1
|
Banerjee K, Weliky DP. Folded monomers and hexamers of the ectodomain of the HIV gp41 membrane fusion protein: potential roles in fusion and synergy between the fusion peptide, hairpin, and membrane-proximal external region. Biochemistry 2014; 53:7184-98. [PMID: 25372604 PMCID: PMC4245979 DOI: 10.1021/bi501159w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
HIV
is an enveloped virus and fusion between the HIV and host cell
membranes is catalyzed by the ectodomain of the HIV gp41 membrane
protein. Both the N-terminal fusion peptide (FP)
and C-terminal membrane-proximal external region
(MPER) are critical for fusion and are postulated to bind to the host
cell and HIV membranes, respectively. Prior to fusion, the gp41 on
the virion is a trimer in noncovalent complex with larger gp120 subunits.
The gp120 bind host cell receptors and move away or dissociate from
gp41 which subsequently catalyzes fusion. In the present work, large
gp41 ectodomain constructs were produced and biophysically and structurally
characterized. One significant finding is observation of synergy between
the FP, hairpin, and MPER in vesicle fusion. The ectodomain-induced
fusion can be very efficient with only ∼15 gp41 per vesicle,
which is comparable to the number of gp41 on a virion. Conditions
are found with predominant monomer or hexamer but not trimer and these
may be oligomeric states during fusion. Monomer gp41 ectodomain is
hyperthermostable and has helical hairpin structure. A new HIV fusion
model is presented where (1) hemifusion is catalyzed by folding of
gp41 ectodomain monomers into hairpins and (2) subsequent fusion steps
are catalyzed by assembly into a hexamer with FPs in an antiparallel
β sheet. There is also significant interest in the gp41 MPER
because it is the epitope of several broadly neutralizing antibodies.
Two of these antibodies bind our gp41 ectodomain constructs and support
investigation of the gp41 ectodomain as an immunogen in HIV vaccine
development.
Collapse
Affiliation(s)
- Koyeli Banerjee
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | | |
Collapse
|
2
|
Caffrey M. HIV envelope: challenges and opportunities for development of entry inhibitors. Trends Microbiol 2011; 19:191-7. [PMID: 21377881 PMCID: PMC3071980 DOI: 10.1016/j.tim.2011.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/29/2011] [Accepted: 02/03/2011] [Indexed: 01/24/2023]
Abstract
The HIV envelope proteins glycoprotein 120 (gp120) and glycoprotein 41 (gp41) play crucial roles in HIV entry, therefore they are of extreme interest in the development of novel therapeutics. Studies using diverse methods, including structural biology and mutagenesis, have resulted in a detailed model for envelope-mediated entry, which consists of multiple conformations, each a potential target for therapeutic intervention. In this review, the challenges, strategies and progress to date for developing novel entry inhibitors directed at disrupting HIV gp120 and gp41 function are discussed.
Collapse
Affiliation(s)
- Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA.
| |
Collapse
|
3
|
Lu L, Zhu Y, Huang J, Chen X, Yang H, Jiang S, Chen YH. Surface exposure of the HIV-1 env cytoplasmic tail LLP2 domain during the membrane fusion process: interaction with gp41 fusion core. J Biol Chem 2008; 283:16723-31. [PMID: 18408000 DOI: 10.1074/jbc.m801083200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 gp41 cytoplasmic tail (CT) is highly conserved among HIV-1 isolates, particularly the region designated lentivirus lytic peptide (LLP1-2), which includes two alpha-helical domains LLP1 and LLP2. Although the gp41 CT is recognized as a modulator of viral fusogenicity, little is known about the regulatory mechanism of this region in the viral fusion process. Here we report that anti-LLP1-2 and anti-LLP2 antibodies (IgG) inhibited HIV-1 Env-mediated cell fusion and bound to the interface between effector and target cells at a suboptimal temperature (31.5 degrees C), which slows down the fusion process and prolongs the fusion intermediate state. This suggests that LLP1-2, especially the LLP2 region located inside the viral membrane, is transiently exposed on the membrane surface during the fusion process. Synthetic LLP2 peptide could bind to the gp41 six-helix bundle core with high binding affinity. These results suggest that the gp41 CT may interact with the gp41 core, via the surface-exposed LLP2 domain, to regulate Env-mediated membrane fusion.
Collapse
Affiliation(s)
- Lu Lu
- Laboratory of Immunology, Department of Biology, Tsinghua University, Beijing Key Laboratory for Protein Therapeutics, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Moreno MR, Giudici M, Villalaín J. The membranotropic regions of the endo and ecto domains of HIV gp41 envelope glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:111-23. [PMID: 16483537 DOI: 10.1016/j.bbamem.2006.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 12/20/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
We have identified the membranotropic regions of the full sequence of the HIV gp41 envelope glycoprotein by performing an exhaustive study of membrane rupture, phospholipid-mixing and fusion induced by two 15-mer gp41-derived peptide libraries from HIV strains HIV_MN and HIV_consensus_B on model membranes having different phospholipid compositions. The data obtained for the two strains and its comparison have led us to identify different gp41 membranotropic segments in both ecto- and endodomains which might be implicated in viral membrane fusion and/or membrane interaction. The membranotropic segments corresponding to the gp41 ectodomain were the fusion domain, a stretch located on the N-heptad repeat region adjacent to the fusion domain, part of the immunodominant loop, the pre-transmembrane domain and the transmembrane domain. The membranotropic segments corresponding to the gp41 endodomain were mainly located at some specific parts of the previously described lentivirus lytic sequences. Significantly, the C-heptad repeat region and the Kennedy sequence located in the ectodomain and in the endodomain, respectively, presented no membranotropic activity in any model membrane assayed. The identification of these gp41 segments as well as their membranotropic propensity sustain the notion that different segments of gp41 provide the driving force for the merging of the viral and target cell membranes as well as they help us to define those segments as attractive targets for further development of new anti-viral compounds.
Collapse
Affiliation(s)
- Miguel R Moreno
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche-Alicante, Spain
| | | | | |
Collapse
|
5
|
Pascual R, Moreno MR, Villalaín J. A peptide pertaining to the loop segment of human immunodeficiency virus gp41 binds and interacts with model biomembranes: implications for the fusion mechanism. J Virol 2005; 79:5142-52. [PMID: 15795298 PMCID: PMC1069547 DOI: 10.1128/jvi.79.8.5142-5152.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 11/05/2004] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus gp41 envelope protein mediates the entry of the virus into the target cell by promoting membrane fusion. In order to gain new insights into the viral fusion mechanism, we studied a 35-residue peptide pertaining to the loop domain of gp41, both in solution and membrane bound, by using infrared and fluorescence spectroscopy. We show here that the peptide, which has a membrane-interacting surface, binds and interacts with phospholipid model membranes and tends to aggregate in the presence of a membranous medium and induce the leakage of vesicle contents. The results reported in this work, i.e., the destabilization and fusion of negatively charged model membranes, suggest an essential role of the loop domain in the membrane fusion process induced by gp41.
Collapse
Affiliation(s)
- Roberto Pascual
- Instituto de Biología Molecular y Celular, Universidad "Miguel Hernández," E-03202 Elche-Alicante, Spain
| | | | | |
Collapse
|
6
|
Krell T, Greco F, Engel O, Dubayle J, Dubayle J, Kennel A, Charloteaux B, Brasseur R, Chevalier M, Sodoyer R, El Habib R. HIV-1 gp41 and gp160 are hyperthermostable proteins in a mesophilic environment. Characterization of gp41 mutants. ACTA ACUST UNITED AC 2004; 271:1566-79. [PMID: 15066182 DOI: 10.1111/j.1432-1033.2004.04068.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV gp41(24-157) unfolds cooperatively over the pH range of 1.0-4.0 with T(m) values of > 100 degrees C. At pH 2.8, protein unfolding was 80% reversible and the DeltaH(vH)/DeltaH(cal) ratio of 3.7 is indicative of gp41 being trimeric. No evidence for a monomer-trimer equilibrium in the concentration range of 0.3-36 micro m was obtained by DSC and tryptophan fluorescence. Glycosylation of gp41 was found to have only a marginal impact on the thermal stability. Reduction of the disulfide bond or mutation of both cysteine residues had only a marginal impact on protein stability. There was no cooperative unfolding event in the DSC thermogram of gp160 in NaCl/P(i), pH 7.4, over a temperature range of 8-129 degrees C. When the pH was lowered to 5.5-3.4, a single unfolding event at around 120 degrees C was noted, and three unfolding events at 93.3, 106.4 and 111.8 degrees C were observed at pH 2.8. Differences between gp41 and gp160, and hyperthermostable proteins from thermophile organisms are discussed. A series of gp41 mutants containing single, double, triple or quadruple point mutations were analysed by DSC and CD. The impact of mutations on the protein structure, in the context of generating a gp41 based vaccine antigen that resembles a fusion intermediate state, is discussed. A gp41 mutant, in which three hydrophobic amino acids in the gp41 loop were replaced with charged residues, showed an increased solubility at neutral pH.
Collapse
Affiliation(s)
- Tino Krell
- Aventis Pasteur, 1541 avenue Marcel Meriueux, 69280 Marcy l'Etoile, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Moreno MR, Pascual R, Villalaín J. Identification of membrane-active regions of the HIV-1 envelope glycoprotein gp41 using a 15-mer gp41-peptide scan. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1661:97-105. [PMID: 14967479 DOI: 10.1016/j.bbamem.2003.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 12/01/2003] [Accepted: 12/03/2003] [Indexed: 10/26/2022]
Abstract
The identification of membrane-active regions of the ectodomain of the HIV-1 envelope glycoprotein gp41 has been made by determining the effect on membrane integrity of a 15-mer gp41-derived peptide library. By monitoring the effect of this peptide library on membrane leakage, we have identified three regions on the gp41 ectodomain with membrane-interacting capabilities: Region 1, which would roughly correspond to the polar sequence which follows the fusion domain and extends to the N-terminal heptad repeat region; Region 2, which would correspond to the immunodominant loop; and Region 3, which would correspond to the pre-transmembrane region of gp41. The identification of these three regions supports their direct role in membrane fusion as well as facilitating the future development of HIV-1 entry inhibitors.
Collapse
Affiliation(s)
- Miguel R Moreno
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche-Alicante, Spain
| | | | | |
Collapse
|
8
|
Sackett K, Shai Y. How Structure Correlates to Function for Membrane Associated HIV-1 gp41 Constructs Corresponding to the N-terminal Half of the Ectodomain. J Mol Biol 2003; 333:47-58. [PMID: 14516742 DOI: 10.1016/j.jmb.2003.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To address the structure-function relationship of discrete regions within the gp41 ectodomain, 70-residue peptide constructs corresponding to the N-terminal subdomain of the HIV-1 gp41 ectodomain were examined in a membrane-associated context. These fragments encompass both fusion peptide (FP) and N-terminal heptad repeat (NHR) regions, and model the N-terminal half of the pre-hairpin intermediate (PHI), which is believed to be the target of the potent entry inhibitor DP-178, recently approved by the FDA. Using mutants, we attempted to map the structural organization of the N-terminal subdomain. Our results suggest that the N-terminal subdomain contains two discrete structural regions: the FP adopts a beta-sheet conformation and the NHR is alpha-helical. This structural make-up is essential for fusogenic function, since loss of function mutants exhibit both a significant reduction in region-specific secondary structure as well as significant impairment in lipid mixing of large unilamellar vesicles. Our results, delineating membrane-associated structure of the FP region differ from previous ones by inclusion of the autonomous oligomerization domain (NHR), which likely contributes to stabilization of the FP structure. Correspondingly, the alpha-helical structure for the NHR, in context of the FP, correlates with structural predictions for this region in both the hairpin and PHI conformations during fusion. Based on our results, we postulate how oligomerization of regions in this sub-domain is essential for fusion pore formation.
Collapse
Affiliation(s)
- Kelly Sackett
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
9
|
Peisajovich SG, Shai Y. Viral fusion proteins: multiple regions contribute to membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:122-9. [PMID: 12873773 DOI: 10.1016/s0005-2736(03)00170-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In recent years, the simple picture of a viral fusion protein interacting with the cell and/or viral membranes by means of only two localized segments (i.e. the fusion peptide and the transmembrane domain) has given way to a more complex picture in which multiple regions from the viral proteins interact with membranes. Indeed, possible roles in membrane binding and/or destabilization have been postulated for the N-terminal heptad repeats, pre-transmembrane segments, and other internal regions of fusion proteins from distant viruses (such as orthomyxo-, retro-, paramyxo-, or flaviviruses). This review focuses on the experimental evidence and functional models postulated so far about the role of these regions in the process of virus-induced membrane fusion.
Collapse
Affiliation(s)
- Sergio G Peisajovich
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | | |
Collapse
|
10
|
Peisajovich SG, Blank L, Epand RF, Epand RM, Shai Y. On the interaction between gp41 and membranes: the immunodominant loop stabilizes gp41 helical hairpin conformation. J Mol Biol 2003; 326:1489-501. [PMID: 12595260 DOI: 10.1016/s0022-2836(03)00040-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
gp41 is the protein responsible for the process of membrane fusion that allows primate lentiviruses (HIV and SIV) to enter into their host cells. gp41 ectodomain contains an N-terminal and a C-terminal heptad repeat region (NHR and CHR) connected by an immunodominant loop. In the absence of membranes, the NHR and CHR segments fold into a protease-resistant core with a trimeric helical hairpin structure. However, when the immunodominant loop is not present (either in a complex formed by HIV-1 gp41-derived NHR and CHR peptides or by mild treatment with protease of recombinant constructs of HIV-1 gp41 ectodomain, which also lack the N-terminal fusion peptide and the C-terminal Trp-rich region) membrane binding induces a conformational change in the gp41 core structure. Here, we further investigated whether covalently linking the NHR and CHR segments by the immunodominant loop affects this conformational change. Specifically, we analyzed a construct corresponding to a fragment of SIVmac239 gp41ectodomain (residues 27-149, named e-gp41) by means of surface plasmon resonance, Trp and rhodamine fluorescence, ATR-FTIR spectroscopy, and differential scanning calorimetry. Our results suggest that the presence of the loop stabilizes the trimeric helical hairpin both when e-gp41 is in aqueous solution and when it is bound to the membrane surface. Bearing in mind possible differences between HIV-1 and SIV gp41, and considering that the gp41 ectodomain constructs analyzed to date lack the N-terminal fusion peptide and the C-terminal Trp-rich region, we discuss our observations in relation to the mechanism of virus-induced membrane fusion.
Collapse
Affiliation(s)
- Sergio G Peisajovich
- Department of Biological Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| | | | | | | | | |
Collapse
|
11
|
Sanders RW, Vesanen M, Schuelke N, Master A, Schiffner L, Kalyanaraman R, Paluch M, Berkhout B, Maddon PJ, Olson WC, Lu M, Moore JP. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J Virol 2002; 76:8875-89. [PMID: 12163607 PMCID: PMC136973 DOI: 10.1128/jvi.76.17.8875-8889.2002] [Citation(s) in RCA: 378] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope glycoprotein (Env) complex of human immunodeficiency virus type 1 has evolved a structure that is minimally immunogenic while retaining its natural function of receptor-mediated virus-cell fusion. The Env complex is trimeric; its six individual subunits (three gp120 and three gp41 subunits) are associated by relatively weak, noncovalent interactions. The induction of neutralizing antibodies after vaccination with individual Env subunits has proven very difficult, probably because they are inadequate mimics of the native complex. Our hypothesis is that a stable form of the Env complex, perhaps with additional modifications to rationally alter its antigenic structure, may be a better immunogen than the individual subunits. A soluble form of Env, SOS gp140, can be made that has gp120 stably linked to the gp41 ectodomain by an intermolecular disulfide bond. This protein is fully cleaved at the proteolysis site between gp120 and gp41. However, the gp41-gp41 interactions in SOS gp140 are too weak to maintain the protein in a trimeric configuration. Consequently, purified SOS gp140 is a monomer (N. Schülke, M. S. Vesanen, R. W. Sanders, P. Zhu, D. J. Anselma, A. R. Villa, P. W. H. I. Parren, J. M. Binley, K. H. Roux, P. J. Maddon, J. P. Moore, and W. C. Olson, J. Virol. 76:7760-7776, 2002). Here we describe modifications of SOS gp140 that increase its trimer stability. A variant SOS gp140, designated SOSIP gp140, contains an isoleucine-to-proline substitution at position 559 in the N-terminal heptad repeat region of gp41. This protein is fully cleaved, has favorable antigenic properties, and is predominantly trimeric. SOSIP gp140 trimers are noncovalently associated and can be partially purified by gel filtration chromatography. These gp140 trimers are dissociated into monomers by anionic detergents or heat but are relatively resistant to nonionic detergents, high salt concentrations, or exposure to a mildly acidic pH. SOSIP gp140 should be a useful reagent for structural and immunogenicity studies.
Collapse
Affiliation(s)
- Rogier W Sanders
- Department of Microbiology and Immunology, Weill Medical College, Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bewley CA, Louis JM, Ghirlando R, Clore GM. Design of a novel peptide inhibitor of HIV fusion that disrupts the internal trimeric coiled-coil of gp41. J Biol Chem 2002; 277:14238-45. [PMID: 11859089 DOI: 10.1074/jbc.m201453200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pre-hairpin intermediate of gp41 from the human immunodeficiency virus (HIV) is the target for two classes of fusion inhibitors that bind to the C-terminal region or the trimeric coiled-coil of N-terminal helices, thereby preventing formation of the fusogenic trimer of hairpins. Using rational design, two 36-residue peptides, N36(Mut(e,g)) and N36(Mut(a,d)), were derived from the parent N36 peptide comprising the N-terminal helix of the gp41 ectodomain (residues 546-581 of HIV-1 envelope), characterized by analytical ultracentrifugation and CD, and assessed for their ability to inhibit HIV fusion using a quantitative vaccinia virus-based fusion assay. N36(Mut(e,g)) contains nine amino acid substitutions designed to disrupt interactions with the C-terminal region of gp41 while preserving contacts governing the formation of the trimeric coiled-coil. N36(Mut(a,d)) contains nine substitutions designed to block formation of the trimeric coiled-coil but retains residues that interact with the C-terminal region of gp41. N36(Mut(a,d)) is monomeric, is largely random coil, does not interact with the C34 peptide derived from the C-terminal region of gp41 (residues 628-661), and does not inhibit fusion. The trimeric coiled-coil structure is therefore a prerequisite for interaction with the C-terminal region of gp41. N36(Mut(e,g)) forms a monodisperse, helical trimer in solution, does not interact with C34, and yet inhibits fusion about 50-fold more effectively than the parent N36 peptide (IC(50) approximately 308 nm versus approximately 16 microm). These results indicate that N36(Mut(e,g)) acts by disrupting the homotrimeric coiled-coil of N-terminal helices in the pre-hairpin intermediate to form heterotrimers. Thus N36(Mut(e,g)) represents a novel third class of gp41-targeted HIV fusion inhibitor. A quantitative model describing the interaction of N36(Mut(e,g)) with the pre-hairpin intermediate is presented.
Collapse
Affiliation(s)
- Carole A Bewley
- Laboratories of Bioorganic Chemistry, Chemical Physics, and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|