1
|
Shehata M, Ünlü A, Iglesias-Fernández J, Osuna S, Sezerman OU, Timucin E. Brave new surfactant world revisited by thermoalkalophilic lipases: computational insights into the role of SDS as a substrate analog. Phys Chem Chem Phys 2023; 25:2234-2247. [PMID: 36594810 DOI: 10.1039/d2cp05093e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-ionic surfactants were shown to stabilize the active conformation of thermoalkalophilic lipases by mimicking the lipid substrate while the catalytic interactions formed by anionic surfactants have not been well characterized. In this study, we combined μs-scale molecular dynamics (MD) simulations and lipase activity assays to analyze the effect of ionic surfactant, sodium dodecyl sulfate (SDS), on the structure and activity of thermoalkalophilic lipases. Both the open and closed lipase conformations that differ in geometry were recruited to the MD analysis to provide a broader understanding of the molecular effect of SDS on the lipase structure. Simulations at 298 K showed the potential of SDS for maintaining the active lipase through binding to the sn-1 acyl-chain binding pocket in the open conformation or transforming the closed conformation to an open-like state. Consistent with MD findings, experimental analysis showed increased lipase activity upon SDS incubation at ambient temperature. Notably, the lipase cores stayed intact throughout 2 μs regardless of an increase in the simulation temperature or SDS concentration. However, the surface structures were unfolded in the presence of SDS and at elevated temperature for both conformations. Simulations of the dimeric lipase were also carried out and showed reduced flexibility of the surface structures which were unfolded in the monomer, indicating the insulating role of dimer interactions against SDS. Taken together, this study provides insights into the possible substrate mimicry by the ionic surfactant SDS for the thermoalkalophilic lipases without temperature elevation, underscoring SDS's potential for interfacial activation at ambient temperatures.
Collapse
Affiliation(s)
- Mohamed Shehata
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem University, Istanbul 34752, Turkey.
| | - Aişe Ünlü
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | | | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Department de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - O Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem University, Istanbul 34752, Turkey.
| | - Emel Timucin
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem University, Istanbul 34752, Turkey.
| |
Collapse
|
2
|
Tanaka Y, Niu CH, Sasaki T, Nomura S, Maruyama A, Shimada N. Smart Protein Refolding System Based on UCST-Type Ureido Polymers. Biomacromolecules 2022; 23:3860-3865. [DOI: 10.1021/acs.biomac.2c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yamato Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Chun Hao Niu
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Taira Sasaki
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Shouhei Nomura
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Naohiko Shimada
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
3
|
Otzen DE, Pedersen JN, Rasmussen HØ, Pedersen JS. How do surfactants unfold and refold proteins? Adv Colloid Interface Sci 2022; 308:102754. [PMID: 36027673 DOI: 10.1016/j.cis.2022.102754] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 11/01/2022]
Abstract
Although the anionic surfactant sodium dodecyl sulfate, SDS, has been used for more than half a century as a versatile and efficient protein denaturant for protein separation and size estimation, there is still controversy about its mode of interaction with proteins. The term "rod-like" structures for the complexes that form between SDS and protein, originally introduced by Tanford, is not sufficiently descriptive and does not distinguish between the two current vying models, namely protein-decorated micelles a.k.a. the core-shell model (in which denatured protein covers the surface of micelles) versus beads-on-a-string model (where unfolded proteins are surrounded by surfactant micelles). Thanks to a combination of structural, kinetic and computational work particularly within the last 5-10 years, it is now possible to rule decisively in favor of the core-shell model. This is supported unambiguously by a combination of calorimetric and small-angle X-ray scattering (SAXS) techniques and confirmed by increasingly sophisticated molecular dynamics simulations. Depending on the SDS:protein ratio and the protein molecular mass, the formed structures can range from multiple partly unfolded protein molecules surrounding a single shared micelle to a single polypeptide chain decorating multiple micelles. We also have much new insight into how this species forms. It is preceded by the binding of small numbers of SDS molecules which subsequently grow by accretion. Time-resolved SAXS analysis reveals an asymmetric attack by SDS micelles followed by distribution of the increasingly unfolded protein around the micelle. The compactness of the protein chain continues to evolve at higher SDS concentrations according to single-molecule studies, though the protein remains completely denatured on the tertiary structural level. SDS denaturation can be reversed by addition of nonionic surfactants that absorb SDS forming mixed micelles, leaving the protein free to refold. Refolding can occur in parallel tracks if only a fraction of the protein is initially stripped of SDS. SDS unfolding is nearly always reversible unless carried out at low pH, where charge neutralization can lead to superclusters of protein-surfactant complexes. With the general mechanism of SDS denaturation now firmly established, it largely remains to explore how other ionic surfactants (including biosurfactants) may diverge from this path.
Collapse
Affiliation(s)
- Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus C, Denmark.
| | - Jannik Nedergaard Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Helena Østergaard Rasmussen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| |
Collapse
|
4
|
Krainer G, Hartmann A, Bogatyr V, Nielsen J, Schlierf M, Otzen DE. SDS-induced multi-stage unfolding of a small globular protein through different denatured states revealed by single-molecule fluorescence. Chem Sci 2020; 11:9141-9153. [PMID: 34123163 PMCID: PMC8163379 DOI: 10.1039/d0sc02100h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/07/2020] [Indexed: 12/03/2022] Open
Abstract
Ionic surfactants such as sodium dodecyl sulfate (SDS) unfold proteins in a much more diverse yet effective way than chemical denaturants such as guanidium chloride (GdmCl). But how these unfolding processes compare on a molecular level is poorly understood. Here, we address this question by scrutinising the unfolding pathway of the globular protein S6 in SDS and GdmCl with single-molecule Förster resonance energy transfer (smFRET) spectroscopy. We show that the unfolding mechanism in SDS is strikingly different and convoluted in comparison to denaturation in GdmCl. In contrast to the reversible two-state unfolding behaviour in GdmCl characterised by kinetics on the timescale of seconds, SDS demonstrated not one, but four distinct regimes of interactions with S6, dependent on the surfactant concentration. At ≤1 mM SDS, S6 and surfactant molecules form quasi-micelles on a minute timescale; at millimolar [SDS], the protein denatures through an unfolded/denatured ensemble of highly heterogeneous states on a multi-second timescale; at tens of millimolar of SDS, the protein unfolds into a micelle-packed conformation on the second timescale; and >50 mM SDS, the protein unfolds with millisecond timescale dynamics. We propose a detailed model for multi-stage unfolding of S6 in SDS, which involves at least three different types of denatured states with different level of compactness and dynamics and a continually changing landscape of interactions between protein and surfactant. Our results highlight the great potential of single-molecule fluorescence as a direct probe of nanoscale protein structure and dynamics in chemically complex surfactant environments.
Collapse
Affiliation(s)
- Georg Krainer
- B CUBE - Center for Molecular Bioengineering, TU Dresden Tatzberg 41 01307 Dresden Germany
| | - Andreas Hartmann
- B CUBE - Center for Molecular Bioengineering, TU Dresden Tatzberg 41 01307 Dresden Germany
| | - Vadim Bogatyr
- B CUBE - Center for Molecular Bioengineering, TU Dresden Tatzberg 41 01307 Dresden Germany
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, TU Dresden Tatzberg 41 01307 Dresden Germany
- Cluster of Excellence Physics of Life, TU Dresden 01062 Dresden Germany
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
5
|
Pedersen JN, Lyngsø J, Zinn T, Otzen DE, Pedersen JS. A complete picture of protein unfolding and refolding in surfactants. Chem Sci 2019; 11:699-712. [PMID: 34123043 PMCID: PMC8145811 DOI: 10.1039/c9sc04831f] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Interactions between proteins and surfactants are of relevance in many applications including food, washing powder formulations, and drug formulation. The anionic surfactant sodium dodecyl sulfate (SDS) is known to unfold globular proteins, while the non-ionic surfactant octaethyleneglycol monododecyl ether (C12E8) can be used to refold proteins from their SDS-denatured state. While unfolding have been studied in detail at the protein level, a complete picture of the interplay between protein and surfactant in these processes is lacking. This gap in our knowledge is addressed in the current work, using the β-sheet-rich globular protein β-lactoglobulin (bLG). We combined stopped-flow time-resolved SAXS, fluorescence, and circular dichroism, respectively, to provide an unprecedented in-depth picture of the different steps involved in both protein unfolding and refolding in the presence of SDS and C12E8. During unfolding, core-shell bLG-SDS complexes were formed within ∼10 ms. This involved an initial rapid process where protein and SDS formed aggregates, followed by two slower processes, where the complexes first disaggregated into single protein structures situated asymmetrically on the SDS micelles, followed by isotropic redistribution of the protein. Refolding kinetics (>100 s) were slower than unfolding (<30 s), and involved rearrangements within the mixing deadtime (∼5 ms) and transient accumulation of unfolded monomeric protein, differing in structure from the original bLG-SDS structure. Refolding of bLG involved two steps: extraction of most of the SDS from the complexes followed by protein refolding. These results reveal that surfactant-mediated unfolding and refolding of proteins are complex processes with rearrangements occurring on time scales from sub-milliseconds to minutes.
Collapse
Affiliation(s)
- Jannik Nedergaard Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University Gustav Wieds Vej 14 DK - 8000 Aarhus C Denmark
| | - Jeppe Lyngsø
- Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University Gustav Wieds Vej 14 DK - 8000 Aarhus C Denmark
| | - Thomas Zinn
- ESRF - The European Synchrotron 38043 Grenoble France
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University Gustav Wieds Vej 14 DK - 8000 Aarhus C Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University Gustav Wieds Vej 14 DK - 8000 Aarhus C Denmark
| |
Collapse
|
6
|
Rasmussen HØ, Enghild JJ, Otzen DE, Pedersen JS. Unfolding and partial refolding of a cellulase from the SDS-denatured state: From β-sheet to α-helix and back. Biochim Biophys Acta Gen Subj 2019; 1864:129434. [PMID: 31525408 DOI: 10.1016/j.bbagen.2019.129434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 10/26/2022]
Abstract
Globular proteins are typically unfolded by SDS to form protein-decorated micelle-like structures. Several proteins have been shown subsequently to refold by addition of the nonionic surfactant octaethylene glycol monododecyl ether (C12E8). Thus SDS converts β-lactoglobulin, which has mainly β-sheet secondary structure, into a state rich in α-helicality, while addition of C12E8 leads to refolding and recovery of the original β-sheet structure. Here we extend these studies to the large β-sheet-rich cellulase Cel7b from Humicola insolens whose enzymatic activity provides a very sensitive refolding parameter. The enzymes widespread usage in the detergent industry makes it an obvious model system for protein-surfactant interactions. SDS-unfolding and subsequent refolding using C12E8 were investigated at pH 4.2 using near- and far-UV circular dichroism (CD), small-angle X-ray scattering (SAXS), isothermal titration calorimetry (ITC), size-exclusion chromatography (SEC) and activity measurements. The Cel7b:SDS complex can be described as a random configuration of 3-4 connected core-shell structures in which the protein is converted to a mainly α-helical secondary structure. Addition of C12E8 recovers almost all the secondary structure, part of the tertiary structure, about 50% of the activity and dissociates part of the protein population completely from detergent micelles. The lack of complete refolding may be due to charge neutralisation of Cel7b by SDS, kinetically trapping the enzyme into aggregated structures. In support of this, aggregates did not form when C12E8 was first mixed with Cel7b followed by addition of SDS. Formation of such aggregates may be a general phenomenon hampering quantitative refolding from the SDS-denatured state.
Collapse
Affiliation(s)
- Helena Ø Rasmussen
- iNANO, Aarhus University, Gustav Wieds Vej 14, DK - 8000 Aarhus C, Denmark; Department of Chemistry, Aarhus University, Langelandsgade 140, DK - 8000 Aarhus C, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK - 8000 Aarhus C, Denmark
| | - Daniel E Otzen
- iNANO, Aarhus University, Gustav Wieds Vej 14, DK - 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK - 8000 Aarhus C, Denmark.
| | - Jan Skov Pedersen
- iNANO, Aarhus University, Gustav Wieds Vej 14, DK - 8000 Aarhus C, Denmark; Department of Chemistry, Aarhus University, Langelandsgade 140, DK - 8000 Aarhus C, Denmark.
| |
Collapse
|
7
|
Kaspersen JD, Søndergaard A, Madsen DJ, Otzen DE, Pedersen JS. Refolding of SDS-Unfolded Proteins by Nonionic Surfactants. Biophys J 2017; 112:1609-1620. [PMID: 28445752 PMCID: PMC5406375 DOI: 10.1016/j.bpj.2017.03.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 11/30/2022] Open
Abstract
The strong and usually denaturing interaction between anionic surfactants (AS) and proteins/enzymes has both benefits and drawbacks: for example, it is put to good use in electrophoretic mass determinations but limits enzyme efficiency in detergent formulations. Therefore, studies of the interactions between proteins and AS as well as nonionic surfactants (NIS) are of both basic and applied relevance. The AS sodium dodecyl sulfate (SDS) denatures and unfolds globular proteins under most conditions. In contrast, NIS such as octaethylene glycol monododecyl ether (C12E8) and dodecyl maltoside (DDM) protect bovine serum albumin (BSA) from unfolding in SDS. Membrane proteins denatured in SDS can also be refolded by addition of NIS. Here, we investigate whether globular proteins unfolded by SDS can be refolded upon addition of C12E8 and DDM. Four proteins, BSA, α-lactalbumin (αLA), lysozyme, and β-lactoglobulin (βLG), were studied by small-angle x-ray scattering and both near- and far-UV circular dichroism. All proteins and their complexes with SDS were attempted to be refolded by the addition of C12E8, while DDM was additionally added to SDS-denatured αLA and βLG. Except for αLA, the proteins did not interact with NIS alone. For all proteins, the addition of NIS to the protein-SDS samples resulted in extraction of the SDS from the protein-SDS complexes and refolding of βLG, BSA, and lysozyme, while αLA changed to its NIS-bound state instead of the native state. We conclude that NIS competes with globular proteins for association with SDS, making it possible to release and refold SDS-denatured proteins by adding sufficient amounts of NIS, unless the protein also interacts with NIS alone.
Collapse
Affiliation(s)
| | | | - Daniel Jhaf Madsen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark.
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark; Department of Chemistry, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Dingfelder F, Wunderlich B, Benke S, Zosel F, Zijlstra N, Nettels D, Schuler B. Rapid Microfluidic Double-Jump Mixing Device for Single-Molecule Spectroscopy. J Am Chem Soc 2017; 139:6062-6065. [DOI: 10.1021/jacs.7b02357] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Fabian Dingfelder
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Bengt Wunderlich
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stephan Benke
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Franziska Zosel
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Niels Zijlstra
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel Nettels
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Benjamin Schuler
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
Broome HJ, Carrero ZI, Douglas HE, Hebert MD. Phosphorylation regulates coilin activity and RNA association. Biol Open 2013; 2:407-15. [PMID: 23616925 PMCID: PMC3625869 DOI: 10.1242/bio.20133863] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 01/22/2013] [Indexed: 01/01/2023] Open
Abstract
The Cajal body (CB) is a domain of concentrated components found within the nucleus of cells in an array of species that is functionally important for the biogenesis of telomerase and small nuclear ribonucleoproteins. The CB is a dynamic structure whose number and size change during the cell cycle and is associated with other nuclear structures and gene loci. Coilin, also known as the marker protein for the CB, is a phosphoprotein widely accepted for its role in maintaining CB integrity. Recent studies have been done to further elucidate functional activities of coilin apart from its structural role in the CB in an attempt to explore the rationale for coilin expression in cells that have few CBs or lack them altogether. Here we show that the RNA association profile of coilin changes in mitosis with respect to that during interphase. We provide evidence of transcriptional and/or processing dysregulation of several CB-related RNA transcripts as a result of ectopic expression of both wild-type and phosphomutant coilin proteins. We also show apparent changes in transcription and/or processing of these transcripts upon coilin knockdown in both transformed and primary cell lines. Additionally, we provide evidence of specific coilin RNase activity regulation, on both U2 and hTR transcripts, by phosphorylation of a single residue, serine 489. Collectively, these results point to additional functions for coilin that are regulated by phosphorylation.
Collapse
Affiliation(s)
- Hanna J Broome
- Department of Biochemistry, The University of Mississippi Medical Center , Jackson, MS 39216-4505 , USA
| | | | | | | |
Collapse
|
10
|
Broome HJ, Hebert MD. Coilin displays differential affinity for specific RNAs in vivo and is linked to telomerase RNA biogenesis. J Mol Biol 2012; 425:713-24. [PMID: 23274112 DOI: 10.1016/j.jmb.2012.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/29/2012] [Accepted: 12/18/2012] [Indexed: 12/19/2022]
Abstract
Coilin is widely known as the protein marker of the Cajal body, a subnuclear domain important to the biogenesis of small nuclear ribonucleoproteins and telomerase, complexes that are crucial to pre-messenger RNA splicing and telomere maintenance, respectively. Extensive studies have characterized the interaction between coilin and the various other protein components of CBs and related subnuclear domains; however, only a few have examined interactions between coilin and nucleic acid. We have recently published that coilin is tightly associated with nucleic acid, displays RNase activity in vitro, and is redistributed to the ribosomal RNA (rRNA)-rich nucleoli in cells treated with the DNA-damaging agents cisplatin and etoposide. Here, we report a specific in vivo association between coilin and rRNA, U small nuclear RNA (snRNA), and human telomerase RNA, which is altered upon treatment with DNA-damaging agents. Using chromatin immunoprecipitation, we provide evidence of coilin interaction with specific regions of U snRNA gene loci. We have also utilized bacterially expressed coilin fragments in order to map the region(s) important for RNA binding and RNase activity in vitro. Additionally, we provide evidence of coilin involvement in the processing of human telomerase RNA both in vitro and in vivo.
Collapse
Affiliation(s)
- Hanna J Broome
- Department of Biochemistry, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
11
|
Palmer I, Wingfield PT. Preparation and extraction of insoluble (inclusion-body) proteins from Escherichia coli. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2012; Chapter 6:6.3.1-6.3.20. [PMID: 23151747 PMCID: PMC3809847 DOI: 10.1002/0471140864.ps0603s70] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
High-level expression of many recombinant proteins in Escherichia coli leads to the formation of highly aggregated protein commonly referred to as inclusion bodies. Inclusion bodies are normally formed in the cytoplasm; however, if a secretion vector is used, they can form in the periplasmic space. Inclusion bodies can be recovered from cell lysates by low-speed centrifugation. Following pre-extaction (or washing), protein is extracted from washed pellets using guanidine⋅HCl. The solubilized and unfolded protein is either directly folded or further purified by gel filtration in the presence of guanidine⋅HCl as described in this unit. A support protocol describes the removal of guanidine⋅HCl from column fractions so they can be monitored by SDS-PAGE.
Collapse
Affiliation(s)
- Ira Palmer
- National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
12
|
Andersen KK, Wang H, Otzen DE. A Kinetic Analysis of the Folding and Unfolding of OmpA in Urea and Guanidinium Chloride: Single and Parallel Pathways. Biochemistry 2012; 51:8371-83. [DOI: 10.1021/bi300974y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kell K. Andersen
- Interdisciplinary Nanoscience Centre (iNANO), Centre
for Insoluble Protein Structures (inSPIN), Department of Molecular
Biology and Genetics, University of Aarhus, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Huabing Wang
- Interdisciplinary Nanoscience Centre (iNANO), Centre
for Insoluble Protein Structures (inSPIN), Department of Molecular
Biology and Genetics, University of Aarhus, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Centre
for Insoluble Protein Structures (inSPIN), Department of Molecular
Biology and Genetics, University of Aarhus, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Brocos P, Banquy X, Díaz-Vergara N, Pérez-Casas S, Piñeiro Á, Costas M. A Critical Approach to the Thermodynamic Characterization of Inclusion Complexes: Multiple-Temperature Isothermal Titration Calorimetric Studies of Native Cyclodextrins with Sodium Dodecyl Sulfate. J Phys Chem B 2011; 115:14381-96. [DOI: 10.1021/jp208740b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pilar Brocos
- Departamento de Física Aplicada, Facultad de Física, Universidad de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
| | - Xavier Banquy
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, México D.F. 04510, Mexico
| | - Norma Díaz-Vergara
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, México D.F. 04510, Mexico
| | - Silvia Pérez-Casas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, México D.F. 04510, Mexico
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultad de Física, Universidad de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, México D.F. 04510, Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, México D.F. 04510, Mexico
| |
Collapse
|
14
|
Otzen D. Protein–surfactant interactions: A tale of many states. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:562-91. [DOI: 10.1016/j.bbapap.2011.03.003] [Citation(s) in RCA: 362] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/23/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
|
15
|
Interactions and influence of α-cyclodextrin on the aggregation and interfacial properties of mixtures of nonionic and zwitterionic surfactants. Colloid Polym Sci 2009. [DOI: 10.1007/s00396-009-2086-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Hansen JH, Petersen SV, Andersen KK, Enghild JJ, Damhus T, Otzen D. Stable intermediates determine proteins' primary unfolding sites in the presence of surfactants. Biopolymers 2009; 91:221-31. [DOI: 10.1002/bip.21125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Sehgal P, Sharma M, Larsen KL, Wimmer R, Doe H, Otzen DE. Interactions of γ-Cyclodextrin with the Mixed Micelles of Anionic Surfactants and Their Inclusion Complexes Formation. J DISPER SCI TECHNOL 2008. [DOI: 10.1080/01932690701783390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Shaw BF, Schneider GF, Bilgiçer B, Kaufman GK, Neveu JM, Lane WS, Whitelegge JP, Whitesides GM. Lysine acetylation can generate highly charged enzymes with increased resistance toward irreversible inactivation. Protein Sci 2008; 17:1446-55. [PMID: 18451358 DOI: 10.1110/ps.035154.108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This paper reports that the acetylation of lysine epsilon-NH3(+) groups of alpha-amylase--one of the most important hydrolytic enzymes used in industry--produces highly negatively charged variants that are enzymatically active, thermostable, and more resistant than the wild-type enzyme to irreversible inactivation on exposure to denaturing conditions (e.g., 1 h at 90 degrees C in solutions containing 100-mM sodium dodecyl sulfate). Acetylation also protected the enzyme against irreversible inactivation by the neutral surfactant TRITON X-100 (polyethylene glycol p-(1,1,3,3-tetramethylbutyl)phenyl ether), but not by the cationic surfactant, dodecyltrimethylammonium bromide (DTAB). The increased resistance of acetylated alpha-amylase toward inactivation is attributed to the increased net negative charge of alpha-amylase that resulted from the acetylation of lysine ammonium groups (lysine epsilon-NH3(+) --> epsilon-NHCOCH3). Increases in the net negative charge of proteins can decrease the rate of unfolding by anionic surfactants, and can also decrease the rate of protein aggregation. The acetylation of lysine represents a simple, inexpensive method for stabilizing bacterial alpha-amylase against irreversible inactivation in the presence of the anionic and neutral surfactants that are commonly used in industrial applications.
Collapse
Affiliation(s)
- Bryan F Shaw
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sehgal P, Sharma M, Larsen KL, Wimmer R, Otzen DE, Doe H. Influence of β‐Cyclodextrin on the Mixed Micellization Process of Sodium Dodecyl Sulfate and Sodium Lauroyl Sarcosine and Formation of Inclusion Complexes. J DISPER SCI TECHNOL 2008. [DOI: 10.1080/01932690701688870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Stabilization of neurotoxic soluble beta-sheet-rich conformations of the Alzheimer's disease amyloid-beta peptide. Biophys J 2007; 94:2752-66. [PMID: 18065467 DOI: 10.1529/biophysj.107.119909] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An emerging paradigm for degenerative diseases associated with protein misfolding, such as Alzheimer's disease, is the formation of a toxic species due to structural transitions accompanied by oligomerization. Increasingly, the focus in Alzheimer's disease is on soluble oligomeric forms of the amyloid-beta peptide (Abeta) as the potential toxic species. Using a variety of methods, we have analyzed how sodium dodecyl sulphate (SDS) modulates the folding of Abeta40 and 42 and found that submicellar concentrations of SDS solubilize Abeta and induce structural transitions. Under these conditions, Abeta40 and 42 are interconverting oligomeric ensembles with a predominantly beta-sheet structure. The Abeta42 soluble oligomers form beta-sheet structures more readily and have increased stability compared with Abeta40 under identical conditions. The presence of added Cu(2+) significantly promotes and stabilizes the formation of the soluble oligomeric beta-sheet structures but these structures are nonamyloidogenic. In contrast, in the absence of added Cu(2+), these beta-sheet oligomers possess the hallmarks of amyloidogenic structures. These SDS-induced beta-sheet forms of Abeta, both in the presence and absence of Cu(2+), are toxic to neuronal cells.
Collapse
|
21
|
|
22
|
Abstract
Proteins fold on a micros-ms time scale. However, the number of possible conformations of the polypeptide backbone is so large that random sampling would not allow the protein to fold within the lifetime of the universe, the Levinthal paradox. We show here that a protein chain can fold efficiently with high fidelity if on average native contacts survive longer than non-native ones, that is, if the dissociation rate constant for breakage of a contact is lower for native than for non-native interactions. An important consequence of this finding is that no pathway needs to be specified for a protein to fold. Instead, kinetic discrimination among formed contacts is a sufficient criterion for folding to proceed to the native state. Successful protein folding requires that productive contacts survive long enough to obtain a certain level of probability that other native contacts form before the first interacting unit dissociates. If native contacts survive longer than non-native ones, this prevents misfolding and provides the folding process with directionality toward the native state. If on average all contacts survive equally long, the protein chain is deemed to fold through random search through all possible conformations (i.e., the Levinthal paradox). A modest degree of cooperativity among the native contacts, that is, decreased dissociation rate next to neighboring contacts, shifts the required ratio of dissociation rates into a realistic regime and makes folding a stochastic process with a nucleation step. No kinetic discrimination needs to be invoked in regards to the association process, which is modeled as dependent on the diffusion rate of chain segments.
Collapse
Affiliation(s)
- Sara Linse
- Biophysical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden.
| | | |
Collapse
|
23
|
Maestro B, Sanz JM. Extensive unfolding of the C-LytA choline-binding module by submicellar concentrations of sodium dodecyl sulphate. FEBS Lett 2007; 581:375-81. [PMID: 17222408 DOI: 10.1016/j.febslet.2006.12.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/04/2006] [Accepted: 12/18/2006] [Indexed: 11/22/2022]
Abstract
We have investigated the stability of the choline-binding module C-LytA against sodium dodecyl sulphate (SDS)-induced unfolding at pH 7.0 and 20 degrees C. A major intermediate with an unfolded N-terminal region accumulates at around 0.75 mM SDS, whereas 2.0 mM SDS was sufficient for a complete unfolding. This might be the first report of a protein being extensively unfolded by submicellar concentrations of SDS, occurring through formation of detergent clusters on the protein surface. All transitions were reversible upon SDS complexation with beta-cyclodextrin, allowing the calculation of thermodynamic parameters. A model for the unfolding of C-LytA by SDS is presented and compared to a previous denaturation scheme by guanidine hydrochloride.
Collapse
Affiliation(s)
- Beatriz Maestro
- Instituto de Biologia Molecular y Celular, Universidad Miguel Hernández, Av. Universidad, s/n 03202 Elche, Alicante, Spain
| | | |
Collapse
|
24
|
Lowe AR, Itzhaki LS. Biophysical Characterisation of the Small Ankyrin Repeat Protein Myotrophin. J Mol Biol 2007; 365:1245-55. [PMID: 17113103 DOI: 10.1016/j.jmb.2006.10.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 10/03/2006] [Accepted: 10/18/2006] [Indexed: 10/24/2022]
Abstract
The 118 residue protein myotrophin is composed of four ankyrin repeats that stack linearly to form an elongated, predominantly alpha-helical structure. The protein folds via a two-state mechanism at equilibrium. The free energy change of unfolding in water (DeltaG(U-N)(H(2)O)) is 5.8 kcal.mol(-1). The chevron plot reveals that the folding reaction has a broad energy barrier and that it conforms to a two-state mechanism. The rate of folding in water (k(f)(H(2)O)) of 95 s(-1) is several orders of magnitude slower than the value predicted by topological calculations. Proline mutants were used to show that the minor kinetic phases observed for myotrophin arise from heterogeneity of the ground states due to cis-trans isomerisation of prolyl as well as non-prolyl peptide bonds. Myotrophin is the first example of a naturally occurring ankyrin repeat protein that conforms to an apparent two-state mechanism at equilibrium and under kinetic conditions, making it highly suitable for high resolution protein folding studies.
Collapse
Affiliation(s)
- Alan R Lowe
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 2XZ, UK
| | | |
Collapse
|
25
|
Sehgal P, Otzen DE. Thermodynamics of unfolding of an integral membrane protein in mixed micelles. Protein Sci 2006; 15:890-9. [PMID: 16600971 PMCID: PMC2242483 DOI: 10.1110/ps.052031306] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Quantitative studies of membrane protein folding and unfolding can be difficult because of difficulties with efficient refolding as well as a pronounced propensity to aggregate. However, mixed micelles, consisting of the anionic detergent sodium dodecyl sulfate and the nonionic detergent dodecyl maltoside facilitate reversible and quantitative unfolding and refolding. The 4-transmembrane helix protein DsbB from the inner membrane of Escherichia coli unfolds in mixed micelles according to a three-state mechanism involving an unfolding intermediate I. The temperature dependence of the kinetics of this reaction between 15 degrees and 45 degrees C supports that unfolding from I to the denatured state D is accompanied by a significant decrease in heat capacity. For water-soluble proteins, the heat capacity increases upon unfolding, and this is generally interpreted as the increased binding of water to the protein as it unfolds, exposing more surface area. The decrease in DsbB's heat capacity upon unfolding is confirmed by independent thermal scans. The decrease in heat capacity is not an artifact of the use of mixed micelles, since the water soluble protein S6 shows conventional heat-capacity changes in detergent. We speculate that it reflects the binding of SDS to parts of DsbB that are solvent-exposed in the native DM-bound state. This implies that the periplasmic loops of DsbB are relatively unstructured. This anomalous thermodynamic behavior has not been observed for beta-barrel membrane proteins, probably because they do not bind SDS so extensively. Thus the thermodynamic behavior of membrane proteins appears to be intimately connected to their detergent-binding properties.
Collapse
Affiliation(s)
- Pankaj Sehgal
- Department of Life Sciences, Aalborg University, DK-9000 Aalborg, Denmark
| | | |
Collapse
|
26
|
Sehgal P, Sharma M, Wimmer R, Larsen KL, Otzen DE. Interactions between anionic mixed micelles and α-cyclodextrin and their inclusion complexes: conductivity, NMR and fluorescence study. Colloid Polym Sci 2006. [DOI: 10.1007/s00396-006-1466-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Chen L, Ferreira JAB, Costa SMB, Cabrita GJM, Otzen DE, Melo EP. Compaction of Ribosomal Protein S6 by Sucrose Occurs Only Under Native Conditions. Biochemistry 2006; 45:2189-99. [PMID: 16475807 DOI: 10.1021/bi051490g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of osmolyte sucrose on the stability and compaction of the folded and unfolded states of ribosomal protein S6 from Thermus thermophilus was analyzed. Confirming previous results obtained with sodium sulfate and trehalose, refolding stopped-flow measurements of S6 show that sucrose favors the conversion of the unfolded state ensemble to a highly compact structure (75% as compact as the folded state). This conversion occurs when the unfolded state is suddenly placed under native conditions and the compact state accumulates in a transient off-folding pathway. This effect of sucrose on the compaction of the unfolded state ensemble is counteracted by guanidinium hydrochloride. The compact state does not accumulate at higher guanidinium concentrations and the unfolded state ensemble does not display increased compaction in the presence of 6 M guanidinium as evaluated by collisional quenching of tryptophan fluorescence. In contrast, accessibility of the tryptophan residue of folded S6 above 1 M sucrose concentration decreased as a result of an increased compaction of the folded state. Unfolding stopped-flow measurements of S6 reflect this increased compaction of the folded state, but the unfolding pathway is not affected by sucrose. Compaction of folded and unfolded S6 induced by sucrose occurs under native conditions indicating that decreased protein conformational entropy significantly contributes to the mechanism of protein stabilization by osmolytes.
Collapse
Affiliation(s)
- LuYang Chen
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais 1049-001, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
28
|
Chen L, Cabrita GJM, Otzen DE, Melo EP. Stabilization of the ribosomal protein S6 by trehalose is counterbalanced by the formation of a putative off-pathway species. J Mol Biol 2005; 351:402-16. [PMID: 16002092 DOI: 10.1016/j.jmb.2005.05.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/19/2005] [Accepted: 05/24/2005] [Indexed: 10/25/2022]
Abstract
The effect of trehalose on folding and stability of the small ribosomal protein S6 was studied. Non-disruptive point mutations distributed along the protein structure were analyzed to characterize the stabilizing effect of trehalose and map the folding pathway of S6. On average, the stability of the wild-type and S6 mutants increases by 3 kcal/mol M trehalose. Despite the non-specific thermodynamic stabilization mechanism, trehalose particularly stabilizes the less destabilized mutants. Folding/unfolding kinetics shows clearly that trehalose induces the collapse of the unfolded state to an off-pathway intermediate with non-native diffuse contacts. This state is similar to the collapsed state induced by high concentrations of stabilizing salts, as previously reported. Although it leads to the accumulation of this off-pathway intermediate, trehalose does not change the compactness of the transition state ensemble. Furthermore, the productive folding pathway of S6 is not affected by trehalose as shown by a Phi-value analysis. The unfolded state ensemble of S6 should be more compact in the presence of trehalose and therefore destabilized due to decreased conformational entropy. Increased compaction of the unfolded state ensemble might also occur for more stable mutants of S6, thus explaining the synergistic effect of trehalose and point mutations on protein stabilization.
Collapse
Affiliation(s)
- Luyang Chen
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | |
Collapse
|
29
|
Mogensen JE, Sehgal P, Otzen DE. Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents. Biochemistry 2005; 44:1719-30. [PMID: 15683256 DOI: 10.1021/bi0479757] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipases catalyze the hydrolysis of triglycerides and are activated at the water-lipid interface. Thus, their interaction with amphiphiles such as detergents is relevant for an understanding of their enzymatic mechanism. In this study, we have characterized the effect of nonionic, anionic, cationic, and zwitterionic detergents on the enzymatic activity and thermal stability of Thermomyces lanuginosus lipase (TlL). For all detergents, low concentrations enhance the activity of TlL toward p-nitrophenyl butyrate by more than an order of magnitude; at higher detergent concentrations, the activity declines, leveling off close to the value measured in the absence of detergent. Surprisingly, these phenomena mainly involve monomeric detergent, as activation and inhibition occur well below the cmc for the nonionic and zwitterionic detergents. For anionic and cationic detergents, activation straddles the monomer-micelle transition. The data can be fitted to a three state interaction model, comprising free TlL in the absence of detergent, an activated complex with TlL at low detergent concentrations, and an enzyme-inhibiting complex at higher concentrations. For detergents with the same headgroup, there is an excellent correspondence between carbon chain length and ability to activate and inhibit TlL. However, the headgroup and number of chains also modulate these effects, dividing the detergents overall into three broad groups with rising activation and inhibition ability, namely, anionic and cationic detergents, nonionic and single-chain zwitterionic detergents, and double-chain zwitterionic detergents. As expected, only anionic and cationic detergents lead to a significant decrease in lipase thermal stability. Since nonionic detergents activate TlL without destabilizing the protein, activation/inhibition and destabilization must be independent processes. We conclude that lipase-detergent interactions occur at many independent levels and are governed by a combination of general and structurally specific interactions. Furthermore, activation of TlL by detergents apparently does not involve the classical interfacial activation phenomenon as monomeric detergent molecules are in most cases responsible for the observed increase in activity.
Collapse
Affiliation(s)
- Jesper E Mogensen
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | |
Collapse
|
30
|
Abstract
The increasing use of recombinantly expressed therapeutic proteins in the pharmaceutical industry has highlighted issues such as their stability during long-term storage and means of efficacious delivery that avoid adverse immunogenic side effects. Controlled chemical modifications, such as substitutions, acylation and PEGylation, have fulfilled some but not all of their promises, while hydrogels and lipid-based formulations could well be developed into generic delivery systems. Strategies to curb the aggregation and misfolding of proteins during storage are likely to benefit from the recent surge of interest in protein fibrillation. This might in turn lead to generally accepted guidelines and tests to avoid unforeseen adverse effects in drug delivery.
Collapse
Affiliation(s)
- Sven Frokjaer
- Department of Pharmaceutics, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen O, Denmark
| | | |
Collapse
|
31
|
de Los Rios MA, Plaxco KW. Apparent Debye−Huckel Electrostatic Effects in the Folding of a Simple, Single Domain Protein. Biochemistry 2005; 44:1243-50. [PMID: 15667218 DOI: 10.1021/bi048444l] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have monitored the effects of salts and denaturants on the folding of the simple, two-state protein FynSH3. As predicted by Debye-Huckel limiting law, both the stability and (log) folding rate of FynSH3 increase nearly perfectly linearly (r(2)> 0.99) with the square root of ionic strength upon increasing concentrations of the relatively nonchaotropic salt sodium chloride. The stability of FynSH3 is also linear in square root ionic strength when the relatively nonchaotropic salts sodium bromide, potassium bromide, and potassium chloride are employed. Comparison of the kinetic and equilibrium effects of sodium chloride suggests that the electrostatic interactions formed in the folding transition state are approximately 50% as destabilizing as those formed in the native state, presumably reflecting the more compact nature of the latter. In contrast, the relationship between concentration and folding kinetics is more complex when the highly chaotropic salt guanidine hydrochloride (GuHCl) is employed. At moderate to high GuHCl concentrations the net effect of the linear, presumably chaotrope-induced deceleration and the presumed, square root-dependent ionic strength-induced acceleration is well approximated as linear, thus accounting for the observation of "chevron behavior" (log folding rate linear in denaturant concentration) typically reported for the folding of single domain proteins. At very low GuHCl concentrations, however, significant kinetic rollover is observed. This rollover is reasonably well fitted as a sum of a linear, presumably chaotropic effect and a square root-dependent, presumably electrostatic effect. These results thus not only provide insight into the nature of the folding transition state but also suggest that caution is in order when extrapolating GuHCl-based chevrons to estimate folding rates in the absence of denaturant and in interpreting deviations from chevron linearity as evidence for non-two-state kinetics.
Collapse
Affiliation(s)
- Miguel A de Los Rios
- Department of Chemistry and Biochemistry, University of California, Santa Barbara 93106, USA
| | | |
Collapse
|
32
|
Palmer I, Wingfield PT. Preparation and extraction of insoluble (inclusion-body) proteins from Escherichia coli. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2004; Chapter 6:6.3.1-6.3.18. [PMID: 18429271 PMCID: PMC3518028 DOI: 10.1002/0471140864.ps0603s38] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High-level expression of many recombinant proteins in Escherichia coli leads to the formation of highly aggregated protein commonly referred to as inclusion bodies. Inclusion bodies are normally formed in the cytoplasm; alternatively, if a secretion vector is used, they can form in the periplasmic space. Inclusion bodies can be recovered from cell lysates and this unit describes preparation of washed pellets and solubilization of the protein using guanidine x HCl. The extracted protein, which is unfolded, is either directly folded as described in UNIT or further purified by gel filtration in the presence of guanidine x HCl as idescribed here. A support protocol describes the removal of guanidine x HCl from column fractions so they can be monitored by SDS-PAGE.
Collapse
Affiliation(s)
- Ira Palmer
- National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
33
|
Waner MJ, Navrotskaya I, Bain A, Oldham ED, Mascotti DP. Thermal and sodium dodecylsulfate induced transitions of streptavidin. Biophys J 2004; 87:2701-13. [PMID: 15298874 PMCID: PMC1304689 DOI: 10.1529/biophysj.104.047266] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 07/28/2004] [Indexed: 11/18/2022] Open
Abstract
The strong specific binding of streptavidin (SA) to biotin is utilized in numerous biotechnological applications. The SA tetramer is also known to exhibit significant stability, even in the presence of sodium dodecylsulfate (SDS). Despite its importance, relatively little is known about the nature of the thermal denaturation pathway for SA. This work uses a homogeneous SA preparation to expand on the data of previous literature reports, leading to the proposal of a model for temperature induced structural changes in SA. Temperature dependent data were obtained by SDS and native polyacrylamide gel electrophoresis (PAGE), differential scanning calorimetry (DSC), and fluorescence and ultraviolet (UV)-visible spectroscopy in the presence and absence of SDS. In addition to the development of this model, it is found that the major thermal transition of SA in 1% SDS is reversible. Finally, although SA exhibits significant precipitation at elevated temperatures in aqueous solution, inclusion of SDS acts to prevent SA aggregation.
Collapse
Affiliation(s)
- Mark J Waner
- Department of Chemistry, John Carroll University, University Heights, Ohio 44118, USA
| | | | | | | | | |
Collapse
|
34
|
Mogensen JE, Ipsen H, Holm J, Otzen DE. Elimination of a misfolded folding intermediate by a single point mutation. Biochemistry 2004; 43:3357-67. [PMID: 15035607 DOI: 10.1021/bi0358622] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an analysis of the folding behavior of the 159-residue major birch pollen allergen Bet v 1. The protein contains a water-filled channel running through it. Consequently, the protein has a hydrophobic shell, rather than a hydrophobic core. During the folding of the protein from either the urea-, pH-, or SDS-denatured state, Bet v 1 transiently populates a partially folded intermediate state. This state appears to be misfolded, since it has to unfold at least partially to fold to the native state. The misfolded intermediate is not, however, a result of the water-filled channel in Bet v 1. The intermediate completely disappears in the mutant Tyr --> Trp120, in which the channel is still present. Tyr120 appears to behave as a "negative gatekeeper" which attenuates efficient folding. The close structural homologue, the apple allergen Mal d 1, also folds without any detectable folding intermediates. However, the position of the transition state on the reaction coordinate, which is a measure of its overall compactness relative to the denatured and native states, is reduced dramatically from ca. 0.9 in Bet v 1 to around 0.5 in Mal d 1. We suggest that this large shift in the transition state structure is partly due to different local helix propensities. Given that individual mutations can have such large effects on folding, one should not a priori expect structurally homologous proteins to fold by the same mechanism.
Collapse
|
35
|
Went HM, Benitez-Cardoza CG, Jackson SE. Is an intermediate state populated on the folding pathway of ubiquitin? FEBS Lett 2004; 567:333-8. [PMID: 15178347 DOI: 10.1016/j.febslet.2004.04.089] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 04/16/2004] [Accepted: 04/16/2004] [Indexed: 11/23/2022]
Abstract
In the last couple of years, there has been increasing debate as to the presence and role of intermediate states on the folding pathways of several small proteins, including the 76-residue protein ubiquitin. Here, we present detailed kinetic studies to establish whether an intermediate state is ever populated during the folding of this protein. We show that the differences observed in previous studies are attributable to the transient aggregation of the protein during folding. Using a highly soluble construct of ubiquitin, which does not aggregate during folding, we establish the conditions in which an intermediate state is sufficiently stable to be observed by kinetic measurements.
Collapse
Affiliation(s)
- Heather M Went
- Chemistry Department, Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | |
Collapse
|
36
|
Otzen DE. Folding of DsbB in mixed micelles: a kinetic analysis of the stability of a bacterial membrane protein. J Mol Biol 2003; 330:641-9. [PMID: 12850136 DOI: 10.1016/s0022-2836(03)00624-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Measuring the stability of integrated membrane proteins under equilibrium conditions is hampered by the nature of the proteins' amphiphilic environment. While intrinsic fluorescence is a useful probe for structural changes in water-soluble proteins, the fluorescence of membrane proteins is sensitive to changes in lipid and detergent composition. As an attempt to overcome this problem, I present a kinetic analysis of the folding of a membrane protein, disulfide bond reducing protein B (DsbB), in a mixed micelle system consisting of varying molar ratios of sodium dodecyl sulfate (SDS) and dodecyl maltoside (DM). This analysis incorporates both folding and unfolding rates, making it possible to determine both the stability of the native state and the process by which the protein folds. Refolding and unfolding occur on the second to millisecond timescale and involve only one relaxation phase, when monitored by conventional stopped-flow. The kinetic data indicate that denaturation occurs around 0.3 mole fraction of SDS, in agreement with CD analysis and acrylamide quenching data. The rate constants have been fit to a three-state folding scheme involving the SDS-denatured state, the native state and an unfolding intermediate that accumulates only under unfolding conditions at high mole fractions of SDS. The stability of DsbB is around 4.4 kcal/mol in DM, and this is halved upon reduction of the two periplasmic disulfide bonds, and is sensitive to mutagenesis. With the caveat that kinetic data are always open to alternative interpretations, time-resolved studies in mixed micelles provide a useful approach to measure membrane protein stability over a wide range of concentrations of SDS and DM, as well as a framework for the future characterization of the DsbB folding mechanism.
Collapse
Affiliation(s)
- Daniel E Otzen
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark.
| |
Collapse
|
37
|
Otzen DE, Oliveberg M. Conformational plasticity in folding of the split beta-alpha-beta protein S6: evidence for burst-phase disruption of the native state. J Mol Biol 2002; 317:613-27. [PMID: 11955013 DOI: 10.1006/jmbi.2002.5423] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increasing number of folding studies of two-state proteins shows that point mutations sometimes change the kinetic m-values, leading to kinks and curves in the chevron plots. The molecular origin of these changes is yet unclear although it is speculated that they are linked to structural rearrangement of the transition state or to accumulation of meta-stable intermediates. To shed more light on this issue, we present here a combined m and phi-value analysis of the split beta-alpha-beta protein S6. Wild-type S6 displays classical two-state kinetics with v-shaped chevron plot, but a majority of its mutants display distinct m-value changes or curved chevrons. We observe that this kinetic aberration of S6 is linked to mutations that are clustered in distinct regions of the native structure. The most pronounced changes, i.e. decrease in the m-value for the unfolding rate constant, are seen upon truncation of interactions between the N and C termini, whereas mutations in the centre of the hydrophobic core show smaller or even opposed effects. As a consequence, the calculated phi-values display a systematic increase upon addition of denaturant. In the case of S6, the phenomenon seems to arise from a general plasticity of the different species on the folding pathway. That is, the structure of the denatured ensemble, the transition state, and the native ground-state for unfolding seem to change upon mutation. From these changes, it is concluded that interactions spanning the centre of the hydrophobic core form early in folding, whereas the entropically disfavoured interactions linking the N and C termini consolidate very late, mainly on the down-hill-side of the folding barrier.
Collapse
Affiliation(s)
- Daniel E Otzen
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, Aalborg, DK-9000, Denmark
| | | |
Collapse
|
38
|
Lindberg MO, Tångrot J, Otzen DE, Dolgikh DA, Finkelstein AV, Oliveberg M. Folding of circular permutants with decreased contact order: general trend balanced by protein stability. J Mol Biol 2001; 314:891-900. [PMID: 11734005 DOI: 10.1006/jmbi.2001.5186] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine the influence of contact order and stability on the refolding rate constant for two-state proteins, we have analysed the folding kinetics of the small beta-alpha-beta protein S6 and two of its circular permutants with relative contact orders of 0.19, 0.15 and 0.12. Data reveal a small but significant increase of the refolding rate constant (log k(f)) with decreasing contact order. At the same time, the decreased contact order is correlated to losses in global stability and alterations of the folding nucleus. When the differences in stability are accounted for by addition of Na2SO4 or by comparison of the folding kinetics at the transition mid-point, the dependence between log k(f) and contact order becomes stronger and follows the general correlation for two-state proteins. The observation emphasizes the combined action of topology and stability in controlling the rate constant of protein folding.
Collapse
Affiliation(s)
- M O Lindberg
- Department of Biochemistry, Umeå University, Umeå, S-901 87, Sweden
| | | | | | | | | | | |
Collapse
|