1
|
Sigdel TK, Boada P, Kerwin M, Rashmi P, Gjertson D, Rossetti M, Sur S, Munar D, Cimino J, Ahn R, Pickering H, Sen S, Parmar R, Fatou B, Steen H, Schaenman J, Bunnapradist S, Reed EF, Sarwal MM, CMV Systems Immunobiology Group. Plasma proteome perturbation for CMV DNAemia in kidney transplantation. PLoS One 2023; 18:e0285870. [PMID: 37205661 PMCID: PMC10198483 DOI: 10.1371/journal.pone.0285870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) infection, either de novo or as reactivation after allotransplantation and chronic immunosuppression, is recognized to cause detrimental alloimmune effects, inclusive of higher susceptibility to graft rejection and substantive impact on chronic graft injury and reduced transplant survival. To obtain further insights into the evolution and pathogenesis of CMV infection in an immunocompromised host we evaluated changes in the circulating host proteome serially, before and after transplantation, and during and after CMV DNA replication (DNAemia), as measured by quantitative polymerase chain reaction (QPCR). METHODS LC-MS-based proteomics was conducted on 168 serially banked plasma samples, from 62 propensity score-matched kidney transplant recipients. Patients were stratified by CMV replication status into 31 with CMV DNAemia and 31 without CMV DNAemia. Patients had blood samples drawn at protocol times of 3- and 12-months post-transplant. Additionally, blood samples were also drawn before and 1 week and 1 month after detection of CMV DNAemia. Plasma proteins were analyzed using an LCMS 8060 triple quadrupole mass spectrometer. Further, public transcriptomic data on time matched PBMCs samples from the same patients was utilized to evaluate integrative pathways. Data analysis was conducted using R and Limma. RESULTS Samples were segregated based on their proteomic profiles with respect to their CMV Dnaemia status. A subset of 17 plasma proteins was observed to predict the onset of CMV at 3 months post-transplant enriching platelet degranulation (FDR, 4.83E-06), acute inflammatory response (FDR, 0.0018), blood coagulation (FDR, 0.0018) pathways. An increase in many immune complex proteins were observed at CMV infection. Prior to DNAemia the plasma proteome showed changes in the anti-inflammatory adipokine vaspin (SERPINA12), copper binding protein ceruloplasmin (CP), complement activation (FDR = 0.03), and proteins enriched in the humoral (FDR = 0.01) and innate immune responses (FDR = 0.01). CONCLUSION Plasma proteomic and transcriptional perturbations impacting humoral and innate immune pathways are observed during CMV infection and provide biomarkers for CMV disease prediction and resolution. Further studies to understand the clinical impact of these pathways can help in the formulation of different types and duration of anti-viral therapies for the management of CMV infection in the immunocompromised host.
Collapse
Affiliation(s)
- Tara K. Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Patrick Boada
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Maggie Kerwin
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Priyanka Rashmi
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - David Gjertson
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Maura Rossetti
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Swastika Sur
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Dane Munar
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - James Cimino
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Richard Ahn
- Department of Microbiology and Immunology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Subha Sen
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Rajesh Parmar
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Benoit Fatou
- Department of Pathology, Harvard Medical School, Boston, MA, United States of America
| | - Hanno Steen
- Department of Pathology, Harvard Medical School, Boston, MA, United States of America
| | - Joanna Schaenman
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Suphamai Bunnapradist
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Minnie M. Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | | |
Collapse
|
2
|
nanoString evaluation of murine Cytomegalovirus transcription in vivo and in vitro. J Virol Methods 2021; 301:114436. [PMID: 34929204 DOI: 10.1016/j.jviromet.2021.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Next Generation Sequencing allows for deep analysis of transcriptional activity in cells and tissues, however it is still a cost intensive method that demands well versed data handling. Reverse transcription quantitative PCR (RT-qPCR) is the most commonly used method to measure gene expression levels, however the information gathered is quite small in comparison to NGS. A newer method called nanoString allows for highly multiplexed gene expression analysis by detecting mRNAs without the use of enzymes for reverse transcription or amplification even for single cells or low input material. The method can be done in 1.5 days and data are quickly analyzed by the accompanied user friendly software. Our aim was to investigate this new method and compare it to the existing alternatives, while investigating murine Cytomegalovirus (mCMV) infection and latency. METHODS mCMV infected murine embryonic fibroblasts (MEF), lung and salivary glands from BALB/c mice were evaluated at different stages of infection. A set of 30 custom designed nanoString probes were tested, 20 probes specific for mCMV genes, 6 probes for host genes known to be influenced by viral infection and 4 reference gene specific probes. nanoString counts were compared to published RNA-Seq RPKM. RESULTS We found that nanoString can be used for analysis of cytomegalovirus gene expression during acute infection in vitro and in vivo, both for virus specific and host genes. Although some transcripts show different expression rates in comparison to NGS data, the most abundant transcripts are comparable. When tissues are infected, there are significantly fewer transcripts than in MEFs, and consistent with previous work there are significant differences in relevant abundance between MEF and tissues. We were unable to detect our viral transcripts of interest in latently infected tissue. CONCLUSIONS For viruses with annotated transcriptomes, nanoString allows simultaneous quantitation of multiple virus and host genes. One huge advantage of the platform is rapid turnaround and simplicity of analysis. It should prove to be very useful to explore host virus interactions during acute infection, but it is unclear if it has adequate sensitivity for analysis during latency in immunocompetent mice.
Collapse
|
3
|
Epigenetic reprogramming of host and viral genes by Human Cytomegalovirus infection in Kasumi-3 myeloid progenitor cells at early times post-infection. J Virol 2021; 95:JVI.00183-21. [PMID: 33731453 PMCID: PMC10021080 DOI: 10.1128/jvi.00183-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HCMV establishes latency in myeloid cells. Using the Kasumi-3 latency model, we previously showed that lytic gene expression is activated prior to establishment of latency in these cells. The early events in infection may have a critical role in shaping establishment of latency. Here, we have used an integrative multi-omics approach to investigate dynamic changes in host and HCMV gene expression and epigenomes at early times post infection. Our results show dynamic changes in viral gene expression and viral chromatin. Analyses of Pol II, H3K27Ac and H3K27me3 occupancy of the viral genome showed that 1) Pol II occupancy was highest at the MIEP at 4 hours post infection. However, it was observed throughout the genome; 2) At 24 hours, H3K27Ac was localized to the major immediate early promoter/enhancer and to a possible second enhancer in the origin of replication OriLyt; 3) viral chromatin was broadly accessible at 24 hpi. In addition, although HCMV infection activated expression of some host genes, we observed an overall loss of de novo transcription. This was associated with loss of promoter-proximal Pol II and H3K27Ac, but not with changes in chromatin accessibility or a switch in modification of H3K27.Importance.HCMV is an important human pathogen in immunocompromised hosts and developing fetuses. Current anti-viral therapies are limited by toxicity and emergence of resistant strains. Our studies highlight emerging concepts that challenge current paradigms of regulation of HCMV gene expression in myeloid cells. In addition, our studies show that HCMV has a profound effect on de novo transcription and the cellular epigenome. These results may have implications for mechanisms of viral pathogenesis.
Collapse
|
4
|
Transcriptome altered by latent human cytomegalovirus infection on THP-1 cells using RNA-seq. Gene 2016; 594:144-150. [PMID: 27623506 PMCID: PMC7126988 DOI: 10.1016/j.gene.2016.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 02/08/2023]
Abstract
Human cytomegalovirus (HCMV) has been recognized as a cause of severe, sometimes life-threatening disease in congenitally infected newborns as well as in immunocompromised individuals. However, the molecular mechanisms of the host-virus interaction remain poorly understood. Here, we profiled the expression of mRNAs and long noncoding RNAs (lncRNAs) in THP-1 cells using the emerging RNA-seq to investigate the transcriptional changes during HCMV latent infection. At 4 days post HCMV infection, a total of 169,008,624 sequence reads and 180,616 transcripts were obtained, respectively. Of these transcripts, 1,354 noncoding genes and 12,952 protein-coding genes were observed in Refseq database. Differential gene expression analysis identified 2,153 differentially expressed genes (DEGs) between HCMV-infected and mock-infected THP-1 cells, including 1,098 up-regulated genes and 1,055 down-regulated genes. These regulated genes were involved in pathways of apoptosis, inflammatory response and cell cycle progression, all of which may be implicated in viral pathogenesis. In addition, 646 lncRNAs (208 known lncRNAs and 438 novel lncRNAs) were upregulated and 424 (140 known and 284 novel) were downregulated in infected THP-1 cells. These findings have provided a dynamic scenario of DE candidate genes and lncRNAs at the virus-host interface and clearly warrant further experimental investigation associated with HCMV infection. Differential gene expression analysis identified 2,153 differentially expressed genes between HCMV-infected cells and mock-infected THP-1 cells. These regulated genes were involved in pathways of apoptosis, inflammatory response and cell cycle progression, all of which may be implicated in viral pathogenesis. lncRNAs may involved in regulation of HCMV latent infection.
Collapse
|
5
|
The Transcription and Translation Landscapes during Human Cytomegalovirus Infection Reveal Novel Host-Pathogen Interactions. PLoS Pathog 2015; 11:e1005288. [PMID: 26599541 PMCID: PMC4658056 DOI: 10.1371/journal.ppat.1005288] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/29/2015] [Indexed: 01/06/2023] Open
Abstract
Viruses are by definition fully dependent on the cellular translation machinery, and develop diverse mechanisms to co-opt this machinery for their own benefit. Unlike many viruses, human cytomegalovirus (HCMV) does suppress the host translation machinery, and the extent to which translation machinery contributes to the overall pattern of viral replication and pathogenesis remains elusive. Here, we combine RNA sequencing and ribosomal profiling analyses to systematically address this question. By simultaneously examining the changes in transcription and translation along HCMV infection, we uncover extensive transcriptional control that dominates the response to infection, but also diverse and dynamic translational regulation for subsets of host genes. We were also able to show that, at late time points in infection, translation of viral mRNAs is higher than that of cellular mRNAs. Lastly, integration of our translation measurements with recent measurements of protein abundance enabled comprehensive identification of dozens of host proteins that are targeted for degradation during HCMV infection. Since targeted degradation indicates a strong biological importance, this approach should be applicable for discovering central host functions during viral infection. Our work provides a framework for studying the contribution of transcription, translation and degradation during infection with any virus. Viruses are fully dependent on the cellular translation machinery, and develop diverse mechanisms to co-opt it for their own benefit. However, fundamental questions such as: what is the effect that infection has on the spectrum of host mRNAs that are being translated, and whether, and to what extent, a virus possesses mechanisms to commandeer the translation machinery are still hard to address. Here we show that by simultaneously examining the changes in transcription and translation along Human cytomegalovirus (HCMV) infection, we can uncover extensive transcriptional regulation, but also diverse and dynamic translational control. We were also able to show that, at late time points in infection, translation of viral mRNAs is higher than that of cellular mRNAs. Lastly, we take advantage of our measurements of translation (protein synthesis rate) and integrate these with mass spectrometry measurements (protein abundance). This integration allowed us to unbiasedly reveal dozens of cellular proteins that are being degraded during HCMV infection. Since targeted degradation indicates a strong biological importance, this approach should be applicable for discovering central host functions during viral infection. Our work provides a framework for studying the contribution of transcription, translation and degradation during infection with any virus.
Collapse
|
6
|
Manipulation of host pathways by human cytomegalovirus: insights from genome-wide studies. Semin Immunopathol 2014; 36:651-8. [PMID: 25260940 DOI: 10.1007/s00281-014-0443-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
Abstract
The herpesvirus human cytomegalovirus (HCMV) infects the majority of the world's population, leading to severe diseases in millions of newborns and immunocompromised adults annually. During infection, HCMV extensively manipulates cellular gene expression to maintain conditions favorable for efficient viral propagation. Identifying the pathways that the virus relies on or subverts is of great interest as they have the potential to provide new therapeutic targets and to reveal novel principles in cell biology. Over the past years, high-throughput analyses have profoundly broadened our understanding of the processes that occur during HCMV infection. In this review, we will discuss these new findings and how they impact our understanding of the biology of HCMV.
Collapse
|
7
|
Functional genomics approaches to understand cytomegalovirus replication, latency and pathogenesis. Curr Opin Virol 2013; 3:408-15. [PMID: 23816389 DOI: 10.1016/j.coviro.2013.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 11/21/2022]
Abstract
Cytomegalovirus (CMV) is a species-specific herpesvirus that is ubiquitous in the population and has the potential to cause significant disease in immunocompromised individuals as well as in congenitally infected infants. CMV establishes latency in cells of the myeloid lineage following primary infection. High-throughput functional genomics approaches have provided insight into the mechanisms of CMV replication, but although CMV latency cell models have been useful in elucidating the mechanisms of viral latency and reactivation, omics approaches have proven challenging in these cell systems. This review will summarize the current state of knowledge concerning the use of functional genomics technologies to understand mechanisms of CMV replication, latency and pathogenesis.
Collapse
|
8
|
Marcinowski L, Lidschreiber M, Windhager L, Rieder M, Bosse JB, Rädle B, Bonfert T, Györy I, de Graaf M, da Costa OP, Rosenstiel P, Friedel CC, Zimmer R, Ruzsics Z, Dölken L. Real-time transcriptional profiling of cellular and viral gene expression during lytic cytomegalovirus infection. PLoS Pathog 2012; 8:e1002908. [PMID: 22969428 PMCID: PMC3435240 DOI: 10.1371/journal.ppat.1002908] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/01/2012] [Indexed: 01/08/2023] Open
Abstract
During viral infections cellular gene expression is subject to rapid alterations induced by both viral and antiviral mechanisms. In this study, we applied metabolic labeling of newly transcribed RNA with 4-thiouridine (4sU-tagging) to dissect the real-time kinetics of cellular and viral transcriptional activity during lytic murine cytomegalovirus (MCMV) infection. Microarray profiling on newly transcribed RNA obtained at different times during the first six hours of MCMV infection revealed discrete functional clusters of cellular genes regulated with distinct kinetics at surprising temporal resolution. Immediately upon virus entry, a cluster of NF-κB- and interferon-regulated genes was induced. Rapid viral counter-regulation of this coincided with a very transient DNA-damage response, followed by a delayed ER-stress response. Rapid counter-regulation of all three clusters indicated the involvement of novel viral regulators targeting these pathways. In addition, down-regulation of two clusters involved in cell-differentiation (rapid repression) and cell-cycle (delayed repression) was observed. Promoter analysis revealed all five clusters to be associated with distinct transcription factors, of which NF-κB and c-Myc were validated to precisely match the respective transcriptional changes observed in newly transcribed RNA. 4sU-tagging also allowed us to study the real-time kinetics of viral gene expression in the absence of any interfering virion-associated-RNA. Both qRT-PCR and next-generation sequencing demonstrated a sharp peak of viral gene expression during the first two hours of infection including transcription of immediate-early, early and even well characterized late genes. Interestingly, this was subject to rapid gene silencing by 5–6 hours post infection. Despite the rapid increase in viral DNA load during viral DNA replication, transcriptional activity of some viral genes remained remarkably constant until late-stage infection, or was subject to further continuous decline. In summary, this study pioneers real-time transcriptional analysis during a lytic herpesvirus infection and highlights numerous novel regulatory aspects of virus-host-cell interaction. Cytomegaloviruses are large DNA viruses, which establish life-long latent infections, leaving the infected individual at risk of reactivation and disease. Here, we applied 4-thiouridine-(4sU)-tagging of newly transcribed RNA to monitor the real-time kinetics of transcriptional activity of both cellular and viral genes during lytic murine CMV (MCMV) infection. We observed a cascade of MCMV-induced signaling events including a rapid inflammatory/interferon-response, a transient DNA-damage-response and a delayed ER-stress-response. All of these were heavily counter-regulated by viral gene expression. Besides dramatically increasing temporal resolution, our approach provides the unique opportunity to study viral transcriptional activity in absence of any interfering virion-associated-RNA. Virion-associated-RNA consists of transcripts that are unspecifically incorporated into the virus particles thereby resembling the cellular RNA profile of late stage infection. A clear picture of which viral genes are expressed, particularly at very early times of infection, could thus not be obtained. By overcoming this problem, we provide intriguing insights into the regulation of viral gene expression, namely 1) a peak of viral gene expression during the first two hours of infection including the expression of well-characterized late genes and 2) remarkably constant or even continuously declining expression of some viral genes despite the onset of rapid viral DNA replication.
Collapse
Affiliation(s)
- Lisa Marcinowski
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Lidschreiber
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Lukas Windhager
- Institute for Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Martina Rieder
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Jens B. Bosse
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Bernd Rädle
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Bonfert
- Institute for Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Ildiko Györy
- School of Biomedical and Biological Sciences, Centre for Research in Translational Biomedicine, Plymouth University, Plymouth, United Kingdom
| | - Miranda de Graaf
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | | | - Ralf Zimmer
- Institute for Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Zsolt Ruzsics
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Lars Dölken
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
McFarlane S, Nicholl MJ, Sutherland JS, Preston CM. Interaction of the human cytomegalovirus particle with the host cell induces hypoxia-inducible factor 1 alpha. Virology 2011; 414:83-90. [PMID: 21481907 DOI: 10.1016/j.virol.2011.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/19/2011] [Accepted: 03/09/2011] [Indexed: 01/06/2023]
Abstract
The cellular protein hypoxia-inducible factor 1 alpha (HIF-1α) was induced after infection of human fibroblasts with human cytomegalovirus (HCMV). HCMV irradiated with ultraviolet light (uv-HCMV) also elicited the effect, demonstrating that the response was provoked by interaction of the infecting virion with the cell and that viral gene expression was not required. Although induction of HIF-1α was initiated by an early event, accumulation of the protein was not detected until 9 hours post infection, with levels increasing thereafter. Infection with uv-HCMV resulted in increased abundance of HIF-1α-specific RNA, indicating stimulation of transcription. In addition, greater phosphorylation of the protein kinase Akt was observed, and the activity of this enzyme was required for induction of HIF-1α to occur. HIF-1α controls the expression of many cellular gene products; therefore the findings reveal new ways in which interaction of the HCMV particle with the host cell may cause significant alterations to cellular physiology.
Collapse
Affiliation(s)
- Steven McFarlane
- MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow, G11 5JR, Scotland, United Kingdom
| | | | | | | |
Collapse
|
10
|
Robinson I, Ochsenkühn MA, Campbell CJ, Giraud G, Hossack WJ, Arlt J, Crain J. Intracellular imaging of host-pathogen interactions using combined CARS and two-photon fluorescence microscopies. JOURNAL OF BIOPHOTONICS 2010; 3:138-46. [PMID: 19670191 DOI: 10.1002/jbio.200910054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Intracellular imaging is a key tool in the investigation of host-pathogen interactions. Advances in this area are particularly sought to understand the effect of viral infection processes on the host cell and its metabolic functions including those cases where host cell lipid metabolism is modulated as a result of infection. We demonstrate the use of combined coherent anti-Stokes Raman scattering (CARS) and two-photon fluorescence microscopies to image fibroblast cells infected by cytomegalovirus. CARS is used to image the host cell membrane, lipid droplets and morphology of the nucleus. Cell nuclei are found to expand during infection, approximately doubling in area. Some cells also show accumulations of lipid droplets at the nuclear periphery. Using a genetically modified virus strain expressing the green fluorescent protein also enables two-photon imaging of the same cells to reveal the location, nature and extent of viral protein expression.
Collapse
Affiliation(s)
- Iain Robinson
- Collaborative Optical Spectroscopy, Micromanipulation and Imaging Centre COSMIC, School of Physics and Astronomy, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK.
| | | | | | | | | | | | | |
Collapse
|
11
|
Raftery MJ, Möncke-Buchner E, Matsumura H, Giese T, Winkelmann A, Reuter M, Terauchi R, Schönrich G, Krüger DH. Unravelling the interaction of human cytomegalovirus with dendritic cells by using SuperSAGE. J Gen Virol 2009; 90:2221-33. [PMID: 19439557 DOI: 10.1099/vir.0.010538-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen with a predilection for dendritic cells (DCs). Latently infected myeloid progenitor cells develop into actively infected DCs with impaired functionality, allowing dissemination and transfer of virus throughout the body. However, the viral genes expressed in DCs and their effect on the cellular transcriptome are currently unknown. We investigated human DCs infected with HCMV by using SuperSAGE, allowing us to analyse the transcriptomes of both host and pathogen simultaneously. A small number of viral transcripts were expressed strongly and rapidly post-infection. However, only two were of the immediate-early class, including one with an unknown function. The viral genes expressed reflected the cellular milieu, with the majority having a known or suspected immune-evasion function. Several viral genes identified lack a known function and may fulfil specialized roles within DCs. The cellular response to infection included a strong interferon response, induction of cytokine and anti-apoptotic genes and alterations in genes involved in antigen presentation. We demonstrated the validity of our approach by showing that novel changes first seen in the transcriptome were reflected in the phenotype of HCMV-infected DCs. Delineation of the transcriptional changes underlying the phenotype of HCMV-infected DCs allows a better understanding of how a herpesvirus infects DCs and pinpoints linkages between phenotype and specific viral genes.
Collapse
Affiliation(s)
- Martin J Raftery
- Institute of Virology, Charité-Universitätsmedizin, Charitéplatz 1, D-10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pylouster J, Sénamaud-Beaufort C, Saison-Behmoaras TE. WEBSAGE: a web tool for visual analysis of differentially expressed human SAGE tags. Nucleic Acids Res 2005; 33:W693-5. [PMID: 15980565 PMCID: PMC1160205 DOI: 10.1093/nar/gki444] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The serial analysis of gene expression (SAGE) is a powerful method to compare gene expression of mRNA populations. To provide quantitative expression levels on a genome-wide scale, the Cancer Genome Anatomy Project (CGAP) uses SAGE. Over 7 million SAGE tags, from 171 human cell types have been assembled. The growing number of laboratories involved in SAGE research necessitates the use of software that provides statistical analysis of raw data, allowing the rapid visualization and interpretation of results. We have created the first simple tool that performs statistical analysis on SAGE data, identifies the tags differentially expressed and shows the results in a scatter plot. It is freely available and accessible at .
Collapse
Affiliation(s)
- Jean Pylouster
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U565-CNRS UMR 5153 43, rue Cuvier 75231, Paris Cedex 05, France.
| | | | | |
Collapse
|
13
|
Neill JD, Ridpath JF. Gene expression changes in MDBK cells infected with genotype 2 bovine viral diarrhoea virus. Vet Microbiol 2004; 96:301-12. [PMID: 14599778 DOI: 10.1016/j.vetmic.2003.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bovine viral diarrhoea viruses (BVDVs) are ubiquitous viral pathogens of cattle. These viruses exist as one of two biotypes, cytopathic and noncytopathic, based on the ability to induce cytopathic effect in cell culture. The noncytopathic biotypes are able to establish inapparent, persistent infections in both cell culture and in bovine foetuses of less than 150 days gestation. Interactions with the host cell and the mechanism by which viral tolerance is established are unknown. To examine the changes in gene expression that occur following infection of host cells with BVDV, serial analysis of gene expression (SAGE), a global gene expression technology was used. SAGE allows quantitation of virtually every transcript in a cell type without prior sequence information. Transcript expression levels and identities are determined by sequencing libraries composed of concatamers of 14 base DNA fragments (tags) derived from the 3'-end of each cellular mRNA transcript. Comparison of data obtained from uninfected and BVDV genotype 2-infected cell libraries revealed changes in gene expression associated with distinct biochemical pathways or functions. Isotypes of both alpha- and beta-tubulins were down-regulated, indicating possible dysfunction in cell division and other functions where microtubules play a major role. Expression of genes encoding proteins involved in energy metabolism were expressed at essentially equivalent levels in both infected and uninfected cells. Genes encoding proteins involved in protein translation and post-translational modifications, functions necessary for viral replication, were generally up-regulated. These data indicate that following infection with BVDV, changes in gene expression occur that are beneficial for virus replication while having only minor changes in energy metabolism.
Collapse
Affiliation(s)
- John D Neill
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, USA.
| | | |
Collapse
|
14
|
Tuteja R, Tuteja N. Serial Analysis of Gene Expression: Applications in Human Studies. J Biomed Biotechnol 2004; 2004:113-120. [PMID: 15240922 PMCID: PMC548805 DOI: 10.1155/s1110724304308119] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Serial analysis of gene expression (SAGE) is a powerful tool, which provides quantitative and comprehensive expression profile of genes in a given cell population. It works by isolating short fragments of genetic information from the expressed genes that are present in the cell being studied. These short sequences, called SAGE tags, are linked together for efficient sequencing. The frequency of each SAGE tag in the cloned multimers directly reflects the transcript abundance. Therefore, SAGE results in an accurate picture of gene expression at both the qualitative and the quantitative levels. It does not require a hybridization probe for each transcript and allows new genes to be discovered. This technique has been applied widely in human studies and various SAGE tags/SAGE libraries have been generated from different cells/tissues such as dendritic cells, lung fibroblast cells, oocytes, thyroid tissue, B-cell lymphoma, cultured keratinocytes, muscles, brain tissues, sciatic nerve, cultured Schwann cells, cord blood-derived mast cells, retina, macula, retinal pigment epithelial cells, skin cells, and so forth. In this review we present the updated information on the applications of SAGE technology mainly to human studies.
Collapse
Affiliation(s)
- Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
- *Renu Tuteja:
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
15
|
Wahl M, Shukunami C, Heinzmann U, Hamajima K, Hiraki Y, Imai K. Transcriptome analysis of early chondrogenesis in ATDC5 cells induced by bone morphogenetic protein 4. Genomics 2004; 83:45-58. [PMID: 14667808 DOI: 10.1016/s0888-7543(03)00201-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We performed serial analysis of gene expression (SAGE) profiling in mouse chondrogenic ATDC5 cells before and 6 h after the onset of chondrogenesis induced by BMP4. A total of 43,656 SAGE tags (21,875 and 21,781 tags from the uninduced and induced libraries, respectively) were analyzed. Our analysis predicted that 139 transcripts were differentially represented in the two libraries (p < 0.05), including 72 downregulated and 67 upregulated transcripts. Ninety-five of them matched single UniGene entries (77 known genes and 18 ESTs), while 12 tags corresponded to potentially novel genes. Surprisingly, many of these known genes have never been implicated in chondrogenic differentiation. Interestingly, we found that a significant fraction of these genes formed physical linkage groups. This suggests that the transcriptional control by BMP signaling is in part targeted to genes in certain chromosomal domains. Together, our results provide novel insights into molecular events regulated by BMP signaling in chondrogenesis.
Collapse
Affiliation(s)
- Matthias Wahl
- Institute of Developmental Genetics, GSF-National Research Center for Environment and Health, Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Bovine viral diarrhoea virus (BVDV) is a ubiquitous viral pathogen of cattle. The virus exists as one of two biotypes, cytopathic and non-cytopathic, based on the ability to induce cytopathic effect in cell culture. The non-cytopathic biotypes are able to establish non-apparent, persistent infections in both cell culture and in bovine foetuses of fewer than 150 days gestation. The mechanism by which viral tolerance is established is unknown. To examine the changes in gene expression that occur following infection of host cells with BVDV, serial analysis of gene expression (SAGE), a global gene expression technology was used. SAGE, a sequence-based technology, allows quantification of virtually every transcript in a cell type without prior sequence information. Transcript expression levels and identities are determined by DNA sequencing of libraries composed of 14 base DNA fragments (tags) derived from the 3' end of each cellular mRNA transcript. Comparison of data obtained from non-infected and BVDV2-infected cell libraries revealed a number of changes in gene expression. Many of these transcriptional changes could be placed into distinct biochemical pathways or functions. Both alpha and beta tubulins were downregulated, indicating possible dysfunction in cell division and other functions where microtubules play a major role. Expression of several genes encoding proteins involved in energy metabolism were downregulated, indicating possible decreased ATP synthesis. Genes encoding proteins involved in protein translation and post-translational modifications were generally upregulated. These data indicate that following infection with BVDV, changes in gene expression occur that are beneficial for virus replication while placing the cell at a metabolic disadvantage.
Collapse
Affiliation(s)
- John D Neill
- National Animal Disease Center, USDA, ARS, Ames, IA 50010, USA.
| | | |
Collapse
|
17
|
Ruijter JM, Van Kampen AHC, Baas F. Statistical evaluation of SAGE libraries: consequences for experimental design. Physiol Genomics 2002; 11:37-44. [PMID: 12407185 DOI: 10.1152/physiolgenomics.00042.2002] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Since the introduction of serial analysis of gene expression (SAGE) as a method to quantitatively analyze the differential expression of genes, several statistical tests have been published for the pairwise comparison of SAGE libraries. Testing the difference between the number of specific tags found in two SAGE libraries is hampered by the fact that each SAGE library is only one measurement: the necessary information on biological variation or experimental precision is not available. In the currently available tests, a measure of this variance is obtained from simulation or based on the properties of the tag distribution. To help the user of SAGE to decide between these tests, five different pairwise tests have been compared by determining the critical values, that is, the lowest number of tags that, given an observed number of tags in one library, needs to be found in the other library to result in a significant P value. The five tests included in this comparison are SAGE300, the tests described by Madden et al. (Oncogene 15: 1079-1085, 1997) and by Audic and Claverie (Genome Res 7: 986-995, 1997), Fisher's Exact test, and the Z test, which is equivalent to the chi-squared test. The comparison showed that, for SAGE libraries of equal as well as different size, SAGE300, Fisher's Exact test, Z test, and the Audic and Claverie test have critical values within 1.5% of each other. This indicates that these four tests will give essentially the same results when applied to SAGE libraries. The Madden test, which can only be used for libraries of similar size, is, with 25% higher critical values, more conservative, probably because the variance measure in its test statistic is not appropriate for hypothesis testing. The consequences for the choice of SAGE library sizes are discussed.
Collapse
Affiliation(s)
- Jan M Ruijter
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
18
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2001. [PMCID: PMC2447213 DOI: 10.1002/cfg.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|