1
|
Schulz MC, Wolff N, Kopf M, Gekle M. Acidosis-induced p38-kinase activation triggers an IL-6-mediated crosstalk of renal proximal tubule cells with fibroblasts leading to their inflammatory response. Cell Commun Signal 2025; 23:180. [PMID: 40217316 PMCID: PMC11987431 DOI: 10.1186/s12964-025-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Local interstitial acidosis in chronic kidney disease (CKD) induces inflammatory responses and dedifferentiation of proximal tubule cells (PTCs), disrupting cellular crosstalk through cytokine and COX-2 metabolite secretion. This promotes a switch to an inflammatory fibroblast phenotype, further exacerbating inflammation and PTC dedifferentiation. p38-signaling and downstream transcription factors, including P-CREB and c-fos, contribute to these responses. This study investigates the impact of acidosis on inflammatory responses in PTCs and fibroblasts, focusing on cellular crosstalk and the role of p38-signaling. METHODS HK-2 (human PTCs) and CCD-1092Sk (human fibroblasts) were exposed to acidic or control media in mono- and coculture for 30 min, 3 h, or 48 h. Protein expression of IL-6, phosphorylated (P-) and total CREB, P- and total SRF, c-fos, and P- and total p38 was analyzed by western blot. IL-6 secretion was measured using ELISA. The impact of p38 and IL-6 receptor activity was assessed by pharmacological intervention. RESULTS In coculture, acidosis initially caused a transient decrease in IL-6 secretion but significantly increased IL-6 levels after 48 h. Acidosis induced intracellular IL-6 expression in HK-2 cells within 3 h independent of culture conditions, with sustained IL-6 protein increase after 48 h only in coculture. Acidosis also enhanced P-CREB and c-fos expression in coculture during the first 3 h. Regardless of culture conditions, acidosis increased IL-6, c-fos, and P-SRF expression in CCDSK cells after 48 h. P-CREB and COX-2 expression were elevated in CCDSK in coculture. Acidosis-mediated effects on IL-6, P-CREB, and P-SRF expression were p38-dependent in both cell lines. Finally, we assessed the pH-dependency of IL-6 action and found that IL-6 addition increased COX-2 expression via the IL-6 receptor in acidic but not control media. Thus, acidosis enhances IL-6 secretion and potentiates its receptor-mediated biological effects. CONCLUSION This study identifies IL-6 as a key mediator of tubule-fibroblast crosstalk in an acidic milieu, promoting inflammatory processes. Acidosis induces IL-6 expression, secretion, and biological effects, with p38 kinase as a crucial mediator. If validated in vivo, these findings could enhance understanding of CKD and support early interventions.
Collapse
Affiliation(s)
- Marie-Christin Schulz
- Julius-Bernstein-Institut für Physiologie, Universität Halle- Wittenberg, Magdeburger Straße 6, 06112, Halle (Saale), Germany.
| | - Nathalie Wolff
- Julius-Bernstein-Institut für Physiologie, Universität Halle- Wittenberg, Magdeburger Straße 6, 06112, Halle (Saale), Germany
| | - Michael Kopf
- Julius-Bernstein-Institut für Physiologie, Universität Halle- Wittenberg, Magdeburger Straße 6, 06112, Halle (Saale), Germany
| | - Micheal Gekle
- Julius-Bernstein-Institut für Physiologie, Universität Halle- Wittenberg, Magdeburger Straße 6, 06112, Halle (Saale), Germany
| |
Collapse
|
2
|
Profantová B, Římal V, Profant V, Socha O, Barvík I, Štěpánková H, Štěpánek J. Polymorphic potential of SRF binding site of c-Fos gene promoter: in vitro study. RSC Adv 2024; 14:38253-38267. [PMID: 39628460 PMCID: PMC11613138 DOI: 10.1039/d4ra05897f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Recently published in vivo observations have highlighted the presence of cruciform structures within the genome, suggesting their potential significance in the rapid recognition of the target sequence for transcription factor binding. In this in vitro study, we investigate the organization and stability of the sense (coding) strand within the Serum Response Element of the c-Fos gene promoter (c-Fos SRE), specifically focusing on segments spanning 12 to 36 nucleotides, centered around the CArG-box. Through a thorough examination of UV absorption patterns with varying temperatures, we identified the emergence of a remarkably stable structure, which we conclusively characterized as a hairpin using complementary 1H NMR experiments. Our research decisively ruled out the formation of homoduplexes, as confirmed by supplementary fluorescence experiments. Utilizing molecular dynamics simulations with atomic distance constraints derived from NMR data, we explored the structural intricacies of the compact hairpin. Notably, the loop consisting of the six-membered A/T sequence demonstrated substantial stabilization through extensive stacking, non-canonical inter-base hydrogen bonding, and hydrophobic clustering of thymine methyl groups. These findings suggest the potential of the c-Fos SRE to adopt a cruciform structure (consisting of two opposing hairpins), potentially providing a topological recognition site for the SRF transcription factor under cellular conditions. Our results should inspire further biochemical and in vivo studies to explore the functional implications of these non-canonical DNA structures.
Collapse
Affiliation(s)
- Barbora Profantová
- Institute of Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5, 121 16 Prague 2 Czech Republic +420 95155 1471
| | - Václav Římal
- Department of Low-Temperature Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2, 180 00 Prague 8 Czech Republic
| | - Václav Profant
- Institute of Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5, 121 16 Prague 2 Czech Republic +420 95155 1471
| | - Ondřej Socha
- Department of Low-Temperature Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2, 180 00 Prague 8 Czech Republic
| | - Ivan Barvík
- Institute of Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5, 121 16 Prague 2 Czech Republic +420 95155 1471
| | - Helena Štěpánková
- Department of Low-Temperature Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2, 180 00 Prague 8 Czech Republic
| | - Josef Štěpánek
- Institute of Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5, 121 16 Prague 2 Czech Republic +420 95155 1471
| |
Collapse
|
3
|
Liu K, Li W, Xiao Y, Lei M, Zhang M, Min J. Molecular mechanism of specific DNA sequence recognition by NRF1. Nucleic Acids Res 2024; 52:953-966. [PMID: 38055835 PMCID: PMC10810270 DOI: 10.1093/nar/gkad1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Nuclear respiratory factor 1 (NRF1) regulates the expression of genes that are vital for mitochondrial biogenesis, respiration, and various other cellular processes. While NRF1 has been reported to bind specifically to GC-rich promoters as a homodimer, the precise molecular mechanism governing its recognition of target gene promoters has remained elusive. To unravel the recognition mechanism, we have determined the crystal structure of the NRF1 homodimer bound to an ATGCGCATGCGCAT dsDNA. In this complex, NRF1 utilizes a flexible linker to connect its dimerization domain (DD) and DNA binding domain (DBD). This configuration allows one NRF1 monomer to adopt a U-turn conformation, facilitating the homodimer to specifically bind to the two TGCGC motifs in the GCGCATGCGC consensus sequence from opposite directions. Strikingly, while the NRF1 DBD alone could also bind to the half-site (TGCGC) DNA of the consensus sequence, the cooperativity between DD and DBD is essential for the binding of the intact GCGCATGCGC sequence and the transcriptional activity of NRF1. Taken together, our results elucidate the molecular mechanism by which NRF1 recognizes specific DNA sequences in the promoters to regulate gene expression.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Weifang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yuqing Xiao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ming Lei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ming Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
4
|
Hou C, McCown C, Ivanov DN, Tsodikov OV. Structural Insight into the DNA Binding Function of Transcription Factor ERF. Biochemistry 2020; 59:10.1021/acs.biochem.0c00774. [PMID: 33175491 PMCID: PMC8110599 DOI: 10.1021/acs.biochem.0c00774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ETS family transcription factors control development of different cell types in humans, whereas deregulation of these proteins leads to severe developmental syndromes and cancers. One of a few members of the ETS family that are known to act solely as repressors, ERF, is required for normal osteogenesis and hematopoiesis. Another important function of ERF is acting as a tumor suppressor by antagonizing oncogenic fusions involving other ETS family factors. The structure of ERF and the DNA binding properties specific to this protein have not been elucidated. In this study, we determined two crystal structures of the complexes of the DNA binding domain of ERF with DNA. In one, ERF is in a distinct dimeric form, with Cys72 in a reduced state. In the other, two dimers of ERF are assembled into a tetramer that is additionally locked by two Cys72-Cys72 disulfide bonds across the dimers. In the tetramer, the ERF molecules are bound to a pseudocontinuous DNA on the same DNA face at two GGAA binding sites on opposite strands. Sedimentation velocity analysis showed that this tetrameric assembly forms on continuous DNA containing such tandem sites spaced by 7 bp. Our bioinformatic analysis of three previously reported sets of ERF binding loci across entire genomes showed that these loci were enriched in such 7 bp spaced tandem sites. Taken together, these results strongly suggest that the observed tetrameric assembly is a functional state of ERF in the human cell.
Collapse
Affiliation(s)
- Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Claudia McCown
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Dmitri N. Ivanov
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
5
|
Crystal Structures of Ternary Complexes of MEF2 and NKX2-5 Bound to DNA Reveal a Disease Related Protein-Protein Interaction Interface. J Mol Biol 2020; 432:5499-5508. [PMID: 32681840 DOI: 10.1016/j.jmb.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/22/2022]
Abstract
MEF2 and NKX2-5 transcription factors interact with each other in cardiogenesis and are necessary for normal heart formation. Despite evidence suggesting that these two transcription factors function synergistically and possibly through direct physical interactions, molecular mechanisms by which they interact are not clear. Here we determined the crystal structures of ternary complexes of MEF2 and NKX2-5 bound to myocardin enhancer DNA in two crystal forms. These crystal structures are the first example of human MADS-box/homeobox ternary complex structures involved in cardiogenesis. Our structures reveal two possible modes of interactions between MEF2 and NKX2-5: MEF2 and NKX bind to adjacent DNA sites to recognize DNA in cis; and MEF2 and NKX bind to different DNA strands to interact with each other in trans via a conserved protein-protein interface observed in both crystal forms. Disease-related mutations are mapped to the observed protein-protein interface. Our structural studies provide a starting point to understand and further study the molecular mechanisms of the interactions between MEF2 and NKX2.5 and their roles in cardiogenesis.
Collapse
|
6
|
Wu Z, Zhang W, Kang YJ. Copper affects the binding of HIF-1α to the critical motifs of its target genes. Metallomics 2019; 11:429-438. [PMID: 30566157 DOI: 10.1039/c8mt00280k] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Copper regulates the target gene selection of HIF-1α under hypoxic conditions by affecting HIF-1α-DNA binding patterns across the genome.
Collapse
Affiliation(s)
- Zhijuan Wu
- Regenerative Medicine Research Center
- Sichuan University West China Hospital
- Chengdu
- China
| | - Wenjing Zhang
- Regenerative Medicine Research Center
- Sichuan University West China Hospital
- Chengdu
- China
- Memphis Institute of Regenerative Medicine
| | - Y. James Kang
- Regenerative Medicine Research Center
- Sichuan University West China Hospital
- Chengdu
- China
- Memphis Institute of Regenerative Medicine
| |
Collapse
|
7
|
Ghosh B, Boila LD, Choudhury S, Mondal P, Bhattacharjee S, Pal SK, Sengupta A, Roy S. A Potent Conformation-Constrained Synthetic Peptide Mimic of a Homeodomain Selectively Regulates Target Genes in Cells. ACS Chem Biol 2018; 13:2003-2009. [PMID: 29966078 DOI: 10.1021/acschembio.8b00488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA, as a target for therapeutic intervention, remains largely unexplored. DLX-4, a homeodomain containing transcription factor, and its spliced isoforms play crucial roles in many aspects of cellular biochemistry and important roles in many diseases. A smaller peptide mimicking the homeodomain of the transcription factor DLX-4 was designed and synthesized by suitable conjoining of its modified DNA-binding elements. The peptide binds to DLX-4 target sites on the regulatory region of the globin gene cluster with native-like affinity and specificity in vitro. When conjugated to cell penetrating and nuclear localization sequences, it upregulated some of the genes repressed by DLX-4 or its isoforms, such as β- and γ-globin genes in erythropoietin-induced differentiating CD34+ human hematopoietic stem/progenitor cells with high specificity by competing with the respective binding sites. Engineered peptides mimicking DNA-binding domains of transcription factors offer the potential for creating synthetic molecules for directly targeting DNA sites with high specificity.
Collapse
Affiliation(s)
- Basusree Ghosh
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Liberalis Debraj Boila
- Stem Cell & Leukemia Lab, Cancer Biology & Inflammatory Disorder Division, Translational Research Unit of Excellence (TRUE), Indian Institute of Chemical Biology, CN-6, Sector V, Salt Lake, Kolkata 700 091, India
| | - Susobhan Choudhury
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098, India
| | - Priya Mondal
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Sayan Bhattacharjee
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098, India
| | - Amitava Sengupta
- Stem Cell & Leukemia Lab, Cancer Biology & Inflammatory Disorder Division, Translational Research Unit of Excellence (TRUE), Indian Institute of Chemical Biology, CN-6, Sector V, Salt Lake, Kolkata 700 091, India
| | - Siddhartha Roy
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
8
|
Mazumder A, Batabyal S, Mondal M, Mondol T, Choudhury S, Ghosh R, Chatterjee T, Bhattacharyya D, Pal SK, Roy S. Specific DNA sequences allosterically enhance protein-protein interaction in a transcription factor through modulation of protein dynamics: implications for specificity of gene regulation. Phys Chem Chem Phys 2017; 19:14781-14792. [PMID: 28548177 DOI: 10.1039/c7cp01193h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Most genes are regulated by multiple transcription factors, often assembling into multi-protein complexes in the gene regulatory region. Understanding of the molecular origin of specificity of gene regulatory complex formation in the context of the whole genome is currently inadequate. A phage transcription factor λ-CI forms repressive multi-protein complexes by binding to multiple binding sites in the genome to regulate the lifecycle of the phage. The protein-protein interaction between two DNA-bound λ-CI molecules is stronger when they are bound to the correct pair of binding sites, suggesting allosteric transmission of recognition of correct DNA sequences to the protein-protein interaction interface. Exploration of conformation and dynamics by time-resolved fluorescence anisotropy decay and molecular dynamics suggests a change in protein dynamics to be a crucial factor in mediating allostery. A lattice-based model suggests that DNA-sequence induced allosteric effects could be crucial underlying factors in differentially stabilizing the correct site-specific gene regulatory complexes. We conclude that transcription factors have evolved multiple mechanisms to augment the specificity of DNA-protein interactions in order to achieve an extraordinarily high degree of spatial and temporal specificities of gene regulatory complexes, and DNA-sequence induced allostery plays an important role in the formation of sequence-specific gene regulatory complexes.
Collapse
Affiliation(s)
- Abhishek Mazumder
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700 032, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chakraborty M, Roy S. A peptide-based synthetic transcription factor selectively down-regulates the proto-oncogene CFOS in tumour cells and inhibits proliferation. Chem Commun (Camb) 2017; 53:376-379. [DOI: 10.1039/c6cc08086c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A synthetic transcription factor targeted against Elk-1 inhibits expression of CFOS and other genes selectively in Ras-mutated tumour cells.
Collapse
Affiliation(s)
| | - Siddhartha Roy
- Department of Biophysics
- Bose Institute
- Kolkata 700054
- India
| |
Collapse
|
10
|
Buffet C, Catelli MG, Hecale-Perlemoine K, Bricaire L, Garcia C, Gallet-Dierick A, Rodriguez S, Cormier F, Groussin L. Dual Specificity Phosphatase 5, a Specific Negative Regulator of ERK Signaling, Is Induced by Serum Response Factor and Elk-1 Transcription Factor. PLoS One 2015; 10:e0145484. [PMID: 26691724 PMCID: PMC4687125 DOI: 10.1371/journal.pone.0145484] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/29/2015] [Indexed: 12/11/2022] Open
Abstract
Serum stimulation of mammalian cells induces, via the MAPK pathway, the nuclear protein DUSP5 (dual-specificity phosphatase 5), which specifically interacts with and inactivates the ERK1/2 MAP kinases. However, molecular mechanisms underlying DUSP5 induction are not well known. Here, we found that the DUSP5 mRNA induction depends on a transcriptional regulation by the MAPK pathway, without any modification of the mRNA stability. Two contiguous CArG boxes that bind serum response factor (SRF) were found in a 1 Kb promoter region, as well as several E twenty-six transcription factor family binding sites (EBS). These sites potentially bind Elk-1, a transcription factor activated by ERK1/2. Using wild type or mutated DUSP5 promoter reporters, we demonstrated that SRF plays a crucial role in serum induction of DUSP5 promoter activity, the proximal CArG box being important for SRF binding in vitro and in living cells. Moreover, in vitro and in vivo binding data of Elk-1 to the same promoter region further demonstrate a role for Elk-1 in the transcriptional regulation of DUSP5. SRF and Elk-1 form a ternary complex (Elk-1-SRF-DNA) on DUSP5 promoter, consequently providing a link to an important negative feedback tightly regulating phosphorylated ERK levels.
Collapse
Affiliation(s)
- Camille Buffet
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Maria-Grazia Catelli
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Karine Hecale-Perlemoine
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Léopoldine Bricaire
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Camille Garcia
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Anne Gallet-Dierick
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Stéphanie Rodriguez
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Françoise Cormier
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Lionel Groussin
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
- Department of Endocrinology, Cochin Hospital, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Hou C, Tsodikov OV. Structural Basis for Dimerization and DNA Binding of Transcription Factor FLI1. Biochemistry 2015; 54:7365-74. [PMID: 26618620 DOI: 10.1021/acs.biochem.5b01121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FLI1 (Friend leukemia integration 1) is a metazoan transcription factor that is upregulated in a number of cancers. In addition, rearrangements of the fli1 gene cause sarcomas, leukemias, and lymphomas. These rearrangements encode oncogenic transcription factors, in which the DNA binding domain (DBD or ETS domain) of FLI1 on the C-terminal side is fused to a part of an another protein on the N-terminal side. Such abnormal cancer cell-specific fusions retain the DNA binding properties of FLI1 and acquire non-native protein-protein or protein-nucleic acid interactions of the substituted region. As a result, these fusions trigger oncogenic transcriptional reprogramming of the host cell. Interactions of FLI1 fusions with other proteins and with itself play a critical role in the oncogenic regulatory functions, and they are currently under intense scrutiny, mechanistically and as potential novel anticancer drug targets. We report elusive crystal structures of the FLI1 DBD, alone and in complex with cognate DNA containing a GGAA recognition sequence. Both structures reveal a previously unrecognized dimer of this domain, consistent with its dimerization in solution. The homodimerization interface is helix-swapped and dominated by hydrophobic interactions, including those between two interlocking Phe362 residues. A mutation of Phe362 to an alanine disrupted the propensity of this domain to dimerize without perturbing its structure or the DNA binding function, consistent with the structural observations. We propose that FLI1 DBD dimerization plays a role in transcriptional activation and repression by FLI1 and its fusions at promoters containing multiple FLI1 binding sites.
Collapse
Affiliation(s)
- Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
12
|
Štěpánek J, Kopecký V, Turpin PY, Li Z, Alpert B, Zentz C. DNA Electric Charge Oscillations Govern Protein-DNA Recognition. PLoS One 2015; 10:e0124444. [PMID: 25923532 PMCID: PMC4414483 DOI: 10.1371/journal.pone.0124444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/13/2015] [Indexed: 12/02/2022] Open
Abstract
The transcriptional activity of the serum response factor (SRF) protein is triggered by its binding to a 10-base-pair DNA consensus sequence designated the CArG box, which is the core sequence of the serum response element (SRE). Sequence-specific recognition of the CArG box by a core domain of 100 amino acid residues of SRF (core-SRF) was asserted to depend almost exclusively on the intrinsic SRE conformation and on the degree of protein-induced SRE bending. Nevertheless, this paradigm was invalidated by a temperature-dependent Raman spectroscopy study of 20-mer oligonucleotides involved in bonding interactions with core-SRF that reproduced both wild type and mutated c-fos SREs. Indeed, the SRE moieties that are complexed with core-SRF exhibit permanent interconversion dynamics between bent and linear conformers. Thus, sequence-specific recognition of the CArG box by core-SRF cannot be explained only in terms of the three-dimensional structure of the SRE. A particular dynamic pairing process discriminates between the wild type and mutated complexes. Specific oscillations of the phosphate charge network of the SRE govern the recognition between both partners rather than an intrinsic set of conformations of the SRE.
Collapse
Affiliation(s)
- Josef Štěpánek
- Laboratoire Jean Perrin, UPMC Université Paris 06, CNRS FRE 3231, Paris, France
- ER12, UPMC Université Paris 06, Paris, France
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| | - Vladimír Kopecký
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| | - Pierre-Yves Turpin
- Laboratoire Jean Perrin, UPMC Université Paris 06, CNRS FRE 3231, Paris, France
| | - Zhenlin Li
- UR4, UPMC Université Paris 06, Paris, France
| | | | | |
Collapse
|
13
|
Profantová B, Coïc YM, Profant V, Štěpánek J, Kopecký V, Turpin PY, Alpert B, Zentz C. Organization of the MADS box from human SRF revealed by tyrosine perturbation. J Phys Chem B 2015; 119:1793-801. [PMID: 25558766 DOI: 10.1021/jp508897p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MADS box family transcription factors are involved in signal transduction and development control through DNA specific sequence recognition. The DNA binding domain of these proteins contains a conservative 55-60 amino acid sequence which defines the membership of this large family. Here we present a thorough study of the MADS segment of serum response factor (MADS(SRF)). Fluorescence, UV-absorption, and Raman spectroscopy studies were performed in order to disclose its behavior and basic functional properties in an aqueous environment. The secondary structure of MADS(SRF) estimated by analysis of Raman spectra and supported by CD has revealed only the C-terminal part as homologous with those of free core-SRF, while the N-terminal part has lost the stable α-helical structure found in both the free core-SRF and its specific complex with DNA. The three tyrosine residues of the MADS(SRF) were used as spectroscopic inner probes. The effect of environmental conditions, especially pH variations and addition of variously charged quenchers, on their spectra was examined. Two-component fluorescence quenching was revealed using factor analysis and corresponding Stern-Volmer constants determined. Factor analysis of absorbance and fluorescence pH titration led to determination of three dissociation constants pKa1 = 6.4 ± 0.2, pKa2 = 7.3 ± 0.2, and pKa3 = 9.6 ± 0.6. Critical comparison of all experiments identified the deprotonation of His193 hydrogen bonded to Tyr195 as a candidate for pKa1 (and that of Tyr158 as a candidate for pKa2). Within MADS(SRF), His193 is a key intermediary between the N-terminal primary DNA binding element and the hydrophobic C-terminal protein dimerization element.
Collapse
Affiliation(s)
- Barbora Profantová
- Lab. Jean Perrin, CNRS UMR 8237, UPMC Université Paris 6 , 4 place Jussieu, 75252 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Recent advances in the structural molecular biology of Ets transcription factors: interactions, interfaces and inhibition. Biochem Soc Trans 2014; 42:130-8. [PMID: 24450640 PMCID: PMC3901394 DOI: 10.1042/bst20130227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The Ets family of eukaryotic transcription factors is based around the conserved Ets DNA-binding domain. Although their DNA-binding selectivity is biochemically and structurally well characterized, structures of homodimeric and ternary complexes point to Ets domains functioning as versatile protein-interaction modules. In the present paper, we review the progress made over the last decade to elucidate the structural mechanisms involved in modulation of DNA binding and protein partner selection during dimerization. We see that Ets domains, although conserved around a core architecture, have evolved to utilize a variety of interaction surfaces and binding mechanisms, reflecting Ets domains as dynamic interfaces for both DNA and protein interaction. Furthermore, we discuss recent advances in drug development for inhibition of Ets factors, and the roles structural biology can play in their future.
Collapse
|
15
|
Puranik S, Acajjaoui S, Conn S, Costa L, Conn V, Vial A, Marcellin R, Melzer R, Brown E, Hart D, Theißen G, Silva CS, Parcy F, Dumas R, Nanao M, Zubieta C. Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis. THE PLANT CELL 2014; 26:3603-15. [PMID: 25228343 PMCID: PMC4213154 DOI: 10.1105/tpc.114.127910] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/20/2014] [Accepted: 08/29/2014] [Indexed: 05/19/2023]
Abstract
In plants, MADS domain transcription factors act as central regulators of diverse developmental pathways. In Arabidopsis thaliana, one of the most central members of this family is SEPALLATA3 (SEP3), which is involved in many aspects of plant reproduction, including floral meristem and floral organ development. SEP3 has been shown to form homo and heterooligomeric complexes with other MADS domain transcription factors through its intervening (I) and keratin-like (K) domains. SEP3 function depends on its ability to form specific protein-protein complexes; however, the atomic level determinants of oligomerization are poorly understood. Here, we report the 2.5-Å crystal structure of a small portion of the intervening and the complete keratin-like domain of SEP3. The domains form two amphipathic alpha helices separated by a rigid kink, which prevents intramolecular association and presents separate dimerization and tetramerization interfaces comprising predominantly hydrophobic patches. Mutations to the tetramerization interface demonstrate the importance of highly conserved hydrophobic residues for tetramer stability. Atomic force microscopy was used to show SEP3-DNA interactions and the role of oligomerization in DNA binding and conformation. Based on these data, the oligomerization patterns of the larger family of MADS domain transcription factors can be predicted and manipulated based on the primary sequence.
Collapse
Affiliation(s)
- Sriharsha Puranik
- European Synchrotron Radiation Facility, Structural Biology Group, 38042 Grenoble, France
| | - Samira Acajjaoui
- European Synchrotron Radiation Facility, Structural Biology Group, 38042 Grenoble, France
| | - Simon Conn
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide SA 5000, Australia
| | - Luca Costa
- European Synchrotron Radiation Facility, Structural Biology Group, 38042 Grenoble, France
| | - Vanessa Conn
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide SA 5000, Australia
| | - Anthony Vial
- European Synchrotron Radiation Facility, Structural Biology Group, 38042 Grenoble, France
| | - Romain Marcellin
- European Synchrotron Radiation Facility, Structural Biology Group, 38042 Grenoble, France Faculté des Sciences de Montpellier, place Eugène Bataillon, 34095 Montpellier, France
| | - Rainer Melzer
- Department of Genetics, Friedrich Schiller University, 07737 Jena, Germany
| | - Elizabeth Brown
- European Synchrotron Radiation Facility, Structural Biology Group, 38042 Grenoble, France
| | - Darren Hart
- Université Grenoble Alpes, CNRS, Integrated Structural Biology Grenoble, Unit of Virus Host Cell Interactions, Unité Mixte Internationale 3265 (CNRS-EMBL-UJF), UMS 3518 (CNRS-CEA-UJF-EMBL), 38042 Grenoble, France
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University, 07737 Jena, Germany
| | - Catarina S Silva
- CNRS, Laboratoire de Physiologie Cellulaire and Végétale, UMR 5168, 38054 Grenoble, France Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble, France Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble, France INRA, Laboratoire de Physiologie Cellulaire et Végétale, USC1359, F-38054 Grenoble, France
| | - François Parcy
- CNRS, Laboratoire de Physiologie Cellulaire and Végétale, UMR 5168, 38054 Grenoble, France Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble, France Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble, France INRA, Laboratoire de Physiologie Cellulaire et Végétale, USC1359, F-38054 Grenoble, France
| | - Renaud Dumas
- CNRS, Laboratoire de Physiologie Cellulaire and Végétale, UMR 5168, 38054 Grenoble, France Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble, France Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble, France INRA, Laboratoire de Physiologie Cellulaire et Végétale, USC1359, F-38054 Grenoble, France
| | - Max Nanao
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 38042 Grenoble, France
| | - Chloe Zubieta
- CNRS, Laboratoire de Physiologie Cellulaire and Végétale, UMR 5168, 38054 Grenoble, France Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble, France Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble, France INRA, Laboratoire de Physiologie Cellulaire et Végétale, USC1359, F-38054 Grenoble, France
| |
Collapse
|
16
|
Abstract
Esnault and colleagues (pp. 943-958) take a genomics approach to investigate the role of SRF (serum response factor) in the serum response of fibroblasts. The well-established dual role of SRF with alternative cofactors and responsiveness to two signaling pathways is illustrated at the genome-wide level, yet new insight comes from this global picture.
Collapse
Affiliation(s)
- Kathleen A Clark
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
17
|
Shrivastava T, Mino K, Babayeva ND, Baranovskaya OI, Rizzino A, Tahirov TH. Structural basis of Ets1 activation by Runx1. Leukemia 2014; 28:2040-8. [PMID: 24646888 PMCID: PMC4169772 DOI: 10.1038/leu.2014.111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 11/23/2022]
Abstract
Runx1 is required for definitive hematopoiesis and is well-known for its frequent chromosomal translocations and point mutations in leukemia. Runx1 regulates a variety of genes via Ets1 activation on an Ets1•Runx1 composite DNA sequence. The structural basis of such regulation remains unresolved. To address this problem, we determined the crystal structure of the ternary complex containing Runx11-242 and Ets1296-441 bound to T cell receptor alpha (TCRα) enhancer DNA. In the crystal, an Ets1-interacting domain of Runx1 is bound to the Ets1 DNA-binding domain and displaced an entire autoinhibitory module of Ets1, revealing a novel mechanism of Ets1 activation. The DNA binding and transcriptional studies with a variety of structure-guided Runx1 mutants confirmed a critical role of direct Ets1•Runx1 interaction in Ets1 activation. More importantly, the discovered mechanism provides a plausible explanation for how the Ets1•Runx1 interaction effectively activates not only a wild-type Ets1, but also a highly inhibited phosphorylated form of Ets1.
Collapse
Affiliation(s)
- T Shrivastava
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Mino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - N D Babayeva
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - O I Baranovskaya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - A Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - T H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
18
|
Profantová B, Profant V, Zíma V, Kopecký V, Bednárová L, Zentz C, Baumruk V, Turpin PY, Štěpánek J. Protonation Effect of Tyrosine in a Segment of the SRF Transcription Factor: A Combined Optical Spectroscopy, Molecular Dynamics, and Density Functional Theory Calculation Study. J Phys Chem B 2013; 117:16086-95. [DOI: 10.1021/jp4099864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Barbora Profantová
- Institute
of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
- Laboratoire
Jean Perrin, FRE 3231, Université Pierre et Marie Curie, place Jussieu 4, 75252 Paris CEDEX 5, France
| | - Václav Profant
- Institute
of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Vlastimil Zíma
- Institute
of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Vladimír Kopecký
- Institute
of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Lucie Bednárová
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Christian Zentz
- ER12, Université Pierre et Marie Curie, Place Jussieu 4, 75252 Paris CEDEX 5, France
| | - Vladimír Baumruk
- Institute
of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Pierre-Yves Turpin
- Laboratoire
Jean Perrin, FRE 3231, Université Pierre et Marie Curie, place Jussieu 4, 75252 Paris CEDEX 5, France
| | - Josef Štěpánek
- Institute
of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| |
Collapse
|
19
|
Acajjaoui S, Zubieta C. Crystallization studies of the keratin-like domain from Arabidopsis thaliana SEPALLATA 3. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:997-1000. [PMID: 23989147 PMCID: PMC3758147 DOI: 10.1107/s174430911302006x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/19/2013] [Indexed: 11/10/2022]
Abstract
In higher plants, the MADS-box genes encode a large family of transcription factors (TFs) involved in key developmental processes, most notably plant reproduction, flowering and floral organ development. SEPALLATA 3 (SEP3) is a member of the MADS TF family and plays a role in the development of the floral organs through the formation of multiprotein complexes with other MADS-family TFs. SEP3 is divided into four domains: the M (MADS) domain, involved in DNA binding and dimerization, the I (intervening) domain, a short domain involved in dimerization, the K (keratin-like) domain important for multimeric MADS complex formation and the C (C-terminal) domain, a largely unstructured region putatively important for higher-order complex formation. The entire K domain along with a portion of the I and C domains of SEP3 was crystallized using high-throughput robotic screening followed by optimization. The crystals belonged to space group P2(1)2(1)2, with unit-cell parameters a = 123.44, b = 143.07, c = 49.83 Å, and a complete data set was collected to 2.53 Å resolution.
Collapse
Affiliation(s)
- Samira Acajjaoui
- Structural Biology, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38000 Grenoble, France
| | - Chloe Zubieta
- Structural Biology, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38000 Grenoble, France
| |
Collapse
|
20
|
Nemecek D, Stepanek J, Thomas GJ. Raman Spectroscopy of Proteins and Nucleoproteins. ACTA ACUST UNITED AC 2013; Chapter 17:Unit17.8. [DOI: 10.1002/0471140864.ps1708s71] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Daniel Nemecek
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health Bethesda Maryland
- Central European Institute of Technology, Masaryk University Brno Czech Republic
| | - Josef Stepanek
- Charles University in Prague, Faculty of Mathematics and Physics, Institute of Physics Prague Czech Republic
| | - George J. Thomas
- School of Biological Sciences, University of Missouri‐Kansas City Kansas City Missouri
| |
Collapse
|
21
|
Lelli KM, Slattery M, Mann RS. Disentangling the many layers of eukaryotic transcriptional regulation. Annu Rev Genet 2012; 46:43-68. [PMID: 22934649 DOI: 10.1146/annurev-genet-110711-155437] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regulation of gene expression in eukaryotes is an extremely complex process. In this review, we break down several critical steps, emphasizing new data and techniques that have expanded current gene regulatory models. We begin at the level of DNA sequence where cis-regulatory modules (CRMs) provide important regulatory information in the form of transcription factor (TF) binding sites. In this respect, CRMs function as instructional platforms for the assembly of gene regulatory complexes. We discuss multiple mechanisms controlling complex assembly, including cooperative DNA binding, combinatorial codes, and CRM architecture. The second section of this review places CRM assembly in the context of nucleosomes and condensed chromatin. We discuss how DNA accessibility and histone modifications contribute to TF function. Lastly, new advances in chromosomal mapping techniques have provided increased understanding of intra- and interchromosomal interactions. We discuss how these topological maps influence gene regulatory models.
Collapse
Affiliation(s)
- Katherine M Lelli
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
22
|
Structural basis of Ets1 cooperative binding to widely separated sites on promoter DNA. PLoS One 2012; 7:e33698. [PMID: 22432043 PMCID: PMC3303851 DOI: 10.1371/journal.pone.0033698] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/17/2012] [Indexed: 11/19/2022] Open
Abstract
Ets1 is a member of the Ets family of transcription factors. Ets1 is expressed in autoinhibited form and its DNA binding depends on partner proteins bound to adjacent sequences or the relative positioning of a second Ets-binding site (EBS). The autoinhibition of Ets1 is mediated by structural coupling of regions flanking the DNA-binding domain. The NMR structure of Ets1 revealed that the inhibitory regions comprised of helices HI1 and HI2 and H4 are packed together on the Ets domain to form an inhibitory module. The crystal structure of Ets1 unexpectedly revealed a homodimer in which homodimerisation occurs via swapping of HI1 helices. Modeling of DNA binding indicates that the Ets1 dimer can bind to two antiparallel pieces of DNA. To verify this, we crystallized and solved the structure of the complex comprised of Ets1 dimer and two pieces of DNA. DNA binding by Ets1 dimer resulted in formation of additional intermolecular protein•DNA interactions, implying that the complex formation is cooperative.
Collapse
|
23
|
Huang Q, Gong C, Li J, Zhuo Z, Chen Y, Wang J, Hua ZC. Distance and helical phase dependence of synergistic transcription activation in cis-regulatory module. PLoS One 2012; 7:e31198. [PMID: 22299056 PMCID: PMC3267773 DOI: 10.1371/journal.pone.0031198] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 01/03/2012] [Indexed: 01/21/2023] Open
Abstract
Deciphering of the spatial and stereospecific constraints on synergistic transcription activation mediated between activators bound to cis-regulatory elements is important for understanding gene regulation and remains largely unknown. It has been commonly believed that two activators will activate transcription most effectively when they are bound on the same face of DNA double helix and within a boundary distance from the transcription initiation complex attached to the TATA box. In this work, we studied the spatial and stereospecific constraints on activation by multiple copies of bound model activators using a series of engineered relative distances and stereospecific orientations. We observed that multiple copies of the activators GAL4-VP16 and ZEBRA bound to engineered promoters activated transcription more effectively when bound on opposite faces of the DNA double helix. This phenomenon was not affected by the spatial relationship between the proximal activator and initiation complex. To explain these results, we proposed the novel concentration field model, which posits the effective concentration of bound activators, and therefore the transcription activation potential, is affected by their stereospecific positioning. These results could be used to understand synergistic transcription activation anew and to aid the development of predictive models for the identification of cis-regulatory elements.
Collapse
Affiliation(s)
- Qilai Huang
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
- The State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine, Macau University of Science and Technology, Macau, People's Republic of China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, People's Republic of China
| | - Chenguang Gong
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Jiahuang Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Zhu Zhuo
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Yuan Chen
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Jin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
- * E-mail: (JW); (ZH)
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
- The State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine, Macau University of Science and Technology, Macau, People's Republic of China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, People's Republic of China
- * E-mail: (JW); (ZH)
| |
Collapse
|
24
|
Hollenhorst PC, McIntosh LP, Graves BJ. Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem 2011; 80:437-71. [PMID: 21548782 DOI: 10.1146/annurev.biochem.79.081507.103945] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ETS proteins are a group of evolutionarily related, DNA-binding transcriptional factors. These proteins direct gene expression in diverse normal and disease states by binding to specific promoters and enhancers and facilitating assembly of other components of the transcriptional machinery. The highly conserved DNA-binding ETS domain defines the family and is responsible for specific recognition of a common sequence motif, 5'-GGA(A/T)-3'. Attaining specificity for biological regulation in such a family is thus a conundrum. We present the current knowledge of routes to functional diversity and DNA binding specificity, including divergent properties of the conserved ETS and PNT domains, the involvement of flanking structured and unstructured regions appended to these dynamic domains, posttranslational modifications, and protein partnerships with other DNA-binding proteins and coregulators. The review emphasizes recent advances from biochemical and biophysical approaches, as well as insights from genomic studies that detect ETS-factor occupancy in living cells.
Collapse
Affiliation(s)
- Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
25
|
Whitington T, Frith MC, Johnson J, Bailey TL. Inferring transcription factor complexes from ChIP-seq data. Nucleic Acids Res 2011; 39:e98. [PMID: 21602262 PMCID: PMC3159476 DOI: 10.1093/nar/gkr341] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) allows researchers to determine the genome-wide binding locations of individual transcription factors (TFs) at high resolution. This information can be interrogated to study various aspects of TF behaviour, including the mechanisms that control TF binding. Physical interaction between TFs comprises one important aspect of TF binding in eukaryotes, mediating tissue-specific gene expression. We have developed an algorithm, spaced motif analysis (SpaMo), which is able to infer physical interactions between the given TF and TFs bound at neighbouring sites at the DNA interface. The algorithm predicts TF interactions in half of the ChIP-seq data sets we test, with the majority of these predictions supported by direct evidence from the literature or evidence of homodimerization. High resolution motif spacing information obtained by this method can facilitate an improved understanding of individual TF complex structures. SpaMo can assist researchers in extracting maximum information relating to binding mechanisms from their TF ChIP-seq data. SpaMo is available for download and interactive use as part of the MEME Suite (http://meme.nbcr.net).
Collapse
Affiliation(s)
- Tom Whitington
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
26
|
Evans EL, Saxton J, Shelton SJ, Begitt A, Holliday ND, Hipskind RA, Shaw PE. Dimer formation and conformational flexibility ensure cytoplasmic stability and nuclear accumulation of Elk-1. Nucleic Acids Res 2011; 39:6390-402. [PMID: 21543455 PMCID: PMC3159454 DOI: 10.1093/nar/gkr266] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ETS (E26) protein Elk-1 serves as a paradigm for mitogen-responsive transcription factors. It is multiply phosphorylated by mitogen-activated protein kinases (MAPKs), which it recruits into pre-initiation complexes on target gene promoters. However, events preparatory to Elk-1 phosphorylation are less well understood. Here, we identify two novel, functional elements in Elk-1 that determine its stability and nuclear accumulation. One element corresponds to a dimerization interface in the ETS domain and the second is a cryptic degron adjacent to the serum response factor (SRF)-interaction domain that marks dimerization-defective Elk-1 for rapid degradation by the ubiquitin–proteasome system. Dimerization appears to be crucial for Elk-1 stability only in the cytoplasm, as latent Elk-1 accumulates in the nucleus and interacts dynamically with DNA as a monomer. These findings define a novel role for the ETS domain of Elk-1 and demonstrate that nuclear accumulation of Elk-1 involves conformational flexibility prior to its phosphorylation by MAPKs.
Collapse
Affiliation(s)
- Emma L Evans
- School of Biomedical Sciences, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
van Dijk ADJ, van Ham RCHJ. Conserved and variable correlated mutations in the plant MADS protein network. BMC Genomics 2010; 11:607. [PMID: 20979667 PMCID: PMC3017862 DOI: 10.1186/1471-2164-11-607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 10/28/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Plant MADS domain proteins are involved in a variety of developmental processes for which their ability to form various interactions is a key requisite. However, not much is known about the structure of these proteins or their complexes, whereas such knowledge would be valuable for a better understanding of their function. Here, we analyze those proteins and the complexes they form using a correlated mutation approach in combination with available structural, bioinformatics and experimental data. RESULTS Correlated mutations are affected by several types of noise, which is difficult to disentangle from the real signal. In our analysis of the MADS domain proteins, we apply for the first time a correlated mutation analysis to a family of interacting proteins. This provides a unique way to investigate the amount of signal that is present in correlated mutations because it allows direct comparison of mutations in various family members and assessing their conservation. We show that correlated mutations in general are conserved within the various family members, and if not, the variability at the respective positions is less in the proteins in which the correlated mutation does not occur. Also, intermolecular correlated mutation signals for interacting pairs of proteins display clear overlap with other bioinformatics data, which is not the case for non-interacting protein pairs, an observation which validates the intermolecular correlated mutations. Having validated the correlated mutation results, we apply them to infer the structural organization of the MADS domain proteins. CONCLUSION Our analysis enables understanding of the structural organization of the MADS domain proteins, including support for predicted helices based on correlated mutation patterns, and evidence for a specific interaction site in those proteins.
Collapse
Affiliation(s)
- Aalt DJ van Dijk
- Applied Bioinformatics, PRI, Wageningen UR, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Roeland CHJ van Ham
- Applied Bioinformatics, PRI, Wageningen UR, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
28
|
Himeda CL, Ranish JA, Pearson RCM, Crossley M, Hauschka SD. KLF3 regulates muscle-specific gene expression and synergizes with serum response factor on KLF binding sites. Mol Cell Biol 2010; 30:3430-43. [PMID: 20404088 PMCID: PMC2897560 DOI: 10.1128/mcb.00302-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 04/10/2010] [Indexed: 12/29/2022] Open
Abstract
This study identifies KLF3 as a transcriptional regulator of muscle genes and reveals a novel synergistic interaction between KLF3 and serum response factor (SRF). Using quantitative proteomics, KLF3 was identified as one of several candidate factors that recognize the MPEX control element in the Muscle creatine kinase (MCK) promoter. Chromatin immunoprecipitation analysis indicated that KLF3 is enriched at many muscle gene promoters (MCK, Myosin heavy chain IIa, Six4, Calcium channel receptor alpha-1, and Skeletal alpha-actin), and two KLF3 isoforms are upregulated during muscle differentiation. KLF3 and SRF physically associate and synergize in transactivating the MCK promoter independently of SRF binding to CArG motifs. The zinc finger and repression domains of KLF3 plus the MADS box and transcription activation domain of SRF are implicated in this synergy. Our results provide the first evidence of a role for KLF3 in muscle gene regulation and reveal an alternate mechanism for transcriptional regulation by SRF via its recruitment to KLF binding sites. Since both factors are expressed in all muscle lineages, SRF may regulate many striated- and smooth-muscle genes that lack known SRF control elements, thus further expanding the breadth of the emerging CArGome.
Collapse
Affiliation(s)
- Charis L. Himeda
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, Institute for Systems Biology, Seattle, Washington 98103-8904, School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Jeffrey A. Ranish
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, Institute for Systems Biology, Seattle, Washington 98103-8904, School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Richard C. M. Pearson
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, Institute for Systems Biology, Seattle, Washington 98103-8904, School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Merlin Crossley
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, Institute for Systems Biology, Seattle, Washington 98103-8904, School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Stephen D. Hauschka
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, Institute for Systems Biology, Seattle, Washington 98103-8904, School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
29
|
Nakakuki T, Birtwistle MR, Saeki Y, Yumoto N, Ide K, Nagashima T, Brusch L, Ogunnaike BA, Okada-Hatakeyama M, Kholodenko BN. Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics. Cell 2010; 141:884-96. [PMID: 20493519 DOI: 10.1016/j.cell.2010.03.054] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 11/12/2009] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
Activation of ErbB receptors by epidermal growth factor (EGF) or heregulin (HRG) determines distinct cell-fate decisions, although signals propagate through shared pathways. Using mathematical modeling and experimental approaches, we unravel how HRG and EGF generate distinct, all-or-none responses of the phosphorylated transcription factor c-Fos. In the cytosol, EGF induces transient and HRG induces sustained ERK activation. In the nucleus, however, ERK activity and c-fos mRNA expression are transient for both ligands. Knockdown of dual-specificity phosphatases extends HRG-stimulated nuclear ERK activation, but not c-fos mRNA expression, implying the existence of a HRG-induced repressor of c-fos transcription. Further experiments confirmed that this repressor is mainly induced by HRG, but not EGF, and requires new protein synthesis. We show how a spatially distributed, signaling-transcription cascade robustly discriminates between transient and sustained ERK activities at the c-Fos system level. The proposed control mechanisms are general and operate in different cell types, stimulated by various ligands.
Collapse
Affiliation(s)
- Takashi Nakakuki
- Computational Systems Biology Research Group, Advanced Computational Sciences Department, RIKEN Advanced Science Institute, 1-7-22 Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gramzow L, Ritz MS, Theissen G. On the origin of MADS-domain transcription factors. Trends Genet 2010; 26:149-53. [PMID: 20219261 DOI: 10.1016/j.tig.2010.01.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/06/2010] [Accepted: 01/06/2010] [Indexed: 11/30/2022]
Abstract
MADS-domain transcription factors are involved in signal transduction and developmental control in plants, animals and fungi. Because their diversification is linked to the origin of novelties in multicellular eukaryotes, the early evolution of MADS-domain proteins is of interest, but has remained enigmatic. Employing whole genome sequence information and remote homology detection methods, we demonstrate that the MADS domain originated from a region of topoisomerases IIA subunit A. Furthermore, we provide evidence that gene duplication occurred in the lineage that led to the MRCA of extant eukaryotes, giving rise to SRF-like and MEF2-like MADS-box genes.
Collapse
Affiliation(s)
- Lydia Gramzow
- Department of Genetics, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | | | | |
Collapse
|
31
|
Agarkar VB, Babayeva ND, Wilder PJ, Rizzino A, Tahirov TH. Crystal structure of mouse Elf3 C-terminal DNA-binding domain in complex with type II TGF-beta receptor promoter DNA. J Mol Biol 2010; 397:278-89. [PMID: 20079749 DOI: 10.1016/j.jmb.2010.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 12/21/2022]
Abstract
The Ets family of transcription factors is composed of more than 30 members. One of its members, Elf3, is expressed in virtually all epithelial cells as well as in many tumors, including breast tumors. Several studies observed that the promoter of the type II TGF-beta receptor gene (TbetaR-II) is strongly stimulated by Elf3 via two adjacent Elf3 binding sites, the A-site and the B-site. Here, we report the 2.2 A resolution crystal structure of a mouse Elf3 C-terminal fragment, containing the DNA-binding Ets domain, in complex with the B-site of mouse type II TGF-beta receptor promoter DNA (mTbetaR-II(DNA)). Elf3 contacts the core GGAA motif of the B-site from a major groove similar to that of known Ets proteins. However, unlike other Ets proteins, Elf3 also contacts sequences of the A-site from the minor groove of the DNA. DNA binding experiments and cell-based transcription studies indicate that minor groove interaction by Arg349 located in the Ets domain is important for Elf3 function. Equally interesting, previous studies have shown that the C-terminal region of Elf3, which flanks the Ets domain, is required for Elf3 binding to DNA. In this study, we determined that Elf3 amino acid residues within this flanking region, including Trp361, are important for the structural integrity of the protein as well as for the Efl3 DNA binding and transactivation activity.
Collapse
Affiliation(s)
- Vinod B Agarkar
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | | | | | | | | |
Collapse
|
32
|
Stepánek J, Kopecký V, Mezzetti A, Turpin PY, Paulin D, Alpert B, Zentz C. Structural and dynamic changes of the serum response element and the core domain of serum response factor induced by their association. Biochem Biophys Res Commun 2009; 391:203-8. [PMID: 19903461 DOI: 10.1016/j.bbrc.2009.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Accepted: 11/05/2009] [Indexed: 11/26/2022]
Abstract
Transcriptional activity of serum response factor (SRF) is dependent on its binding to the CC(A/T)(6)GG box (CArG box) of serum response element (SRE). By Raman spectroscopy, we carried out a comparative analysis, in solution, of the complexes obtained from the association of core-SRF with 20-mer SREs bearing wild-type and mutated c-fos CArG boxes. In case of association with the wild type c-fos CArG box, the complex does not bring out the expected Raman signature of a stable bending of the targeted SRE but keeps a bend-linear conformer oligonucleotide interconversion. The linear conformer population is larger than that of free oligonucleotide. In the core-SRF moiety of the wild-type complex a large spectral change associated with the CO-groups from Asp and/or Glu residues shows that their ionization states and the strength of their interactions decrease as compared to those of mutated non-specific complexes. Structural constraints evidenced on the free core-SRF are released in the wild-type complex and environmental heterogeneities appear in the vicinity of Tyr residues, due to higher water molecule access. The H-bonding configuration of one Tyr OH-group, in average, changes with a net transfer from H-bond acceptor character to a combined donor and acceptor character. A charge repartition distributed on both core-SRF and targeted SRE stabilizes the specific complex, allowing the two partners to experience a variety of conformations.
Collapse
Affiliation(s)
- Josef Stepánek
- Laboratoire Acides Nucléiques & Biophotonique, FRE CNRS 3207, Université Pierre et Marie Curie, 5 rue Henri Desbruères, 91030 Evry, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Blaker AL, Taylor JM, Mack CP. PKA-dependent phosphorylation of serum response factor inhibits smooth muscle-specific gene expression. Arterioscler Thromb Vasc Biol 2009; 29:2153-60. [PMID: 19778940 DOI: 10.1161/atvbaha.109.197285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our goal was to identify phosphorylation sites that regulate serum response factor (SRF) activity to gain a better understanding of the signaling mechanisms that regulate SRF's involvement in smooth muscle cell (SMC)-specific and early response gene expression. METHODS AND RESULTS By screening phosphorylation-deficient and mimetic mutations in SRF(-/-) embryonic stem cells, we identified T159 as a phosphorylation site that significantly inhibits SMC-specific gene expression in an embryonic stem cell model of SMC differentiation. This residue conforms to a highly conserved consensus cAMP-dependent protein kinase (PKA) site, and in vitro and in vivo labeling studies demonstrated that it was phosphorylated by PKA. Results from gel shift and chromatin immunoprecipitation assays demonstrated that T159 phosphorylation inhibited SRF binding to SMC-specific CArG elements. Interestingly, the myocardin factors could at least partially rescue the effects of the T159D mutation under some conditions, but this response was promoter specific. Finally, PKA signaling had much less of an effect on c-fos promoter activity and SRF binding to the c-fos CArG. CONCLUSIONS Our results indicate that phosphorylation of SRF by PKA inhibits SMC-specific transcription suggesting a novel signaling mechanism for the control of SMC phenotype.
Collapse
Affiliation(s)
- Alicia L Blaker
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599-7525, USA
| | | | | |
Collapse
|
34
|
A census of human transcription factors: function, expression and evolution. Nat Rev Genet 2009; 10:252-63. [PMID: 19274049 DOI: 10.1038/nrg2538] [Citation(s) in RCA: 1132] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transcription factors are key cellular components that control gene expression: their activities determine how cells function and respond to the environment. Currently, there is great interest in research into human transcriptional regulation. However, surprisingly little is known about these regulators themselves. For example, how many transcription factors does the human genome contain? How are they expressed in different tissues? Are they evolutionarily conserved? Here, we present an analysis of 1,391 manually curated sequence-specific DNA-binding transcription factors, their functions, genomic organization and evolutionary conservation. Much remains to be explored, but this study provides a solid foundation for future investigations to elucidate regulatory mechanisms underlying diverse mammalian biological processes.
Collapse
|
35
|
Janowski R, Panjikar S, Eddine AN, Kaufmann SHE, Weiss MS. Structural analysis reveals DNA binding properties of Rv2827c, a hypothetical protein from Mycobacterium tuberculosis. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2009; 10:137-50. [PMID: 19184528 PMCID: PMC2758359 DOI: 10.1007/s10969-009-9060-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 01/14/2009] [Indexed: 01/07/2023]
Abstract
Tuberculosis (TB) is a major global health threat caused by Mycobacterium tuberculosis (Mtb). It is further fueled by the HIV pandemic and by increasing incidences of multidrug resistant Mtb-strains. Rv2827c, a hypothetical protein from Mtb, has been implicated in the survival of Mtb in the macrophages of the host. The three-dimensional structure of Rv2827c has been determined by the three-wavelength anomalous diffraction technique using bromide-derivatized crystals and refined to a resolution of 1.93 A. The asymmetric unit of the orthorhombic crystals contains two independent protein molecules related by a non-crystallographic translation. The tertiary structure of Rv2827c comprises two domains: an N-terminal domain displaying a winged helix topology and a C-terminal domain, which appears to constitute a new and unique fold. Based on structural homology considerations and additional biochemical evidence, it could be established that Rv2827c is a DNA-binding protein. Once the understanding of the structure-function relationship of Rv2827c extends to the function of Rv2827c in vivo, new clues for the rational design of novel intervention strategies may be obtained.
Collapse
Affiliation(s)
- Robert Janowski
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany
- IBMB (CSIC), Parc Científic de Barcelona, Baldiri Riexac 10–12, 08028 Barcelona, Spain
| | - Santosh Panjikar
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany
| | - Ali Nasser Eddine
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Manfred S. Weiss
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany
| |
Collapse
|
36
|
Lamber EP, Vanhille L, Textor LC, Kachalova GS, Sieweke MH, Wilmanns M. Regulation of the transcription factor Ets-1 by DNA-mediated homo-dimerization. EMBO J 2008; 27:2006-17. [PMID: 18566588 PMCID: PMC2486274 DOI: 10.1038/emboj.2008.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 05/23/2008] [Indexed: 01/07/2023] Open
Abstract
The function of the Ets-1 transcription factor is regulated by two regions that flank its DNA-binding domain. A previously established mechanism for auto-inhibition of monomeric Ets-1 on DNA response elements with a single ETS-binding site, however, has not been observed for the stromelysin-1 promoter containing two palindromic ETS-binding sites. We present the structure of Ets-1 on this promoter element, revealing a ternary complex in which protein homo-dimerization is mediated by the specific arrangement of the two ETS-binding sites. In this complex, the N-terminal-flanking region is required for ternary protein-DNA assembly. Ets-1 variants, in which residues from this region are mutated, loose the ability for DNA-mediated dimerization and stromelysin-1 promoter transactivation. Thus, our data unravel the molecular basis for relief of auto-inhibition and the ability of Ets-1 to function as a facultative dimeric transcription factor on this site. Our findings may also explain previous data of Ets-1 function in the context of heterologous transcription factors, thus providing a molecular model that could also be valid for Ets-1 regulation by hetero-oligomeric assembly.
Collapse
Affiliation(s)
| | - Laurent Vanhille
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France,Institut National de la Santé et de la Recherche Médicale, Marseille, France,Centre National de la Recherche Scientifique, Parc scientifique de Luminy, Marseille, France
| | | | - Galina S Kachalova
- Max-Planck Unit for Structural Molecular Biology, c/o DESY, Hamburg, Germany
| | - Michael H Sieweke
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France,Institut National de la Santé et de la Recherche Médicale, Marseille, France,Centre National de la Recherche Scientifique, Parc scientifique de Luminy, Marseille, France
| | - Matthias Wilmanns
- EMBL-Hamburg, c/o DESY, Hamburg, Germany,EMBL Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85, Building 25A, Hamburg D-22603, Germany. Tel.: +49 40 899 021 26; Fax: +49 40 899 021 49; E-mail:
| |
Collapse
|
37
|
Knobloch J, Beckmann S, Burmeister C, Quack T, Grevelding CG. Tyrosine kinase and cooperative TGFβ signaling in the reproductive organs of Schistosoma mansoni. Exp Parasitol 2007; 117:318-36. [PMID: 17553494 DOI: 10.1016/j.exppara.2007.04.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 04/06/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
Drug-induced suppression of female schistosome sexual maturation is an auspicious strategy to combat schistosomiasis since the eggs are the causative agent. The establishment of drug targets requires knowledge about the molecular mechanisms that regulate the development of the female reproductive organs, which include vitellarium and ovary. This review summarizes recent studies suggesting tyrosine kinases as important factors for the regulation of female gonad development. In this context, especially cytoplasmatic tyrosine kinases of the Src class seem to play dominant roles. Moreover, experimental data and theoretical concepts are provided supporting a crosstalk between tyrosine kinase and TGFbeta signaling in the production of vitellocytes. Finally, we take advantage from the schistosome genome project to propose a model for the regulation of vitelline-cell production and differentiation.
Collapse
Affiliation(s)
- Jürgen Knobloch
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine-University, D-40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
38
|
Hollenhorst PC, Shah AA, Hopkins C, Graves BJ. Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes Dev 2007; 21:1882-94. [PMID: 17652178 PMCID: PMC1935027 DOI: 10.1101/gad.1561707] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The conservation of in vitro DNA-binding properties within families of transcription factors presents a challenge for achieving in vivo specificity. To uncover the mechanisms regulating specificity within the ETS gene family, we have used chromatin immunoprecipitation coupled with genome-wide promoter microarrays to query the occupancy of three ETS proteins in a human T-cell line. Unexpectedly, redundant occupancy was frequently detected, while specific occupancy was less likely. Redundant binding correlated with housekeeping classes of genes, whereas specific binding examples represented more specialized genes. Bioinformatics approaches demonstrated that redundant binding correlated with consensus ETS-binding sequences near transcription start sites. In contrast, specific binding sites diverged dramatically from the consensus and were found further from transcription start sites. One route to specificity was found--a highly divergent binding site that facilitates ETS1 and RUNX1 cooperative DNA binding. The specific and redundant DNA-binding modes suggest two distinct roles for members of the ETS transcription factor family.
Collapse
Affiliation(s)
- Peter C. Hollenhorst
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Atul A. Shah
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | - Barbara J. Graves
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Corresponding author.E-MAIL ; FAX (801) 585-1980
| |
Collapse
|
39
|
Stepanek J, Vincent M, Turpin PY, Paulin D, Fermandjian S, Alpert B, Zentz C. C-->G base mutations in the CArG box of c-fos serum response element alter its bending flexibility. Consequences for core-SRF recognition. FEBS J 2007; 274:2333-48. [PMID: 17403043 DOI: 10.1111/j.1742-4658.2007.05768.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
By binding to the CArG box sequence, the serum response factor (SRF) activates several muscle-specific genes, as well as genes that respond to mitogens. The core domain of the SRF (core-SRF) binds as a dimer to the CArG box C-5C-4A-3T-2A-1T+1T+2A+3G+4G+5 of the c-fos serum response element (SREfos). However, previous studies using 20-mer DNAs have shown that the binding stoichiometry of core-SRF is significantly altered by mutations C-5-->G (SREGfos) and C-5C-4-->GG (SREGGfos) of the CArG box [A Huet, A Parlakian, M-C Arnaud, J-M Glandières, P Valat, S Fermandjian, D Paulin, B Alpert & C Zentz (2005) FEBS J272, 3105-3119]. To understand these effects, we carried out a comparative analysis of the three 20-mer DNAs SREfos, SREGfos and SREGGfos in aqueous solution. Their CD spectra were of the B-DNA type with small differences generated by variations in the mutual arrangement of the base pairs. Analysis by singular value decomposition of a set of Raman spectra recorded as a function of temperature, revealed a premelting transition associated with a conformational shift in the DNA double helices from a bent to a linear form. Time-resolved fluorescence anisotropy shows that the fluorescein reporter linked to the oligonucleotide 5'-ends experiences twisting motions of the double helices related to the interconversion between bent and linear conformers. The three SREs present various bent populations submitted, however, to particular internal dynamics, decisive for the mutual adjustment of binding partners and therefore specific complex formation.
Collapse
Affiliation(s)
- Josef Stepanek
- Laboratoire de Biophysique Moléculaire Cellulaire & Tissulaire, Université Pierre et Marie Curie, Evry, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Anbanandam A, Albarado DC, Nguyen CT, Halder G, Gao X, Veeraraghavan S. Insights into transcription enhancer factor 1 (TEF-1) activity from the solution structure of the TEA domain. Proc Natl Acad Sci U S A 2006; 103:17225-30. [PMID: 17085591 PMCID: PMC1859914 DOI: 10.1073/pnas.0607171103] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription enhancer factor 1 is essential for cardiac, skeletal, and smooth muscle development and uses its N-terminal TEA domain (TEAD) to bind M-CAT elements. Here, we present the first structure of TEAD and show that it is a three-helix bundle with a homeodomain fold. Structural data reveal how TEAD binds DNA. Using structure-function correlations, we find that the L1 loop is essential for cooperative loading of TEAD molecules on to tandemly duplicated M-CAT sites. Furthermore, using a microarray chip-based assay, we establish that known binding sites of the full-length protein are only a subset of DNA elements recognized by TEAD. Our results provide a model for understanding the regulation of genome-wide gene expression during development by TEA/ATTS family of transcription factors.
Collapse
Affiliation(s)
- Asokan Anbanandam
- *Department of Biochemistry & Molecular Biology, University of Texas Medical School, Houston, TX 77030
| | - Diana C. Albarado
- *Department of Biochemistry & Molecular Biology, University of Texas Medical School, Houston, TX 77030
| | - Catherine T. Nguyen
- *Department of Biochemistry & Molecular Biology, University of Texas Medical School, Houston, TX 77030
| | - Georg Halder
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Xiaolian Gao
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204
| | - Sudha Veeraraghavan
- *Department of Biochemistry & Molecular Biology, University of Texas Medical School, Houston, TX 77030
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Hileman LC, Sundstrom JF, Litt A, Chen M, Shumba T, Irish VF. Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Mol Biol Evol 2006; 23:2245-58. [PMID: 16926244 DOI: 10.1093/molbev/msl095] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MIKCc-type MADS-box genes encode key transcriptional regulators of a variety of developmental processes in Arabidopsis thaliana. However, there has been relatively little effort to systematically carry out comparative genomic or functional analyses of these genes across flowering plants. Here we describe a strategy to identify members of the MIKCc-type MADS-box gene family from any angiosperm species of interest. Using this approach, we have identified 24 MIKCc-type MADS-box genes in tomato, including 17 that have not previously been characterized. Using these sequences, we have performed phylogenetic analyses that indicate that there have been a number of gene duplication and loss events in tomato relative to Arabidopsis. We also describe the expression domains of these genes and compare these results with their cognates in Arabidopsis. These analyses demonstrate the utility of this approach for characterizing a large number of MIKCc-type MADS-box genes from any flowering plant species of interest and provide a framework for evolutionary comparisons of this important gene family across angiosperms.
Collapse
Affiliation(s)
- Lena C Hileman
- Department of Molecular, Cellular and Developmental Biology, Yale University, USA
| | | | | | | | | | | |
Collapse
|
42
|
Eduardo Carreño J, Apablaza F, Paz Ocaranza M, E. Jalil J. Hipertrofia cardiaca: eventos moleculares y celulares. Rev Esp Cardiol 2006. [DOI: 10.1157/13087900] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Carreño JE, Apablaza F, Ocaranza MP, Jalil JE. Cardiac Hypertrophy: Molecular and Cellular Events. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1885-5857(06)60796-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
René C, Taulan M, Iral F, Doudement J, L'Honoré A, Gerbon C, Demaille J, Claustres M, Romey MC. Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway. Nucleic Acids Res 2005; 33:5271-90. [PMID: 16170155 PMCID: PMC1216340 DOI: 10.1093/nar/gki837] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CFTR expression is tightly controlled by a complex network of ubiquitous and tissue-specific cis-elements and trans-factors. To better understand mechanisms that regulate transcription of CFTR, we examined transcription factors that specifically bind a CFTR CArG-like motif we have previously shown to modulate CFTR expression. Gel mobility shift assays and chromatin immunoprecipitation analyses demonstrated the CFTR CArG-like motif binds serum response factor both in vitro and in vivo. Transient co-transfections with various SRF expression vector, including dominant-negative forms and small interfering RNA, demonstrated that SRF significantly increases CFTR transcriptional activity in bronchial epithelial cells. Mutagenesis studies suggested that in addition to SRF other co-factors, such as Yin Yang 1 (YY1) previously shown to bind the CFTR promoter, are potentially involved in the CFTR regulation. Here, we show that functional interplay between SRF and YY1 might provide interesting perspectives to further characterize the underlying molecular mechanism of the basal CFTR transcriptional activity. Furthermore, the identification of multiple CArG binding sites in highly conserved CFTR untranslated regions, which form specific SRF complexes, provides direct evidence for a considerable role of SRF in the CFTR transcriptional regulation into specialized epithelial lung cells.
Collapse
Affiliation(s)
- Céline René
- Laboratoire de Génétique Moléculaire et Chromosomique, Institut Universitaire de Recherche Clinique, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kato-Murayama M, Bessho Y, Shirouzu M, Yokoyama S. Crystal structure of the RNA 2'-phosphotransferase from Aeropyrum pernix K1. J Mol Biol 2005; 348:295-305. [PMID: 15811369 DOI: 10.1016/j.jmb.2005.02.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 02/21/2005] [Indexed: 11/17/2022]
Abstract
In the final step of tRNA splicing, the 2'-phosphotransferase catalyzes the transfer of the extra 2'-phosphate from the precursor-ligated tRNA to NAD. We have determined the crystal structure of the 2'-phosphotransferase protein from Aeropyrum pernix K1 at 2.8 Angstroms resolution. The structure of the 2'-phosphotransferase contains two globular domains (N and C-domains), which form a cleft in the center. The N-domain has the winged helix motif, a subfamily of the helix-turn-helix family, which is shared by many DNA-binding proteins. The C-domain of the 2'-phosphotransferase superimposes well on the NAD-binding fold of bacterial (diphtheria) toxins, which catalyze the transfer of ADP ribose from NAD to target proteins, indicating that the mode of NAD binding by the 2'-phosphotransferase could be similar to that of the bacterial toxins. The conserved basic residues are assembled at the periphery of the cleft and could participate in the enzyme contact with the sugar-phosphate backbones of tRNA. The modes by which the two functional domains recognize the two different substrates are clarified by the present crystal structure of the 2'-phosphotransferase.
Collapse
Affiliation(s)
- Miyuki Kato-Murayama
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
46
|
Abstract
We recently identified three AKAP12 isoforms that are differentially regulated by distinct promoters. During a screen to identify molecular determinants distinguishing the activities of these promoters, we found a potential binding site for the serum response factor (SRF) in the promoter of the ubiquitously expressed AKAP12alpha isoform. SRF is an evolutionarily conserved transcription factor that governs disparate programs of gene expression linked to cellular growth and differentiation. Using a combination of reporter assays and RNA interference, we demonstrate that SRF is required for AKAP12alpha expression. SRF regulates the activity of the AKAP12alpha promoter through two conserved CArG boxes that bind SRF with different affinities. Unlike other SRF-dependent genes, AKAP12alpha is not regulated by growth or differentiation stimuli. Molecular analysis of the AKAP12alpha SRF-binding sites, or CArG boxes, indicates that sequences flanking these sites are the determinants of sensitivity to SRF-activating signals. Specifically, the AKAP12alpha CArG boxes are shielded from growth stimulation by the absence of a binding site for Ets transcription factors. Similarly, sensitivity to the differentiation-associated co-factor, myocardin, was also determined by responsive flanking sequence; however, unlike growth stimuli, sensitivity to myocardin was found to also be dependent on a consensus CArG box. Collectively, our data demonstrate that AKAP12alpha belongs to a novel class of atypical SRF-dependent target genes. Furthermore, we provide new insight into the role of flanking sequences in determining sensitivity to SRF-myocardin activity.
Collapse
Affiliation(s)
- Jeffrey W Streb
- Center for Cardiovascular Research in the Aab Institute of Biomedical Sciences, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | |
Collapse
|
47
|
Andreishcheva EN, Kunkel JP, Gemmill TR, Trimble RB. Five Genes Involved in Biosynthesis of the Pyruvylated Galβ1,3-Epitope in Schizosaccharomyces pombe N-Linked Glycans. J Biol Chem 2004; 279:35644-55. [PMID: 15173185 DOI: 10.1074/jbc.m403574200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-linked galactomannans of Schizosaccharomyces pombe have pyruvylated Galbeta1,3-(PvGal) caps on a portion of the Galalpha1,2-residues in their outer chains (Gemmill, T. R., and Trimble, R. B. (1998) Glycobiology 8, 1087-1095). PvGal biosynthesis was investigated by ethyl methanesulfonate mutagenesis of S. pombe, followed by the isolation of cells devoid of negatively charged N-glycans by Q-Sepharose exclusion and failure to bind human serum amyloid P component, which acts as a lectin for terminal PvGal residues. Mutant glycans were characterized by lectin binding, saccharide composition, exoglycosidase sensitivity, and NMR spectroscopy. Restoration of the cell surface negative charge by complementation with an S. pombe genomic library led to the identification of five genes involved in PvGal biosynthesis, which we designated pvg1-pvg5. Pvg1p may be a pyruvyltransferase, since NMR of pvg1(-) mutant N-glycans revealed the absence of only the pyruvyl moiety. Pvg2p-Pvg5p are crucial for attachment of the Galbeta1,3-residue that becomes pyruvylated. Pvg3p is predicted to be a member of the beta1,3-galactosyltransferase family, and Pvg3p-green fluorescent protein labeling was consistent with Golgi localization. Predicted Pvg1p and Pvg3p functions imply that Galbeta1,3-is added to the galactomannans and is then pyruvylated in situ, rather than by an en bloc addition of PvGalbeta1,3-caps to the outer chain. Pvg4p-green fluorescent protein targeted to the nucleus, and its sequence contains a MADS-box DNA-binding and dimerization domain; however, it does not appear to solely control transcription of the other identified genes. Pvg2p and/or Pvg5p may contribute to an enzyme complex. Whereas a functional role for the PvGal epitope in S. pombe remains unclear, it is nonessential for either cell growth or mating under laboratory conditions.
Collapse
|
48
|
Gao R, Ball DK, Perbal B, Brigstock DR. Connective tissue growth factor induces c-fos gene activation and cell proliferation through p44/42 MAP kinase in primary rat hepatic stellate cells. J Hepatol 2004; 40:431-8. [PMID: 15123357 DOI: 10.1016/j.jhep.2003.11.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 10/08/2003] [Accepted: 11/06/2003] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Connective tissue growth factor (CCN2) is expressed during activation of hepatic stellate cells (HSC) and promotes HSC proliferation, adhesion, and collagen production. The aim of the study was to investigate CCN2 signaling pathways in HSC. METHODS Primary HSC were obtained by enzymatic perfusion of rat liver. DNA synthesis was evaluated by [(3)H]thymidine incorporation. Phosphorylation of Elk-1, extracellular signal-regulated kinase (ERK1/2) and focal adhesion kinase (FAK) was evaluated by Western blot. Transcriptional factor binding activity was determined by gel mobility shift assay while c-fos promoter and CCN2 promoter activity was evaluated using luciferase reporters. c-fos mRNA expression was evaluated by Northern blot. RESULTS CCN2 stimulated DNA synthesis and phosphorylation of FAK, Elk-1 and ERK1/2, the latter of which was blocked by heparin. The serum response element binding activity and luciferase reporter activity of the c-fos promoter, together with expression of c-fos, were enhanced by CCN2. CCN2-induced c-fos gene activation, expression and cell proliferation were blocked by inhibiting ERK1/2 with PD98059. CCN2 promoter activity was enhanced by TGF-beta1 or PDGF via a Smad7-dependent pathway. CONCLUSIONS CCN2-stimulated HSC DNA synthesis is associated with transient induction of c-fos gene activation and expression as well as activation of the ERK1/2 signal pathway.
Collapse
Affiliation(s)
- Runping Gao
- Laboratoire d'Oncologie Virale et Moléculaire, Université Paris 7, Diderot 75005, France
| | | | | | | |
Collapse
|
49
|
Messenguy F, Dubois E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 2003; 316:1-21. [PMID: 14563547 DOI: 10.1016/s0378-1119(03)00747-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In all organisms, correct development, growth and function depends on the precise and integrated control of the expression of their genes. Often, gene regulation depends upon the cooperative binding of proteins to DNA and upon protein-protein interactions. Eukaryotes have widely exploited combinatorial strategies to create gene regulatory networks. MADS box proteins constitute the perfect example of cellular coordinators. These proteins belong to a large family of transcription factors present in most eukaryotic organisms and are involved in diverse and important biological functions. MADS box proteins are combinatorial transcription factors in that they often derive their regulatory specificity from other DNA binding or accessory factors. This review is aimed at analyzing how MADS box proteins combine with a variety of cofactors to achieve functional diversity.
Collapse
Affiliation(s)
- Francine Messenguy
- Institut de Recherches Microbiologiques J-M Wiame, Université Libre de Bruxelles, Avenue Emile Gryzon 1, 1070 Brussels, Belgium.
| | | |
Collapse
|
50
|
Camoretti-Mercado B, Dulin NO, Solway J. Serum response factor function and dysfunction in smooth muscle. Respir Physiol Neurobiol 2003; 137:223-35. [PMID: 14516728 DOI: 10.1016/s1569-9048(03)00149-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tight control of smooth muscle cell (SM) proliferation, differentiation, and apoptosis requires a balance between signaling and transcriptional events. Recent developments in vascular research revealed that serum response factor (SRF) function is important for the regulation of each of these processes. The cloning and characterization of several SM specific genes and the discovery that SRF is central for their expression fueled studies aimed at understanding the role of molecular partners including co-activators and co-repressors. Perturbations of pathways involving SRF are associated with abnormalities in the myogenic program and aberrant phenotypic consequences. Surprisingly, studies on airway SM have remained an underrepresented area of investigation. Our laboratory described a novel regulatory mechanism of SRF function in airway myocytes by modulation of its subcellular localization. This review summarizes current knowledge on the structure and function of this essential transcription factor as well different modes of regulating SRF expression and activity that are becoming key players in directing SM function in health and disease.
Collapse
Affiliation(s)
- Blanca Camoretti-Mercado
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S Maryland Avenue, MC6026, Chicago, IL 60637,USA.
| | | | | |
Collapse
|