1
|
Abe K. Biological and biochemical studies on cell surface functions in microorganisms used in brewing and fermentation industry. Biosci Biotechnol Biochem 2025; 89:649-667. [PMID: 39993924 DOI: 10.1093/bbb/zbaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/08/2025] [Indexed: 02/26/2025]
Abstract
When brewing microorganisms, which include bacteria and fungi, act on solid cereal substrates, the microbial cell surface interacts with the substrate. When microorganisms use sugars and amino acids released by hydrolysis of the substrate, this occurs on the cell surface. Throughout my career, I have focused on functional studies of cell surface molecules such as solute transporters, cell wall components, and bio-surfactants and applied the knowledge obtained to the development of fermentation technologies. In this review, I describe (i) catabolite control by sugar transporters and energy generation coupled with amino acid decarboxylation in lactic acid bacteria; (ii) recruitment of a polyesterase by the fungal bio-surfactant proteins to polyesters and subsequent promotion of polyester hydrolysis; and (iii) hyphal aggregation via cell wall α-1,3-glucan and galactosaminogalactan in aspergilli and the development of a novel liquid culture method with hyphal dispersed mutants lacking these two polysaccharides.
Collapse
Affiliation(s)
- Keietsu Abe
- Laboratory of Fermentation Microbiology, Department of Agrochemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Ahmed WS, Geethakumari AM, Sultana A, Tiwari A, Altamash T, Arshad N, Visweswariah SS, Biswas KH. Coevolving residues distant from the ligand binding site are involved in GAF domain function. Commun Chem 2025; 8:107. [PMID: 40195517 PMCID: PMC11977230 DOI: 10.1038/s42004-025-01447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/04/2025] [Indexed: 04/09/2025] Open
Abstract
Ligand binding to GAF domains regulates the activity of associated catalytic domains in various proteins, such as the cGMP-hydrolyzing catalytic domain of phosphodiesterase 5 (PDE5) activated by cGMP binding to GAFa domain. However, the specific residues involved and the mechanism of GAF domain function remain unclear. Here, we combine computational and experimental approaches to demonstrate that two highly coevolving residues, L267 and F295, distant from the ligand binding site, play a critical role in GAF domain allostery. Statistical Coupling Analysis (SCA) of GAF domain sequences identified these residues, and molecular dynamics (MD) simulations of both apo and holo forms of wild-type and mutant (L267A, F295A) PDE5 GAFa domains revealed significant changes in structural dynamics and cGMP interaction. Mutational incorporation into a Bioluminescence Resonance Energy Transfer (BRET)-based biosensors, which detects ligand-induced conformational changes, showed altered GAF domain conformation and increased EC50 for cGMP-induced conformational changes. Similar effects were observed in full-length PDE5 and the GAF domain fluorescent protein, miRFP670nano3. Structural analysis of conformers observed in MD simulations suggested a mechanism by which these coevolving residues influence GAF domain allostery. Our findings provide insight into the role of distant residues in GAF domain function and may enhance understanding of allostery in proteins.
Collapse
Affiliation(s)
- Wesam S Ahmed
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Asfia Sultana
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Anmol Tiwari
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Tausif Altamash
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Materials Science and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Najla Arshad
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, US
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL, US
| | - Sandhya S Visweswariah
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Kabir H Biswas
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
3
|
Jagadeesh J, Vembar SS. Evolution of sequence, structural and functional diversity of the ubiquitous DNA/RNA-binding Alba domain. Sci Rep 2024; 14:30363. [PMID: 39638848 PMCID: PMC11621453 DOI: 10.1038/s41598-024-79937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
The DNA/RNA-binding Alba domain is prevalent across all kingdoms of life. First discovered in archaea, this protein domain has evolved from RNA- to DNA-binding, with a concomitant expansion in the range of cellular processes that it regulates. Despite its widespread presence, the full extent of its sequence, structural, and functional diversity remains unexplored. In this study, we employed iterative searches in PSI-BLAST to identify 15,161 unique Alba domain-containing proteins from the NCBI non-redundant protein database. Sequence similarity network (SSN) analysis clustered them into 13 distinct subgroups, including the archaeal Alba and eukaryotic Rpp20/Pop7 and Rpp25/Pop6 groups, as well as novel fungal and Plasmodium-specific Albas. Sequence and structural conservation analysis of the subgroups indicated high preservation of the dimer interface, with Alba domains from unicellular eukaryotes notably exhibiting structural deviations towards their C-terminal end. Finally, phylogenetic analysis, while supporting SSN clustering, revealed the evolutionary branchpoint at which the eukaryotic Rpp20- and Rpp25-like clades emerged from archaeal Albas, and the subsequent taxonomic lineage-based divergence within each clade. Taken together, this comprehensive analysis enhances our understanding of the evolutionary history of Alba domain-containing proteins across diverse organisms.
Collapse
Affiliation(s)
- Jaiganesh Jagadeesh
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | | |
Collapse
|
4
|
Ravi J, Anantharaman V, Chen SZ, Brenner EP, Datta P, Aravind L, Gennaro ML. The phage shock protein (PSP) envelope stress response: discovery of novel partners and evolutionary history. mSystems 2024; 9:e0084723. [PMID: 38809013 PMCID: PMC11237479 DOI: 10.1128/msystems.00847-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/20/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial phage shock protein (PSP) systems stabilize the bacterial cell membrane and protect against envelope stress. These systems have been associated with virulence, but despite their critical roles, PSP components are not well characterized outside proteobacteria. Using comparative genomics and protein sequence-structure-function analyses, we systematically identified and analyzed PSP homologs, phyletic patterns, domain architectures, and gene neighborhoods. This approach underscored the evolutionary significance of the system, revealing that its core protein PspA (Snf7 in ESCRT outside bacteria) was present in the last universal common ancestor and that this ancestral functionality has since diversified into multiple novel, distinct PSP systems across life. Several novel partners of the PSP system were identified: (i) the Toastrack domain, likely facilitating assembly of sub-membrane stress-sensing and signaling complexes, (ii) the newly defined HTH-associated α-helical signaling domain-PadR-like transcriptional regulator pair system, and (iii) multiple independent associations with ATPase, CesT/Tir-like chaperone, and Band-7 domains in proteins thought to mediate sub-membrane dynamics. Our work also uncovered links between the PSP components and other domains, such as novel variants of SHOCT-like domains, suggesting roles in assembling membrane-associated complexes of proteins with disparate biochemical functions. Results are available at our interactive web app, https://jravilab.org/psp.IMPORTANCEPhage shock proteins (PSP) are virulence-associated, cell membrane stress-protective systems. They have mostly been characterized in Proteobacteria and Firmicutes. We now show that a minimal PSP system was present in the last universal common ancestor that evolved and diversified into newly identified functional contexts. Recognizing the conservation and evolution of PSP systems across bacterial phyla contributes to our understanding of stress response mechanisms in prokaryotes. Moreover, the newly discovered PSP modularity will likely prompt new studies of lineage-specific cell envelope structures, lifestyles, and adaptation mechanisms. Finally, our results validate the use of domain architecture and genetic context for discovery in comparative genomics.
Collapse
Affiliation(s)
- Janani Ravi
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | - Samuel Zorn Chen
- Computer Science Engineering Undergraduate Program, Michigan State University, East Lansing, Michigan, USA
| | - Evan Pierce Brenner
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Pratik Datta
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Laura Gennaro
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
5
|
Fang H, Shan T, Gu H, Chen J, Qi Y, Li Y, Saeed M, Yuan J, Li P, Wang B. Identification and characterization of ACR gene family in maize for salt stress tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1381056. [PMID: 38745920 PMCID: PMC11091409 DOI: 10.3389/fpls.2024.1381056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Background Members of the ACR gene family are commonly involved in various physiological processes, including amino acid metabolism and stress responses. In recent decades, significant progress has been made in the study of ACR genes in plants. However, little is known about their characteristics and function in maize. Methods In this study, ACR genes were identified from the maize genome, and their molecular characteristics, gene structure, gene evolution, gene collinearity analysis, cis-acting elements were analyzed. qRT-PCR technology was used to verify the expression patterns of the ZmACR gene family in different tissues under salt stress. In addition, Ectopic expression technique of ZmACR5 in Arabidopsis thaliana was utilized to identify its role in response to salt stress. Results A total of 28 ZmACR genes were identified, and their molecular characteristics were extensively described. Two gene pairs arising from segmented replication events were detected in maize, and 18 collinear gene pairs were detected between maize and 3 other species. Through phylogenetic analysis, three subgroups were revealed, demonstrating distinct divergence between monocotyledonous and dicotyledonous plants. Analysis of ZmACR cis-acting elements revealed the optional involvement of ZmACR genes in light response, hormone response and stress resistance. Expression analysis of 8 ZmACR genes under salt treatment clearly revealed their role in the response to salt stress. Ectopic overexpression of ZmACR5 in Arabidopsis notably reduced salt tolerance compared to that of the wild type under salt treatment, suggesting that ZmACR5 has a negative role in the response to salt stress. Conclusion Taken together, these findings confirmed the involvement of ZmACR genes in regulating salt stress and contributed significantly to our understanding of the molecular function of ACR genes in maize, facilitating further research in this field.
Collapse
Affiliation(s)
- Hui Fang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Tingyu Shan
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Haijing Gu
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Junyu Chen
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Yingxiao Qi
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Yexiong Li
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Muhammad Saeed
- Department of Agricultural Sciences, Government College University, Faisalabad, Pakistan
| | | | - Ping Li
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Baohua Wang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
6
|
Dent MR, Weaver BR, Roberts MG, Burstyn JN. Carbon Monoxide-Sensing Transcription Factors: Regulators of Microbial Carbon Monoxide Oxidation Pathway Gene Expression. J Bacteriol 2023; 205:e0033222. [PMID: 37154694 PMCID: PMC10210986 DOI: 10.1128/jb.00332-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Carbon monoxide (CO) serves as a source of energy and carbon for a diverse set of microbes found in anaerobic and aerobic environments. The enzymes that bacteria and archaea use to oxidize CO depend upon complex metallocofactors that require accessory proteins for assembly and proper function. This complexity comes at a high energetic cost and necessitates strict regulation of CO metabolic pathways in facultative CO metabolizers to ensure that gene expression occurs only when CO concentrations and redox conditions are appropriate. In this review, we examine two known heme-dependent transcription factors, CooA and RcoM, that regulate inducible CO metabolism pathways in anaerobic and aerobic microorganisms. We provide an analysis of the known physiological and genomic contexts of these sensors and employ this analysis to contextualize known biochemical properties. In addition, we describe a growing list of putative transcription factors associated with CO metabolism that potentially use cofactors other than heme to sense CO.
Collapse
Affiliation(s)
- Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian R. Weaver
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Madeleine G. Roberts
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Huynh TN, Stewart V. Purine catabolism by enterobacteria. Adv Microb Physiol 2023; 82:205-266. [PMID: 36948655 DOI: 10.1016/bs.ampbs.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Purines are abundant among organic nitrogen sources and have high nitrogen content. Accordingly, microorganisms have evolved different pathways to catabolize purines and their metabolic products such as allantoin. Enterobacteria from the genera Escherichia, Klebsiella and Salmonella have three such pathways. First, the HPX pathway, found in the genus Klebsiella and very close relatives, catabolizes purines during aerobic growth, extracting all four nitrogen atoms in the process. This pathway includes several known or predicted enzymes not previously observed in other purine catabolic pathways. Second, the ALL pathway, found in strains from all three species, catabolizes allantoin during anaerobic growth in a branched pathway that also includes glyoxylate assimilation. This allantoin fermentation pathway originally was characterized in a gram-positive bacterium, and therefore is widespread. Third, the XDH pathway, found in strains from Escherichia and Klebsiella spp., at present is ill-defined but likely includes enzymes to catabolize purines during anaerobic growth. Critically, this pathway may include an enzyme system for anaerobic urate catabolism, a phenomenon not previously described. Documenting such a pathway would overturn the long-held assumption that urate catabolism requires oxygen. Overall, this broad capability for purine catabolism during either aerobic or anaerobic growth suggests that purines and their metabolites contribute to enterobacterial fitness in a variety of environments.
Collapse
Affiliation(s)
- TuAnh Ngoc Huynh
- Department of Food Science, University of Wisconsin, Madison, WI, United States
| | - Valley Stewart
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA, United States.
| |
Collapse
|
8
|
Ibrahim I, Ayariga JA, Xu J, Adebanjo A, Robertson BK, Samuel-Foo M, Ajayi OS. CBD resistant Salmonella strains are susceptible to epsilon 34 phage tailspike protein. Front Med (Lausanne) 2023; 10:1075698. [PMID: 36960333 PMCID: PMC10028193 DOI: 10.3389/fmed.2023.1075698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
The rise of antimicrobial resistance is a global public health crisis that threatens the effective control and prevention of infections. Due to the emergence of pandrug-resistant bacteria, most antibiotics have lost their efficacy. Bacteriophages or their components are known to target bacterial cell walls, cell membranes, and lipopolysaccharides (LPS) and hydrolyze them. Bacteriophages being the natural predators of pathogenic bacteria, are inevitably categorized as "human friends", thus fulfilling the adage that "the enemy of my enemy is my friend". Leveraging on their lethal capabilities against pathogenic bacteria, researchers are searching for more ways to overcome the current antibiotic resistance challenge. In this study, we expressed and purified epsilon 34 phage tailspike protein (E34 TSP) from the E34 TSP gene, then assessed the ability of this bacteriophage protein in the killing of two CBD-resistant strains of Salmonella spp. We also assessed the ability of the tailspike protein to cause bacteria membrane disruption, and dehydrogenase depletion. We observed that the combined treatment of CBD-resistant strains of Salmonella with CBD and E34 TSP showed poor killing ability whereas the monotreatment with E34 TSP showed considerably higher killing efficiency. This study demonstrates that the inhibition of the bacteria by E34 TSP was due in part to membrane disruption, and dehydrogenase inactivation by the protein. The results of this work provides an interesting background to highlight the crucial role phage protein such as E34 TSP could play in pathogenic bacterial control.
Collapse
Affiliation(s)
- Iddrisu Ibrahim
- The Microbiology Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Joseph Atia Ayariga
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
- *Correspondence: Joseph Atia Ayariga,
| | - Junhuan Xu
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Ayomide Adebanjo
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Boakai K. Robertson
- The Microbiology Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Michelle Samuel-Foo
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Olufemi S. Ajayi
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
- Olufemi S. Ajayi,
| |
Collapse
|
9
|
Chan J, Geng D, Pan B, Zhang Q, Xu Q. Metagenomic Insights Into the Structure and Function of Intestinal Microbiota of the Hadal Amphipods. Front Microbiol 2021; 12:668989. [PMID: 34163447 PMCID: PMC8216301 DOI: 10.3389/fmicb.2021.668989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Hadal trenches are the deepest known areas of the ocean. Amphipods are considered to be the dominant scavengers in the hadal food webs. The studies on the structure and function of the hadal intestinal microbiotas are largely lacking. Here, the intestinal microbiotas of three hadal amphipods, Hirondellea gigas, Scopelocheirus schellenbergi, and Alicella gigantea, from Mariana Trench, Marceau Trench, and New Britain Trench, respectively, were investigated. The taxonomic analysis identified 358 microbial genera commonly shared within the three amphipods. Different amphipod species possessed their own characteristic dominant microbial component, Psychromonas in H. gigas and Candidatus Hepatoplasma in A. gigantea and S. schellenbergi. Functional composition analysis showed that “Carbohydrate Metabolism,” “Lipid Metabolism,” “Cell Motility,” “Replication and Repair,” and “Membrane Transport” were among the most represented Gene Ontology (GO) Categories in the gut microbiotas. To test the possible functions of “Bacterial Chemotaxis” within the “Cell Motility” category, the methyl-accepting chemotaxis protein (MCP) gene involved in the “Bacterial Chemotaxis” pathway was obtained and used for swarming motility assays. Results showed that bacteria transformed with the gut bacterial MCP gene showed significantly faster growths compared with the control group, suggesting MCP promoted the bacterial swimming capability and nutrient utilization ability. This result suggested that hadal gut microbes could promote their survival in poor nutrient conditions by enhancing chemotaxis and motility. In addition, large quantities of probiotic genera were detected in the hadal amphipod gut microbiotas, which indicated that those probiotics would be possible contributors for promoting the host’s growth and development, which could facilitate adaptation of hadal amphipods to the extreme environment.
Collapse
Affiliation(s)
- Jiulin Chan
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Daoqiang Geng
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Binbin Pan
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Qiming Zhang
- Shanghai Rainbowfish Ocean Technology Co., Ltd, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Lee DW, Park YW, Lee MY, Jeong KH, Lee JY. Structural analysis and insight into effector binding of the niacin-responsive repressor NiaR from Bacillus halodurans. Sci Rep 2020; 10:21039. [PMID: 33273654 PMCID: PMC7713382 DOI: 10.1038/s41598-020-78148-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The niacin-responsive repressor, NiaR, is transcriptional repressor of certain nicotinamide adenine dinucleotide (NAD) biosynthetic genes in response to an increase in niacin levels. NAD is a vital molecule involved in various cellular redox reactions as an electron donor or electron acceptor. The NiaR family is conserved broadly in the Bacillus/Clostridium group, as well as in the Fusobacteria and Thermotogales lineages. The NiaR structure consists of two domains: an N-terminal DNA-binding domain, and a C-terminal regulation domain containing a metal-binding site. In this paper, we report the crystal structures of apo and niacin-bound forms of NiaR from Bacillus halodurans (BhNiaR). The analysis of metal-binding and niacin-binding sites through the apo and niacin-bound structures is described. Each N- and C-terminal domain structure of BhNiaR is almost identical with NiaR from Thermotoga maritima, but the overall domain arrangement is quite different. A zinc ion is fully occupied in each subunit with well-conserved residues in the C-terminal domain. Niacin is also located at a hydrophobic pocket near the zinc ion in the C-terminal domain.
Collapse
Affiliation(s)
- Dong Won Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Young Woo Park
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.,Structural Biology Lab, B2SBIO, Yeonsu-gu, Incheon, Republic of Korea
| | - Myung Yeon Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Kang Hwa Jeong
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jae Young Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
11
|
Identification of Uncharacterized Components of Prokaryotic Immune Systems and Their Diverse Eukaryotic Reformulations. J Bacteriol 2020; 202:JB.00365-20. [PMID: 32868406 DOI: 10.1128/jb.00365-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Nucleotide-activated effector deployment, prototyped by interferon-dependent immunity, is a common mechanistic theme shared by immune systems of several animals and prokaryotes. Prokaryotic versions include CRISPR-Cas with the CRISPR polymerase domain, their minimal variants, and systems with second messenger oligonucleotide or dinucleotide synthetase (SMODS). Cyclic or linear oligonucleotide signals in these systems help set a threshold for the activation of potentially deleterious downstream effectors in response to invader detection. We establish such a regulatory mechanism to be a more general principle of immune systems, which can also operate independently of such messengers. Using sensitive sequence analysis and comparative genomics, we identify 12 new prokaryotic immune systems, which we unify by this principle of threshold-dependent effector activation. These display regulatory mechanisms paralleling physiological signaling based on 3'-5' cyclic mononucleotides, NAD+-derived messengers, two- and one-component signaling that includes histidine kinase-based signaling, and proteolytic activation. Furthermore, these systems allowed the identification of multiple new sensory signal sensory components, such as a tetratricopeptide repeat (TPR) scaffold predicted to recognize NAD+-derived signals, unreported versions of the STING domain, prokaryotic YEATS domains, and a predicted nucleotide sensor related to receiver domains. We also identify previously unrecognized invader detection components and effector components, such as prokaryotic versions of the Wnt domain. Finally, we show that there have been multiple acquisitions of unidentified STING domains in eukaryotes, while the TPR scaffold was incorporated into the animal immunity/apoptosis signal-regulating kinase (ASK) signalosome.IMPORTANCE Both prokaryotic and eukaryotic immune systems face the dangers of premature activation of effectors and degradation of self-molecules in the absence of an invader. To mitigate this, they have evolved threshold-setting regulatory mechanisms for the triggering of effectors only upon the detection of a sufficiently strong invader signal. This work defines general templates for such regulation in effector-based immune systems. Using this, we identify several previously uncharacterized prokaryotic immune mechanisms that accomplish the regulation of downstream effector deployment by using nucleotide, NAD+-derived, two-component, and one-component signals paralleling physiological homeostasis. This study has also helped identify several previously unknown sensor and effector modules in these systems. Our findings also augment the growing evidence for the emergence of key animal immunity and chromatin regulatory components from prokaryotic progenitors.
Collapse
|
12
|
Krishnan A, Burroughs AM, Iyer LM, Aravind L. Comprehensive classification of ABC ATPases and their functional radiation in nucleoprotein dynamics and biological conflict systems. Nucleic Acids Res 2020; 48:10045-10075. [PMID: 32894288 DOI: 10.1093/nar/gkaa726] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
ABC ATPases form one of the largest clades of P-loop NTPase fold enzymes that catalyze ATP-hydrolysis and utilize its free energy for a staggering range of functions from transport to nucleoprotein dynamics. Using sensitive sequence and structure analysis with comparative genomics, for the first time we provide a comprehensive classification of the ABC ATPase superfamily. ABC ATPases developed structural hallmarks that unambiguously distinguish them from other P-loop NTPases such as an alternative to arginine-finger-based catalysis. At least five and up to eight distinct clades of ABC ATPases are reconstructed as being present in the last universal common ancestor. They underwent distinct phases of structural innovation with the emergence of inserts constituting conserved binding interfaces for proteins or nucleic acids and the adoption of a unique dimeric toroidal configuration for DNA-threading. Specifically, several clades have also extensively radiated in counter-invader conflict systems where they serve as nodal nucleotide-dependent sensory and energetic components regulating a diversity of effectors (including some previously unrecognized) acting independently or together with restriction-modification systems. We present a unified mechanism for ABC ATPase function across disparate systems like RNA editing, translation, metabolism, DNA repair, and biological conflicts, and some unexpected recruitments, such as MutS ATPases in secondary metabolism.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
13
|
Tian Y, Yang S, Gao S. Advances, Perspectives and Potential Engineering Strategies of Light-Gated Phosphodiesterases for Optogenetic Applications. Int J Mol Sci 2020; 21:E7544. [PMID: 33066112 PMCID: PMC7590022 DOI: 10.3390/ijms21207544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022] Open
Abstract
The second messengers, cyclic adenosine 3'-5'-monophosphate (cAMP) and cyclic guanosine 3'-5'-monophosphate (cGMP), play important roles in many animal cells by regulating intracellular signaling pathways and modulating cell physiology. Environmental cues like temperature, light, and chemical compounds can stimulate cell surface receptors and trigger the generation of second messengers and the following regulations. The spread of cAMP and cGMP is further shaped by cyclic nucleotide phosphodiesterases (PDEs) for orchestration of intracellular microdomain signaling. However, localized intracellular cAMP and cGMP signaling requires further investigation. Optogenetic manipulation of cAMP and cGMP offers new opportunities for spatio-temporally precise study of their signaling mechanism. Light-gated nucleotide cyclases are well developed and applied for cAMP/cGMP manipulation. Recently discovered rhodopsin phosphodiesterase genes from protists established a new and direct biological connection between light and PDEs. Light-regulated PDEs are under development, and of demand to complete the toolkit for cAMP/cGMP manipulation. In this review, we summarize the state of the art, pros and cons of artificial and natural light-regulated PDEs, and discuss potential new strategies of developing light-gated PDEs for optogenetic manipulation.
Collapse
Affiliation(s)
| | | | - Shiqiang Gao
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, 97070 Wuerzburg, Germany; (Y.T.); (S.Y.)
| |
Collapse
|
14
|
Gupta R, Liu Y, Wang H, Nordyke CT, Puterbaugh RZ, Cui W, Varga K, Chu F, Ke H, Vashisth H, Cote RH. Structural Analysis of the Regulatory GAF Domains of cGMP Phosphodiesterase Elucidates the Allosteric Communication Pathway. J Mol Biol 2020; 432:5765-5783. [PMID: 32898583 PMCID: PMC7572642 DOI: 10.1016/j.jmb.2020.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022]
Abstract
Regulation of photoreceptor phosphodiesterase (PDE6) activity is responsible for the speed, sensitivity, and recovery of the photoresponse during visual signaling in vertebrate photoreceptor cells. It is hypothesized that physiological differences in the light responsiveness of rods and cones may result in part from differences in the structure and regulation of the distinct isoforms of rod and cone PDE6. Although rod and cone PDE6 catalytic subunits share a similar domain organization consisting of tandem GAF domains (GAFa and GAFb) and a catalytic domain, cone PDE6 is a homodimer whereas rod PDE6 consists of two homologous catalytic subunits. Here we provide the x-ray crystal structure of cone GAFab regulatory domain solved at 3.3 Å resolution, in conjunction with chemical cross-linking and mass spectrometric analysis of conformational changes to GAFab induced upon binding of cGMP and the PDE6 inhibitory γ-subunit (Pγ). Ligand-induced changes in cross-linked residues implicate multiple conformational changes in the GAFa and GAFb domains in forming an allosteric communication network. Molecular dynamics simulations of cone GAFab revealed differences in conformational dynamics of the two subunits forming the homodimer and allosteric perturbations on cGMP binding. Cross-linking of Pγ to GAFab in conjunction with solution NMR spectroscopy of isotopically labeled Pγ identified the central polycationic region of Pγ interacting with the GAFb domain. These results provide a mechanistic basis for developing allosteric activators of PDE6 with therapeutic implications for halting the progression of several retinal degenerative diseases.
Collapse
Affiliation(s)
- Richa Gupta
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH 03824, USA
| | - Yong Liu
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, USA
| | - Huanchen Wang
- Signal Transduction Laboratory, NIEHS/NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Christopher T Nordyke
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH 03824, USA
| | - Ryan Z Puterbaugh
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH 03824, USA
| | - Wenjun Cui
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Krisztina Varga
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH 03824, USA
| | - Feixia Chu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH 03824, USA
| | - Hengming Ke
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, USA
| | - Rick H Cote
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH 03824, USA.
| |
Collapse
|
15
|
Kumar S, Gillilan RE, Yernool DA. Structure and function of the juxtamembrane GAF domain of potassium biosensor KdpD. Protein Sci 2020; 29:2009-2021. [PMID: 32713093 DOI: 10.1002/pro.3920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 11/10/2022]
Abstract
KdpD/KdpE two-component signaling system regulates expression of a high affinity potassium transporter responsible for potassium homeostasis. The C-terminal module of KdpD consists of a GAF domain linked to a histidine kinase domain. Whereas certain GAF domains act as regulators by binding cyclic nucleotides, the role of the juxtamembrane GAF domain in KdpD is unknown. We report the high-resolution crystal structure of KdpD GAF domain (KdpDG ) consisting of five α-helices, four β-sheets and two large loops. KdpDG forms a symmetry-related dimer, wherein parallelly arranged monomers contribute to a four-helix bundle at the dimer-interface, SAXS analysis of KdpD C-terminal module reveals an elongated structure that is a dimer in solution. Substitution of conserved residues with various residues that disrupt the dimer interface produce a range of effects on gene expression demonstrating the importance of the interface in inactive to active transitions during signaling. Comparison of ligand binding site of the classic cyclic nucleotide-binding GAF domains to KdpDG reveals structural differences arising from naturally occurring substitutions in primary sequence of KdpDG that modifies the canonical NKFDE sequence motif required for cyclic nucleotide binding. Together these results suggest a structural role for KdpDG in dimerization and transmission of signal to the kinase domain.
Collapse
Affiliation(s)
- Shivesh Kumar
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA.,Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, Ithaca, New York, USA
| | - Dinesh A Yernool
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
16
|
Willson BJ, Chapman LNM, Thomas GH. Evolutionary dynamics of membrane transporters and channels: enhancing function through fusion. Curr Opin Genet Dev 2019; 58-59:76-86. [DOI: 10.1016/j.gde.2019.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
|
17
|
Nie X, Dong W, Yang C. Genomic reconstruction of σ 54 regulons in Clostridiales. BMC Genomics 2019; 20:565. [PMID: 31288763 PMCID: PMC6615313 DOI: 10.1186/s12864-019-5918-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background The σ54 factor controls unique promoters and interacts with a specialized activator (enhancer binding proteins [EBP]) for transcription initiation. Although σ54 is present in many Clostridiales species that have great importance in human health and biotechnological applications, the cellular processes controlled by σ54 remain unknown. Results For systematic analysis of the regulatory functions of σ54, we performed comparative genomic reconstruction of transcriptional regulons of σ54 in 57 species from the Clostridiales order. The EBP-binding DNA motifs and regulated genes were identified for 263 EBPs that constitute 39 distinct groups. The reconstructed σ54 regulons contain the genes involved in fermentation and amino acid catabolism. The predicted σ54 binding sites in the genomes of Clostridiales spp. were verified by in vitro binding assays. To our knowledge, this is the first report about direct regulation of the Stickland reactions and butyrate and alcohols synthesis by σ54 and the respective EBPs. Considerable variations were demonstrated in the sizes and gene contents of reconstructed σ54 regulons between different Clostridiales species. It is proposed that σ54 controls butyrate and alcohols synthesis in solvent-producing species, regulates autotrophic metabolism in acetogenic species, and affects the toxin production in pathogenic species. Conclusions This study reveals previously unrecognized functions of σ54 and provides novel insights into the regulation of fermentation and amino acid metabolism in Clostridiales species, which could have potential applications in guiding the treatment and efficient utilization of these species. Electronic supplementary material The online version of this article (10.1186/s12864-019-5918-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoqun Nie
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wenyue Dong
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
18
|
Structure of the sensory domain of McpX from Sinorhizobium meliloti, the first known bacterial chemotactic sensor for quaternary ammonium compounds. Biochem J 2018; 475:3949-3962. [PMID: 30442721 DOI: 10.1042/bcj20180769] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 02/01/2023]
Abstract
The α-proteobacterium Sinorhizobium meliloti can live freely in the soil or engage in a symbiosis with its legume host. S. meliloti facilitates nitrogen fixation in root nodules, thus providing pivotal, utilizable nitrogen to the host. The organism has eight chemoreceptors, namely McpT to McpZ and IcpA that facilitate chemotaxis. McpX is the first known bacterial sensor of quaternary ammonium compounds (QACs) such as choline and betaines. Because QACs are exuded at chemotaxis-relevant concentrations by germinating alfalfa seeds, McpX has been proposed to contribute to host-specific chemotaxis. We have determined the crystal structure of the McpX periplasmic region (McpXPR) in complex with the proline betaine at 2.7 Å resolution. In the crystal, the protein forms a symmetric dimer with one proline betaine molecule bound to each monomer of McpXPR within membrane-distal CACHE module. The ligand is bound through cation-πinteractions with four aromatic amino acid residues. Mutational analysis in conjunction with binding studies revealed that a conserved aspartate residue is pivotal for ligand binding. We discovered that, in a striking example of convergent evolution, the ligand-binding site of McpXPR resembles that of a group of structurally unrelated betaine-binding proteins including ProX and OpuAC. Through this comparison and docking studies, we rationalized the specificity of McpXPR for this specific group of ligands. Collectively, our structural, biochemical, and molecular docking data have revealed the molecular determinants in McpX that are crucial for its rare ligand specificity for QACs.
Collapse
|
19
|
Conserved principles of transcriptional networks controlling metabolic flexibility in archaea. Emerg Top Life Sci 2018; 2:659-669. [PMID: 33525832 PMCID: PMC7289023 DOI: 10.1042/etls20180036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Gene regulation is intimately connected with metabolism, enabling the appropriate timing and tuning of biochemical pathways to substrate availability. In microorganisms, such as archaea and bacteria, transcription factors (TFs) often directly sense external cues such as nutrient substrates, metabolic intermediates, or redox status to regulate gene expression. Intense recent interest has characterized the functions of a large number of such regulatory TFs in archaea, which regulate a diverse array of unique archaeal metabolic capabilities. However, it remains unclear how the co-ordinated activity of the interconnected metabolic and transcription networks produces the dynamic flexibility so frequently observed in archaeal cells as they respond to energy limitation and intermittent substrate availability. In this review, we communicate the current state of the art regarding these archaeal networks and their dynamic properties. We compare the topology of these archaeal networks to those known for bacteria to highlight conserved and unique aspects. We present a new computational model for an exemplar archaeal network, aiming to lay the groundwork toward understanding general principles that unify the dynamic function of integrated metabolic-transcription networks across archaea and bacteria.
Collapse
|
20
|
CACHD1 is an α2δ-Like Protein That Modulates Ca V3 Voltage-Gated Calcium Channel Activity. J Neurosci 2018; 38:9186-9201. [PMID: 30181139 DOI: 10.1523/jneurosci.3572-15.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 06/03/2018] [Accepted: 06/13/2018] [Indexed: 11/21/2022] Open
Abstract
The putative cache (Ca2+ channel and chemotaxis receptor) domain containing 1 (CACHD1) protein has predicted structural similarities to members of the α2δ voltage-gated Ca2+ channel auxiliary subunit family. CACHD1 mRNA and protein were highly expressed in the male mammalian CNS, in particular in the thalamus, hippocampus, and cerebellum, with a broadly similar tissue distribution to CaV3 subunits, in particular CaV3.1. In expression studies, CACHD1 increased cell-surface localization of CaV3.1, and these proteins were in close proximity at the cell surface, consistent with the formation of CACHD1-CaV3.1 complexes. In functional electrophysiological studies, coexpression of human CACHD1 with CaV3.1, CaV3.2, and CaV3.3 caused a significant increase in peak current density and corresponding increases in maximal conductance. By contrast, α2δ-1 had no effect on peak current density or maximal conductance in CaV3.1, CaV3.2, or CaV3.3. A comparison of CACHD1-mediated increases in CaV3.1 current density and gating currents revealed an increase in channel open probability. In hippocampal neurons from male and female embryonic day 19 rats, CACHD1 overexpression increased CaV3-mediated action potential firing frequency and neuronal excitability. These data suggest that CACHD1 is structurally an α2δ-like protein that functionally modulates CaV3 voltage-gated calcium channel activity.SIGNIFICANCE STATEMENT This is the first study to characterize the Ca2+ channel and chemotaxis receptor domain containing 1 (CACHD1) protein. CACHD1 is widely expressed in the CNS, in particular in the thalamus, hippocampus, and cerebellum. CACHD1 distribution is similar to that of low voltage-activated (CaV3, T-type) calcium channels, in particular to CaV3.1, a protein that regulates neuronal excitability and is a potential therapeutic target in conditions such as epilepsy and pain. CACHD1 is structurally an α2δ-like protein that functionally increases CaV3 calcium current. CACHD1 increases the presence of CaV3.1 at the cell surface, forms complexes with CaV3.1 at the cell surface, and causes an increase in channel open probability. In hippocampal neurons, CACHD1 causes increases in neuronal firing. Thus, CACHD1 represents a novel protein that modulates CaV3 activity.
Collapse
|
21
|
Xiao G, Kong L, Che R, Yi Y, Zhang Q, Yan J, Lin X. Identification and Characterization of c-di-GMP Metabolic Enzymes of Leptospira interrogans and c-di-GMP Fluctuations After Thermal Shift and Infection. Front Microbiol 2018; 9:764. [PMID: 29755425 PMCID: PMC5932348 DOI: 10.3389/fmicb.2018.00764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 11/30/2022] Open
Abstract
Leptospirosis is a widespread zoonotic disease caused by pathogenic Leptospira species. The most common species, Leptospira interrogans, can transfer from contaminated soil or water to the human body. It is able to survive these changing environments through sensing and responding to the changes of environmental cues. Cyclic di-GMP (c-di-GMP) is a special secondary messenger in bacteria, which can respond to the environment and regulate diverse bacterial behaviors. The c-di-GMP levels in bacterial cells are regulated by diguanylatecyclases (DGC) and phosphodiesterases (PDE), which are responsible for synthesizing or hydrolyzing c-di-GMP, respectively. In this study, distribution and phylogenetics of c-di-GMP metabolic genes among 15 leptospiral species were systematically analyzed. Bioinformatics analysis revealed that leptospiral species contain a multitude of c-di-GMP metabolic genes. C-di-GMP metabolic genes in L. interrogans strain Lai 56601 were further analyzed and the results showed that these genes have very diverse expression patterns. Most of the putative DGCs and PDEs possess enzymatic activities, as determined by riboswitch-based dual-fluorescence reporters in vivo or HPLC in vitro. Furtherer analysis of subdomains from GGDEF-containing proteins revealed that the ability to synthesize c-di-GMP was lost when the GAF domain from LA1483 and PAS domain from LA2932 were deleted, while deletion of the REC domain from LA2528 did not affect its ability to synthesize c-di-GMP. Furthermore, high temperatures generally resulted in low c-di-GMP concentrations in L. interrogans and most of the c-di-GMP metabolic genes exhibited differential temperature regulation. Also, infection of murine J774A.1 cells resulted in reduced c-di-GMP levels, while no significant change of c-di-GMP metabolic genes on transcriptional levels were observed during the infection of J774A.1 cells. Taken together, these results provide a basic platform for future studies of c-di-GMP signaling pathways in Leptospira.
Collapse
Affiliation(s)
- Guohui Xiao
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liangliang Kong
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Tianke High Technology Development CO. Ltd., Hangzhou, China
| | - Rongbo Che
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yusi Yi
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qinchao Zhang
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Basic Medical Microbiology Division, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xu'ai Lin
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Basic Medical Microbiology Division, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Bassler J, Schultz JE, Lupas AN. Adenylate cyclases: Receivers, transducers, and generators of signals. Cell Signal 2018; 46:135-144. [PMID: 29563061 DOI: 10.1016/j.cellsig.2018.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022]
Abstract
Class III adenylate cyclases (ACs) are widespread signaling proteins, which translate diverse intracellular and extracellular stimuli into a uniform intracellular signal. They are typically composed of an N-terminal array of input domains and transducers, followed C-terminally by a catalytic domain, which, as a dimer, generates the second messenger cAMP. The input domains, which receive stimuli, and the transducers, which propagate the signals, are often found in other signaling proteins. The nature of stimuli and the regulatory mechanisms of ACs have been studied experimentally in only a few cases, and even in these, important questions remain open, such as whether eukaryotic ACs regulated by G protein-coupled receptors can also receive stimuli through their own membrane domains. Here we survey the current knowledge on regulation and intramolecular signal propagation in ACs and draw comparisons to other signaling proteins. We highlight the pivotal role of a recently identified cyclase-specific transducer element located N-terminally of many AC catalytic domains, suggesting an intramolecular signaling capacity.
Collapse
Affiliation(s)
- Jens Bassler
- Max-Planck-Institut für Entwicklungsbiologie, Abt. Proteinevolution, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Joachim E Schultz
- Pharmazeutisches Institut der Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Andrei N Lupas
- Max-Planck-Institut für Entwicklungsbiologie, Abt. Proteinevolution, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| |
Collapse
|
23
|
Lee Y, Song S, Sheng L, Zhu L, Kim JS, Wood TK. Substrate Binding Protein DppA1 of ABC Transporter DppBCDF Increases Biofilm Formation in Pseudomonas aeruginosa by Inhibiting Pf5 Prophage Lysis. Front Microbiol 2018; 9:30. [PMID: 29416528 PMCID: PMC5787571 DOI: 10.3389/fmicb.2018.00030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/08/2018] [Indexed: 11/13/2022] Open
Abstract
Filamentous phage impact biofilm development, stress tolerance, virulence, biofilm dispersal, and colony variants. Previously, we identified 137 Pseudomonas aeruginosa PA14 mutants with more than threefold enhanced and 88 mutants with more than 10-fold reduced biofilm formation by screening 5850 transposon mutants (PLoS Pathogens5: e1000483, 2009). Here, we characterized the function of one of these 225 mutations, dppA1 (PA14_58350), in regard to biofilm formation. DppA1 is a substrate-binding protein (SBP) involved in peptide utilization via the DppBCDF ABC transporter system. We show that compared to the wild-type strain, inactivating dppA1 led to 68-fold less biofilm formation in a static model and abolished biofilm formation in flow cells. Moreover, the dppA1 mutant had a delay in swarming and produced 20-fold less small-colony variants, and both biofilm formation and swarming were complemented by producing DppA1. A whole-transcriptome analysis showed that only 10 bacteriophage Pf5 genes were significantly induced in the biofilm cells of the dppA1 mutant compared to the wild-type strain, and inactivation of dppA1 resulted in a 600-fold increase in Pf5 excision and a million-fold increase in phage production. As expected, inactivating Pf5 genes PA0720 and PA0723 increased biofilm formation substantially. Inactivation of DppA1 also reduced growth (due to cell lysis). Hence, DppA1 increases biofilm formation by repressing Pf5 prophage.
Collapse
Affiliation(s)
- Yunho Lee
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Lili Sheng
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Lei Zhu
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | | | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
24
|
Abendroth J, Frando A, Phan IQ, Staker BL, Myler PJ, Edwards TE, Grundner C. Mycobacterium tuberculosis Rv3651 is a triple sensor-domain protein. Protein Sci 2017; 27:568-572. [PMID: 29119630 DOI: 10.1002/pro.3343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 01/27/2023]
Abstract
The genome of the human pathogen Mycobacterium tuberculosis (Mtb) encodes ∼4,400 proteins, but one third of them have unknown functions. We solved the crystal structure of Rv3651, a hypothetical protein with no discernible similarity to proteins with known function. Rv3651 has a three-domain architecture that combines one cGMP-specific phosphodiesterases, adenylyl cyclases and FhlA (GAF) domain and two Per-ARNT-Sim (PAS) domains. GAF and PAS domains are sensor domains that are typically linked to signaling effector molecules. Unlike these sensor-effector proteins, Rv3651 is an unusual sensor domain-only protein with highly divergent sequence. The structure suggests that Rv3651 integrates multiple different signals and serves as a scaffold to facilitate signal transfer.
Collapse
Affiliation(s)
- Jan Abendroth
- Beryllium Discovery, Bainbridge Island, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - Andrew Frando
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington.,Department of Global Health, University of Washington, Seattle, Washington
| | - Isabelle Q Phan
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington
| | - Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington.,Department of Global Health, University of Washington, Seattle, Washington.,Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington
| | - Thomas E Edwards
- Beryllium Discovery, Bainbridge Island, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - Christoph Grundner
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington.,Department of Global Health, University of Washington, Seattle, Washington
| |
Collapse
|
25
|
Bacterial PerO Permeases Transport Sulfate and Related Oxyanions. J Bacteriol 2017; 199:JB.00183-17. [PMID: 28461447 DOI: 10.1128/jb.00183-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/22/2017] [Indexed: 01/13/2023] Open
Abstract
Rhodobacter capsulatus synthesizes the high-affinity ABC transporters CysTWA and ModABC to specifically import the chemically related oxyanions sulfate and molybdate, respectively. In addition, R. capsulatus has the low-affinity permease PerO acting as a general oxyanion transporter, whose elimination increases tolerance to molybdate and tungstate. Although PerO-like permeases are widespread in bacteria, their function has not been examined in any other species to date. Here, we present evidence that PerO permeases from the alphaproteobacteria Agrobacterium tumefaciens, Dinoroseobacter shibae, Rhodobacter sphaeroides, and Sinorhizobium meliloti and the gammaproteobacterium Pseudomonas stutzeri functionally substitute for R. capsulatus PerO in sulfate uptake and sulfate-dependent growth, as shown by assimilation of radioactively labeled sulfate and heterologous complementation. Disruption of perO genes in A. tumefaciens, R. sphaeroides, and S. meliloti increased tolerance to tungstate and, in the case of R. sphaeroides, to molybdate, suggesting that heterometal oxyanions are common substrates of PerO permeases. This study supports the view that bacterial PerO permeases typically transport sulfate and related oxyanions and, hence, form a functionally conserved permease family.IMPORTANCE Despite the widespread distribution of PerO-like permeases in bacteria, our knowledge about PerO function until now was limited to one species, Rhodobacter capsulatus In this study, we showed that PerO proteins from diverse bacteria are functionally similar to the R. capsulatus prototype, suggesting that PerO permeases form a conserved family whose members transport sulfate and related oxyanions.
Collapse
|
26
|
da Costa Vasconcelos FN, Maciel NK, Favaro DC, de Oliveira LC, Barbosa AS, Salinas RK, de Souza RF, Farah CS, Guzzo CR. Structural and Enzymatic Characterization of a cAMP-Dependent Diguanylate Cyclase from Pathogenic Leptospira Species. J Mol Biol 2017; 429:2337-2352. [PMID: 28601495 DOI: 10.1016/j.jmb.2017.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022]
Abstract
Leptospira interrogans serovar Copenhageni is a human pathogen that causes leptospirosis, a worldwide zoonosis. The L. interrogans genome codes for a wide array of potential diguanylate cyclase (DGC) enzymes with characteristic GGDEF domains capable of synthesizing the cyclic dinucleotide c-di-GMP, known to regulate transitions between different cellular behavioral states in bacteria. Among such enzymes, LIC13137 (Lcd1), which has an N-terminal cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA (GAF) domain and a C-terminal GGDEF domain, is notable for having close orthologs present only in pathogenic Leptospira species. Although the function and structure of GGDEF and GAF domains have been studied extensively separately, little is known about enzymes with the GAF-GGDEF architecture. In this report, we address the question of how the GAF domain regulates the DGC activity of Lcd1. The full-length Lcd1 and its GAF domain form dimers in solution. The GAF domain binds specifically cAMP (KD of 0.24μM) and has an important role in the regulation of the DGC activity of the GGDEF domain. Lcd1 DGC activity is negligible in the absence of cAMP and is significantly enhanced in its presence (specific activity of 0.13s-1). The crystal structure of the Lcd1 GAF domain in complex with cAMP provides valuable insights toward explaining its specificity for cAMP and pointing to possible mechanisms by which this cyclic nucleotide regulates the assembly of an active DGC enzyme.
Collapse
Affiliation(s)
| | - Nikolas Koshiyama Maciel
- Departamento de Microbiologia, Instituto de Ciências Biomedicas, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Denize Cristina Favaro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-900, Brazil; Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | | | - Roberto Kopke Salinas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Robson Francisco de Souza
- Departamento de Microbiologia, Instituto de Ciências Biomedicas, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Chuck Shaker Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Cristiane Rodrigues Guzzo
- Departamento de Microbiologia, Instituto de Ciências Biomedicas, Universidade de São Paulo, São Paulo, 05508-900, Brazil.
| |
Collapse
|
27
|
Harding T, Roger AJ, Simpson AGB. Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers. Front Microbiol 2017; 8:944. [PMID: 28611746 PMCID: PMC5447177 DOI: 10.3389/fmicb.2017.00944] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/11/2017] [Indexed: 11/13/2022] Open
Abstract
The capacity of halophiles to thrive in extreme hypersaline habitats derives partly from the tight regulation of ion homeostasis, the salt-dependent adjustment of plasma membrane fluidity, and the increased capability to manage oxidative stress. Halophilic bacteria, and archaea have been intensively studied, and substantial research has been conducted on halophilic fungi, and the green alga Dunaliella. By contrast, there have been very few investigations of halophiles that are phagotrophic protists, i.e., protozoa. To gather fundamental knowledge about salt adaptation in these organisms, we studied the transcriptome-level response of Halocafeteria seosinensis (Stramenopiles) grown under contrasting salinities. We provided further evolutionary context to our analysis by identifying genes that underwent recent duplications. Genes that were highly responsive to salinity variations were involved in stress response (e.g., chaperones), ion homeostasis (e.g., Na+/H+ transporter), metabolism and transport of lipids (e.g., sterol biosynthetic genes), carbohydrate metabolism (e.g., glycosidases), and signal transduction pathways (e.g., transcription factors). A significantly high proportion (43%) of duplicated genes were also differentially expressed, accentuating the importance of gene expansion in adaptation by H. seosinensis to high salt environments. Furthermore, we found two genes that were lateral acquisitions from bacteria, and were also highly up-regulated and highly expressed at high salt, suggesting that this evolutionary mechanism could also have facilitated adaptation to high salt. We propose that a transition toward high-salt adaptation in the ancestors of H. seosinensis required the acquisition of new genes via duplication, and some lateral gene transfers (LGTs), as well as the alteration of transcriptional programs, leading to increased stress resistance, proper establishment of ion gradients, and modification of cell structure properties like membrane fluidity.
Collapse
Affiliation(s)
- Tommy Harding
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie UniversityHalifax, NS, Canada
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie UniversityHalifax, NS, Canada
| | - Alastair G. B. Simpson
- Department of Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie UniversityHalifax, NS, Canada
| |
Collapse
|
28
|
The Legionella pneumophila Incomplete Phosphotransferase System Is Required for Optimal Intracellular Growth and Maximal Expression of PmrA-Regulated Effectors. Infect Immun 2017; 85:IAI.00121-17. [PMID: 28373357 DOI: 10.1128/iai.00121-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
The nitrogen phosphotransferase system (PTSNtr) is a regulatory cascade present in many bacteria, where it controls different functions. This system is usually composed of three basic components: enzyme INtr (EINtr), NPr, and EIIANtr (encoded by the ptsP, ptsO, and ptsN genes, respectively). In Legionella pneumophila, as well as in many other Legionella species, the EIIANtr component is missing. However, we found that deletion mutations in both ptsP and ptsO are partially attenuated for intracellular growth. Furthermore, these two PTSNtr components were found to be required for maximal expression of effector-encoding genes regulated by the transcriptional activator PmrA. Genetic analyses which include the construction of single and double deletion mutants and overexpression of wild-type and mutated forms of EINtr, NPr, and PmrA indicated that the PTSNtr components affect the expression of PmrA-regulated genes via PmrA and independently from PmrB and that EINtr and NPr are part of the same cascade and require their conserved histidine residues in order to function. Furthermore, expression of the Legionella micdadei EIINtr component in L. pneumophila resulted in a reduction in the levels of expression of PmrA-regulated genes which was completely dependent on the L. pneumophila PTS components and the L. micdadei EIINtr conserved histidine residue. Moreover, reconstruction of the L. pneumophila PTS in vitro indicated that EINtr is phosphorylated by phosphoenolpyruvate (PEP) and transfers its phosphate to NPr. Our results demonstrate that the L. pneumophila incomplete PTSNtr is functional and involved in the expression of effector-encoding genes regulated by PmrA.
Collapse
|
29
|
Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. Nat Microbiol 2017; 2:17045. [PMID: 28368387 PMCID: PMC5436926 DOI: 10.1038/nmicrobiol.2017.45] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/03/2017] [Indexed: 11/08/2022]
Abstract
Major radiations of enigmatic bacteria and archaea with large inventories of uncharacterized proteins are a striking feature of the Tree of Life1,2,3,4,5. The processes that led to functional diversity in these lineages, which may contribute to a host-dependent lifestyle, are poorly understood. Here we show that diversity-generating retroelements (DGRs), which guide site-specific protein hypervariability6,7,8, are prominent features of genomically-reduced organisms from the bacterial candidate phyla radiation (CPR) and yet uncultivated phyla belonging to the DPANN archaeal superphylum. From reconstructed genomes we defined monophyletic bacterial and archaeal DGR lineages that expand known DGR range by 120% and reveal a history of horizontal retroelement transfer. Retroelement-guided diversification is further shown to be active in current CPR and DPANN populations, with an assortment of protein targets potentially involved in attachment, defense, and regulation. Based on observations of DGR abundance, function, and evolutionary history, we find that targeted protein diversification is a pronounced trait of CPR and DPANN phyla compared to other bacterial and archaeal phyla. This diversification mechanism may provide CPR and DPANN organisms a versatile tool that could be used for adaptation to a dynamic, host-dependent, existence.
Collapse
|
30
|
Sharma S, Visweswariah SS. Illuminating Cyclic Nucleotides: Sensors for cAMP and cGMP and Their Application in Live Cell Imaging. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0014-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Patil VV, Park KH, Lee SG, Woo E. Structural Analysis of the Phenol-Responsive Sensory Domain of the Transcription Activator PoxR. Structure 2016; 24:624-630. [PMID: 27050690 DOI: 10.1016/j.str.2016.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/16/2016] [Accepted: 03/04/2016] [Indexed: 11/18/2022]
Abstract
Positive phenol-degradative gene regulator (PoxR) is a σ(54)-dependent AAA+ ATPase transcription activator that regulates the catabolism of phenols. The PoxR sensory domain detects phenols and relays signals for the activation of transcription. Here we report the first structure of the phenol sensory domain bound to phenol and five derivatives. It exists as a tightly intertwined homodimer with a phenol-binding pocket buried inside, placing two C termini on the same side of the dimer. His102 and Trp130 interact with the hydroxyl group of the phenol in a cavity surrounded by rigid hydrophobic residues on one side and a flexible region on the other. Each monomer has a V4R fold with a unique zinc-binding site. A shift at the C-terminal helix suggests that there is a possible conformational change upon ligand binding. The results provide a structural basis of chemical effector binding for transcriptional regulation with broad implications for protein engineering.
Collapse
Affiliation(s)
- Vinod Vikas Patil
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea; Department of Bio-Analytical science, University of Science and Technology, Daejeon 305-333, Korea
| | - Kwang-Hyun Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea; Department of Bio-Analytical science, University of Science and Technology, Daejeon 305-333, Korea
| | - Seung-Goo Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea; Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-333, Korea
| | - Euijeon Woo
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea; Department of Bio-Analytical science, University of Science and Technology, Daejeon 305-333, Korea.
| |
Collapse
|
32
|
Webb BA, Karl Compton K, Castañeda Saldaña R, Arapov TD, Keith Ray W, Helm RF, Scharf BE. Sinorhizobium meliloti chemotaxis to quaternary ammonium compounds is mediated by the chemoreceptor McpX. Mol Microbiol 2016; 103:333-346. [PMID: 27748981 DOI: 10.1111/mmi.13561] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2016] [Indexed: 12/27/2022]
Abstract
The bacterium Sinorhizobium meliloti is attracted to seed exudates of its host plant alfalfa (Medicago sativa). Since quaternary ammonium compounds (QACs) are exuded by germinating seeds, we assayed chemotaxis of S. meliloti towards betonicine, choline, glycine betaine, stachydrine and trigonelline. The wild type displayed a positive response to all QACs. Using LC-MS, we determined that each germinating alfalfa seed exuded QACs in the nanogram range. Compared to the closely related nonhost species, spotted medic (Medicago arabica), unique profiles were released. Further assessments of single chemoreceptor deletion strains revealed that an mcpX deletion strain displayed little to no response to these compounds. Differential scanning fluorimetry showed interaction of the isolated periplasmic region of McpX (McpXPR and McpX34-306 ) with QACs. Isothermal titration calorimetry experiments revealed tight binding to McpXPR with dissociation constants (Kd ) in the nanomolar range for choline and glycine betaine, micromolar Kd for stachydrine and trigonelline and a Kd in the millimolar range for betonicine. Our discovery of S. meliloti chemotaxis to plant-derived QACs adds another role to this group of compounds, which are known to serve as nutrient sources, osmoprotectants and cell-to-cell signalling molecules. This is the first report of a chemoreceptor that mediates QACs taxis through direct binding.
Collapse
Affiliation(s)
- Benjamin A Webb
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, VA, 24061, USA
| | - K Karl Compton
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Timofey D Arapov
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, VA, 24061, USA
| | - W Keith Ray
- Department of Biochemistry, Life Sciences I, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Richard F Helm
- Department of Biochemistry, Life Sciences I, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Birgit E Scharf
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
33
|
Identification of Conidiogenesis-Associated Genes in Colletotrichum gloeosporioides by Agrobacterium tumefaciens-Mediated Transformation. Curr Microbiol 2016; 73:802-810. [PMID: 27582094 DOI: 10.1007/s00284-016-1131-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/25/2016] [Indexed: 01/25/2023]
Abstract
The Colletotrichum gloeosporioides is one of the most significant pathogens leading to huge economic losses. To infect plants and cause disease dissemination, the fungus elaborates to produce asexual spores called conidia, which are long-lived and highly resistant to environmental stresses. Here, we report a large-scale, systematic genome-wide screening of conidiogenesis-associated genes via conidiation assays, and high-efficiency TAIL-PCRs. Of 10,210 independent transformants tested, 59 mutants exhibited significant variation in conidial production. The T-DNA right flanking sequences of 11 conidiation-related transformants were further identified, and the obtained sequences were aligned to the genome sequence to uncover the novel loci of sporogenesis. When considering together, this study provided a large number of conidial production-variation mutants and the conidiation-related genes, which will be a valuable resource for characterizing the molecular mechanisms of conidial formation in the fungus.
Collapse
|
34
|
Photoreceptors mapping from past history till date. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:223-231. [PMID: 27387671 DOI: 10.1016/j.jphotobiol.2016.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022]
Abstract
The critical source of information in plants is light, which is perceived by receptors present in plants and animals. Receptors present in plant and animal system regulate important processes, and knowing the chromophores and signalling domains for each receptor could pave a way to trace out links between these receptors. The signalling mechanism for each receptor will give insight knowledge. This review has focussed on the photoreceptors from past history till date, that have evolved in the plant as well as in the animal system (to lesser extent). We have also focussed our attention on finding the links between the receptors by showing the commonalities as well as the differences between them, and also tried to trace out the links with the help of chromophores and signalling domain. Several photoreceptors have been traced out, which share similarity in the chromophore as well as in the signalling domain, which indicate towards the evolution of photoreceptors from one another. For instance, cryptochrome has been found to evolve three times from CPD photolyase as well as evolution of different types of phytochrome is a result of duplication and divergence. In addition, similarity between the photoreceptors suggested towards evolution from one another. This review has also discussed possible mechanism for each receptor i.e. how they regulate developmental processes and involve what kinds of regulators and also gives an insight on signalling mechanisms by these receptors. This review could also be a new initiative in the study of UVR8 associated studies.
Collapse
|
35
|
Rolando M, Gomez-Valero L, Buchrieser C. Bacterial remodelling of the host epigenome: functional role and evolution of effectors methylating host histones. Cell Microbiol 2016; 17:1098-107. [PMID: 26031999 DOI: 10.1111/cmi.12463] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/15/2015] [Accepted: 05/25/2015] [Indexed: 12/25/2022]
Abstract
The modulation of the chromatin organization of eukaryotic cells plays an important role in regulating key cellular processes including host defence mechanisms against pathogens. Thus, to successfully survive in a host cell, a sophisticated bacterial strategy is the subversion of nuclear processes of the eukaryotic cell. Indeed, the number of bacterial proteins that target host chromatin to remodel the host epigenetic machinery is expanding. Some of the identified bacterial effectors that target the chromatin machinery are 'eukaryotic-like' proteins as they mimic eukaryotic histone writers in carrying the same enzymatic activities. The best-studied examples are the SET domain proteins that methylate histones to change the chromatin landscape. In this review, we will discuss SET domain proteins identified in the Legionella, Chlamydia and Bacillus genomes that encode enzymatic activities targeting host histones. Moreover, we discuss their possible origin as having evolved from prokaryotic ancestors or having been acquired from their eukaryotic hosts during their co-evolution. The characterization of such bacterial effectors as modifiers of the host chromatin landscape is an exciting field of research as it elucidates new bacterial strategies to not only manipulate host functions through histone modifications but it may also identify new modifications of the mammalian host cells not known before.
Collapse
Affiliation(s)
- Monica Rolando
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR 3525, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR 3525, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR 3525, Paris, France
| |
Collapse
|
36
|
Upadhyay AA, Fleetwood AD, Adebali O, Finn RD, Zhulin IB. Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes. PLoS Comput Biol 2016; 12:e1004862. [PMID: 27049771 PMCID: PMC4822843 DOI: 10.1371/journal.pcbi.1004862] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/10/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly built computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms. Furthermore, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes. Cell-surface receptors control multiple cellular functions and are attractive targets for drug design. These receptors often have dedicated extracellular domains that bind signaling molecules, such as hormones and nutrients. Computational identification of these ligand-binding domains in genomic sequences is a pre-requisite for their further experimental characterization. Using available three-dimensional structures of several bacterial cell-surface receptors, we built computational models that enabled identification of the Cache domain, as the most common extracellular sensor module in prokaryotes, including many important pathogens. We also demonstrated that the Cache domain is homologous to, but sufficiently different from the most common intracellular sensor module, the PAS domain. These findings provide a unified view on molecular principles of signal recognition by extra- and intracellular receptors.
Collapse
Affiliation(s)
- Amit A. Upadhyay
- Genome Science and Technology Graduate Program, University of Tennessee–Oak Ridge National Laboratory, Knoxville, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Aaron D. Fleetwood
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Ogun Adebali
- Genome Science and Technology Graduate Program, University of Tennessee–Oak Ridge National Laboratory, Knoxville, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Robert D. Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Igor B. Zhulin
- Genome Science and Technology Graduate Program, University of Tennessee–Oak Ridge National Laboratory, Knoxville, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
37
|
Schaeffer RD, Kinch LN, Liao Y, Grishin NV. Classification of proteins with shared motifs and internal repeats in the ECOD database. Protein Sci 2016; 25:1188-203. [PMID: 26833690 DOI: 10.1002/pro.2893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/23/2016] [Accepted: 01/27/2016] [Indexed: 12/19/2022]
Abstract
Proteins and their domains evolve by a set of events commonly including the duplication and divergence of small motifs. The presence of short repetitive regions in domains has generally constituted a difficult case for structural domain classifications and their hierarchies. We developed the Evolutionary Classification Of protein Domains (ECOD) in part to implement a new schema for the classification of these types of proteins. Here we document the ways in which ECOD classifies proteins with small internal repeats, widespread functional motifs, and assemblies of small domain-like fragments in its evolutionary schema. We illustrate the ways in which the structural genomics project impacted the classification and characterization of new structural domains and sequence families over the decade.
Collapse
Affiliation(s)
- R Dustin Schaeffer
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9050
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9050
| | - Yuxing Liao
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9050
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9050.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9050
| |
Collapse
|
38
|
Alva V, Söding J, Lupas AN. A vocabulary of ancient peptides at the origin of folded proteins. eLife 2015; 4:e09410. [PMID: 26653858 PMCID: PMC4739770 DOI: 10.7554/elife.09410] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 12/13/2015] [Indexed: 01/01/2023] Open
Abstract
The seemingly limitless diversity of proteins in nature arose from only a few thousand domain prototypes, but the origin of these themselves has remained unclear. We are pursuing the hypothesis that they arose by fusion and accretion from an ancestral set of peptides active as co-factors in RNA-dependent replication and catalysis. Should this be true, contemporary domains may still contain vestiges of such peptides, which could be reconstructed by a comparative approach in the same way in which ancient vocabularies have been reconstructed by the comparative study of modern languages. To test this, we compared domains representative of known folds and identified 40 fragments whose similarity is indicative of common descent, yet which occur in domains currently not thought to be homologous. These fragments are widespread in the most ancient folds and enriched for iron-sulfur- and nucleic acid-binding. We propose that they represent the observable remnants of a primordial RNA-peptide world.
Collapse
Affiliation(s)
- Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Johannes Söding
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
39
|
Feng S, Powell SM, Wilson R, Bowman JP. Proteomic Insight into Functional Changes of Proteorhodopsin-Containing Bacterial Species Psychroflexus torquis under Different Illumination and Salinity Levels. J Proteome Res 2015; 14:3848-58. [DOI: 10.1021/acs.jproteome.5b00241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shi Feng
- Food
Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Hobart, Tasmania 7005, Australia
| | - Shane M. Powell
- Food
Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Hobart, Tasmania 7005, Australia
| | - Richard Wilson
- Central
Science Laboratory, University of Tasmania, Sandy Bay, Hobart, Tasmania 7005, Australia
| | - John P. Bowman
- Food
Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Hobart, Tasmania 7005, Australia
| |
Collapse
|
40
|
Biswas KH, Badireddy S, Rajendran A, Anand GS, Visweswariah SS. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2. PeerJ 2015; 3:e882. [PMID: 25922789 PMCID: PMC4411481 DOI: 10.7717/peerj.882] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/18/2015] [Indexed: 01/01/2023] Open
Abstract
GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP) metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain). In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET) experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS) experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins.
Collapse
Affiliation(s)
- Kabir Hassan Biswas
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | - Suguna Badireddy
- Department of Biological Sciences, National University of Singapore , Singapore , Singapore
| | - Abinaya Rajendran
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | | | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| |
Collapse
|
41
|
A novel CO-responsive transcriptional regulator and enhanced H2 production by an engineered Thermococcus onnurineus NA1 strain. Appl Environ Microbiol 2014; 81:1708-14. [PMID: 25548050 DOI: 10.1128/aem.03019-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome analysis revealed the existence of a putative transcriptional regulatory system governing CO metabolism in Thermococcus onnurineus NA1, a carboxydotrophic hydrogenogenic archaeon. The regulatory system is composed of CorQ with a 4-vinyl reductase domain and CorR with a DNA-binding domain of the LysR-type transcriptional regulator family in close proximity to the CO dehydrogenase (CODH) gene cluster. Homologous genes of the CorQR pair were also found in the genomes of Thermococcus species and "Candidatus Korarchaeum cryptofilum" OPF8. In-frame deletion of either corQ or corR caused a severe impairment in CO-dependent growth and H2 production. When corQ and corR deletion mutants were complemented by introducing the corQR genes under the control of a strong promoter, the mRNA and protein levels of the CODH gene were significantly increased in a ΔCorR strain complemented with integrated corQR (ΔCorR/corQR(↑)) compared with those in the wild-type strain. In addition, the ΔCorR/corQR(↑) strain exhibited a much higher H2 production rate (5.8-fold) than the wild-type strain in a bioreactor culture. The H2 production rate (191.9 mmol liter(-1) h(-1)) and the specific H2 production rate (249.6 mmol g(-1) h(-1)) of this strain were extremely high compared with those of CO-dependent H2-producing prokaryotes reported so far. These results suggest that the corQR genes encode a positive regulatory protein pair for the expression of a CODH gene cluster. The study also illustrates that manipulation of the transcriptional regulatory system can improve biological H2 production.
Collapse
|
42
|
Characterization of M. tuberculosis SerB2, an essential HAD-family phosphatase, reveals novel properties. PLoS One 2014; 9:e115409. [PMID: 25521849 PMCID: PMC4270767 DOI: 10.1371/journal.pone.0115409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/22/2014] [Indexed: 01/09/2023] Open
Abstract
M. tuberculosis harbors an essential phosphoserine phosphatase (MtSerB2, Rv3042c) that contains two small- molecule binding ACT-domains (Pfam 01842) at the N-terminus followed by the phosphoserine phosphatase (PSP) domain. We found that exogenously added MtSerB2 elicits microtubule rearrangements in THP-1 cells. Mutational analysis demonstrates that phosphatase activity is co-related to the elicited rearrangements, while addition of the ACT-domains alone elicits no rearrangements. The enzyme is dimeric, exhibits divalent metal- ion dependency, and is more specific for l- phosphoserine unlike other classical PSPases. Binding of a variety of amino acids to the ACT-domains influences MtSerB2 activity by either acting as activators/inhibitors/have no effects. Additionally, reduced activity of the PSP domain can be enhanced by equimolar addition of the ACT domains. Further, we identified that G18 and G108 of the respective ACT-domains are necessary for ligand-binding and their mutations to G18A and G108A abolish the binding of ligands like l- serine. A specific transition to higher order oligomers is observed upon the addition of l- serine at ∼0.8 molar ratio as supported by Isothermal calorimetry and Size exclusion chromatography experiments. Mutational analysis shows that the transition is dependent on binding of l- serine to the ACT-domains. Furthermore, the higher-order oligomeric form of MtSerB2 is inactive, suggesting that its formation is a mechanism for feedback control of enzyme activity. Inhibition studies involving over eight inhibitors, MtSerB2, and the PSP domain respectively, suggests that targeting the ACT-domains can be an effective strategy for the development of inhibitors.
Collapse
|
43
|
Plaisier CL, Lo FY, Ashworth J, Brooks AN, Beer KD, Kaur A, Pan M, Reiss DJ, Facciotti MT, Baliga NS. Evolution of context dependent regulation by expansion of feast/famine regulatory proteins. BMC SYSTEMS BIOLOGY 2014; 8:122. [PMID: 25394904 PMCID: PMC4236453 DOI: 10.1186/s12918-014-0122-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/16/2014] [Indexed: 11/25/2022]
Abstract
Background Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. Results We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions that mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. Conclusions This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism. Electronic supplementary material The online version of this article (doi:10.1186/s12918-014-0122-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Fang-Yin Lo
- Institute for Systems Biology, Seattle, WA, USA. .,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.
| | | | - Aaron N Brooks
- Institute for Systems Biology, Seattle, WA, USA. .,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.
| | - Karlyn D Beer
- Institute for Systems Biology, Seattle, WA, USA. .,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.
| | | | - Min Pan
- Institute for Systems Biology, Seattle, WA, USA.
| | | | - Marc T Facciotti
- Department of Biomedical Engineering, University of California, Davis, CA, USA. .,Genome Center, University of California, Davis, CA, USA.
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, USA. .,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA. .,Department of Microbiology, University of Washington, Seattle, WA, USA. .,Department of Biology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
44
|
Evolutionary history of redox metal-binding domains across the tree of life. Proc Natl Acad Sci U S A 2014; 111:7042-7. [PMID: 24778258 DOI: 10.1073/pnas.1403676111] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxidoreductases mediate electron transfer (i.e., redox) reactions across the tree of life and ultimately facilitate the biologically driven fluxes of hydrogen, carbon, nitrogen, oxygen, and sulfur on Earth. The core enzymes responsible for these reactions are ancient, often small in size, and highly diverse in amino acid sequence, and many require specific transition metals in their active sites. Here we reconstruct the evolution of metal-binding domains in extant oxidoreductases using a flexible network approach and permissive profile alignments based on available microbial genome data. Our results suggest there were at least 10 independent origins of redox domain families. However, we also identified multiple ancient connections between Fe2S2- (adrenodoxin-like) and heme- (cytochrome c) binding domains. Our results suggest that these two iron-containing redox families had a single common ancestor that underwent duplication and divergence. The iron-containing protein family constitutes ∼50% of all metal-containing oxidoreductases and potentially catalyzed redox reactions in the Archean oceans. Heme-binding domains seem to be derived via modular evolutionary processes that ultimately form the backbone of redox reactions in both anaerobic and aerobic respiration and photosynthesis. The empirically discovered network allows us to peer into the ancient history of microbial metabolism on our planet.
Collapse
|
45
|
Niemann V, Koch-Singenstreu M, Neu A, Nilkens S, Götz F, Unden G, Stehle T. The NreA protein functions as a nitrate receptor in the staphylococcal nitrate regulation system. J Mol Biol 2013; 426:1539-53. [PMID: 24389349 DOI: 10.1016/j.jmb.2013.12.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 02/04/2023]
Abstract
Staphylococci are able to use nitrate as an alternative electron acceptor during anaerobic respiration. The regulation of energy metabolism is dependent on the presence of oxygen and nitrate. Under anaerobic conditions, staphylococci employ the nitrate regulatory element (Nre) for transcriptional activation of genes involved in reduction and transport of nitrate and nitrite. Of the three proteins that constitute the Nre system, NreB has been characterized as an oxygen sensor kinase and NreC has been characterized as its cognate response regulator. Here, we present structural and functional data that establish NreA as a new type of nitrate receptor. The structure of NreA with bound nitrate was solved at 2.35Å resolution, revealing a GAF domain fold. Isothermal titration calorimetry experiments showed that NreA binds nitrate with low micromolar affinity (KD=22μM). Two crystal forms for NreA were obtained, with either bound nitrate or iodide. While the binding site is hydrophobic, two helix dipoles and polar interactions contribute to specific binding of the ions. The expression of nitrate reductase (NarGHI) was examined using a narG-lip (lipase) reporter gene assay in vivo. Expression was regulated by the presence of NreA and nitrate. Structure-guided mutations of NreA reduced its nitrate binding affinity and also affected the gene expression, thus providing support for the function of NreA as a nitrate receptor.
Collapse
Affiliation(s)
- Volker Niemann
- Interfaculty Institute of Biochemistry, Universität Tübingen, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany
| | - Mareike Koch-Singenstreu
- Institute for Microbiology and Wine Research, Universität Mainz, Johann-Joachim-Becherweg 15, D-55128 Mainz, Germany
| | - Ancilla Neu
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | - Stephanie Nilkens
- Institute for Microbiology and Wine Research, Universität Mainz, Johann-Joachim-Becherweg 15, D-55128 Mainz, Germany
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Gottfried Unden
- Institute for Microbiology and Wine Research, Universität Mainz, Johann-Joachim-Becherweg 15, D-55128 Mainz, Germany.
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, Universität Tübingen, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
46
|
Regulated unfolding: a basic principle of intraprotein signaling in modular proteins. Trends Biochem Sci 2013; 38:538-45. [DOI: 10.1016/j.tibs.2013.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 11/21/2022]
|
47
|
Uberto R, Moomaw EW. Protein similarity networks reveal relationships among sequence, structure, and function within the Cupin superfamily. PLoS One 2013; 8:e74477. [PMID: 24040257 PMCID: PMC3765361 DOI: 10.1371/journal.pone.0074477] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/01/2013] [Indexed: 12/11/2022] Open
Abstract
The cupin superfamily is extremely diverse and includes catalytically inactive seed storage proteins, sugar-binding metal-independent epimerases, and metal-dependent enzymes possessing dioxygenase, decarboxylase, and other activities. Although numerous proteins of this superfamily have been structurally characterized, the functions of many of them have not been experimentally determined. We report the first use of protein similarity networks (PSNs) to visualize trends of sequence and structure in order to make functional inferences in this remarkably diverse superfamily. PSNs provide a way to visualize relatedness of structure and sequence among a given set of proteins. Structure- and sequence-based clustering of cupin members reflects functional clustering. Networks based only on cupin domains and networks based on the whole proteins provide complementary information. Domain-clustering supports phylogenetic conclusions that the N- and C-terminal domains of bicupin proteins evolved independently. Interestingly, although many functionally similar enzymatic cupin members bind the same active site metal ion, the structure and sequence clustering does not correlate with the identity of the bound metal. It is anticipated that the application of PSNs to this superfamily will inform experimental work and influence the functional annotation of databases.
Collapse
Affiliation(s)
- Richard Uberto
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Ellen W. Moomaw
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, United States of America
- * E-mail:
| |
Collapse
|
48
|
Hypothetical Proteins Present During Recovery Phase of Radiation Resistant Bacterium Deinococcus radiodurans are Under Purifying Selection. J Mol Evol 2013; 77:31-42. [DOI: 10.1007/s00239-013-9577-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/26/2013] [Indexed: 01/15/2023]
|
49
|
Shah N, Gaupp R, Moriyama H, Eskridge KM, Moriyama EN, Somerville GA. Reductive evolution and the loss of PDC/PAS domains from the genus Staphylococcus. BMC Genomics 2013; 14:524. [PMID: 23902280 PMCID: PMC3734008 DOI: 10.1186/1471-2164-14-524] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 07/25/2013] [Indexed: 02/02/2023] Open
Abstract
Background The Per-Arnt-Sim (PAS) domain represents a ubiquitous structural fold that is involved in bacterial sensing and adaptation systems, including several virulence related functions. Although PAS domains and the subclass of PhoQ-DcuS-CitA (PDC) domains have a common structure, there is limited amino acid sequence similarity. To gain greater insight into the evolution of PDC/PAS domains present in the bacterial kingdom and staphylococci in specific, the PDC/PAS domains from the genomic sequences of 48 bacteria, representing 5 phyla, were identified using the sensitive search method based on HMM-to-HMM comparisons (HHblits). Results A total of 1,007 PAS domains and 686 PDC domains distributed over 1,174 proteins were identified. For 28 Gram-positive bacteria, the distribution, organization, and molecular evolution of PDC/PAS domains were analyzed in greater detail, with a special emphasis on the genus Staphylococcus. Compared to other bacteria the staphylococci have relatively fewer proteins (6–9) containing PDC/PAS domains. As a general rule, the staphylococcal genomes examined in this study contain a core group of seven PDC/PAS domain-containing proteins consisting of WalK, SrrB, PhoR, ArlS, HssS, NreB, and GdpP. The exceptions to this rule are: 1) S. saprophyticus lacks the core NreB protein; 2) S. carnosus has two additional PAS domain containing proteins; 3) S. epidermidis, S. aureus, and S. pseudintermedius have an additional protein with two PDC domains that is predicted to code for a sensor histidine kinase; 4) S. lugdunensis has an additional PDC containing protein predicted to be a sensor histidine kinase. Conclusions This comprehensive analysis demonstrates that variation in PDC/PAS domains among bacteria has limited correlations to the genome size or pathogenicity; however, our analysis established that bacteria having a motile phase in their life cycle have significantly more PDC/PAS-containing proteins. In addition, our analysis revealed a tremendous amount of variation in the number of PDC/PAS-containing proteins within genera. This variation extended to the Staphylococcus genus, which had between 6 and 9 PDC/PAS proteins and some of these appear to be previously undescribed signaling proteins. This latter point is important because most staphylococcal proteins that contain PDC/PAS domains regulate virulence factor synthesis or antibiotic resistance.
Collapse
Affiliation(s)
- Neethu Shah
- Department of Computer Science and Engineering, University of Nebraska, Lincoln, NE 68588-0115, USA
| | | | | | | | | | | |
Collapse
|
50
|
PdeB, a cyclic Di-GMP-specific phosphodiesterase that regulates Shewanella oneidensis MR-1 motility and biofilm formation. J Bacteriol 2013; 195:3827-33. [PMID: 23794617 DOI: 10.1128/jb.00498-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Shewanella oneidensis MR-1, a gammaproteobacterium with respiratory versatility, forms biofilms on mineral surfaces through a process controlled by the cyclic dinucleotide messenger c-di-GMP. Cellular concentrations of c-di-GMP are maintained by proteins containing GGDEF and EAL domains, which encode diguanylate cyclases for c-di-GMP synthesis and phosphodiesterases for c-di-GMP hydrolysis, respectively. The S. oneidensis MR-1 genome encodes several GGDEF and EAL domain proteins (50 and 31, respectively), with a significant fraction (∼10) predicted to be multidomain (e.g., GGDEF-EAL) enzymes containing an additional Per-Arnt-Sim (PAS) sensor domain. However, the biochemical activities and physiological functions of these multidomain enzymes remain largely unknown. Here, we present genetic and biochemical analyses of a predicted PAS-GGDEF-EAL domain-containing protein, SO0437, here named PdeB. A pdeB deletion mutant exhibited decreased swimming motility and increased biofilm formation under rich growth medium conditions, which was consistent with an increase in intracellular c-di-GMP. A mutation inactivating the EAL domain also produced similar swimming and biofilm phenotypes, indicating that the increase in c-di-GMP was likely due to a loss in phosphodiesterase activity. Therefore, we also examined the enzymatic activity of purified PdeB and found that the protein exhibited phosphodiesterase activity via the EAL domain. No diguanylate cyclase activity was observed. In addition to the motility and biofilm phenotypes, transcriptional profiling by DNA microarray analysis of biofilms of pdeB (in-frame deletion and EAL) mutant cells revealed that expression of genes involved in sulfate uptake and assimilation were repressed. Addition of sulfate to the growth medium resulted in significantly less motile pdeB mutants. Together, these results indicate a link between c-di-GMP metabolism, S. oneidensis MR-1 biofilm development, and sulfate uptake/assimilation.
Collapse
|