1
|
Corbella M, Moreira C, Bello‐Madruga R, Torrent Burgas M, Kamerlin SCL, Blair JMA, Sancho‐Vaello E. Targeting MarA N-terminal domain dynamics to prevent DNA binding. Protein Sci 2025; 34:e5258. [PMID: 39660948 PMCID: PMC11633057 DOI: 10.1002/pro.5258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/14/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024]
Abstract
Efflux is one of the mechanisms employed by Gram-negative bacteria to become resistant to routinely used antibiotics. The inhibition of efflux by targeting their regulators is a promising strategy to re-sensitize bacterial pathogens to antibiotics. AcrAB-TolC is the main resistance-nodulation-division efflux pump in Enterobacteriaceae. MarA is an AraC/XylS family global regulator that regulates more than 40 genes related to the antimicrobial resistance phenotype, including acrAB. The aim of this work was to understand the role of the N-terminal helix of MarA in the mechanism of DNA binding. An N-terminal deletion of MarA showed that the N-terminal helix is critical for recognition of the functional marboxes. By engineering two double cysteine variants of MarA that form a disulfide bond between the N-terminal helix and the hydrophobic core of one of the helices in direct DNA contact, and combining in vitro electrophoretic mobility assays, in vivo measurements of acrAB transcription using a GFP reporter system, and molecular dynamic simulations, it was shown that the immobilization of the N-terminal helix of MarA prevents binding to DNA. This inhibited conformation seems to be universal for the monomeric members of the AraC/XylS family, as suggested by additional molecular dynamics simulations of the two-domain protein Rob. These results point to the N-terminal helix of the AraC/XylS family monomeric regulators as a promising target for the development of inhibitors.
Collapse
Affiliation(s)
- Marina Corbella
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB)Universitat de BarcelonaBarcelonaSpain
| | - Cátia Moreira
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
| | - Roberto Bello‐Madruga
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Marc Torrent Burgas
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Shina C. L. Kamerlin
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Jessica M. A. Blair
- College of Medicine and Health, Department of Microbes, Infection and MicrobiomesInstitute of Microbiology and Infection, University of BirminghamBirminghamUK
| | - Enea Sancho‐Vaello
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
- College of Medicine and Health, Department of Microbes, Infection and MicrobiomesInstitute of Microbiology and Infection, University of BirminghamBirminghamUK
| |
Collapse
|
2
|
Optimised Heterologous Expression and Functional Analysis of the Yersinia pestis F1-Capsular Antigen Regulator Caf1R. Int J Mol Sci 2021; 22:ijms22189805. [PMID: 34575967 PMCID: PMC8470410 DOI: 10.3390/ijms22189805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
The bacterial pathogen, Yersinia pestis, has caused three historic pandemics and continues to cause small outbreaks worldwide. During infection, Y. pestis assembles a capsule-like protective coat of thin fibres of Caf1 subunits. This F1 capsular antigen has attracted much attention due to its clinical value in plague diagnostics and anti-plague vaccine development. Expression of F1 is tightly regulated by a transcriptional activator, Caf1R, of the AraC/XylS family, proteins notoriously prone to aggregation. Here, we have optimised the recombinant expression of soluble Caf1R. Expression from the native and synthetic codon-optimised caf1R cloned in three different expression plasmids was examined in a library of E. coli host strains. The functionality of His-tagged Caf1R was demonstrated in vivo, but insolubility was a problem with overproduction. High levels of soluble MBP-Caf1R were produced from codon optimised caf1R. Transcriptional-lacZ reporter fusions defined the PM promoter and Caf1R binding site responsible for transcription of the cafMA1 operon. Use of the identified Caf1R binding caf DNA sequence in an electrophoretic mobility shift assay (EMSA) confirmed correct folding and functionality of the Caf1R DNA-binding domain in recombinant MBP-Caf1R. Availability of functional recombinant Caf1R will be a valuable tool to elucidate control of expression of F1 and Caf1R-regulated pathophysiology of Y. pestis.
Collapse
|
3
|
Pan X, Cen Y, Kuang M, Li B, Qin R, Zhou H. Artesunate interrupts the self-transcriptional activation of MarA to inhibit RND family pumps of Escherichia coli. Int J Med Microbiol 2020; 310:151465. [PMID: 33238228 DOI: 10.1016/j.ijmm.2020.151465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/14/2020] [Accepted: 11/05/2020] [Indexed: 11/25/2022] Open
Abstract
Resistance-Nodulation-Division (RND) family pumps are responsible for producing multidrug resistance in Escherichia coli; however, there has been little study of targeted inhibitors of RNDs. In the present study, we investigated the inhibition of RND pumps by artesunate (AS) in E. coli, and further investigated the mechanism with respect to MarA, a regulator of RNDs. Although AS had no direct antibacterial effect, it showed a synergistic effect in combination with β-lactams against E. coli ATCC35218 in vitro and in vivo, suggesting it possesses antibacterial enhancement activity. Notably, AS, alone or in combination with β-lactams, downregulated the mRNA expression levels of marA, soxS, and rob, known as the marA-soxS-rob regulon, which then decreased the expression levels of RNDs, thereby increased ampicillin accumulation within ATCC35218. Using gene-deletion strains, we found that the antibacterial sensitization effect of AS persisted in wildtype bacteria, but was completely lost in the strain lacking marA, and decreased in the strain lacking soxS or rob, suggesting marA plays a crucial role in the sensitization of AS. Critically, we showed that AS inhibited the binding of MarA to the promoter of marA itself, not acrB, resulting in decreased mRNA expression of both acrB and marA. Mechanistically, we found AS directly bound to the central cavity of MarA through the R59 and K62 residues, and thus altered the charge distribution of MarA to interrupt the recognition between MarA and its promoter. We concluded that AS interrupts the self-transcriptional activation of MarA, thereby inhibits MarA-dependent mRNA expression of marA, acrAB, and tolC, and also certain other RNDs and regulatory genes related to MarA. Therefore, AS is a novel inhibitor of RND pumps that acts on the regulator MarA.
Collapse
Affiliation(s)
- Xichun Pan
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Yanyan Cen
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Mei Kuang
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Bin Li
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Rongxin Qin
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Hong Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, PR China.
| |
Collapse
|
4
|
Zhang C, Chen S, Dedkova LM, Hecht SM. Effects of Nucleobase Amino Acids on the Binding of Rob to Its Promoter DNA: Differential Alteration of DNA Affinity and Phenotype. Biochemistry 2020; 59:2111-2119. [PMID: 32412234 DOI: 10.1021/acs.biochem.0c00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nucleic acid binding proteins have been studied extensively, but the nature of the interactions that control their affinity, selectivity, and DNA and RNA functions is still not well understood. To understand the nature and functional consequences of such interactions, we introduced nucleobase amino acids at specific positions of the transcriptional regulator Rob protein in vivo and succeeded in demonstrating that an alteration of the protein-DNA affinity can affect specific phenotypes associated with Rob protein-DNA interactions. Previously, we inserted different nucleobase amino acids in lieu of Arg40; this residue is known (via X-ray crystallography) to interact with the micF DNA promoter A-box residue Gua6. The interactions predominantly involved Watson-Crick-like H bonding. The present study focused primarily on the micF DNA promoter B-box; the crystallographically determined interaction involves H bonding between the agmatine moiety of Arg90 within an HTH motif of Rob and a phosphate oxygen anion to the 5'-side of Thy14. We had two main goals, the first of which was to demonstrate enhanced Rob-binding to the micF promoter DNA and the functional consequences resulting from the interaction of micF DNA with Rob analogues containing Arg90 nucleobase mimics. The second was to explore the possible functional consequences of enhancing the protein-DNA affinity with nucleobase replacements, which mechanistically mediate interactions differently than those reported to be operative for specific protein-DNA interactions. Nucleobase replacement at position 90 with Arg isosteres enhanced the Rob protein-micF DNA affinity in parallel with increasing antibiotic and Hg2+ resistance, while aromatic amino acid replacements increased the affinity but not the antibiotic or Hg2+ resistance. The demonstration of an increased affinity through strong base stacking interactions was notable.
Collapse
|
5
|
When the Scaffold Cannot Be Ignored: The Role of the Hydrophobic Core in Ligand Binding and Specificity. J Mol Biol 2015; 427:3316-3326. [PMID: 26301601 DOI: 10.1016/j.jmb.2015.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 11/21/2022]
Abstract
The traditional view of protein-ligand binding treats a protein as comprising distinct binding epitopes on the surface of a degenerate structural scaffold, largely ignoring the impact of a protein's energy landscape. To determine the robustness of this simplification, we compared two small helix-turn-helix transcription factors with different energy landscapes. λ-Repressor is stable and well folded, while MarA appears to be marginally stable with multiple native conformations (molten). While λ-repressor is known to tolerate any hydrophobic mutation in the core, we find MarA drastically less tolerant to core mutation. Moreover, core mutations in MarA (distant from the DNA-binding interface) change the relative affinities of its binding partners, altering ligand specificity. These results can be explained by taking into account the effects of mutations on the entire energy landscape and not just the native state. Thus, for proteins with multiple conformations that are close in energy, such as many intrinsically disordered proteins, residues distant from the active site can alter both binding affinity and specificity.
Collapse
|
6
|
De Majumdar S, Yu J, Fookes M, McAteer SP, Llobet E, Finn S, Spence S, Monaghan A, Kissenpfennig A, Ingram RJ, Bengoechea J, Gally DL, Fanning S, Elborn JS, Schneiders T. Elucidation of the RamA regulon in Klebsiella pneumoniae reveals a role in LPS regulation. PLoS Pathog 2015; 11:e1004627. [PMID: 25633080 PMCID: PMC4310594 DOI: 10.1371/journal.ppat.1004627] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/14/2014] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae is a significant human pathogen, in part due to high rates of multidrug resistance. RamA is an intrinsic regulator in K. pneumoniae established to be important for the bacterial response to antimicrobial challenge; however, little is known about its possible wider regulatory role in this organism during infection. In this work, we demonstrate that RamA is a global transcriptional regulator that significantly perturbs the transcriptional landscape of K. pneumoniae, resulting in altered microbe-drug or microbe-host response. This is largely due to the direct regulation of 68 genes associated with a myriad of cellular functions. Importantly, RamA directly binds and activates the lpxC, lpxL-2 and lpxO genes associated with lipid A biosynthesis, thus resulting in modifications within the lipid A moiety of the lipopolysaccharide. RamA-mediated alterations decrease susceptibility to colistin E, polymyxin B and human cationic antimicrobial peptide LL-37. Increased RamA levels reduce K. pneumoniae adhesion and uptake into macrophages, which is supported by in vivo infection studies, that demonstrate increased systemic dissemination of ramA overexpressing K. pneumoniae. These data establish that RamA-mediated regulation directly perturbs microbial surface properties, including lipid A biosynthesis, which facilitate evasion from the innate host response. This highlights RamA as a global regulator that confers pathoadaptive phenotypes with implications for our understanding of the pathogenesis of Enterobacter, Salmonella and Citrobacter spp. that express orthologous RamA proteins. Bacteria can rapidly evolve under antibiotic pressure to develop resistance, which occurs when target genes mutate, or when resistance-encoding genes are transferred. Alternatively, microbes can simply alter the levels of intrinsic proteins that allow the organism to “buy” time to resist antibiotic pressure. Klebsiella pneumoniae is a pathogen that causes significant blood stream or respiratory infections, but more importantly is a bacterium that is increasingly being reported as multidrug resistant. Our data demonstrate that RamA can trigger changes on the bacterial surface that allow Klebsiella to survive both antibiotic challenge, degradation by host immune peptides and resist phagocytosis. We demonstrate that the molecular basis of increased survival of ramA overexpressing K. pneumoniae, against host-derived factors is associated with RamA-driven alterations of the lipid A moiety of Klebsiella LPS. This modification is likely to be linked to Klebsiella’s ability to resist the host response so that it remains undetected by the immune system. The relevance of our work extends beyond RamA in Klebsiella as other pathogens such as Enterobacter spp and Salmonella spp. also produce this protein. Thus our overarching conclusion is that the intrinsic regulator, RamA perturbs host-microbe and microbe-drug interactions.
Collapse
Affiliation(s)
- Shyamasree De Majumdar
- Centre for Infection and Immunity, Belfast, United Kingdom
- Division of Pathway and Infection Medicine, Edinburgh, United Kingdom
| | - Jing Yu
- Centre for Infection and Immunity, Belfast, United Kingdom
| | - Maria Fookes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sean P. McAteer
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Enrique Llobet
- Laboratory Microbial Pathogenesis, Fundació d’Investigació Sanitària de les Illes Balears (FISIB) Recinto Hospital Joan March, Bunyola, Spain
| | - Sarah Finn
- UCD Centre for Molecular Innovation and Drug Discovery, School of Public Health, Physiotherapy & Population Science, University College Dublin, Dublin, Ireland
| | - Shaun Spence
- Centre for Infection and Immunity, Belfast, United Kingdom
| | - Avril Monaghan
- Centre for Infection and Immunity, Belfast, United Kingdom
| | | | | | - José Bengoechea
- Centre for Infection and Immunity, Belfast, United Kingdom
- Laboratory Microbial Pathogenesis, Fundació d’Investigació Sanitària de les Illes Balears (FISIB) Recinto Hospital Joan March, Bunyola, Spain
| | - David L. Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Séamus Fanning
- UCD Centre for Molecular Innovation and Drug Discovery, School of Public Health, Physiotherapy & Population Science, University College Dublin, Dublin, Ireland
| | | | - Thamarai Schneiders
- Centre for Infection and Immunity, Belfast, United Kingdom
- Division of Pathway and Infection Medicine, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Probing the informational and regulatory plasticity of a transcription factor DNA-binding domain. PLoS Genet 2012; 8:e1002614. [PMID: 22496663 PMCID: PMC3315485 DOI: 10.1371/journal.pgen.1002614] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 02/07/2012] [Indexed: 11/19/2022] Open
Abstract
Transcription factors have two functional constraints on their evolution: (1) their binding sites must have enough information to be distinguishable from all other sequences in the genome, and (2) they must bind these sites with an affinity that appropriately modulates the rate of transcription. Since both are determined by the biophysical properties of the DNA–binding domain, selection on one will ultimately affect the other. We were interested in understanding how plastic the informational and regulatory properties of a transcription factor are and how transcription factors evolve to balance these constraints. To study this, we developed an in vivo selection system in Escherichia coli to identify variants of the helix-turn-helix transcription factor MarA that bind different sets of binding sites with varying degrees of degeneracy. Unlike previous in vitro methods used to identify novel DNA binders and to probe the plasticity of the binding domain, our selections were done within the context of the initiation complex, selecting for both specific binding within the genome and for a physiologically significant strength of interaction to maintain function of the factor. Using MITOMI, quantitative PCR, and a binding site fitness assay, we characterized the binding, function, and fitness of some of these variants. We observed that a large range of binding preferences, information contents, and activities could be accessed with a few mutations, suggesting that transcriptional regulatory networks are highly adaptable and expandable. The main role of transcription factors is to modulate the expression levels of functionally related genes in response to environmental and cellular cues. For this process to be precise, the transcription factor needs to locate and bind specific DNA sequences in the genome and needs to bind these sites with a strength that appropriately adjusts the amount of gene expressed. Both specific protein–DNA interactions and transcription factor activity are intimately coupled, because they are both dependent upon the biochemical properties of the DNA–binding domain. Here we experimentally probe how variable these properties are using a novel in vivo selection assay. We observed that the specific binding preferences for the transcription factor MarA and its transcriptional activity can be altered over a large range with a few mutations and that selection on one function will impact the other. This work helps us to better understand the mechanism of transcriptional regulation and its evolution, and may prove useful for the engineering of transcription factors and regulatory networks.
Collapse
|
8
|
Tripet BP, Goel A, Copie V. Internal dynamics of the tryptophan repressor (TrpR) and two functionally distinct TrpR variants, L75F-TrpR and A77V-TrpR, in their l-Trp-bound forms. Biochemistry 2011; 50:5140-53. [PMID: 21553830 DOI: 10.1021/bi200389k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Backbone amide dynamics of the Escherichia coli tryptophan repressor protein (WT-TrpR) and two functionally distinct variants, L75F-TrpR and A77V-TrpR, in their holo (l-tryptophan corepressor-bound) form have been characterized using (15)N nuclear magnetic resonance (NMR) relaxation. The three proteins possess very similar structures, ruling out major conformational differences as the source of their functional differences, and suggest that changes in protein flexibility are at the origin of their distinct functional properties. Comparison of site specific (15)N-T(1), (15)N-T(2), (15)N-{(1)H} nuclear Overhauser effect, reduced spectral density, and generalized order (S(2)) parameters indicates that backbone dynamics in the three holo-repressors are overall very similar with a few notable and significant exceptions for backbone atoms residing within the proteins' DNA-binding domain. We find that flexibility is highly restricted for amides in core α-helices (i.e., helices A-C and F), and a comparable "stiffening" is observed for residues in the DNA recognition helix (helix E) of the helix D-turn-helix E (HTH) DNA-binding domain of the three holo-repressors. Unexpectedly, amides located in helix D and in adjacent turn regions remain flexible. These data support the concept that residual flexibility in TrpR is essential for repressor function, DNA binding, and molecular recognition of target operators. Comparison of the (15)N NMR relaxation parameters of the holo-TrpRs with those of the apo-TrpRs indicates that the single-point amino acid substitutions, L75F and A77V, perturb the flexibility of backbone amides of TrpR in very different ways and are most pronounced in the apo forms of the three repressors. Finally, we present these findings in the context of other DNA-binding proteins and the role of protein flexibility in molecular recognition.
Collapse
Affiliation(s)
- Brian P Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | | | | |
Collapse
|
9
|
Promoter discrimination at class I MarA regulon promoters mediated by glutamic acid 89 of the MarA transcriptional activator of Escherichia coli. J Bacteriol 2010; 193:506-15. [PMID: 21097628 DOI: 10.1128/jb.00360-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three paralogous transcriptional activators MarA, SoxS, and Rob, activate > 40 Escherichia coli promoters. To understand why MarA does not activate certain promoters as strongly as SoxS, we compared MarA, MarA mutants, and SoxS for their abilities to activate 16 promoters and to bind their cognate marbox binding sites. Replacement of the MarA glutamic acid residue 89 with alanine greatly increased the marbox binding and activation of many class I promoters. Like cells constitutive for SoxS, cells expressing the MarA with the E89A mutation were more resistant to superoxides than those harboring WT MarA. The activities of several other E89 substitutions ranked as follows: E89A > E89G > E89V > WT > E89D. Increased binding and activation occurred only at class I promoters when the 12th base of the promoter's marbox (a position at which there is no known interaction between the marbox and MarA) was not a T residue. Furthermore, WT MarA binding to a synthetic marbox in vitro was enhanced when the phosphate group between positions 12 and 13 was eliminated on one strand. The results demonstrate that relatively minor changes in a single amino acid side chain (e.g., alanine to valine or glutamic acid to aspartic acid) can strongly influence activity despite any evidence that the side chain is involved in positive interactions with either DNA or RNA polymerase. We present a model which attributes the differences in binding and activation to the interference between the β- and γ-carbons of the amino acid at position 89 and the phosphate group between positions 12 and 13.
Collapse
|
10
|
Evidence that regulatory protein MarA of Escherichia coli represses rob by steric hindrance. J Bacteriol 2010; 192:3977-82. [PMID: 20453091 DOI: 10.1128/jb.00103-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MarA protein of Escherichia coli can both activate and repress the initiation of transcription, depending on the position and orientation of its degenerate 20-bp binding site ("marbox") at the promoter. For all three known repressed genes, the marbox overlaps the promoter. It has been reported that MarA represses the rob promoter via an RNA polymerase (RNAP)-DNA-MarA ternary complex. Under similar conditions, we found a ternary complex for the repressed purA promoter also. These findings, together with the backwards orientation of repressed marboxes, suggested a unique interaction of MarA with RNAP in repression. However, no repression-specific residues of MarA could be found among 38 single-alanine replacement mutations previously shown to retain activation function or among mutants from random mutagenesis. Mutations Thr12Ala, Arg36Ala, Thr95Ile, and Pro106Ala were more damaging for activation than for repression, some up to 10-fold, so these residues may play a specific role in activation. We found that nonspecific binding of RNAP to promoterless regions of DNA was presumably responsible for the ternary complexes seen previously. When RNAP binding was promoter specific, MarA reduced RNAP access to the rob promoter; there was little or no ternary complex. These findings strongly implicate steric hindrance as the mechanism of repression of rob by MarA.
Collapse
|
11
|
Sequential XylS-CTD binding to the Pm promoter induces DNA bending prior to activation. J Bacteriol 2010; 192:2682-90. [PMID: 20363935 DOI: 10.1128/jb.00165-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
XylS protein, a member of the AraC family of transcriptional regulators, comprises a C-terminal domain (CTD) involved in DNA binding and an N-terminal domain required for effector binding and protein dimerization. In the absence of benzoate effectors, the N-terminal domain behaves as an intramolecular repressor of the DNA binding domain. To date, the poor solubility properties of the full-length protein have restricted XylS analysis to genetic approaches in vivo. To characterize the molecular consequences of XylS binding to its operator, we used a recombinant XylS-CTD variant devoid of the N-terminal domain. The resulting protein was soluble and monomeric in solution and activated transcription from its cognate promoter in an effector-independent manner. XylS binding sites in the Pm promoter present an intrinsic curvature of 35 degrees centered at position -42 within the proximal site. Gel retardation and DNase footprint analysis showed XylS-CTD binding to Pm occurred sequentially: first a XylS-CTD monomer binds to the proximal site overlapping the RNA polymerase binding sequence to form complex I. This first event increased Pm bending to 50 degrees and was followed by the binding of the second monomer, which further increased the observed global curvature to 98 degrees. This generated a concomitant shift in the bending center to a region centered at position -51 when the two sites were occupied (complex II). We propose a model in which DNA structure and binding sequences strongly influence XylS binding events previous to transcription activation.
Collapse
|
12
|
Molina-Henares AJ, Godoy P, Duque E, Ramos JL. A general profile for the MerR family of transcriptional regulators constructed using the semi-automated Provalidator tool. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:518-523. [PMID: 23765930 DOI: 10.1111/j.1758-2229.2009.00067.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Provalidator is a web-based tool that facilitates the design and validation of generalized profiles of protein families in prokaryotes. This tool combines the nearly full automation of profile building with a search for family members in all available databases. The tool is useful for assigning a given protein to a specific family, and is also useful for genome mining in annotated prokaryotic genomes. The tool is freely available at http://www.bactregulators.org. As proof of concept we constructed a profile that best defines the MerR family of transcriptional regulators. The profile created includes functional residues that are part of the helix-turn-helix DNA binding domain and accessory elements defined as wings 1 and 2, suggesting that members of the MerR family of regulators may exhibit conserved 3D structure in the region that defines the family profile. The profile defined for MerR was used to search for members of this family in the Swiss-Prot and TrEMBL databases, and also to identify members of the family in the genome of Pseudomonas putida. One of these identified regulators was found to be involved in zinc tolerance, showing the usefulness of identifying family members and assigning phenotypes.
Collapse
Affiliation(s)
- Antonio J Molina-Henares
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, E-18008 Granada, Spain
| | | | | | | |
Collapse
|
13
|
Watkins D, Hsiao C, Woods KK, Koudelka GB, Williams LD. P22 c2 Repressor−Operator Complex: Mechanisms of Direct and Indirect Readout. Biochemistry 2008; 47:2325-38. [DOI: 10.1021/bi701826f] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Derrick Watkins
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, and Department of Biological Sciences, 607 Cooke Hall, State University of New York at Buffalo, Buffalo, New York 14260
| | - Chiaolong Hsiao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, and Department of Biological Sciences, 607 Cooke Hall, State University of New York at Buffalo, Buffalo, New York 14260
| | - Kristen Kruger Woods
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, and Department of Biological Sciences, 607 Cooke Hall, State University of New York at Buffalo, Buffalo, New York 14260
| | - Gerald B. Koudelka
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, and Department of Biological Sciences, 607 Cooke Hall, State University of New York at Buffalo, Buffalo, New York 14260
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, and Department of Biological Sciences, 607 Cooke Hall, State University of New York at Buffalo, Buffalo, New York 14260
| |
Collapse
|
14
|
Bowser TE, Bartlett VJ, Grier MC, Verma AK, Warchol T, Levy SB, Alekshun MN. Novel anti-infection agents: small-molecule inhibitors of bacterial transcription factors. Bioorg Med Chem Lett 2007; 17:5652-5. [PMID: 17766109 DOI: 10.1016/j.bmcl.2007.07.072] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 07/19/2007] [Indexed: 12/21/2022]
Abstract
Structure-based drug design was utilized to identify potent small-molecule inhibitors of proteins within the AraC family of bacterial transcription factors, which control virulence in medically important microbes. These agents represent a novel approach to fight infectious disease and may be less likely to promote resistance development. These compounds lack intrinsic antibacterial activity in vitro and were able to limit a bacterial infection in a mouse model of urinary tract infection.
Collapse
Affiliation(s)
- Todd E Bowser
- Paratek Pharmaceuticals, Inc., 75 Kneeland Street, Boston, MA 02111, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Koudelka GB, Mauro SA, Ciubotaru M. Indirect readout of DNA sequence by proteins: the roles of DNA sequence-dependent intrinsic and extrinsic forces. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2007; 81:143-77. [PMID: 16891171 DOI: 10.1016/s0079-6603(06)81004-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Gerald B Koudelka
- Department of Biological Sciences, University at Buffalo, Cooke Hall, North Campus, Buffalo, New York 14260, USA
| | | | | |
Collapse
|
16
|
Withey JH, DiRita VJ. The toxbox: specific DNA sequence requirements for activation of Vibrio cholerae virulence genes by ToxT. Mol Microbiol 2006; 59:1779-89. [PMID: 16553883 DOI: 10.1111/j.1365-2958.2006.05053.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Gram-negative, curved rod Vibrio cholerae causes the severe diarrhoeal disease cholera. The two major virulence factors produced by V. cholerae during infection are the cholera toxin (CT) and the toxin-coregulated pilus (TCP). Transcription of the genes encoding both CT and the components of the TCP is directly activated by ToxT, a transcription factor in the AraC/XylS family. ToxT binds upstream of the ctxAB genes, encoding CT, and upstream of tcpA, the first gene in a large operon encoding the components of the TCP. The DNA sequences upstream of ctxAB and tcpA that contain ToxT binding sites do not have any significant similarity other than being AT-rich. Extensive site-directed mutagenesis was performed on the region upstream of tcpA previously shown to be protected by ToxT, and we identified specific base pairs important for activation of tcpA transcription by ToxT. This genetic approach was complemented by copper-phenanthroline footprinting experiments that showed protection by ToxT of the base pairs identified as most important for transcription activation in the mutagenesis experiments. Based on this new information and on previous work, we propose the presence of a ToxT-binding motif - the 'toxbox'- in promoters regulated by ToxT. At tcpA, two toxbox elements are present in a direct repeat configuration and both are required for activation of transcription by ToxT. The identity of only a few of the base pairs within the toxbox is important for activation by ToxT, and we term these the core toxbox elements. Lastly, we examined ToxT binding to a mutant having 5 bp inserted between the two toxboxes at tcpA and found that occupancy of both binding sites is retained regardless of the positions of the binding sites relative to each other on the face of the DNA. This suggests that ToxT binds independently as a monomer to each toxbox in the tcpA direct repeat, in accordance with what we observed previously with the inverted repeat ToxT sites between acfA and acfD.
Collapse
Affiliation(s)
- Jeffrey H Withey
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, 48109-0614, USA
| | | |
Collapse
|
17
|
Dangi B, Gronenborn AM, Rosner JL, Martin RG. Versatility of the carboxy-terminal domain of the alpha subunit of RNA polymerase in transcriptional activation: use of the DNA contact site as a protein contact site for MarA. Mol Microbiol 2004; 54:45-59. [PMID: 15458404 DOI: 10.1111/j.1365-2958.2004.04250.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transcriptional activator, MarA, interacts with RNA polymerase (RNAP) to activate promoters of the mar regulon. Here, we identify the interacting surfaces of MarA and of the carboxy-terminal domain of the alpha subunit of RNAP (alpha-CTD) by NMR-based chemical shift mapping. Spectral changes were monitored for a MarA-DNA complex upon titration with alpha-CTD, and for alpha-CTD upon titration with MarA-DNA. The mapping results were confirmed by mutational studies and retention chromatography. A model of the ternary complex shows that alpha-CTD uses a '265-like determinant' to contact MarA at a surface distant from the DNA. This is unlike the interaction of alpha-CTD with the CRP or Fis activators where the '265 determinant' contacts DNA while another surface of the same alpha-CTD molecule contacts the activator. These results reveal a new versatility for alpha-CTD in transcriptional activation.
Collapse
Affiliation(s)
- Bindi Dangi
- Laboratory of Chemical Physics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
18
|
Schneiders T, Barbosa TM, McMurry LM, Levy SB. The Escherichia coli Transcriptional Regulator MarA Directly Represses Transcription of purA and hdeA. J Biol Chem 2004; 279:9037-42. [PMID: 14701822 DOI: 10.1074/jbc.m313602200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli MarA protein mediates a response to multiple environmental stresses through the activation or repression in vivo of a large number of chromosomal genes. Transcriptional activation for a number of these genes has been shown to occur via direct interaction of MarA with a 20-bp degenerate asymmetric "marbox" sequence. It was not known whether repression by MarA was also direct. We found that purified MarA was sufficient in vitro to repress transcription of both purA and hdeA. Transcription and electrophoretic mobility shift experiments in vitro using mutant promoters suggested that the marbox involved in the repression overlapped the -35 promoter motif and was in the "backward" orientation. This organization contrasts with that of the class II promoters activated by MarA, in which the marbox also overlaps the -35 motif but is in the "forward" orientation. We conclude that MarA, a member of the AraC/XylS family, can act directly as a repressor or an activator, depending on the position and orientation of the marbox within a promoter.
Collapse
Affiliation(s)
- Thamarai Schneiders
- Center for Adaptation Genetics and Drug Resistance and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
19
|
Martin RG, Rosner JL. Analysis of Microarray Data for the marA, soxS, and rob Regulons of Escherichia coli. Methods Enzymol 2003; 370:278-80. [PMID: 14712652 DOI: 10.1016/s0076-6879(03)70024-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Robert G Martin
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0560, USA
| | | |
Collapse
|
20
|
Grkovic S, Brown MH, Skurray RA. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 2002; 66:671-701, table of contents. [PMID: 12456787 PMCID: PMC134658 DOI: 10.1128/mmbr.66.4.671-701.2002] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The active transport of toxic compounds by membrane-bound efflux proteins is becoming an increasingly frequent mechanism by which cells exhibit resistance to therapeutic drugs. This review examines the regulation of bacterial drug efflux systems, which occurs primarily at the level of transcription. Investigations into these regulatory networks have yielded a substantial volume of information that has either not been forthcoming from or complements that obtained by analysis of the transport proteins themselves. Several local regulatory proteins, including the activator BmrR from Bacillus subtilis and the repressors QacR from Staphylococcus aureus and TetR and EmrR from Escherichia coli, have been shown to mediate increases in the expression of drug efflux genes by directly sensing the presence of the toxic substrates exported by their cognate pump. This ability to bind transporter substrates has permitted detailed structural information to be gathered on protein-antimicrobial agent-ligand interactions. In addition, bacterial multidrug efflux determinants are frequently controlled at a global level and may belong to stress response regulons such as E. coli mar, expression of which is controlled by the MarA and MarR proteins. However, many regulatory systems are ill-adapted for detecting the presence of toxic pump substrates and instead are likely to respond to alternative signals related to unidentified physiological roles of the transporter. Hence, in a number of important pathogens, regulatory mutations that result in drug transporter overexpression and concomitant elevated antimicrobial resistance are often observed.
Collapse
Affiliation(s)
- Steve Grkovic
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
21
|
Bhattacharya S, Botuyan MV, Hsu F, Shan X, Arunkumar AI, Arrowsmith CH, Edwards AM, Chazin WJ. Characterization of binding-induced changes in dynamics suggests a model for sequence-nonspecific binding of ssDNA by replication protein A. Protein Sci 2002; 11:2316-25. [PMID: 12237454 PMCID: PMC2373701 DOI: 10.1110/ps.0209202] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Single-stranded-DNA-binding proteins (SSBs) are required for numerous genetic processes ranging from DNA synthesis to the repair of DNA damage, each of which requires binding with high affinity to ssDNA of variable base composition. To gain insight into the mechanism of sequence-nonspecific binding of ssDNA, NMR chemical shift and (15)N relaxation experiments were performed on an isolated ssDNA-binding domain (RPA70A) from the human SSB replication protein A. The backbone (13)C, (15)N, and (1)H resonances of RPA70A were assigned for the free protein and the d-CTTCA complex. The binding-induced changes in backbone chemical shifts were used to map out the ssDNA-binding site. Comparison to results obtained for the complex with d-C(5) showed that the basic mode of binding is independent of the ssDNA sequence, but that there are differences in the binding surfaces. Amide nitrogen relaxation rates (R(1) and R(2)) and (1)H-(15)N NOE values were measured for RPA70A in the absence and presence of d-CTTCA. Analysis of the data using the Model-Free formalism and spectral density mapping approaches showed that the structural changes in the binding site are accompanied by some significant changes in flexibility of the primary DNA-binding loops on multiple timescales. On the basis of these results and comparisons to related proteins, we propose that the mechanism of sequence-nonspecific binding of ssDNA involves dynamic remodeling of the binding surface.
Collapse
Affiliation(s)
- Shibani Bhattacharya
- Department of Biochemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232-8725, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Barbosa TM, Levy SB. Activation of the Escherichia coli nfnB gene by MarA through a highly divergent marbox in a class II promoter. Mol Microbiol 2002; 45:191-202. [PMID: 12100559 DOI: 10.1046/j.1365-2958.2002.03006.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MarA is a global regulator that mediates resistance to multiple environmental hazards such as antibiotics, disinfectants and oxidative stress agents by modulating the expression of a large number of genes in the Escherichia coli chromosome. Two E. coli MarA homologues, SoxS and Rob also control, to different extents, genes in the mar/sox/rob regulon. The controlling element for these proteins is a 20 bp 'marbox' sequence in the promoter region of regulated genes. Using in vitro assays and mutagenesis of promoter fusions in whole cells, we identified the cis regulatory element involved in MarA upregulation of the oxygen-insensitive nitroreductase nfnB gene. MarA binds to a marbox that is highly divergent from the previously proposed consensus (eight differences out of 14 specified nucleotides). Although purified SoxS and Rob proteins, like MarA, activated nfnB transcription in vitro, only constitutive expression of chromosomal marA, but not of soxS and rob genes, affected nfnB expression in whole cells. Increased expression, but limited as compared with MarA, was only achieved by plasmid-mediated overexpression of SoxS and Rob. This study shows that MarA can regulate gene expression through a functional marbox that is considerably divergent from the current consensus sequence. The data suggest that MarA is preferred over SoxS and Rob in upregulating nfnB. The findings imply that other different but physiologically important marbox DNA-MarA interactions take place in the regulation of still uncharacterized members of the mar regulon.
Collapse
Affiliation(s)
- Teresa M Barbosa
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
23
|
Martin RG, Rosner JL. Genomics of the marA/soxS/rob regulon of Escherichia coli: identification of directly activated promoters by application of molecular genetics and informatics to microarray data. Mol Microbiol 2002; 44:1611-24. [PMID: 12067348 DOI: 10.1046/j.1365-2958.2002.02985.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microarray analyses are providing a plethora of data concerning transcriptional responses to specific gene regulators and their inducers but do not distinguish between direct and indirect responses. Here, we identify directly activated promoters of the overlapping marA, soxS and rob regulon(s) of Escherichia coli by applying informatics, genomics and molecular genetics to microarray data obtained by others. Those studies found that overexpression of marA, or the treatment of cells with salicylate to derepress marA, or treatment with paraquat to induce soxS, resulted in elevated transcription of 153 genes. However, only 27 out of the promoters showed increased transcription under at least two of the aforementioned conditions and eight of those were previously known to be directly activated. A computer algorithm was used to identify potential activator binding sites located upstream of the remaining 19 promoters of this subset, and conventional genetic and biochemical approaches were applied to test whether these sites are critical for activation by the homologous MarA, SoxS and Rob transcriptional activators. Only seven out of the 19 promoters were found to be activated when fused to lacZ and tested as single lysogens. All seven contained an essential activator binding site. The remaining promoters were insensitive to stimulation by the inducers suggesting that the great majority of elevated microarray transcripts either were misidentified or resulted from indirect effects requiring sequences outside of the promoter region. We estimate that the total number of directly activated promoters in the regulon is less than 40.
Collapse
Affiliation(s)
- Robert G Martin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Bethesda, MD 20892-0560, USA.
| | | |
Collapse
|