 44:7304-13. [PMID: 27342278 PMCID: PMC5009747 DOI: 10.1093/nar/gkw577] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/16/2016] [Indexed: 01/24/2023] Open
Abstract
The essential mycobacterial transcriptional regulators RbpA and CarD act to modulate transcription by associating to the initiation complex and increasing the flux of transcript production. Each of these factors interacts directly with the promoter DNA template and with RNA polymerase (RNAP) holoenzyme. We recently reported on the energetics of CarD-mediated open complex stabilization on the Mycobacterium tuberculosis rrnAP3 ribosomal promoter using a stopped-flow fluorescence assay. Here, we apply this approach to RbpA and show that RbpA stabilizes RNAP-promoter open complexes (RPo) via a distinct mechanism from that of CarD. Furthermore, concentration-dependent stopped-flow experiments with both factors reveal positive linkage (cooperativity) between RbpA and CarD with regard to their ability to stabilize RPo The observation of positive linkage between RbpA and CarD demonstrates that the two factors can act on the same transcription initiation complex simultaneously. Lastly, with both factors present, the kinetics of open complex formation is significantly faster than in the presence of either factor alone and approaches that of E. coli RNAP on the same promoter. This work provides a quantitative framework for the molecular mechanisms of these two essential transcription factors and the critical roles they play in the biology and pathology of mycobacteria.
Collapse
Affiliation(s)
- Jayan Rammohan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashley L Garner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Ayala JC, Wang H, Silva AJ, Benitez JA. Repression by H-NS of genes required for the biosynthesis of the Vibrio cholerae biofilm matrix is modulated by the second messenger cyclic diguanylic acid. Mol Microbiol 2015; 97:630-45. [PMID: 25982817 DOI: 10.1111/mmi.13058] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Expression of Vibrio cholerae genes required for the biosynthesis of exopolysacchide (vps) and protein (rbm) components of the biofilm matrix is enhanced by cyclic diguanylate (c-di-GMP). In a previous study, we reported that the histone-like nucleoid structuring (H-NS) protein represses the transcription of vpsA, vpsL and vpsT. Here we demonstrate that the regulator VpsT can disrupt repressive H-NS nucleoprotein complexes at the vpsA and vpsL promoters in the presence of c-di-GMP, while H-NS could disrupt the VpsT-promoter complexes in the absence of c-di-GMP. Chromatin immunoprecipitation-Seq showed a remarkable trend for H-NS to cluster at loci involved in biofilm development such as the rbmABCDEF genes. We show that the antagonistic relationship between VpsT and H-NS regulates the expression of the rbmABCDEF cluster. Epistasis analysis demonstrated that VpsT functions as an antirepressor at the rbmA/F, vpsU and vpsA/L promoters. Deletion of vpsT increased H-NS occupancy at these promoters while increasing the c-di-GMP pool had the opposite effect and included the vpsT promoter. The negative effect of c-di-GMP on H-NS occupancy at the vpsT promoter required the regulator VpsR. These results demonstrate that c-di-GMP activates the transcription of genes required for the biosynthesis of the biofilm matrix by triggering a coordinated VpsR- and VpsT-dependent H-NS antirepression cascade.
Collapse
Affiliation(s)
- Julio C Ayala
- University of Alabama at Birmingham, Department of Microbiology, Birmingham, Alabama.,Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia
| | - Hongxia Wang
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia.,State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Anisia J Silva
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia
| | - Jorge A Benitez
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia
| |
Collapse
|
19
|
Building bridges within the bacterial chromosome. Trends Genet 2015; 31:164-73. [DOI: 10.1016/j.tig.2015.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/22/2022]
|
20
|
Gene regulation by H-NS as a function of growth conditions depends on chromosomal position in Escherichia coli. G3-GENES GENOMES GENETICS 2015; 5:605-14. [PMID: 25701587 PMCID: PMC4390576 DOI: 10.1534/g3.114.016139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cellular adaptation to changing environmental conditions requires the coordinated regulation of expression of large sets of genes by global regulatory factors such as nucleoid associated proteins. Although in eukaryotic cells genomic position is known to play an important role in regulation of gene expression, it remains to be established whether in bacterial cells there is an influence of chromosomal position on the efficiency of these global regulators. Here we show for the first time that genome position can affect transcription activity of a promoter regulated by the histone-like nucleoid-structuring protein (H-NS), a global regulator of bacterial transcription and genome organization. We have used as a local reporter of H-NS activity the level of expression of a fluorescent reporter protein under control of an H-NS−regulated promoter (Phns) at different sites along the genome. Our results show that the activity of the Phns promoter depends on whether it is placed within the AT-rich regions of the genome that are known to be bound preferentially by H-NS. This modulation of gene expression moreover depends on the growth phase and the growth rate of the cells, reflecting the changes taking place in the relative abundance of different nucleoid proteins and the inherent heterogeneous organization of the nucleoid. Genomic position can thus play a significant role in the adaptation of the cells to environmental changes, providing a fitness advantage that can explain the selection of a gene’s position during evolution.
Collapse
|
21
|
van der Valk RA, Vreede J, Crémazy F, Dame RT. Genomic Looping: A Key Principle of Chromatin Organization. J Mol Microbiol Biotechnol 2015; 24:344-59. [DOI: 10.1159/000368851] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Bordetella pertussis fim3 gene regulation by BvgA: phosphorylation controls the formation of inactive vs. active transcription complexes. Proc Natl Acad Sci U S A 2015; 112:E526-35. [PMID: 25624471 DOI: 10.1073/pnas.1421045112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Two-component systems [sensor kinase/response regulator (RR)] are major tools used by microorganisms to adapt to environmental conditions. RR phosphorylation is typically required for gene activation, but few studies have addressed how and if phosphorylation affects specific steps during transcription initiation. We characterized transcription complexes made with RNA polymerase and the Bordetella pertussis RR, BvgA, in its nonphosphorylated or phosphorylated (BvgA∼P) state at P(fim3), the promoter for the virulence gene fim3 (fimbrial subunit), using gel retardation, potassium permanganate and DNase I footprinting, cleavage reactions with protein conjugated with iron bromoacetamidobenzyl-EDTA, and in vitro transcription. Previous work has shown that the level of nonphosphorylated BvgA remains high in vivo under conditions in which BvgA is phosphorylated. Our results here indicate that surprisingly both BvgA and BvgA∼P form open and initiating complexes with RNA polymerase at P(fim3). However, phosphorylation of BvgA is needed to generate the correct conformation that can transition to competent elongation. Footprints obtained with the complexes made with nonphosphorylated BvgA are atypical; while the initiating complex with BvgA synthesizes short RNA, it does not generate full-length transcripts. Extended incubation of the BvgA/RNA polymerase initiated complex in the presence of heparin generates a stable, but defective species that depends on the initial transcribed sequence of fim3. We suggest that the presence of nonphosphorylated BvgA down-regulates P(fim3) activity when phosphorylated BvgA is present and may allow the bacterium to quickly adapt to the loss of inducing conditions by rapidly eliminating P(fim3) activation once the signal for BvgA phosphorylation is removed.
Collapse
|
23
|
Will WR, Navarre WW, Fang FC. Integrated circuits: how transcriptional silencing and counter-silencing facilitate bacterial evolution. Curr Opin Microbiol 2014; 23:8-13. [PMID: 25461567 DOI: 10.1016/j.mib.2014.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/26/2022]
Abstract
Horizontal gene transfer is a major contributor to bacterial evolution and diversity. For a bacterial cell to utilize newly-acquired traits such as virulence and antibiotic resistance, new genes must be integrated into the existing regulatory circuitry to allow appropriate expression. Xenogeneic silencing of horizontally-acquired genes by H-NS or other nucleoid-associated proteins avoids adventitious expression and can be relieved by other DNA-binding counter-silencing proteins in an environmentally-responsive and physiologically-responsive manner. Biochemical and genetic analyses have recently demonstrated that counter-silencing can occur at a variety of promoter architectures, in contrast to classical transcriptional activation. Disruption of H-NS nucleoprotein filaments by DNA bending is a suggested mechanism by which silencing can be relieved. This review discusses recent advances in our understanding of the mechanisms and importance of xenogeneic silencing and counter-silencing in the successful integration of horizontally-acquired genes into regulatory networks.
Collapse
Affiliation(s)
- W Ryan Will
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William W Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ferric C Fang
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Evolutionary expansion of a regulatory network by counter-silencing. Nat Commun 2014; 5:5270. [PMID: 25348042 PMCID: PMC4215172 DOI: 10.1038/ncomms6270] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/15/2014] [Indexed: 11/09/2022] Open
Abstract
Horizontal gene transfer plays a major role in bacterial evolution. Successful acquisition of new genes requires their incorporation into existing regulatory networks. This study compares the regulation of conserved genes in the PhoPQ regulon of Salmonella enterica serovar Typhimurium with that of PhoPQ-regulated horizontally-acquired genes, which are silenced by the histone-like protein H-NS. We demonstrate that PhoP up-regulates conserved and horizontally-acquired genes by distinct mechanisms. Conserved genes are regulated by classical PhoP-mediated activation and are invariant in promoter architecture, whereas horizontally-acquired genes exhibit variable promoter architecture and are regulated by PhoP-mediated counter-silencing. Biochemical analyses show that a horizontally-acquired promoter adopts different structures in the silenced and counter-silenced states, implicating the remodeling of the H-NS nucleoprotein filament and the subsequent restoration of open complex formation as the central mechanism of counter-silencing. Our results indicate that counter-silencing is favored in the regulatory integration of newly-acquired genes because it is able to accommodate multiple promoter architectures.
Collapse
|
25
|
DNA looping-dependent autorepression of LEE1 P1 promoters by Ler in enteropathogenic Escherichia coli (EPEC). Proc Natl Acad Sci U S A 2014; 111:E2586-95. [PMID: 24920590 DOI: 10.1073/pnas.1322033111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ler, a homolog of H-NS in enteropathogenic Escherichia coli (EPEC), plays a critical role in the expression of virulence genes encoded by the pathogenic island, locus of enterocyte effacement (LEE). Although Ler acts as an antisilencer of multiple LEE operons by alleviating H-NS-mediated silencing, it represses its own expression from two LEE1 P1 promoters, P1A and P1B, that are separated by 10 bp. Various in vitro biochemical methods were used in this study to elucidate the mechanism underlying transcription repression by Ler. Ler acts through two AATT motifs, centered at position -111.5 on the coding strand and at +65.5 on the noncoding strand, by simultaneously repressing P1A and P1B through DNA-looping. DNA-looping was visualized using atomic force microscopy. It is intriguing that an antisilencing protein represses transcription, not by steric exclusion of RNA polymerase, but by DNA-looping. We propose that the DNA-looping prevents further processing of open promoter complex (RPO) at these promoters during transcription initiation.
Collapse
|
26
|
Gao X, Zou T, Mu Z, Qin B, Yang J, Waltersperger S, Wang M, Cui S, Jin Q. Structural insights into VirB-DNA complexes reveal mechanism of transcriptional activation of virulence genes. Nucleic Acids Res 2013; 41:10529-41. [PMID: 23985969 PMCID: PMC3905869 DOI: 10.1093/nar/gkt748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
VirB activates transcription of virulence genes in Shigella flexneri by alleviating heat-stable nucleoid-structuring protein-mediated promoter repression. VirB is unrelated to the conventional transcriptional regulators, but homologous to the plasmid partitioning proteins. We determined the crystal structures of VirB HTH domain bound by the cis-acting site containing the inverted repeat, revealing that the VirB-DNA complex is related to ParB-ParS-like complexes, presenting an example that a ParB-like protein acts exclusively in transcriptional regulation. The HTH domain of VirB docks DNA major groove and provides multiple contacts to backbone and bases, in which the only specific base readout is mediated by R167. VirB only recognizes one half site of the inverted repeats containing the most matches to the consensus for VirB binding. The binding of VirB induces DNA conformational changes and introduces a bend at an invariant A-tract segment in the cis-acting site, suggesting a role of DNA remodeling. VirB exhibits positive cooperativity in DNA binding that is contributed by the C-terminal domain facilitating VirB oligomerization. The isolated HTH domain only confers partial DNA specificity. Additional determinants for sequence specificity may reside in N- or C-terminal domains. Collectively, our findings support and extend a previously proposed model for relieving heat-stable nucleoid-structuring protein-mediated repression by VirB.
Collapse
Affiliation(s)
- Xiaopan Gao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.9 Dong Dan San Tiao, Beijing 100730, P.R. China and PX Beamlines Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ueda T, Takahashi H, Uyar E, Ishikawa S, Ogasawara N, Oshima T. Functions of the Hha and YdgT proteins in transcriptional silencing by the nucleoid proteins, H-NS and StpA, in Escherichia coli. DNA Res 2013; 20:263-71. [PMID: 23543115 PMCID: PMC3686432 DOI: 10.1093/dnares/dst008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Hha and YdgT proteins are suggested to modulate the expression of horizontally acquired genes by interacting with H-NS and StpA, which play central roles in the transcriptional silencing of such genes. However, it is also possible that Hha/YdgT repress gene expression independently of H-NS/StpA, as we have not fully understood the molecular mechanism through which Hha/YdgT modulate H-NS/StpA activity. To gain further insight into the basic functions of Hha/YdgT, we analysed the impact of hha/ydgT double inactivation on the transcriptome profile of Escherichia coli K-12, and compared the effects with that of hns/stpA double inactivation. In addition, we examined the effects of hha/ydgT inactivation on the chromosomal binding of H-NS, and conversely the effects of hns/stpA inactivation on the chromosomal binding of Hha. Our results demonstrated that the chromosomal binding of Hha requires H-NS/StpA, and is necessary for the repression of a subset of genes in the H-NS/StpA regulon. Furthermore, the distribution of H-NS binding around Hha/YdgT-dependent and -independent genes suggests that Hha/YdgT proteins modulate formation of the H-NS/StpA-DNA complex.
Collapse
Affiliation(s)
- Takeshi Ueda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Ali SS, Xia B, Liu J, Navarre WW. Silencing of foreign DNA in bacteria. Curr Opin Microbiol 2012; 15:175-81. [DOI: 10.1016/j.mib.2011.12.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/20/2011] [Accepted: 12/23/2011] [Indexed: 10/14/2022]
|
29
|
Rational design of an artificial genetic switch: Co-option of the H-NS-repressed proU operon by the VirB virulence master regulator. J Bacteriol 2011; 193:5950-60. [PMID: 21873493 DOI: 10.1128/jb.05557-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H-NS protein represses the transcription of hundreds of genes in Gram-negative bacteria. Derepression is achieved by a multitude of mechanisms, many of which involve the binding of a protein to DNA at the repressed promoter in a manner that compromises the maintenance of the H-NS-DNA nucleoprotein repression complex. The principal virulence gene promoters in Shigella flexneri, the cause of bacillary dysentery, are repressed by H-NS. VirB, a protein that closely resembles members of the ParB family of plasmid-partitioning proteins, derepresses the operons that encode the main structural components and the effector proteins of the S. flexneri type III secretion system. Bioinformatic analysis suggests that VirB has been co-opted into its current role as an H-NS antagonist in S. flexneri. To test this hypothesis, the potential for VirB to act as a positive regulator of proU, an operon that is repressed by H-NS, was assessed. Although VirB has no known relationship with the osmoregulated proU operon, it could relieve H-NS-mediated repression when the parS-like VirB binding site was placed appropriately upstream of the RpoD-dependent proU promoter. These results reveal the remarkable facility with which novel regulatory circuits can evolve, at least among those promoters that are repressed by H-NS.
Collapse
|
30
|
The 5.5 protein of phage T7 inhibits H-NS through interactions with the central oligomerization domain. J Bacteriol 2011; 193:4881-92. [PMID: 21764926 DOI: 10.1128/jb.05198-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The 5.5 protein (T7p32) of coliphage T7 (5.5(T7)) was shown to bind and inhibit gene silencing by the nucleoid-associated protein H-NS, but the mechanism by which it acts was not understood. The 5.5(T7) protein is insoluble when expressed in Escherichia coli, but we find that 5.5(T7) can be isolated in a soluble form when coexpressed with a truncated version of H-NS followed by subsequent disruption of the complex during anion-exchange chromatography. Association studies reveal that 5.5(T7) binds a region of H-NS (residues 60 to 80) recently found to contain a distinct domain necessary for higher-order H-NS oligomerization. Accordingly, we find that purified 5.5(T7) can disrupt higher-order H-NS-DNA complexes in vitro but does not abolish DNA binding by H-NS per se. Homologues of the 5.5(T7) protein are found exclusively among members of the Autographivirinae that infect enteric bacteria, and despite fairly low sequence conservation, the H-NS binding properties of these proteins are largely conserved. Unexpectedly, we find that the 5.5(T7) protein copurifies with heterogeneous low-molecular-weight RNA, likely tRNA, through several chromatography steps and that this interaction does not require the DNA binding domain of H-NS. The 5.5 proteins utilize a previously undescribed mechanism of H-NS antagonism that further highlights the critical importance that higher-order oligomerization plays in H-NS-mediated gene repression.
Collapse
|
31
|
Abstract
Growth rate regulation in bacteria has been an important issue in bacterial physiology for the past 50 years. This review, using Escherichia coli as a paradigm, summarizes the mechanisms for the regulation of rRNA synthesis in the context of systems biology, particularly, in the context of genome-wide competition for limited RNA polymerase (RNAP) in the cell under different growth conditions including nutrient starvation. The specific location of the seven rrn operons in the chromosome and the unique properties of the rrn promoters contribute to growth rate regulation. The length of the rrn transcripts, coupled with gene dosage effects, influence the distribution of RNAP on the chromosome in response to growth rate. Regulation of rRNA synthesis depends on multiple factors that affect the structure of the nucleoid and the allocation of RNAP for global gene expression. The magic spot ppGpp, which acts with DksA synergistically, is a key effector in both the growth rate regulation and the stringent response induced by nutrient starvation, mainly because the ppGpp level changes in response to environmental cues. It regulates rRNA synthesis via a cascade of events including both transcription initiation and elongation, and can be explained by an RNAP redistribution (allocation) model.
Collapse
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | | | | |
Collapse
|
32
|
Ishikawa K, Handa N, Sears L, Raleigh EA, Kobayashi I. Cleavage of a model DNA replication fork by a methyl-specific endonuclease. Nucleic Acids Res 2011; 39:5489-98. [PMID: 21441537 PMCID: PMC3141261 DOI: 10.1093/nar/gkr153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetic DNA methylation is involved in many biological processes. An epigenetic status can be altered by gain or loss of a DNA methyltransferase gene or its activity. Repair of DNA damage can also remove DNA methylation. In response to such alterations, DNA endonucleases that sense DNA methylation can act and may cause cell death. Here, we explored the possibility that McrBC, a methylation-dependent DNase of Escherichia coli, cleaves DNA at a replication fork. First, we found that in vivo restriction by McrBC of bacteriophage carrying a foreign DNA methyltransferase gene is increased in the absence of homologous recombination. This suggests that some cleavage events are repaired by recombination and must take place during or after replication. Next, we demonstrated that the enzyme can cleave a model DNA replication fork in vitro. Cleavage of a fork required methylation on both arms and removed one, the other or both of the arms. Most cleavage events removed the methylated sites from the fork. This result suggests that acquisition of even rarely occurring modification patterns will be recognized and rejected efficiently by modification-dependent restriction systems that recognize two sites. This process might serve to maintain an epigenetic status along the genome through programmed cell death.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Shirokanedai, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
33
|
Kahramanoglou C, Seshasayee ASN, Prieto AI, Ibberson D, Schmidt S, Zimmermann J, Benes V, Fraser GM, Luscombe NM. Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res 2010; 39:2073-91. [PMID: 21097887 PMCID: PMC3064808 DOI: 10.1093/nar/gkq934] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nucleoid-associated proteins (NAPs) are global regulators of gene expression in Escherichia coli, which affect DNA conformation by bending, wrapping and bridging the DNA. Two of these--H-NS and Fis--bind to specific DNA sequences and structures. Because of their importance to global gene expression, the binding of these NAPs to the DNA was previously investigated on a genome-wide scale using ChIP-chip. However, variation in their binding profiles across the growth phase and the genome-scale nature of their impact on gene expression remain poorly understood. Here, we present a genome-scale investigation of H-NS and Fis binding to the E. coli chromosome using chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-seq). By performing our experiments under multiple time-points during growth in rich media, we show that the binding regions of the two proteins are mutually exclusive under our experimental conditions. H-NS binds to significantly longer tracts of DNA than Fis, consistent with the linear spread of H-NS binding from high- to surrounding lower-affinity sites; the length of binding regions is associated with the degree of transcriptional repression imposed by H-NS. For Fis, a majority of binding events do not lead to differential expression of the proximal gene; however, it has a significant indirect effect on gene expression partly through its effects on the expression of other transcription factors. We propose that direct transcriptional regulation by Fis is associated with the interaction of tandem arrays of Fis molecules to the DNA and possible DNA bending, particularly at operon-upstream regions. Our study serves as a proof-of-principle for the use of ChIP-seq for global DNA-binding proteins in bacteria, which should become significantly more economical and feasible with the development of multiplexing techniques.
Collapse
|
34
|
Transcriptional analysis of the grlRA virulence operon from Citrobacter rodentium. J Bacteriol 2010; 192:3722-34. [PMID: 20472788 DOI: 10.1128/jb.01540-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The locus for enterocyte effacement (LEE) is the virulence hallmark of the attaching-and-effacing (A/E) intestinal pathogens, namely, enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium. The LEE carries more than 40 genes that are arranged in several operons, e.g., LEE1 to LEE5. Expression of the various transcriptional units is subject to xenogeneic silencing by the histone-like protein H-NS. The LEE1-encoded regulator, Ler, plays a key role in relieving this repression at several major LEE promoters, including LEE2 to LEE5. To achieve appropriate intracellular concentrations of Ler in different environments, A/E pathogens have evolved a sophisticated regulatory network to control ler expression. For example, the LEE-encoded GrlA and GrlR proteins work as activator and antiactivator, respectively, of ler transcription. Thus, control of the transcriptional activities of the LEE1 (ler) promoter and the grlRA operon determines the rate of transcription of all of the LEE-encoded virulence factors. To date, only a single promoter has been identified for the grlRA operon. In this study, we showed that the non-LEE-encoded AraC-like regulatory protein RegA of C. rodentium directly stimulates transcription of the grlRA promoter by binding to an upstream region in the presence of bicarbonate ions. In addition, in vivo and in vitro transcription assays revealed a sigma(70) promoter that is specifically responsible for transcription of grlA. Expression from this promoter was strongly repressed by H-NS and its paralog StpA but was activated by Ler. DNase I footprinting demonstrated that Ler binds to a region upstream of the grlA promoter, whereas H-NS interacts specifically with a region extending from the grlA core promoter into its coding sequence. Together, these findings provide new insights into the environmental regulation and differential expressions of the grlR and grlA genes of C. rodentium.
Collapse
|
35
|
Dillon SC, Cameron ADS, Hokamp K, Lucchini S, Hinton JCD, Dorman CJ. Genome-wide analysis of the H-NS and Sfh regulatory networks in Salmonella Typhimurium identifies a plasmid-encoded transcription silencing mechanism. Mol Microbiol 2010; 76:1250-65. [PMID: 20444106 DOI: 10.1111/j.1365-2958.2010.07173.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conjugative IncHI1 plasmid pSfR27 from Shigella flexneri 2a strain 2457T encodes the Sfh protein, a paralogue of the global transcriptional repressor H-NS. Sfh allows pSfR27 to be transmitted to new bacterial hosts with minimal impact on host fitness, providing a 'stealth' function whose molecular mechanism has yet to be determined. The impact of the Sfh protein on the Salmonella enterica serovar Typhimurium transcriptome was assessed and binding sites for Sfh in the Salmonella Typhimurium genome were identified by chromatin immunoprecipitation. Sfh did not bind uniquely to any sites. Instead, it bound to a subset of the larger H-NS regulatory network. Analysis of Sfh binding in the absence of H-NS revealed a greatly expanded population of Sfh binding sites that included the majority of H-NS target genes. Furthermore, the presence of plasmid pSfR27 caused a decrease in H-NS interactions with the S. Typhimurium chromosome, suggesting that the A + T-rich DNA of this large plasmid acts to titrate H-NS, removing it from chromosomal locations. It is proposed that Sfh acts as a molecular backup for H-NS and that it provides its 'stealth' function by replacing H-NS on the chromosome, thus minimizing disturbances to the H-NS-DNA binding pattern in cells that acquire pSfR27.
Collapse
Affiliation(s)
- Shane C Dillon
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
36
|
Pul Ü, Wurm R, Arslan Z, Geißen R, Hofmann N, Wagner R. Identification and characterization ofE. coliCRISPR-caspromoters and their silencing by H-NS. Mol Microbiol 2010; 75:1495-512. [DOI: 10.1111/j.1365-2958.2010.07073.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Nandal A, Huggins CCO, Woodhall MR, McHugh J, Rodríguez-Quiñones F, Quail MA, Guest JR, Andrews SC. Induction of the ferritin gene (ftnA) of Escherichia coli by Fe(2+)-Fur is mediated by reversal of H-NS silencing and is RyhB independent. Mol Microbiol 2009; 75:637-57. [PMID: 20015147 DOI: 10.1111/j.1365-2958.2009.06977.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FtnA is the major iron-storage protein of Escherichia coli accounting for < or = 50% of total cellular iron. The FtnA gene (ftnA) is induced by iron in an Fe(2+)-Fur-dependent fashion. This effect is reportedly mediated by RyhB, the Fe(2+)-Fur-repressed, small, regulatory RNA. However, results presented here show that ftnA iron induction is independent of RyhB and instead involves direct interaction of Fe(2+)-Fur with an 'extended' Fur binding site (containing five tandem Fur boxes) located upstream (-83) of the ftnA promoter. In addition, H-NS acts as a direct repressor of ftnA transcription by binding at multiple sites (I-VI) within, and upstream of, the ftnA promoter. Fur directly competes with H-NS binding at upstream sites (II-IV) and consequently displaces H-NS from the ftnA promoter (sites V-VI) which in turn leads to derepression of ftnA transcription. It is proposed that H-NS binding within the ftnA promoter is facilitated by H-NS occupation of the upstream sites through H-NS oligomerization-induced DNA looping. Consequently, Fur displacement of H-NS from the upstream sites prevents cooperative H-NS binding at the downstream sites within the promoter, thus allowing access to RNA polymerase. This direct activation of ftnA transcription by Fe(2+)-Fur through H-NS antisilencing represents a new mechanism for iron-induced gene expression.
Collapse
Affiliation(s)
- Anjali Nandal
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
38
|
English MM, Coulson TJD, Horsman SR, Patten CL. Overexpression of hns in the plant growth-promoting bacterium Enterobacter cloacae UW5 increases root colonization. J Appl Microbiol 2009; 108:2180-90. [PMID: 19951377 DOI: 10.1111/j.1365-2672.2009.04620.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Plant growth-promoting rhizobacteria (PGPR) introduced into soil often do not compete effectively with indigenous micro-organisms for plant colonization. The aim of this study was to identify novel genes that are important for root colonization by the PGPR Enterobacter cloacae UW5. METHODS AND RESULTS A library of transposon mutants of Ent. cloacae UW5 was screened for mutants with altered ability to colonize canola roots using a thermal asymmetric interlaced (TAIL)-PCR-based approach. A PCR fragment from one mutant was reproducibly amplified at greater levels from genomic DNA extracted from mutant pools recovered from seedling roots 6 days after seed inoculation compared to that from the cognate inoculum cultures. Competition assays confirmed that the purified mutant designated Ent. cloacae J28 outcompetes the wild-type strain on roots but not in liquid cultures. In Ent. cloacae J28, the transposon is inserted upstream of the hns gene. Quantitative RT-PCR showed that transposon insertion increased expression of hns on roots. CONCLUSIONS These results indicate that increased expression of hns in Ent. cloacae enhances competitive colonization of roots. SIGNIFICANCE AND IMPACT OF THE STUDY A better understanding of the genes involved in plant colonization will contribute to the development of PGPR that can compete more effectively in agricultural soils.
Collapse
Affiliation(s)
- M M English
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | | | | | | |
Collapse
|
39
|
Licht A, Brantl S. The transcriptional repressor CcpN from Bacillus subtilis uses different repression mechanisms at different promoters. J Biol Chem 2009; 284:30032-8. [PMID: 19726675 DOI: 10.1074/jbc.m109.033076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CcpN, a transcriptional repressor from Bacillus subtilis that is responsible for the carbon catabolite repression of three genes, has been characterized in detail in the past 4 years. However, nothing is known about the actual repression mechanism as yet. Here, we present a detailed study on how CcpN exerts its repression effect at its three known target promoters of the genes sr1, pckA, and gapB. Using gel shift assays under non-repressive and repressive conditions, we showed that CcpN and RNA polymerase can bind simultaneously and that CcpN does not prevent RNA polymerase (RNAP) binding to the promoter. Furthermore, we investigated the effect of CcpN on open complex formation and demonstrate that CcpN also does not act at this step of transcription initiation at the sr1 and pckA and presumably at the gapB promoter. Investigation of abortive transcript synthesis revealed that CcpN acts differently at the three promoters: At the sr1 and pckA promoter, promoter clearance is impeded by CcpN, whereas synthesis of abortive transcripts is repressed at the gapB promoter. Eventually, we demonstrated with Far Western blots and co-elution experiments that CcpN is able to interact with the RNAP alpha-subunit, which completes the picture of the requirements for the repressive action of CcpN. On the basis of the presented results, we propose a new working model for CcpN action.
Collapse
Affiliation(s)
- Andreas Licht
- Arbeitsgruppe Bakteriengenetik, Friedrich-Schiller-Universität, 07743 Jena, Germany.
| | | |
Collapse
|
40
|
Hernández-Arriaga AM, Rubio-Lepe TS, Espinosa M, del Solar G. Repressor CopG prevents access of RNA polymerase to promoter and actively dissociates open complexes. Nucleic Acids Res 2009; 37:4799-811. [PMID: 19520770 PMCID: PMC2724298 DOI: 10.1093/nar/gkp503] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Replication of the promiscuous plasmid pMV158 requires expression of the initiator repB gene, which is controlled by the repressor CopG. Genes repB and copG are co-transcribed from promoter Pcr. We have studied the interactions between RNA polymerase, CopG and the promoter to elucidate the mechanism of repression by CopG. Complexes formed at 0°C and at 37°C between RNA polymerase and Pcr differed from each other in stability and in the extent of the DNA contacted. The 37°C complex was very stable (half-life of about 3 h), and shared features with typical open complexes generated at a variety of promoters. CopG protein repressed transcription from Pcr at two different stages in the process leading to the initiation complex. First, CopG hindered binding of RNA polymerase to the promoter. Second, CopG was able to displace RNA polymerase once the enzyme has formed a stable complex with Pcr. A model for the CopG-mediated disassembly of the stable RNA polymerase–Pcr promoter complex is presented.
Collapse
Affiliation(s)
- Ana M Hernández-Arriaga
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
41
|
Pul Ü, Lux B, Wurm R, Wagner R. Effect of upstream curvature and transcription factors H-NS and LRP on the efficiency of Escherichia coli rRNA promoters P1 and P2 – a phasing analysis. Microbiology (Reading) 2008; 154:2546-2558. [DOI: 10.1099/mic.0.2008/018408-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ümit Pul
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Bianca Lux
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Reinhild Wurm
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Rolf Wagner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
42
|
Stoebel DM, Free A, Dorman CJ. Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. Microbiology (Reading) 2008; 154:2533-2545. [PMID: 18757787 DOI: 10.1099/mic.0.2008/020693-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Daniel M. Stoebel
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Andrew Free
- Institute of Evolutionary Biology, University of Edinburgh, Room 714a, Darwin Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Charles J. Dorman
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| |
Collapse
|
43
|
When activators repress and repressors activate: a qualitative analysis of the Shea-Ackers model. Bull Math Biol 2008; 70:1660-83. [PMID: 18648889 DOI: 10.1007/s11538-008-9313-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 02/12/2008] [Indexed: 10/21/2022]
Abstract
The concept of activation in transcriptional regulation is based on the assumption that product mRNA increases monotonically as a function of regulator concentration. We analyze the Shea-Ackers model of transcription and find this assumption to be correct only for the simplest of promoters. We define a new regulatory constant that is a nonlinear combination of association and transcription initiation constants characterizing activation and repression for more complicated promoters. Our results can guide the synthesis of new promoters and lead to a deeper understanding of the constraints guiding the natural promoters evolution.
Collapse
|
44
|
Laishram RS, Gowrishankar J. Environmental regulation operating at the promoter clearance step of bacterial transcription. Genes Dev 2008; 21:1258-72. [PMID: 17504942 PMCID: PMC1865496 DOI: 10.1101/gad.1520507] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In vivo transcription of the Escherichia coli argO gene, which encodes an arginine (Arg) exporter, requires the LysR-family regulator protein ArgP (previously called IciA) and is induced in the presence of Arg or its naturally occurring antimetabolite analog canavanine. Lysine (Lys) addition, on the other hand, phenocopies an argP mutation to result in the shutoff of argO expression. We now report that the ArgP dimer by itself is able to bind the argO promoter-operator region to form a binary complex, but that the formation of a ternary complex with RNA polymerase is greatly stimulated only in presence of a coeffector. Both Arg and Lys were proficient as coeffectors for ArgP-mediated recruitment of RNA polymerase to, and open complex formation at, the argO promoter, although only Arg (but not Lys) was competent to activate transcription. The two coeffectors competed for binding to ArgP, and the ternary complex that had been assembled on the argO template in the presence of Lys could be chased into a transcriptionally active state upon Arg addition. Our results support a novel mechanism of argO regulation in which Lys-bound ArgP reversibly restrains RNA polymerase at the promoter, at a step (following open complex formation) that precedes, and is common to, both abortive and productive transcription. This represents, therefore, the first example of an environmental signal regulating the final step of promoter clearance by RNA polymerase in bacterial transcription. We propose that, in E. coli cells, the ternary complex remains assembled and poised at the argO promoter at all times to respond, positively or negatively, to instantaneous changes in the ratio of intracellular Arg to Lys concentrations.
Collapse
Affiliation(s)
- Rakesh S. Laishram
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076, India
| | - Jayaraman Gowrishankar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076, India
- Corresponding author.E-MAIL ; FAX 91-40-27155610
| |
Collapse
|
45
|
Navarre WW, McClelland M, Libby SJ, Fang FC. Silencing of xenogeneic DNA by H-NS--facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 2007; 21:1456-71. [PMID: 17575047 DOI: 10.1101/gad.1543107] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lateral gene transfer has played a prominent role in bacterial evolution, but the mechanisms allowing bacteria to tolerate the acquisition of foreign DNA have been incompletely defined. Recent studies show that H-NS, an abundant nucleoid-associated protein in enteric bacteria and related species, can recognize and selectively silence the expression of foreign DNA with higher adenine and thymine content relative to the resident genome, a property that has made this molecule an almost universal regulator of virulence determinants in enteric bacteria. These and other recent findings challenge the ideas that curvature is the primary determinant recognized by H-NS and that activation of H-NS-silenced genes in response to environmental conditions occurs through a change in the structure of H-NS itself. Derepression of H-NS-silenced genes can occur at specific promoters by several mechanisms including competition with sequence-specific DNA-binding proteins, thereby enabling the regulated expression of foreign genes. The possibility that microorganisms maintain and exploit their characteristic genomic GC ratios for the purpose of self/non-self-discrimination is discussed.
Collapse
Affiliation(s)
- William Wiley Navarre
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
46
|
Integration of regulatory signals through involvement of multiple global regulators: control of the Escherichia coli gltBDF operon by Lrp, IHF, Crp, and ArgR. BMC Microbiol 2007; 7:2. [PMID: 17233899 PMCID: PMC1784095 DOI: 10.1186/1471-2180-7-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 01/18/2007] [Indexed: 11/10/2022] Open
Abstract
Background The glutamate synthase operon (gltBDF) contributes to one of the two main pathways of ammonia assimilation in Escherichia coli. Of the seven most-global regulators, together affecting expression of about half of all E. coli genes, two were previously shown to exert direct, positive control on gltBDF transcription: Lrp and IHF. The involvement of Lrp is unusual in two respects: first, it is insensitive to the usual coregulator leucine, and second, Lrp binds more than 150 bp upstream of the transcription starting point. There was indirect evidence for involvement of a third global regulator, Crp. Given the physiological importance of gltBDF, and the potential opportunity to learn about integration of global regulatory signals, a combination of in vivo and in vitro approaches was used to investigate the involvement of additional regulatory proteins, and to determine their relative binding positions and potential interactions with one another and with RNA polymerase (RNAP). Results Crp and a more local regulator, ArgR, directly control gltBDF transcription, both acting negatively. Crp-cAMP binds a sequence centered at -65.5 relative to the transcript start. Mutation of conserved nucleotides in the Crp binding site abolishes the Crp-dependent repression. ArgR also binds to the gltBDF promoter region, upstream of the Lrp binding sites, and decreases transcription. RNAP only yields a defined DNAse I footprint under two tested conditions: in the presence of both Lrp and IHF, or in the presence of Crp-cAMP. The DNAse I footprint of RNAP in the presence of Lrp and IHF is altered by ArgR. Conclusion The involvement of nearly half of E. coli's most-global regulatory proteins in the control of gltBDF transcription is striking, but seems consistent with the central metabolic role of this operon. Determining the mechanisms of activation and repression for gltBDF was beyond the scope of this study. However the results are consistent with a model in which IHF bends the DNA to allow stabilizing contacts between Lrp and RNAP, ArgR interferes with such contacts, and Crp introduces an interfering bend in the DNA and/or stabilizes RNAP in a poised but inactive state.
Collapse
|
47
|
Dame RT, Noom MC, Wuite GJL. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 2007; 444:387-90. [PMID: 17108966 DOI: 10.1038/nature05283] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 09/26/2006] [Indexed: 11/09/2022]
Abstract
Both prokaryotic and eukaryotic organisms contain DNA bridging proteins, which can have regulatory or architectural functions. The molecular and mechanical details of such proteins are hard to obtain, in particular if they involve non-specific interactions. The bacterial nucleoid consists of hundreds of DNA loops, shaped in part by non-specific DNA bridging proteins such as histone-like nucleoid structuring protein (H-NS), leucine-responsive regulatory protein (Lrp) and SMC (structural maintenance of chromosomes) proteins. We have developed an optical tweezers instrument that can independently handle two DNA molecules, which allows the systematic investigation of protein-mediated DNA-DNA interactions. Here we use this technique to investigate the abundant non-specific nucleoid-associated protein H-NS, and show that H-NS is dynamically organized between two DNA molecules in register with their helical pitch. Our optical tweezers also allow us to carry out dynamic force spectroscopy on non-specific DNA binding proteins and thereby to determine an energy landscape for the H-NS-DNA interaction. Our results explain how the bacterial nucleoid can be effectively compacted and organized, but be dynamic in nature and accessible to DNA-tracking motor enzymes. Finally, our experimental approach is widely applicable to other DNA bridging proteins, as well as to complex DNA interactions involving multiple DNA molecules.
Collapse
Affiliation(s)
- Remus T Dame
- Department of Physics and Astronomy and Laser Centre, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
48
|
Pul U, Wurm R, Wagner R. The role of LRP and H-NS in transcription regulation: involvement of synergism, allostery and macromolecular crowding. J Mol Biol 2006; 366:900-15. [PMID: 17196617 DOI: 10.1016/j.jmb.2006.11.067] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 11/10/2006] [Accepted: 11/21/2006] [Indexed: 11/18/2022]
Abstract
LRP has recently been shown to interact with the regulatory regions of bacterial ribosomal RNA promoters. Here we study details of the LRP-rDNA interaction by gel retardation and high-resolution footprinting techniques. We show that a second regulator for rRNA transcription, H-NS, facilitates the formation of a higher-order LRP-nucleoprotein complex, probably acting transiently as a DNA chaperone. The macromolecular crowding substance ectoine stabilizes the formation of this dynamic complex, while the amino acid leucine, as a metabolic effector, has the opposite effect. DNase I and hydroxyl radical footprint experiments with LRP-DNA complexes reveal a periodic change of the target DNA structure, which implies extensive DNA wrapping reaching into the promoter core region. We show furthermore that LRP binding is able to constrain supercoils, providing a link between DNA topology and regulation. The results support the conclusion that the bacterial DNA-binding protein LRP, assisted by H-NS, forms a repressive nucleoprotein structure involved in regulation of rRNA transcription. The formation of this regulatory structure appears to be directly affected by environmental changes.
Collapse
Affiliation(s)
- Umit Pul
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr 1, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
49
|
Madrid C, Balsalobre C, García J, Juárez A. The novel Hha/YmoA family of nucleoid-associated proteins: use of structural mimicry to modulate the activity of the H-NS family of proteins. Mol Microbiol 2006; 63:7-14. [PMID: 17116239 DOI: 10.1111/j.1365-2958.2006.05497.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Hha/YmoA family of proteins is a group of conserved, low-molecular-weight proteins involved in the regulation of gene expression. Studies performed in Escherichia coli, Salmonella sp. and Yersinia sp. highlight the contribution of these proteins in regulating bacterial virulence, horizontal gene transfer and cell physiology. Genes encoding such proteins are located on chromosomes and plasmids in different genera of Gram-negative bacteria. Their mode of action is currently being analysed by studying direct binding of Hha to DNA and as a component of protein complexes with regulatory functions. Recent data on the interaction of Hha with the H-NS family of proteins and structural information suggest a physiological role for such protein complexes in many aspects of gene regulation.
Collapse
Affiliation(s)
- Cristina Madrid
- Departament de Microbiologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
50
|
Ellison DW, Miller VL. H-NS represses inv transcription in Yersinia enterocolitica through competition with RovA and interaction with YmoA. J Bacteriol 2006; 188:5101-12. [PMID: 16816182 PMCID: PMC1539963 DOI: 10.1128/jb.00862-05] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Yersinia enterocolitica is able to efficiently invade Peyer's patches with the aid of invasin, an outer member protein involved in the attachment and invasion of M cells. Invasin is encoded by inv, which is positively regulated by RovA in both Y. enterocolitica and Yersinia pseudotuberculosis while negatively regulated by YmoA in Y. enterocolitica and H-NS in Y. pseudotuberculosis. In this study we present data indicating H-NS and RovA bind directly and specifically to the inv promoter of Y. enterocolitica. We also show that RovA and H-NS from Y. enterocolitica bind to a similar region of the inv promoter and suggest they compete for binding sites. This is similar to recently published data from Y. pseudotuberculosis, revealing a potentially conserved mechanism of inv regulation between Y. enterocolitica and Y. pseudotuberculosis. Furthermore, we present data suggesting H-NS and YmoA form a repression complex on the inv promoter, with H-NS providing the binding specificity and YmoA interacting with H-NS to form a repression complex. We also demonstrate that deletion of the predicted H-NS binding region relieves the requirement for RovA-dependent transcription of the inv promoter, consistent with RovA acting as a derepressor of H-NS-mediated repression. Levels of H-NS and YmoA are similar between 26 degrees C and 37 degrees C, suggesting that the H-NS/YmoA repression complex is present at both temperatures, while the levels of rovA transcript are low at 37 degrees C and high at 26 degrees C, leading to expression of inv at 26 degrees C. Expression of RovA at 37 degrees C results in transcription of inv and production of invasin. Data presented here support a model of inv regulation where the level of RovA within the cell governs inv expression. As RovA levels increase, RovA can successfully compete for binding to the inv promoter with the H-NS/YmoA complex, resulting in derepression of inv transcription.
Collapse
Affiliation(s)
- Damon W Ellison
- Washington University School of Medicine, Department of Molecular Microbiology, 660 S. Euclid Ave., Campus Box 8230, St. Louis, MO 63110, USA
| | | |
Collapse
|