1
|
Gómez‐Campo CL, Abdelmoteleb A, Pulido V, Gost M, Sánchez‐Hevia DL, Berenguer J, Mencía M. Differential requirement for RecFOR pathway components in Thermus thermophilus. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13269. [PMID: 38822640 PMCID: PMC11143384 DOI: 10.1111/1758-2229.13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/06/2024] [Indexed: 06/03/2024]
Abstract
Recombinational repair is an important mechanism that allows DNA replication to overcome damaged templates, so the DNA is duplicated timely and correctly. The RecFOR pathway is one of the common ways to load RecA, while the RuvABC complex operates in the resolution of DNA intermediates. We have generated deletions of recO, recR and ruvB genes in Thermus thermophilus, while a recF null mutant could not be obtained. The recO deletion was in all cases accompanied by spontaneous loss of function mutations in addA or addB genes, which encode a helicase-exonuclease also key for recombination. The mutants were moderately affected in viability and chromosome segregation. When we generated these mutations in a Δppol/addAB strain, we observed that the transformation efficiency was maintained at the typical level of Δppol/addAB, which is 100-fold higher than that of the wild type. Most mutants showed increased filamentation phenotypes, especially ruvB, which also had DNA repair defects. These results suggest that in T. thermophilus (i) the components of the RecFOR pathway have differential roles, (ii) there is an epistatic relationship of the AddAB complex over the RecFOR pathway and (iii) that neither of the two pathways or their combination is strictly required for viability although they are necessary for normal DNA repair and chromosome segregation.
Collapse
Affiliation(s)
- Cristina L. Gómez‐Campo
- Center for Plant Biotechnology and Genomics (CBGP)Polytechnic University of MadridMadridSpain
| | - Ali Abdelmoteleb
- Department of Molecular BiologyScience Faculty, Center for Molecular Biology Severo Ochoa (CBM), Autonomous University of Madrid‐Higher Council of Scientific Research (CSIC)MadridSpain
- Department of Botany, Faculty of AgricultureMenoufia UniversityShebin El‐KomEgypt
| | - Verónica Pulido
- Department of Molecular BiologyScience Faculty, Center for Molecular Biology Severo Ochoa (CBM), Autonomous University of Madrid‐Higher Council of Scientific Research (CSIC)MadridSpain
| | - Marc Gost
- Department of Molecular BiologyScience Faculty, Center for Molecular Biology Severo Ochoa (CBM), Autonomous University of Madrid‐Higher Council of Scientific Research (CSIC)MadridSpain
| | | | - José Berenguer
- Department of Molecular BiologyScience Faculty, Center for Molecular Biology Severo Ochoa (CBM), Autonomous University of Madrid‐Higher Council of Scientific Research (CSIC)MadridSpain
| | - Mario Mencía
- Department of Molecular BiologyScience Faculty, Center for Molecular Biology Severo Ochoa (CBM), Autonomous University of Madrid‐Higher Council of Scientific Research (CSIC)MadridSpain
| |
Collapse
|
2
|
Payne-Dwyer AL, Syeda AH, Shepherd JW, Frame L, Leake MC. RecA and RecB: probing complexes of DNA repair proteins with mitomycin C in live Escherichia coli with single-molecule sensitivity. J R Soc Interface 2022; 19:20220437. [PMID: 35946163 PMCID: PMC9363994 DOI: 10.1098/rsif.2022.0437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 01/02/2023] Open
Abstract
The RecA protein and RecBCD complex are key bacterial components for the maintenance and repair of DNA. RecBCD is a helicase-nuclease that uses homologous recombination to resolve double-stranded DNA breaks. It also facilitates coating of single-stranded DNA with RecA to form RecA filaments, a vital step in the double-stranded break DNA repair pathway. However, questions remain about the mechanistic roles of RecA and RecBCD in live cells. Here, we use millisecond super-resolved fluorescence microscopy to pinpoint the spatial localization of fluorescent reporters of RecA or RecB at physiological levels of expression in individual live Escherichia coli cells. By introducing the DNA cross-linker mitomycin C, we induce DNA damage and quantify the resulting steady state changes in stoichiometry, cellular protein copy number and molecular mobilities of RecA and RecB. We find that both proteins accumulate in molecular hotspots to effect repair, resulting in RecA stoichiometries equivalent to several hundred molecules that assemble largely in dimeric subunits before DNA damage, but form periodic subunits of approximately 3-4 molecules within mature filaments of several thousand molecules. Unexpectedly, we find that the physiologically predominant forms of RecB are not only rapidly diffusing monomers, but slowly diffusing dimers.
Collapse
Affiliation(s)
- Alex L. Payne-Dwyer
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| | - Aisha H. Syeda
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| | - Jack W. Shepherd
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| | - Lewis Frame
- School of Natural Sciences, University of York, York YO10 5DD, UK
| | - Mark C. Leake
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
3
|
Del Val E, Nasser W, Abaibou H, Reverchon S. Design and comparative characterization of RecA variants. Sci Rep 2021; 11:21106. [PMID: 34702889 PMCID: PMC8548320 DOI: 10.1038/s41598-021-00589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
RecA plays a central role in DNA repair and is a main actor involved in recombination and activation of the SOS response. It is also used in the context of biotechnological applications in recombinase polymerase isothermal amplification (RPA). In this work, we studied the biological properties of seven RecA variants, in particular their recombinogenic activity and their ability to induce the SOS response, to better understand the structure-function relationship of RecA and the effect of combined mutations. We also investigated the biochemical properties of RecA variants that may be useful for the development of biotechnological applications. We showed that Dickeya dadantii RecA (DdRecA) had an optimum strand exchange activity at 30 °C and in the presence of a dNTP mixture that inhibited Escherichia coli RecA (EcRecA). The differences between the CTD and C-tail of the EcRecA and DdRecA domains could explain the altered behaviour of DdRecA. D. radiodurans RecA (DrRecA) was unable to perform recombination and activation of the SOS response in an E. coli context, probably due to its inability to interact with E. coli recombination accessory proteins and SOS LexA repressor. DrRecA strand exchange activity was totally inhibited in the presence of chloride ions but worked well in acetate buffer. The overproduction of Pseudomonas aeruginosa RecA (PaRecA) in an E. coli context was responsible for a higher SOS response and defects in cellular growth. PaRecA was less inhibited by the dNTP mixture than EcRecA. Finally, the study of three variants, namely, EcPa, EcRecAV1 and EcRecAV2, that contained a combination of mutations that, taken independently, are described as improving recombination, led us to raise new hypotheses on the structure-function relationship and on the monomer-monomer interactions that perturb the activity of the protein as a whole.
Collapse
Affiliation(s)
- Elsa Del Val
- UMR5240, Microbiologie, Adaptation et Pathogénie, University of Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, 11 Avenue Jean Capelle, 69621, Villeurbanne, France
- Molecular Innovation Unit, Centre Christophe Mérieux, bioMérieux, 5 Rue des Berges, 38024, Grenoble Cedex 01, France
| | - William Nasser
- UMR5240, Microbiologie, Adaptation et Pathogénie, University of Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, 11 Avenue Jean Capelle, 69621, Villeurbanne, France
| | - Hafid Abaibou
- Molecular Innovation Unit, Centre Christophe Mérieux, bioMérieux, 5 Rue des Berges, 38024, Grenoble Cedex 01, France.
| | - Sylvie Reverchon
- UMR5240, Microbiologie, Adaptation et Pathogénie, University of Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, 11 Avenue Jean Capelle, 69621, Villeurbanne, France.
| |
Collapse
|
4
|
RecA and DNA recombination: a review of molecular mechanisms. Biochem Soc Trans 2020; 47:1511-1531. [PMID: 31654073 DOI: 10.1042/bst20190558] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 11/17/2022]
Abstract
Recombinases are responsible for homologous recombination and maintenance of genome integrity. In Escherichia coli, the recombinase RecA forms a nucleoprotein filament with the ssDNA present at a DNA break and searches for a homologous dsDNA to use as a template for break repair. During the first step of this process, the ssDNA is bound to RecA and stretched into a Watson-Crick base-paired triplet conformation. The RecA nucleoprotein filament also contains ATP and Mg2+, two cofactors required for RecA activity. Then, the complex starts a homology search by interacting with and stretching dsDNA. Thanks to supercoiling, intersegment sampling and RecA clustering, a genome-wide homology search takes place at a relevant metabolic timescale. When a region of homology 8-20 base pairs in length is found and stabilized, DNA strand exchange proceeds, forming a heteroduplex complex that is resolved through a combination of DNA synthesis, ligation and resolution. RecA activities can take place without ATP hydrolysis, but this latter activity is necessary to improve and accelerate the process. Protein flexibility and monomer-monomer interactions are fundamental for RecA activity, which functions cooperatively. A structure/function relationship analysis suggests that the recombinogenic activity can be improved and that recombinases have an inherently large recombination potential. Understanding this relationship is essential for designing RecA derivatives with enhanced activity for biotechnology applications. For example, this protein is a major actor in the recombinase polymerase isothermal amplification (RPA) used in point-of-care diagnostics.
Collapse
|
5
|
Buljubašić M, Hlevnjak A, Repar J, Đermić D, Filić V, Weber I, Zahradka K, Zahradka D. RecBCD- RecFOR-independent pathway of homologous recombination in Escherichia coli. DNA Repair (Amst) 2019; 83:102670. [PMID: 31378505 DOI: 10.1016/j.dnarep.2019.102670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
The RecA protein is a key bacterial recombination enzyme that catalyzes pairing and strand exchange between homologous DNA duplexes. In Escherichia coli, RecA protein assembly on DNA is mediated either by the RecBCD or RecFOR protein complexes. Correspondingly, two recombination pathways, RecBCD and RecF (or RecFOR), are distinguished in E. coli. Inactivation of both pathways in recB(CD) recF(OR) mutants results in severe recombination deficiency. Here we describe a novel, RecBCD- RecFOR-independent (RecBFI) recombination pathway that is active in ΔrecBCD sbcB15 sbcC(D) ΔrecF(OR) mutants of E. coli. In transductional crosses, these mutants show only four-fold decrease of recombination frequency relative to the wild-type strain. At the same time they recombine 40- to 90-fold better than their sbcB+ sbcC+ and ΔsbcB sbcC counterparts. The RecBFI pathway strongly depends on recA, recJ and recQ gene functions, and moderately depends on recG and lexA functions. Inactivation of dinI, helD, recX, recN, radA, ruvABC and uvrD genes has a slight effect on RecBFI recombination. After exposure to UV and gamma irradiation, the ΔrecBCD sbcB15 sbcC ΔrecF mutants show moderately increased DNA repair proficiency relative to their sbcB+ sbcC+ and ΔsbcB sbcC counterparts. However, introduction of recA730 allele (encoding RecA protein with enhanced DNA binding properties) completely restores repair proficiency to ΔrecBCD sbcB15 sbcC ΔrecF mutants, but not to their sbcB+ sbcC+ and ΔsbcB sbcC derivatives. Fluorescence microscopy with UV-irradiated recA-gfp fusion mutants suggests that the kinetics of RecA filament formation might be slowed down in the RecBFI pathway. Inactivation of 3'-5' exonucleases ExoVII, ExoIX and ExoX cannot activate the RecBFI pathway in ΔrecBCD ΔsbcB sbcC ΔrecF mutants. Taken together, our results show that the product of the sbcB15 allele is crucial for RecBFI pathway. Besides protecting 3' overhangs, SbcB15 protein might play an additional, more active role in formation of the RecA filament.
Collapse
Affiliation(s)
- Maja Buljubašić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Hlevnjak
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jelena Repar
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Damir Đermić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ksenija Zahradka
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Davor Zahradka
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
6
|
Ghodke H, Paudel BP, Lewis JS, Jergic S, Gopal K, Romero ZJ, Wood EA, Woodgate R, Cox MM, van Oijen AM. Spatial and temporal organization of RecA in the Escherichia coli DNA-damage response. eLife 2019; 8:42761. [PMID: 30717823 PMCID: PMC6363387 DOI: 10.7554/elife.42761] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
The RecA protein orchestrates the cellular response to DNA damage via its multiple roles in the bacterial SOS response. Lack of tools that provide unambiguous access to the various RecA states within the cell have prevented understanding of the spatial and temporal changes in RecA structure/function that underlie control of the damage response. Here, we develop a monomeric C-terminal fragment of the λ repressor as a novel fluorescent probe that specifically interacts with RecA filaments on single-stranded DNA (RecA*). Single-molecule imaging techniques in live cells demonstrate that RecA is largely sequestered in storage structures during normal metabolism. Upon DNA damage, the storage structures dissolve and the cytosolic pool of RecA rapidly nucleates to form early SOS-signaling complexes, maturing into DNA-bound RecA bundles at later time points. Both before and after SOS induction, RecA* largely appears at locations distal from replisomes. Upon completion of repair, RecA storage structures reform.
Collapse
Affiliation(s)
- Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Bishnu P Paudel
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Kamya Gopal
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Zachary J Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | | |
Collapse
|
7
|
Yakimov A, Pobegalov G, Bakhlanova I, Khodorkovskii M, Petukhov M, Baitin D. Blocking the RecA activity and SOS-response in bacteria with a short α-helical peptide. Nucleic Acids Res 2017; 45:9788-9796. [PMID: 28934502 PMCID: PMC5766188 DOI: 10.1093/nar/gkx687] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023] Open
Abstract
The RecX protein, a very active natural RecA protein inhibitor, can completely disassemble RecA filaments at nanomolar concentrations that are two to three orders of magnitude lower than that of RecA protein. Based on the structure of RecX protein complex with the presynaptic RecA filament, we designed a short first in class α-helical peptide that both inhibits RecA protein activities in vitro and blocks the bacterial SOS-response in vivo. The peptide was designed using SEQOPT, a novel method for global sequence optimization of protein α-helices. SEQOPT produces artificial peptide sequences containing only 20 natural amino acids with the maximum possible conformational stability at a given pH, ionic strength, temperature, peptide solubility. It also accounts for restrictions due to known amino acid residues involved in stabilization of protein complexes under consideration. The results indicate that a few key intermolecular interactions inside the RecA protein presynaptic complex are enough to reproduce the main features of the RecX protein mechanism of action. Since the SOS-response provides a major mechanism of bacterial adaptation to antibiotics, these results open new ways for the development of antibiotic co-therapy that would not cause bacterial resistance.
Collapse
Affiliation(s)
- Alexander Yakimov
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P.Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina 188300, Russia.,Peter the Great St Petersburg Polytechnic University, St Petersburg 195251, Russia
| | - Georgii Pobegalov
- Peter the Great St Petersburg Polytechnic University, St Petersburg 195251, Russia
| | - Irina Bakhlanova
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P.Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina 188300, Russia.,Peter the Great St Petersburg Polytechnic University, St Petersburg 195251, Russia
| | | | - Michael Petukhov
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P.Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina 188300, Russia.,Peter the Great St Petersburg Polytechnic University, St Petersburg 195251, Russia
| | - Dmitry Baitin
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P.Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina 188300, Russia.,Peter the Great St Petersburg Polytechnic University, St Petersburg 195251, Russia
| |
Collapse
|
8
|
Bakhlanova IV, Dudkina AV, Wood EA, Lanzov VA, Cox MM, Baitin DM. DNA Metabolism in Balance: Rapid Loss of a RecA-Based Hyperrec Phenotype. PLoS One 2016; 11:e0154137. [PMID: 27124470 PMCID: PMC4849656 DOI: 10.1371/journal.pone.0154137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/09/2016] [Indexed: 12/04/2022] Open
Abstract
The RecA recombinase of Escherichia coli has not evolved to optimally promote DNA pairing and strand exchange, the key processes of recombinational DNA repair. Instead, the recombinase function of RecA protein represents an evolutionary compromise between necessary levels of recombinational DNA repair and the potentially deleterious consequences of RecA functionality. A RecA variant, RecA D112R, promotes conjugational recombination at substantially enhanced levels. However, expression of the D112R RecA protein in E. coli results in a reduction in cell growth rates. This report documents the consequences of the substantial selective pressure associated with the RecA-mediated hyperrec phenotype. With continuous growth, the deleterious effects of RecA D112R, along with the observed enhancements in conjugational recombination, are lost over the course of 70 cell generations. The suppression reflects a decline in RecA D112R expression, associated primarily with a deletion in the gene promoter or chromosomal mutations that decrease plasmid copy number. The deleterious effects of RecA D112R on cell growth can also be negated by over-expression of the RecX protein from Neisseria gonorrhoeae. The effects of the RecX proteins in vivo parallel the effects of the same proteins on RecA D112R filaments in vitro. The results indicate that the toxicity of RecA D112R is due to its persistent binding to duplex genomic DNA, creating barriers for other processes in DNA metabolism. A substantial selective pressure is generated to suppress the resulting barrier to growth.
Collapse
Affiliation(s)
- Irina V. Bakhlanova
- Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, 188300, Russia
- Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg, 195251, Russia
| | - Alexandra V. Dudkina
- Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, 188300, Russia
| | - Elizabeth A. Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706–1544, United States of America
| | - Vladislav A. Lanzov
- Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, 188300, Russia
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706–1544, United States of America
| | - Dmitry M. Baitin
- Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, 188300, Russia
- Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg, 195251, Russia
| |
Collapse
|
9
|
Meyers PR. Analysis of recombinase A (recA/RecA) in the actinobacterial family Streptosporangiaceae and identification of molecular signatures. Syst Appl Microbiol 2015; 38:567-77. [DOI: 10.1016/j.syapm.2015.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 12/23/2022]
|
10
|
Rajendram M, Zhang L, Reynolds BJ, Auer GK, Tuson HH, Ngo KV, Cox MM, Yethiraj A, Cui Q, Weibel DB. Anionic Phospholipids Stabilize RecA Filament Bundles in Escherichia coli. Mol Cell 2015; 60:374-84. [PMID: 26481664 DOI: 10.1016/j.molcel.2015.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/14/2015] [Accepted: 09/09/2015] [Indexed: 10/22/2022]
Abstract
We characterize the interaction of RecA with membranes in vivo and in vitro and demonstrate that RecA binds tightly to the anionic phospholipids cardiolipin (CL) and phosphatidylglycerol (PG). Using computational models, we identify two regions of RecA that interact with PG and CL: (1) the N-terminal helix and (2) loop L2. Mutating these regions decreased the affinity of RecA to PG and CL in vitro. Using 3D super-resolution microscopy, we demonstrate that depleting Escherichia coli PG and CL altered the localization of RecA foci and hindered the formation of RecA filament bundles. Consequently, E. coli cells lacking aPLs fail to initiate a robust SOS response after DNA damage, indicating that the membrane acts as a scaffold for nucleating the formation of RecA filament bundles and plays an important role in the SOS response.
Collapse
Affiliation(s)
- Manohary Rajendram
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Leili Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bradley J Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - George K Auer
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hannah H Tuson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Khanh V Ngo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arun Yethiraj
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qiang Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Douglas B Weibel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
11
|
Prentiss M, Prévost C, Danilowicz C. Structure/function relationships in RecA protein-mediated homology recognition and strand exchange. Crit Rev Biochem Mol Biol 2015; 50:453-76. [DOI: 10.3109/10409238.2015.1092943] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Lisboa J, Andreani J, Sanchez D, Boudes M, Collinet B, Liger D, van Tilbeurgh H, Guérois R, Quevillon-Cheruel S. Molecular determinants of the DprA-RecA interaction for nucleation on ssDNA. Nucleic Acids Res 2014; 42:7395-408. [PMID: 24782530 PMCID: PMC4066776 DOI: 10.1093/nar/gku349] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Natural transformation is a major mechanism of horizontal gene transfer in bacteria that depends on DNA recombination. RecA is central to the homologous recombination pathway, catalyzing DNA strand invasion and homology search. DprA was shown to be a key binding partner of RecA acting as a specific mediator for its loading on the incoming exogenous ssDNA. Although the 3D structures of both RecA and DprA have been solved, the mechanisms underlying their cross-talk remained elusive. By combining molecular docking simulations and experimental validation, we identified a region on RecA, buried at its self-assembly interface and involving three basic residues that contact an acidic triad of DprA previously shown to be crucial for the interaction. At the core of these patches, DprAM238 and RecAF230 are involved in the interaction. The other DprA binding regions of RecA could involve the N-terminal α-helix and a DNA-binding region. Our data favor a model of DprA acting as a cap of the RecA filament, involving a DprA−RecA interplay at two levels: their own oligomeric states and their respective interaction with DNA. Our model forms the basis for a mechanistic explanation of how DprA can act as a mediator for the loading of RecA on ssDNA.
Collapse
Affiliation(s)
- Johnny Lisboa
- Université Paris-Sud, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR 8619, F-91405 Orsay, France
| | - Jessica Andreani
- CEA, iBiTecS, F-91191 Gif sur Yvette, France Université Paris-Sud & CNRS, UMR 8221, F-91191 Gif sur Yvette, France
| | - Dyana Sanchez
- Université Paris-Sud, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR 8619, F-91405 Orsay, France
| | - Marion Boudes
- Université Paris-Sud, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR 8619, F-91405 Orsay, France
| | - Bruno Collinet
- Université Paris-Sud, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR 8619, F-91405 Orsay, France UFR sciences de la vie, Université Pierre et Marie Curie UPMC, Sorbonne Universités, F-75005 Paris, France
| | - Dominique Liger
- Université Paris-Sud, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR 8619, F-91405 Orsay, France
| | - Herman van Tilbeurgh
- Université Paris-Sud, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR 8619, F-91405 Orsay, France
| | - Raphael Guérois
- CEA, iBiTecS, F-91191 Gif sur Yvette, France Université Paris-Sud & CNRS, UMR 8221, F-91191 Gif sur Yvette, France
| | - Sophie Quevillon-Cheruel
- Université Paris-Sud, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR 8619, F-91405 Orsay, France
| |
Collapse
|
13
|
Metrick MA, Temple JE, MacDonald G. The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA. Biophys Chem 2013; 184:29-36. [DOI: 10.1016/j.bpc.2013.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
|
14
|
Kreuzer KN. DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harb Perspect Biol 2013; 5:a012674. [PMID: 24097899 DOI: 10.1101/cshperspect.a012674] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent advances in the area of bacterial DNA damage responses are reviewed here. The SOS pathway is still the major paradigm of bacterial DNA damage response, and recent studies have clarified the mechanisms of SOS induction and key physiological roles of SOS including a very major role in genetic exchange and variation. When considering diverse bacteria, it is clear that SOS is not a uniform pathway with one purpose, but rather a platform that has evolved for differing functions in different bacteria. Relating in part to the SOS response, the field has uncovered multiple apparent cell-cycle checkpoints that assist cell survival after DNA damage and remarkable pathways that induce programmed cell death in bacteria. Bacterial DNA damage responses are also much broader than SOS, and several important examples of LexA-independent regulation will be reviewed. Finally, some recent advances that relate to the replication and repair of damaged DNA will be summarized.
Collapse
Affiliation(s)
- Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
15
|
Dudkina AV, Schvetsov AV, Bakhlanova IV, Baitin DM. Change of filamentation dynamics of RecA protein induced by D112R Amino acid substitution or ATP to dATP replacement; results in filament resistance to RecX protein action. Mol Biol 2011. [DOI: 10.1134/s0026893311030046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Bakhlanova IV, Dudkina AV, Baitin DM, Knight KL, Cox MM, Lanzov VA. Modulating cellular recombination potential through alterations in RecA structure and regulation. Mol Microbiol 2010; 78:1523-38. [PMID: 21143322 DOI: 10.1111/j.1365-2958.2010.07424.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The wild-type Escherichia coli RecA protein is a recombinase platform with unrealized recombination potential. We have explored the factors affecting recombination during conjugation with a quantitative assay. Regulatory proteins that affect RecA function have the capacity to increase or decrease recombination frequencies by factors up to sixfold. Autoinhibition by the RecA C-terminus can affect recombination frequency by factors up to fourfold. The greatest changes in recombination frequency measured here are brought about by point mutations in the recA gene. RecA variants can increase recombination frequencies by more than 50-fold. The RecA protein thus possesses an inherently broad functional range. The RecA protein of E. coli (EcRecA) is not optimized for recombination function. Instead, much of the recombination potential of EcRecA is structurally suppressed, probably reflecting cellular requirements. One point mutation in EcRecA with a particularly dramatic effect on recombination frequency, D112R, exhibits an enhanced capacity to load onto SSB-coated ssDNA, overcome the effects of regulatory proteins such as PsiB and RecX, and to pair homologous DNAs. Comparisons of key RecA protein mutants reveal two components to RecA recombination function - filament formation and the inherent DNA pairing activity of the formed filaments.
Collapse
|
17
|
Dudkina AV, Bakhlanova IV, Baitin DM. The new mechanism of the frequency of recombination exchanges increase by improving the synaptase activity of the RecA protein from Escherichia coli. DOKL BIOCHEM BIOPHYS 2010; 432:120-2. [DOI: 10.1134/s1607672910030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Lee CD, Wang TF. The N-terminal domain of Escherichia coli RecA have multiple functions in promoting homologous recombination. J Biomed Sci 2009; 16:37. [PMID: 19338667 PMCID: PMC2672939 DOI: 10.1186/1423-0127-16-37] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 04/01/2009] [Indexed: 11/26/2022] Open
Abstract
Escherichia coli RecA mediates homologous recombination, a process essential to maintaining genome integrity. In the presence of ATP, RecA proteins bind a single-stranded DNA (ssDNA) to form a RecA-ssDNA presynaptic nucleoprotein filament that captures donor double-stranded DNA (dsDNA), searches for homology, and then catalyzes the strand exchange between ssDNA and dsDNA to produce a new heteroduplex DNA. Based upon a recently reported crystal structure of the RecA-ssDNA nucleoprotein filament, we carried out structural and functional studies of the N-terminal domain (NTD) of the RecA protein. The RecA NTD was thought to be required for monomer-monomer interaction. Here we report that it has two other distinct roles in promoting homologous recombination. It first facilitates the formation of a RecA-ssDNA presynaptic nucleoprotein filament by converting ATP to an ADP-Pi intermediate. Then, once the RecA-ssDNA presynaptic nucleoprotein filament is stably assembled in the presence of ATPγS, the NTD is required to capture donor dsDNA. Our results also suggest that the second function of NTD may be similar to that of Arg243 and Lys245, which were implicated earlier as binding sites of donor dsDNA. A two-step model is proposed to explain how a RecA-ssDNA presynaptic nucleoprotein filament interacts with donor dsDNA.
Collapse
Affiliation(s)
- Chien-Der Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.
| | | |
Collapse
|
19
|
Abstract
The bacterial RecA protein participates in a remarkably diverse set of functions, all of which are involved in the maintenance of genomic integrity. RecA is a central component in both the catalysis of recombinational DNA repair and the regulation of the cellular SOS response. Despite the mechanistic differences of its functions, all require formation of an active RecA/ATP/DNA complex. RecA is a classic allosterically regulated enzyme, and ATP binding results in a dramatic increase in DNA binding affinity and a cooperative assembly of RecA subunits to form an ordered, helical nucleoprotein filament. The molecular events that underlie this ATP-induced structural transition are becoming increasingly clear. This review focuses on descriptions of our current understanding of the molecular design and allosteric regulation of RecA. We present a comprehensive list of all published recA mutants and use the results of various genetic and biochemical studies, together with available structural information, to develop ideas regarding the design of RecA functional domains and their catalytic organization.
Collapse
Affiliation(s)
- Dharia A McGrew
- Department of Biochemistry and Molecular Pharmacology, Aaron Lazare Research Building, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | | |
Collapse
|
20
|
Renzette N, Sandler SJ. Requirements for ATP binding and hydrolysis in RecA function in Escherichia coli. Mol Microbiol 2008; 67:1347-59. [PMID: 18298444 DOI: 10.1111/j.1365-2958.2008.06130.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RecA is essential for recombination, DNA repair and SOS induction in Escherichia coli. ATP hydrolysis is known to be important for RecA's roles in recombination and DNA repair. In vitro reactions modelling SOS induction minimally require ssDNA and non-hydrolyzable ATP analogues. This predicts that ATP hydrolysis will not be required for SOS induction in vivo. The requirement of ATP binding and hydrolysis for SOS induction in vivo is tested here through the study of recA4159 (K72A) and recA2201 (K72R). RecA4159 is thought to have reduced affinity for ATP. RecA2201 binds, but does not hydrolyse ATP. Neither mutant was able to induce SOS expression after UV irradiation. RecA2201, unlike RecA4159, could form filaments on DNA and storage structures as measured with RecA-GFP. RecA2201 was able to form hybrid filaments and storage structures and was either recessive or dominant to RecA(+), depending on the ratio of the two proteins. RecA4159 was unable to enter RecA(+) filaments on DNA or storage structures and was recessive to RecA(+). It is concluded that ATP hydrolysis is essential for SOS induction. It is proposed that ATP binding is essential for storage structure formation and ability to interact with other RecA proteins in a filament.
Collapse
Affiliation(s)
- Nicholas Renzette
- Molecular and Cellular Biology Graduate Program, Morrill Science Center, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | | |
Collapse
|
21
|
Centore RC, Sandler SJ. UvrD limits the number and intensities of RecA-green fluorescent protein structures in Escherichia coli K-12. J Bacteriol 2007; 189:2915-20. [PMID: 17259317 PMCID: PMC1855782 DOI: 10.1128/jb.01777-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RecA is important for recombination, DNA repair, and SOS induction. In Escherichia coli, RecBCD, RecFOR, and RecJQ prepare DNA substrates onto which RecA binds. UvrD is a 3'-to-5' helicase that participates in methyl-directed mismatch repair and nucleotide excision repair. uvrD deletion mutants are sensitive to UV irradiation, hypermutable, and hyper-rec. In vitro, UvrD can dissociate RecA from single-stranded DNA. Other experiments suggest that UvrD removes RecA from DNA where it promotes unproductive reactions. To test if UvrD limits the number and/or the size of RecA-DNA structures in vivo, an uvrD mutation was combined with recA-gfp. This recA allele allows the number of RecA structures and the amount of RecA at these structures to be assayed in living cells. uvrD mutants show a threefold increase in the number of RecA-GFP foci, and these foci are, on average, nearly twofold higher in relative intensity. The increased number of RecA-green fluorescent protein foci in the uvrD mutant is dependent on recF, recO, recR, recJ, and recQ. The increase in average relative intensity is dependent on recO and recQ. These data support an in vivo role for UvrD in removing RecA from the DNA.
Collapse
Affiliation(s)
- Richard C Centore
- Department of Microbiology, Morrill Science Center IV N203, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | | |
Collapse
|
22
|
Forget AL, Kudron MM, McGrew DA, Calmann MA, Schiffer C, Knight KL. RecA dimers serve as a functional unit for assembly of active nucleoprotein filaments. Biochemistry 2007; 45:13537-42. [PMID: 17087507 PMCID: PMC2522307 DOI: 10.1021/bi060938q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
All RecA-like recombinase enzymes catalyze DNA strand exchange as elongated filaments on DNA. Despite numerous biochemical and structural studies of RecA and the related Rad51 and RadA proteins, the unit oligomer(s) responsible for nucleoprotein filament assembly and coordinated filament activity remains undefined. We have created a RecA fused dimer protein and show that it maintains in vivo DNA repair and LexA co-protease activities, as well as in vitro ATPase and DNA strand exchange activities. Our results support the idea that dimeric RecA is an important functional unit both for assembly of nucleoprotein filaments and for their coordinated activity during the catalysis of homologous recombination.
Collapse
|
23
|
Krishna R, Manjunath GP, Kumar P, Surolia A, Chandra NR, Muniyappa K, Vijayan M. Crystallographic identification of an ordered C-terminal domain and a second nucleotide-binding site in RecA: new insights into allostery. Nucleic Acids Res 2006; 34:2186-95. [PMID: 16648362 PMCID: PMC1450331 DOI: 10.1093/nar/gkl107] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 09/16/2005] [Accepted: 03/08/2006] [Indexed: 11/13/2022] Open
Abstract
RecA protein is a crucial and central component of the homologous recombination and DNA repair machinery. Despite numerous studies on the protein, several issues concerning its action, including the allosteric regulation mechanism have remained unclear. Here we report, for the first time, a crystal structure of a complex of Mycobacterium smegmatis RecA (MsRecA) with dATP, which exhibits a fully ordered C-terminal domain, with a second dATP molecule bound to it. ATP binding is an essential step for all activities of RecA, since it triggers the formation of active nucleoprotein filaments. In the crystal filament, dATP at the first site communicates with a dATP of the second site of an adjacent subunit, through conserved residues, suggesting a new route for allosteric regulation. In addition, subtle but definite changes observed in the orientation of the nucleotide at the first site and in the positions of the segment preceding loop L2 as well as in the segment 102-105 situated between the 2 nt, all appear to be concerted and suggestive of a biological role for the second bound nucleotide.
Collapse
Affiliation(s)
- R. Krishna
- Molecular Biophysics Unit, Indian Institute of ScienceBangalore 560 012, India
- Department of Biochemistry, Indian Institute of ScienceBangalore 560 012, India
- Bioinformatics Centre and Supercomputer Education and Research Centre, Indian Institute of ScienceBangalore 560 012, India
| | - G. P. Manjunath
- Department of Biochemistry, Indian Institute of ScienceBangalore 560 012, India
| | - P. Kumar
- Molecular Biophysics Unit, Indian Institute of ScienceBangalore 560 012, India
- Department of Biochemistry, Indian Institute of ScienceBangalore 560 012, India
- Bioinformatics Centre and Supercomputer Education and Research Centre, Indian Institute of ScienceBangalore 560 012, India
| | - A. Surolia
- Molecular Biophysics Unit, Indian Institute of ScienceBangalore 560 012, India
- Department of Biochemistry, Indian Institute of ScienceBangalore 560 012, India
- Bioinformatics Centre and Supercomputer Education and Research Centre, Indian Institute of ScienceBangalore 560 012, India
| | - Nagasuma R. Chandra
- Bioinformatics Centre and Supercomputer Education and Research Centre, Indian Institute of ScienceBangalore 560 012, India
| | - K. Muniyappa
- Department of Biochemistry, Indian Institute of ScienceBangalore 560 012, India
| | - M. Vijayan
- Correspondence may also be addressed to M. Vijayan. Tel: +91 80 22932590; Fax: +91 80 23600535;
| |
Collapse
|
24
|
Renzette N, Gumlaw N, Nordman JT, Krieger M, Yeh SP, Long E, Centore R, Boonsombat R, Sandler SJ. Localization of RecA in Escherichia coli K-12 using RecA-GFP. Mol Microbiol 2005; 57:1074-85. [PMID: 16091045 DOI: 10.1111/j.1365-2958.2005.04755.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RecA is important in recombination, DNA repair and repair of replication forks. It functions through the production of a protein-DNA filament. To study the localization of RecA in live Escherichia coli cells, the RecA protein was fused to the green fluorescence protein (GFP). Strains with this gene have recombination/DNA repair activities three- to tenfold below wild type (or about 1000-fold above that of a recA null mutant). RecA-GFP cells have a background of green fluorescence punctuated with up to five foci per cell. Two types of foci have been defined: 4,6-diamidino-2-phenylindole (DAPI)-sensitive foci that are bound to DNA and DAPI-insensitive foci that are DNA-less aggregates/storage structures. In log phase cells, foci were not localized to any particular region. After UV irradiation, the number of foci increased and they localized to the cell centre. This suggested colocalization with the DNA replication factory. recA, recB and recF strains showed phenotypes and distributions of foci consistent with the predicted effects of these mutations.
Collapse
Affiliation(s)
- Nicholas Renzette
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schwartz CM, Drown PM, MacDonald G. Difference FTIR studies reveal nitrogen-containing amino acid side chains are involved in the allosteric regulation of RecA. Biochemistry 2005; 44:9733-45. [PMID: 16008358 DOI: 10.1021/bi047362u] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Escherichia coli RecA protein performs the DNA strand-exchange reaction utilized in both genetic recombination and DNA repair. The binding of nucleotides triggers conformational changes throughout the protein resulting in the RecA-ATP (high DNA affinity) and RecA-ADP (low DNA affinity) structures. Difference infrared spectroscopy has allowed us to study protein structural changes in RecA that occur after binding ADP or ATP. Experiments were performed on control and uniformly (15)N-labeled RecA in an effort to assign vibrational changes to protein structures and study the molecular changes associated with the allosteric regulation of RecA. Comparison of RecA-ATP and RecA-ADP data indicates that the protein adopts unique secondary structures in each form and altered N-H stretching vibrations in the RecA-ADP structure not observed in the RecA-ATP data. Numerous vibrations throughout the 1700-1300 cm(-)(1) region are influenced by isotopic substitution and imply that many nitrogen-containing side chains are altered after ADP binds to RecA. The RecA-ATP data contain unique vibrations that are not observed in the RecA-ADP data and may be associated with Gln, Lys, Arg, or Asn. Model compound studies on control and (15)N-labeled glutamine and lysine provide additional evidence that supports the tentative assignments of vibrations observed in our difference spectra. In addition, we provide evidence that nitrogen-containing amino acids are important in locking in the low-DNA affinity, more compact conformation of the protein and that some of these interactions may not be present in a more extended, flexible RecA-ATP conformation.
Collapse
Affiliation(s)
- Catherine M Schwartz
- Department of Chemistry, James Madison University, Harrisonburg, Virginia 22807, USA
| | | | | |
Collapse
|
26
|
Xing X, Bell CE. Crystal structures of Escherichia coli RecA in a compressed helical filament. J Mol Biol 2004; 342:1471-85. [PMID: 15364575 DOI: 10.1016/j.jmb.2004.07.091] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/26/2004] [Accepted: 07/27/2004] [Indexed: 11/29/2022]
Abstract
The X-ray crystal structure of uncomplexed Escherichia coli RecA protein has been determined in three new crystal forms at resolutions of 1.9 A, 2.0 A, and 2.6 A. The RecA protein used for this study contains the extra residues Gly-Ser-His-Met at the N terminus, but retains normal ssDNA-dependent ATPase and coprotease activities. In all three crystals, RecA is packed in a right-handed helical filament with a pitch of approximately 74 A. These RecA filaments are compressed relative to the original crystal structure of RecA, which has a helical pitch of 82.7 A. In the structures of the compressed RecA filament, the monomer-monomer interface and the core domain are essentially the same as in the RecA structure with the 83 A pitch. The change in helical pitch is accommodated by a small movement of the N-terminal domain, which is reoriented to preserve the contacts it makes at the monomer-monomer interface. The new crystal structures show significant variation in the orientation and conformation of the C-terminal domain, as well as in the inter-filament packing interactions. In crystal form 2, a calcium ion is bound closely to a beta-hairpin of the C-terminal domain and to Asp38 of a neighboring filament, and residues 329-331 of the C-terminal tail become ordered to contact a neighboring filament. In crystal forms 3 and 4, a sulfate ion or a phosphate anion is bound to the same site on RecA as the beta-phosphate group of ADP, causing an opening of the P-loop. Altogether, the structures show the conformational variability of RecA protein in the crystalline state, providing insight into many aspects of RecA function.
Collapse
Affiliation(s)
- Xu Xing
- Department of Molecular and Cellular Biochemistry, Ohio State University College of Medicine and Public Health, 371 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
27
|
Datta S, Ganesh N, Chandra NR, Muniyappa K, Vijayan M. Structural studies on MtRecA-nucleotide complexes: insights into DNA and nucleotide binding and the structural signature of NTP recognition. Proteins 2003; 50:474-85. [PMID: 12557189 DOI: 10.1002/prot.10315] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RecA protein plays a crucial role in homologous recombination and repair of DNA. Central to all activities of RecA is its binding to Mg(+2)-ATP. The active form of the protein is a helical nucleoprotein filament containing the nucleotide cofactor and single-stranded DNA. The stability and structure of the helical nucleoprotein filament formed by RecA are modulated by nucleotide cofactors. Here we report crystal structures of a MtRecA-ADP complex, complexes with ATPgammaS in the presence and absence of magnesium as well as a complex with dATP and Mg+2. Comparison with the recently solved crystal structures of the apo form as well as a complex with ADP-AlF4 confirms an expansion of the P-loop region in MtRecA, compared to its homologue in Escherichia coli, correlating with the reduced affinity of MtRecA for ATP. The ligand bound structures reveal subtle variations in nucleotide conformations among different nucleotides that serve in maintaining the network of interactions crucial for nucleotide binding. The nucleotide binding site itself, however, remains relatively unchanged. The analysis also reveals that ATPgammaS rather than ADP-AlF4 is structurally a better mimic of ATP. From among the complexed structures, a definition for the two DNA-binding loops L1 and L2 has clearly emerged for the first time and provides a basis to understand DNA binding by RecA. The structural information obtained from these complexes correlates well with the extensive biochemical data on mutants available in the literature, contributing to an understanding of the role of individual residues in the nucleotide binding pocket, at the molecular level. Modeling studies on the mutants again point to the relative rigidity of the nucleotide binding site. Comparison with other NTP binding proteins reveals many commonalties in modes of binding by diverse members in the structural family, contributing to our understanding of the structural signature of NTP recognition.
Collapse
Affiliation(s)
- S Datta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | | | |
Collapse
|
28
|
Butler BC, Hanchett RH, Rafailov H, MacDonald G. Investigating structural changes induced by nucleotide binding to RecA using difference FTIR. Biophys J 2002; 82:2198-210. [PMID: 11916875 PMCID: PMC1302013 DOI: 10.1016/s0006-3495(02)75566-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nucleotide binding to RecA results in either the high-DNA affinity form (Adenosine 5'-triphosphate (ATP)-bound) or the more inactive protein conformation associated with a lower affinity for DNA (Adenosine 5'-diphosphate (ADP)-bound). Many of the key structural differences between the RecA-ATP and RecA-ADP bound forms have yet to be elucidated. We have used caged-nucleotides and difference FTIR in efforts to obtain a comprehensive understanding of the molecular changes induced by nucleotide binding to RecA. The photochemical release of nucleotides (ADP and ATP) from biologically inactive precursors was used to initiate nucleotide binding to RecA. Here we present ATP hydrolysis assays and fluorescence studies suggesting that the caged nucleotides do not interact with RecA before photochemical release. Furthermore, we now compare difference spectra obtained in H2O and D2O as our first attempt at identifying the origin of the vibrations influenced by nucleotide binding. The infrared data suggest that unique alpha-helical, beta structures, and side chain rearrangements are associated with the high- and low-DNA affinity forms of RecA. Difference spectra obtained over time isolate contributions arising from perturbations in the nucleotide phosphates and have provided further information about the protein structural changes involved in nucleotide binding and the allosteric regulation of RecA.
Collapse
Affiliation(s)
- Blaine C Butler
- Department of Chemistry, James Madison University, Harrisonburg, Virginia 22807, USA
| | | | | | | |
Collapse
|
29
|
Chervyakova D, Kagansky A, Petukhov M, Lanzov V. [L29M] substitution in the interface of subunit-subunit interactions enhances Escherichia coli RecA protein properties important for its recombinogenic activity. J Mol Biol 2001; 314:923-35. [PMID: 11734008 DOI: 10.1006/jmbi.2001.5170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic analysis of RecA protein chimeras and their ancestors, RecAEc (from Escherichia coli) and RecAPa (Pseudomonas aeruginosa) had allowed us to place these proteins with respect to their recombinogenic activities in the following order: RecAPa>RecAX21>RecAX20=RecAEc. While RecAX20 differs from RecAEc in five amino acid residues with two substitutions ([S25A] and [I26V]) at the interface of subunit interactions in the RecA polymer, RecAX20 and RecAX21 differ only by a single substitution [L29M] present at the interface. Here, we present an analysis of the biochemical properties considered important for the recombinogenic activity of all four RecA proteins. While RecAX20 was very similar to RecAEc by all activities analysed, RecAX21 differed from RecAEc in several respects. These differences included an increased affinity for double-stranded DNA, a more active displacement of SSB protein from single-stranded DNA (ssDNA), a decreased end-dependent RecAX21 protein dissociation from a presynaptic complex, and a greater accumulation of intermediate products relative to the final product in the strand-exchange reaction. RecAPa was more tolerant than RecAX21 only to the end-dependent RecA protein dissociation. In addition, RecAPa was more resistant to temperature and salt concentrations in its ability to form a presynaptic RecAPa::ATP::ssDNA filament. Calculations of conformational energy revealed that the [L29M] substitution in RecAX21 polymer caused an increase in its flexibility. This led us to conclude that even a small change in the flexibility of the RecA presynaptic complex could profoundly affect its recombinogenic properties.
Collapse
Affiliation(s)
- D Chervyakova
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina/St. Petersburg, 188300, Russia
| | | | | | | |
Collapse
|
30
|
Yang S, VanLoock MS, Yu X, Egelman EH. Comparison of bacteriophage T4 UvsX and human Rad51 filaments suggests that RecA-like polymers may have evolved independently. J Mol Biol 2001; 312:999-1009. [PMID: 11580245 DOI: 10.1006/jmbi.2001.5025] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The UvsX protein from bacteriophage T4 is a member of the RecA/Rad51/RadA family of recombinases active in homologous genetic recombination. Like RecA, Rad51 and RadA, UvsX forms helical filaments on DNA. We have used electron microscopy and a novel method for image analysis of helical filaments to show that UvsX-DNA filaments exist in two different conformations: an ADP state and an ATP state. As with RecA protein, these two states have a large difference in pitch. Remarkably, even though UvsX is only weakly homologous to RecA, both UvsX filament states are more similar to the RecA crystal structure than are RecA-DNA filaments. We use this similarity to fit the RecA crystal structure into the UvsX filament, and show that two of the three previously described blocks of similarity between UvsX and RecA are involved in the subunit-subunit interface in both the UvsX filament and the RecA crystal filament. Conversely, we show that human Rad51-DNA filaments have a different subunit-subunit interface than is present in the RecA crystal, and this interface involves two blocks of sequence similarity between Rad51 and RecA that do not overlap with those found between UvsX and RecA. This suggests that helical filaments in the RecA/Rad51/RadA family may have arisen from convergent evolution, with a conserved core structure that has assembled into multimeric filaments in a number of different ways.
Collapse
Affiliation(s)
- S Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0733, USA
| | | | | | | |
Collapse
|
31
|
Logan KM, Forget AL, Verderese JP, Knight KL. ATP-mediated changes in cross-subunit interactions in the RecA protein. Biochemistry 2001; 40:11382-9. [PMID: 11560486 DOI: 10.1021/bi011081u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RecA protein undergoes ATP- and DNA-induced conformational changes that result in different helical parameters for free protein filaments versus RecA/ATP/DNA nucleoprotein filaments. Previous mutational studies of a particular region of the RecA oligomeric interface suggested that cross-subunit contacts made by residues K6 and R28 were more important for stabilization of free protein oligomers than nucleoprotein filaments [Eldin, S., et al. (2000) J. Mol. Biol. 299, 91-101]. Using mutant proteins with specifically engineered Cys substitutions, we show here that the efficiency of cross-subunit disulfide bond formation at certain positions in this region changes in the presence of ATP or ATP/DNA. Our results support the idea that specific cross-subunit interactions that occur within this region of the subunit interface are different in free RecA protein versus RecA/ATP/DNA nucleoprotein filaments.
Collapse
Affiliation(s)
- K M Logan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655-0103, USA
| | | | | | | |
Collapse
|
32
|
Bakhlanova IV, Ogawa T, Lanzov VA. Recombinogenic activity of chimeric recA genes (Pseudomonas aeruginosa/Escherichia coli): a search for RecA protein regions responsible for this activity. Genetics 2001; 159:7-15. [PMID: 11560883 PMCID: PMC1461784 DOI: 10.1093/genetics/159.1.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the background of weak, if any, constitutive SOS function, RecA from Pseudomonas aeruginosa (RecAPa) shows a higher frequency of recombination exchange (FRE) per DNA unit length as compared to RecA from Escherichia coli (RecAEc). To understand the molecular basis for this observation and to determine which regions of the RecAPa polypeptide are responsible for this unusual activity, we analyzed recAX chimeras between the recAEc and recAPa genes. We chose 31 previously described recombination- and repair-proficient recAX hybrids and determined their FRE calculated from linkage frequency data and constitutive SOS function expression as measured by using the lacZ gene under control of an SOS-regulated promoter. Relative to recAEc, the FRE of recAPa was 6.5 times greater; the relative alterations of FRE for recAX genes varied from approximately 0.6 to 9.0. No quantitative correlation between the FRE increase and constitutive SOS function was observed. Single ([L29M] or [I102D]), double ([G136N, V142I]), and multiple substitutions in related pairs of chimeric RecAX proteins significantly altered their relative FRE values. The residue content of three separate regions within the N-terminal and central but not the C-terminal protein domains within the RecA molecule also influenced the FRE values. Critical amino acids in these regions were located close to previously identified sequences that comprise the two surfaces for subunit interactions in the RecA polymer. We suggest that the intensity of the interactions between the subunits is a key factor in determining the FRE promoted by RecA in vivo.
Collapse
Affiliation(s)
- I V Bakhlanova
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina/St. Petersburg 188300, Russia
| | | | | |
Collapse
|
33
|
Paul R, Dalibart R, Lemoine S, Lestienne P. Expression of E. coli RecA targeted to mitochondria of human cells. Mutat Res 2001; 486:11-9. [PMID: 11356332 DOI: 10.1016/s0921-8777(01)00069-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mitochondrial DNA integrity is ensured by several nuclear-encoded proteins in vertebrates, and a number of mtDNA alterations in human diseases, including deletions and duplications, have been suspected to result from errors in the mitochondrial recombination pathway. However, the presence of the latter system is still a matter of controversy as RecA proteins display various functions in vitro. In Escherichia coli, RecA plays a central role in homologous recombination by pairing and transferring a single strand to a homologous duplex DNA. To address indirectly the issue of a mitochondrial recombination pathway in vivo, we have constructed a chimeric gene containing an N terminal mitochondrial targeting sequence and the E. coli RecA gene. Cells were transfected by the recombinant plasmid, then tested for their mtDNA repair upon bleomycin treatment. We found an increased repair rate of the mitochondrial DNA in cells expressing RecA as compared to control cells. These results indicate that the transfected cells display an improved mtDNA repair replication pathway due to the exogenous RecA, likely in synergy with an endogenous rate-limiting mitochondrial recombination pathway.
Collapse
Affiliation(s)
- R Paul
- EMI 99.29 INSERM, Génétique Mitochondriale, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Cedex, Bordeaux, France
| | | | | | | |
Collapse
|
34
|
Kelley De Zutter J, Forget AL, Logan KM, Knight KL. Phe217 regulates the transfer of allosteric information across the subunit interface of the RecA protein filament. Structure 2001; 9:47-55. [PMID: 11342134 DOI: 10.1016/s0969-2126(00)00552-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND ATP-mediated cooperative assembly of a RecA nucleoprotein filament activates the protein for catalysis of DNA strand exchange. RecA is a classic allosterically regulated enzyme in that ATP binding results in a dramatic increase in ssDNA binding affinity. This increase in ssDNA binding affinity results almost exclusively from an ATP-mediated increase in cooperative filament assembly rather than an increase in the inherent affinity of monomeric RecA for DNA. Therefore, certain residues at the subunit interface must play an important role in transmitting allosteric information across the filament structure of RecA. RESULTS Using electron microscopic analysis of RecA polymer formation in the absence of DNA, we show that while wild-type RecA undergoes a slight decrease in filament length in the presence of ATP, a Phe217Tyr substitution results in a dramatic ATP-induced increase in cooperative filament assembly. Biosensor DNA binding measurements reveal that the Phe217Tyr mutation increases ATP-mediated cooperative interaction between RecA subunits by more than 250-fold. CONCLUSIONS These studies represent the first identification of a subunit interface residue in RecA (Phe217) that plays a critical role in regulating the flow of ATP-mediated information throughout the protein filament structure. We propose a model by which conformational changes that occur upon ATP binding are propagated through the structure of a RecA monomer, resulting in the insertion of the Phe217 side chain into a pocket in the neighboring subunit. This event serves as a key step in intersubunit communication leading to ATP-mediated cooperative filament assembly and high affinity binding to ssDNA.
Collapse
Affiliation(s)
- J Kelley De Zutter
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|