1
|
Mammeri H, Sereme Y, Toumi E, Faury H, Skurnik D. Interplay between porin deficiency, fitness, and virulence in carbapenem-non-susceptible Pseudomonas aeruginosa and Enterobacteriaceae. PLoS Pathog 2025; 21:e1012902. [PMID: 39919103 PMCID: PMC11805372 DOI: 10.1371/journal.ppat.1012902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
The increasing resistance of Gram-negative bacteria to last resort antibiotics, such as carbapenems, is particularly of concern as it is a significant cause of global health threat. In this context, there is an urgent need for better understanding underlying mechanisms leading to antimicrobial resistance in order to limit its diffusion and develop new therapeutic strategies. In this review, we focus on the specific role of porins in carbapenem-resistance in Enterobacteriaceae and Pseudomonas aeruginosa, which are major human pathogens. Porins are outer membrane proteins, which play a key role in the bacterial permeability to allow nutrients to enter and toxic waste to leave. However, these channels are also "Achilles' heel" of bacteria as antibiotics can also pass through them to reach their target and kill the bacteria. After describing normal structures and pathways regulating the expression of porins, we discuss strategies implemented by bacteria to limit the access of carbapenems to their cytoplasmic target. We further examine the real impact of changes in porins on carbapenems susceptibility. Finally, we decipher what is the effect of such changes on bacterial fitness and virulence. Our goal is to integrate all these findings to give a global overview of how bacteria modify their porins to face antibiotic selective pressure trying to not induce fitness cost.
Collapse
Affiliation(s)
- Hedi Mammeri
- Service de Bactériologie, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Site Cochin, Paris, France
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Youssouf Sereme
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Eya Toumi
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Hélène Faury
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
- Laboratoire de Microbiologie Clinique, AP-HP Centre, Hôpital Necker Enfants Malades, Paris, France
| | - David Skurnik
- INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
- Laboratoire de Microbiologie Clinique, AP-HP Centre, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
2
|
Varela-Nájera RG, De la Cruz MA, Soria-Bustos J, González-Horta C, Delgado-Gardea MCE, Yáñez-Santos JA, Cedillo ML, Hirakawa H, Fox JG, Sánchez-Ramírez B, Ares MA. The Response Regulator OmpR Negatively Controls the Expression of Genes Implicated in Tilimycin and Tilivalline Cytotoxin Production in Klebsiella oxytoca. Microorganisms 2025; 13:158. [PMID: 39858926 PMCID: PMC11767513 DOI: 10.3390/microorganisms13010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Klebsiella oxytoca toxigenic strains represent a critical health threat, mainly due to their link to antibiotic-associated hemorrhagic colitis. This serious condition results from the bacteria's ability to produce tilimycin and tilivalline cytotoxins. Our research highlights the pivotal role of OmpR, a key regulator within the EnvZ/OmpR two-component system, in controlling the virulence factors associated with K. oxytoca. Our findings strongly indicate that OmpR is a repressor of the aroX and npsA genes, the first genes of aroX and NRPS operons, respectively, which are indispensable for producing these enterotoxins. Notably, in the absence of OmpR, we observe a significant increase in cytotoxic effects on Caco-2 cells. These observations identify OmpR as a crucial negative transcription regulator for both operons, effectively managing the release of these cytotoxins. This research deepens our understanding of the mechanisms of toxigenic K. oxytoca and opens promising avenues for targeting OmpR for new therapeutic interventions. By focusing on this innovative approach, we can develop more effective solutions to combat this pressing health challenge, ultimately improving patient outcomes against this pathogen.
Collapse
Affiliation(s)
- Ramón G. Varela-Nájera
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (C.G.-H.); (M.C.E.D.-G.); (B.S.-R.)
| | - Miguel A. De la Cruz
- Centro de detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico; (M.A.D.l.C.); (J.S.-B.); (J.A.Y.-S.); (M.L.C.)
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Jorge Soria-Bustos
- Centro de detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico; (M.A.D.l.C.); (J.S.-B.); (J.A.Y.-S.); (M.L.C.)
| | - Carmen González-Horta
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (C.G.-H.); (M.C.E.D.-G.); (B.S.-R.)
| | - Ma Carmen E. Delgado-Gardea
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (C.G.-H.); (M.C.E.D.-G.); (B.S.-R.)
| | - Jorge A. Yáñez-Santos
- Centro de detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico; (M.A.D.l.C.); (J.S.-B.); (J.A.Y.-S.); (M.L.C.)
| | - María L. Cedillo
- Centro de detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico; (M.A.D.l.C.); (J.S.-B.); (J.A.Y.-S.); (M.L.C.)
| | - Hidetada Hirakawa
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi 371-8514, Japan;
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Blanca Sánchez-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (C.G.-H.); (M.C.E.D.-G.); (B.S.-R.)
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| |
Collapse
|
3
|
Barretto LAF, Van PKT, Fowler CC. Conserved patterns of sequence diversification provide insight into the evolution of two-component systems in Enterobacteriaceae. Microb Genom 2024; 10:001215. [PMID: 38502064 PMCID: PMC11004495 DOI: 10.1099/mgen.0.001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Two-component regulatory systems (TCSs) are a major mechanism used by bacteria to sense and respond to their environments. Many of the same TCSs are used by biologically diverse organisms with different regulatory needs, suggesting that the functions of TCS must evolve. To explore this topic, we analysed the amino acid sequence divergence patterns of a large set of broadly conserved TCS across different branches of Enterobacteriaceae, a family of Gram-negative bacteria that includes biomedically important genera such as Salmonella, Escherichia, Klebsiella and others. Our analysis revealed trends in how TCS sequences change across different proteins or functional domains of the TCS, and across different lineages. Based on these trends, we identified individual TCS that exhibit atypical evolutionary patterns. We observed that the relative extent to which the sequence of a given TCS varies across different lineages is generally well conserved, unveiling a hierarchy of TCS sequence conservation with EnvZ/OmpR as the most conserved TCS. We provide evidence that, for the most divergent of the TCS analysed, PmrA/PmrB, different alleles were horizontally acquired by different branches of this family, and that different PmrA/PmrB sequence variants have highly divergent signal-sensing domains. Collectively, this study sheds light on how TCS evolve, and serves as a compendium for how the sequences of the TCS in this family have diverged over the course of evolution.
Collapse
Affiliation(s)
- Luke A. F. Barretto
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2E9, Canada
| | - Patryc-Khang T. Van
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2E9, Canada
| | - Casey C. Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2E9, Canada
| |
Collapse
|
4
|
Janssen AB, de Bakker V, Aprianto R, Trebosc V, Kemmer C, Pieren M, Veening JW. Klebsiella pneumoniae OmpR facilitates lung infection through transcriptional regulation of key virulence factors. Microbiol Spectr 2024; 12:e0396623. [PMID: 38099618 PMCID: PMC10783089 DOI: 10.1128/spectrum.03966-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Bacteria use two-component regulatory systems (TCSs) to adapt to changes in their environment by changing their gene expression. In this study, we show that the EnvZ/OmpR TCS of the clinically relevant opportunistic pathogen Klebsiella pneumoniae plays an important role in successfully establishing lung infection and virulence. In addition, we elucidate the K. pneumoniae OmpR regulon within the host. This work suggests that K. pneumoniae OmpR might be a promising target for innovative anti-infectives.
Collapse
Affiliation(s)
- Axel B. Janssen
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vincent de Bakker
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rieza Aprianto
- Molecular Genetics Group, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, Groningen, the Netherlands
| | | | | | | | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Hasan MK, Scott NE, Hays MP, Hardwidge PR, El Qaidi S. Salmonella T3SS effector SseK1 arginine-glycosylates the two-component response regulator OmpR to alter bile salt resistance. Sci Rep 2023; 13:9018. [PMID: 37270573 DOI: 10.1038/s41598-023-36057-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
Type III secretion system (T3SS) effector proteins are primarily recognized for binding host proteins to subvert host immune response during infection. Besides their known host target proteins, several T3SS effectors also interact with endogenous bacterial proteins. Here we demonstrate that the Salmonella T3SS effector glycosyltransferase SseK1 glycosylates the bacterial two-component response regulator OmpR on two arginine residues, R15 and R122. Arg-glycosylation of OmpR results in reduced expression of ompF, a major outer membrane porin gene. Glycosylated OmpR has reduced affinity to the ompF promoter region, as compared to the unglycosylated form of OmpR. Additionally, the Salmonella ΔsseK1 mutant strain had higher bile salt resistance and increased capacity to form biofilms, as compared to WT Salmonella, thus linking OmpR glycosylation to several important aspects of bacterial physiology.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne Within the Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Australia
| | - Michael P Hays
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
6
|
Identification of Z nucleotides as an ancient signal for two-component system activation in bacteria. Proc Natl Acad Sci U S A 2020; 117:33530-33539. [PMID: 33318202 DOI: 10.1073/pnas.2006209117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-component systems (TCSs) in bacteria are molecular circuits that allow the perception of and response to diverse stimuli. These signaling circuits rely on phosphoryl-group transfers between transmitter and receiver domains of sensor kinase and response regulator proteins, and regulate several cellular processes in response to internal or external cues. Phosphorylation, and thereby activation, of response regulators has been demonstrated to occur by their cognate histidine kinases but also by low molecular weight phosphodonors such as acetyl phosphate and carbamoyl phosphate. Here, we present data indicating that the intermediates of the de novo syntheses of purines and histidine, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate (ZMP) and/or 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-triphosphate (ZTP), activate the response regulator UvrY, by promoting its autophosphorylation at the conserved aspartate at position 54. Moreover, these Z nucleotides are shown to also activate the nonrelated response regulators ArcA, CpxR, RcsB, and PhoQ. We propose that ZMP and/or ZTP act as alarmones for a wide range of response regulators in vivo, providing a novel mechanism by which they could impact gene expression in response to metabolic cues.
Collapse
|
7
|
Characterization of a novel class 1 integron InSW39 and a novel transposon Tn5393k identified in an imipenem-nonsusceptible Salmonella Typhimurium strain in Sichuan, China. Diagn Microbiol Infect Dis 2020; 99:115263. [PMID: 33248418 DOI: 10.1016/j.diagmicrobio.2020.115263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 08/30/2020] [Accepted: 11/08/2020] [Indexed: 11/22/2022]
Abstract
This study aimed to characterize molecular mechanism of 3 Salmonella enterica strains and novel mobile genetic elements identified in them. The strains, designated SW1, SW39, and SW109084, were obtained from diarrhea patients. The results of susceptibility testing showed SW39 was nonsusceptible to imipenem and cefotaxime. Whole genome sequencing was performed on Illumina HiSeq platform. Multilocus-sequence typing revealed SW1 belonged to ST2529 which was first confirmed in S. enterica, SW109084 was ST34 which was first reported in Enteritidis and SW39 was ST19. Resistome analysis showed SW1, SW109084, and SW39 carried 14, 19, and 17 antibiotic resistance genes. Seven transposons and 4 integrons were confirmed in these strains. Notably, a novel In6- and In7-like class 1 integron designated InSW39 and a novel transposon Tn5393k were identified in plasmid pSW39. The study of genomics and resistance in S. enterica plays a significant role in prevention and treatment of Salmonella infections.
Collapse
|
8
|
Ahn S, Jung H, Kee JM. Quest for the Crypto-phosphoproteome. Chembiochem 2020; 22:319-325. [PMID: 33094900 DOI: 10.1002/cbic.202000583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Indexed: 11/05/2022]
Abstract
Protein phosphorylation is one of the most studied post-translational modifications (PTMs). Despite the remarkable advances in phosphoproteomics, a chemically less-stable subset of the phosphosites, which we call the crypto-phosphoproteome, has remained underexplored due to technological challenges. In this Viewpoint, we briefly summarize the current understanding of these elusive protein phosphorylations and identify the missing pieces for future studies.
Collapse
Affiliation(s)
- Seungmin Ahn
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Hoyoung Jung
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| |
Collapse
|
9
|
Kenney LJ, Anand GS. EnvZ/OmpR Two-Component Signaling: An Archetype System That Can Function Noncanonically. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0001-2019. [PMID: 32003321 PMCID: PMC7192543 DOI: 10.1128/ecosalplus.esp-0001-2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Indexed: 01/09/2023]
Abstract
Two-component regulatory systems represent the major paradigm for signal transduction in prokaryotes. The simplest systems are composed of a sensor kinase and a response regulator. The sensor is often a membrane protein that senses a change in environmental conditions and is autophosphorylated by ATP on a histidine residue. The phosphoryl group is transferred onto an aspartate of the response regulator, which activates the regulator and alters its output, usually resulting in a change in gene expression. In this review, we present a historical view of the archetype EnvZ/OmpR two-component signaling system, and then we provide a new view of signaling based on our recent experiments. EnvZ responds to cytoplasmic signals that arise from changes in the extracellular milieu, and OmpR acts canonically (requiring phosphorylation) to regulate the porin genes and noncanonically (without phosphorylation) to activate the acid stress response. Herein, we describe how insights gleaned from stimulus recognition and response in EnvZ are relevant to nearly all sensor kinases and response regulators.
Collapse
Affiliation(s)
- Linda J Kenney
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Mechanobiology Institute, T-Lab, National University of Singapore, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
10
|
Ghosh M, Wang LC, Huber RG, Gao Y, Morgan LK, Tulsian NK, Bond PJ, Kenney LJ, Anand GS. Engineering an Osmosensor by Pivotal Histidine Positioning within Disordered Helices. Structure 2019; 27:302-314.e4. [PMID: 30503779 DOI: 10.1016/j.str.2018.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/18/2018] [Accepted: 10/18/2018] [Indexed: 10/27/2022]
Abstract
Histidine kinases (HKs) funnel diverse environmental stimuli into a single autophosphorylation event at a conserved histidine residue. The HK EnvZ is a global sensor of osmolality and cellular acid pH. In previous studies, we discovered that osmosensing in EnvZ was mediated through osmolyte-induced stabilization of the partially disordered helical backbone spanning the conserved histidine autophosphorylation site (His243). Here, we describe how backbone stabilization leads to changes in the microenvironment of His243, resulting in enhanced autophosphorylation through relief of inhibition and repositioning of critical side chains and imidazole rotamerization. The conserved His-Asp/Glu dyad within the partially structured helix is equally geared to respond to acid pH, an alternative environmental stimulus in bacteria. This high-resolution "double-clamp" switch model proposes that a His-Asp/Glu dyad functions as an integrative node for regulating autophosphorylation in HKs. Because the His-Asp/Glu dyad is highly conserved in HKs, this study provides a universal model for describing HK function.
Collapse
Affiliation(s)
- Madhubrata Ghosh
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Loo Chien Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Roland G Huber
- Bioinformatics Institute (A(∗)STAR), 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - Yunfeng Gao
- Mechanobiology Institute, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Leslie K Morgan
- Jesse Brown Veteran Affairs Medical Center, 820 S. Damen Avenue, Chicago, IL 60612, USA; Department of Microbiology and Immunology, University of Illinois-Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Nikhil Kumar Tulsian
- Department of Biochemistry, National University of Singapore, 28 Medical Drive, Singapore 117546, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Peter J Bond
- Bioinformatics Institute (A(∗)STAR), 30 Biopolis Street, Matrix, Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Linda J Kenney
- Mechanobiology Institute, 5A Engineering Drive 1, Singapore 117411, Singapore; Jesse Brown Veteran Affairs Medical Center, 820 S. Damen Avenue, Chicago, IL 60612, USA; Department of Microbiology and Immunology, University of Illinois-Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
11
|
The OmpR Regulator of Burkholderia multivorans Controls Mucoid-to-Nonmucoid Transition and Other Cell Envelope Properties Associated with Persistence in the Cystic Fibrosis Lung. J Bacteriol 2018; 200:JB.00216-18. [PMID: 29914989 DOI: 10.1128/jb.00216-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
Bacteria from the Burkholderia cepacia complex grow in different natural and man-made environments and are feared opportunistic pathogens that cause chronic respiratory infections in cystic fibrosis patients. Previous studies showed that Burkholderia mucoid clinical isolates grown under stress conditions give rise to nonmucoid variants devoid of the exopolysaccharide cepacian. Here, we determined that a major cause of the nonmucoid morphotype involves nonsynonymous mutations and small indels in the ompR gene encoding a response regulator of a two-component regulatory system. In trans complementation of nonmucoid variants (NMVs) with the native gene restored exopolysaccharide production. The loss of functional Burkholderia multivorans OmpR had positive effects on growth, adhesion to lung epithelial cells, and biofilm formation in high-osmolarity medium, as well as an increase in swimming and swarming motilities. In contrast, phenotypes such as antibiotic resistance, biofilm formation at low osmolarity, and virulence in Galleria mellonella were compromised by the absence of functional OmpR. Transcriptomic studies indicated that loss of the ompR gene affects the expression of 701 genes, many associated with outer membrane composition, motility, stress response, iron acquisition, and the uptake of nutrients, consistent with starvation tolerance. Since the stresses here imposed on B. multivorans may strongly resemble the ones found in the cystic fibrosis (CF) airways and mutations in the ompR gene from longitudinally collected CF isolates have been found, this regulator might be important for the production of NMVs in the CF environment.IMPORTANCE Within the cystic fibrosis (CF) lung, bacteria experience high-osmolarity conditions due to an ion unbalance resulting from defects in CF transmembrane conductance regulator (CFTR) protein activity in epithelial cells. Understanding how bacterial CF pathogens thrive in this environment might help the development of new therapeutic interventions to prevent chronic respiratory infections. Here, we show that the OmpR response regulator of one of the species found in CF respiratory infections, Burkholderia multivorans, is involved in the emergence of nonmucoid colony variants and is important for osmoadaptation by regulating several cell envelope components. Specifically, genetic, phenotypic, genomic, and transcriptomic approaches uncover OmpR as a regulator of cell wall remodeling under stress conditions, with implications in several phenotypes such as exopolysaccharide production, motility, antibiotic resistance, adhesion, and virulence.
Collapse
|
12
|
Joyce AP, Havranek JJ. Deciphering the protein-DNA code of bacterial winged helix-turn-helix transcription factors. QUANTITATIVE BIOLOGY 2018; 6:68-84. [PMID: 37990674 PMCID: PMC10662834 DOI: 10.1007/s40484-018-0130-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 10/18/2022]
Abstract
Background Sequence-specific binding by transcription factors (TFs) plays a significant role in the selection and regulation of target genes. At the protein:DNA interface, amino acid side-chains construct a diverse physicochemical network of specific and non-specific interactions, and seemingly subtle changes in amino acid identity at certain positions may dramatically impact TF:DNA binding. Variation of these specificity-determining residues (SDRs) is a major mechanism of functional divergence between TFs with strong structural or sequence homology. Methods In this study, we employed a combination of high-throughput specificity profiling by SELEX and Spec-seq, structural modeling, and evolutionary analysis to probe the binding preferences of winged helix-turn-helix TFs belonging to the OmpR sub-family in Escherichia coli. Results We found that E. coli OmpR paralogs recognize tandem, variably spaced repeats composed of "GT-A" or "GCT"-containing half-sites. Some divergent sequence preferences observed within the "GT-A" mode correlate with amino acid similarity; conversely, "GCT"-based motifs were observed for a subset of paralogs with low sequence homology. Direct specificity profiling of a subset of OmpR homologues (CpxR, RstA, and OmpR) as well as predicted "SDR-swap" variants revealed that individual SDRs may impact sequence preferences locally through direct contact with DNA bases or distally via the DNA backbone. Conclusions Overall, our work provides evidence for a common structural code for sequence-specific wHTH:DNA interactions, and demonstrates that surprisingly modest residue changes can enable recognition of highly divergent sequence motifs. Further examination of SDR predictions will likely reveal additional mechanisms controlling the evolutionary divergence of this important class of transcriptional regulators.
Collapse
Affiliation(s)
- Adam P. Joyce
- Program in Developmental, Regenerative, and Stem Cell Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - James J. Havranek
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
13
|
The Odyssey of the Ancestral Escherich Strain through Culture Collections: an Example of Allopatric Diversification. mSphere 2018; 3:mSphere00553-17. [PMID: 29404421 PMCID: PMC5793043 DOI: 10.1128/msphere.00553-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/05/2018] [Indexed: 01/19/2023] Open
Abstract
More than a century ago, Theodor Escherich isolated the bacterium that was to become Escherichia coli, one of the most studied organisms. Not long after, the strain began an odyssey and landed in many laboratories across the world. As laboratory culture conditions could be responsible for major changes in bacterial strains, we conducted a genome analysis of isolates of this emblematic strain from different culture collections (England, France, the United States, Germany). Strikingly, many discrepancies between the isolates were observed, as revealed by multilocus sequence typing (MLST), the presence of virulence-associated genes, core genome MLST, and single nucleotide polymorphism/indel analyses. These differences are correlated with the phylogeographic history of the strain and were due to an unprecedented number of mutations in coding DNA repair functions such as mismatch repair (MutL) and oxidized guanine nucleotide pool cleaning (MutT), conferring a specific mutational spectrum and leading to a mutator phenotype. The mutator phenotype was probably acquired during subculturing and corresponded to second-order selection. Furthermore, all of the isolates exhibited hypersusceptibility to antibiotics due to mutations in efflux pump- and porin-encoding genes, as well as a specific mutation in the sigma factor-encoding gene rpoS. These defects reflect a self-preservation and nutritional competence tradeoff allowing survival under the starvation conditions imposed by storage. From a clinical point of view, dealing with such mutator strains can lead microbiologists to draw false conclusions about isolate relatedness and may impact therapeutic effectiveness. IMPORTANCE Mutator phenotypes have been described in laboratory-evolved bacteria, as well as in natural isolates. Several genes can be impacted, each of them being associated with a typical mutational spectrum. By studying one of the oldest strains available, the ancestral Escherich strain, we were able to identify its mutator status leading to tremendous genetic diversity among the isolates from various collections and allowing us to reconstruct the phylogeographic history of the strain. This mutator phenotype was probably acquired during the storage of the strain, promoting adaptation to a specific environment. Other mutations in rpoS and efflux pump- and porin-encoding genes highlight the acclimatization of the strain through self-preservation and nutritional competence regulation. This strain history can be viewed as unintentional experimental evolution in culture collections all over the word since 1885, mimicking the long-term experimental evolution of E. coli of Lenski et al. (O. Tenaillon, J. E. Barrick, N. Ribeck, D. E. Deatherage, J. L. Blanchard, A. Dasgupta, G. C. Wu, S. Wielgoss, S. Cruveiller, C. Médigue, D. Schneider, and R. E. Lenski, Nature 536:165-170, 2016, https://doi.org/10.1038/nature18959) that shares numerous molecular features.
Collapse
|
14
|
Seo SW, Gao Y, Kim D, Szubin R, Yang J, Cho BK, Palsson BO. Revealing genome-scale transcriptional regulatory landscape of OmpR highlights its expanded regulatory roles under osmotic stress in Escherichia coli K-12 MG1655. Sci Rep 2017; 7:2181. [PMID: 28526842 PMCID: PMC5438342 DOI: 10.1038/s41598-017-02110-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/05/2017] [Indexed: 12/02/2022] Open
Abstract
A transcription factor (TF), OmpR, plays a critical role in transcriptional regulation of the osmotic stress response in bacteria. Here, we reveal a genome-scale OmpR regulon in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 37 genes in 24 transcription units (TUs) belong to OmpR regulon. Among them, 26 genes show more than two-fold changes in expression level in an OmpR knock-out strain. Specifically, we find that: 1) OmpR regulates mostly membrane-located gene products involved in diverse fundamental biological processes, such as narU (encoding nitrate/nitrite transporter), ompX (encoding outer membrane protein X), and nuoN (encoding NADH:ubiquinone oxidoreductase); 2) by investigating co-regulation of entire sets of genes regulated by other stress-response TFs, stresses are surprisingly independently regulated among each other; and, 3) a detailed investigation of the physiological roles of the newly discovered OmpR regulon genes reveals that activation of narU represents a novel strategy to significantly improve osmotic stress tolerance of E. coli. Thus, the genome-scale approach to elucidating regulons comprehensively identifies regulated genes and leads to fundamental discoveries related to stress responses.
Collapse
Affiliation(s)
- Sang Woo Seo
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-Gu, Seoul, 08826, Republic of Korea. .,Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Ye Gao
- Division of Biological Science, University of California San Diego, La Jolla, CA, 92093, USA
| | - Donghyuk Kim
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.,Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jina Yang
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA. .,Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
15
|
Structural Alteration of OmpR as a Source of Ertapenem Resistance in a CTX-M-15-Producing Escherichia coli O25b:H4 Sequence Type 131 Clinical Isolate. Antimicrob Agents Chemother 2017; 61:AAC.00014-17. [PMID: 28264855 DOI: 10.1128/aac.00014-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/02/2017] [Indexed: 01/06/2023] Open
Abstract
In this study, an ertapenem-nonsusceptible Escherichia coli isolate was investigated to determine the genetic basis for its carbapenem resistance phenotype. This clinical strain was recovered from a patient that received, 1 year previously, ertapenem to treat a cholangitis due to a carbapenem-susceptible extended-spectrum-β-lactamase (ESBL)-producing E. coli isolate. Whole-genome sequencing of these strains was performed using Illumina and single-molecule real-time sequencing technologies. It revealed that they belonged to the ST131 clonal group, had the predicted O25b:H4 serotype, and produced the CTX-M-15 and TEM-1 β-lactamases. One nucleotide substitution was identified between these strains. It affected the ompR gene, which codes for a regulatory protein involved in the control of OmpC/OmpF porin expression, creating a Gly-63-Val substitution. The role of OmpR alteration was confirmed by a complementation experiment that fully restored the susceptibility to ertapenem of the clinical isolate. A modeling study showed that the Gly-63-Val change displaced the histidine-kinase phosphorylation site. SDS-PAGE analysis revealed that the ertapenem-nonsusceptible E. coli strain had a decreased expression of OmpC/OmpF porins. No significant defect in the growth rate or in the resistance to Dictyostelium discoideum amoeba phagocytosis was found in the ertapenem-nonsusceptible E. coli isolate compared to its susceptible parental strain. Our report demonstrates for the first time that ertapenem resistance may emerge clinically from ESBL-producing E. coli due to mutations that modulate the OmpR activity.
Collapse
|
16
|
Desai SK, Kenney LJ. To ∼P or Not to ∼P? Non-canonical activation by two-component response regulators. Mol Microbiol 2016; 103:203-213. [PMID: 27656860 DOI: 10.1111/mmi.13532] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2016] [Indexed: 12/30/2022]
Abstract
Bacteria sense and respond to their environment through the use of two-component regulatory systems. The ability to adapt to a wide range of environmental stresses is directly related to the number of two-component systems an organism possesses. Recent advances in this area have identified numerous variations on the archetype systems that employ a sensor kinase and a response regulator. It is now evident that many orphan regulators that lack cognate kinases do not rely on phosphorylation for activation and new roles for unphosphorylated response regulators have been identified. The significance of recent findings and suggestions for further research are discussed.
Collapse
Affiliation(s)
- Stuti K Desai
- Mechanobiology Institute, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore
| | - Linda J Kenney
- Mechanobiology Institute, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA.,Department of Microbiology & Immunology, University of Illinois-Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Abstract
Pyruvate and acetyl-CoA form the backbone of central metabolism. The nonoxidative cleavage of pyruvate to acetyl-CoA and formate by the glycyl radical enzyme pyruvate formate lyase is one of the signature reactions of mixed-acid fermentation in enterobacteria. Under these conditions, formic acid accounts for up to one-third of the carbon derived from glucose. The further metabolism of acetyl-CoA to acetate via acetyl-phosphate catalyzed by phosphotransacetylase and acetate kinase is an exemplar of substrate-level phosphorylation. Acetyl-CoA can also be used as an acceptor of the reducing equivalents generated during glycolysis, whereby ethanol is formed by the polymeric acetaldehyde/alcohol dehydrogenase (AdhE) enzyme. The metabolism of acetyl-CoA via either the acetate or the ethanol branches is governed by the cellular demand for ATP and the necessity to reoxidize NADH. Consequently, in the absence of an electron acceptor mutants lacking either branch of acetyl-CoA metabolism fail to cleave pyruvate, despite the presence of PFL, and instead reduce it to D-lactate by the D-lactate dehydrogenase. The conversion of PFL to the active, radical-bearing species is controlled by a radical-SAM enzyme, PFL-activase. All of these reactions are regulated in response to the prevalent cellular NADH:NAD+ ratio. In contrast to Escherichia coli and Salmonella species, some genera of enterobacteria, e.g., Klebsiella and Enterobacter, produce the more neutral product 2,3-butanediol and considerable amounts of CO2 as fermentation products. In these bacteria, two molecules of pyruvate are converted to α-acetolactate (AL) by α-acetolactate synthase (ALS). AL is then decarboxylated and subsequently reduced to the product 2,3-butandiol.
Collapse
|
18
|
Foo YH, Gao Y, Zhang H, Kenney LJ. Cytoplasmic sensing by the inner membrane histidine kinase EnvZ. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:119-29. [PMID: 25937465 DOI: 10.1016/j.pbiomolbio.2015.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/22/2022]
Abstract
Two-component regulatory systems drive signal transduction in bacteria. The simplest of these employs a membrane sensor kinase and a cytoplasmic response regulator. Environmental sensing is typically coupled to gene regulation. The histidine kinase EnvZ and its cognate response regulator OmpR regulate expression of outer membrane proteins (porins) in response to osmotic stress. We used hydrogen:deuterium exchange mass spectrometry to identify conformational changes in the cytoplasmic domain of EnvZ (EnvZc) that were associated with osmosensing. The osmosensor localized to a seventeen amino acid region of the four-helix bundle of the cytoplasmic domain and flanked the His(243) autophosphorylation site. High osmolality increased autophosphorylation of His(243), suggesting that these two events were linked. The transmembrane domains were not required for osmosensing, but mutants in the transmembrane domains altered EnvZ activity. A photoactivatable fusion protein composed of EnvZc fused to the fluorophore mEos2 (EnvZc-mEos2) was as capable as EnvZc in supporting OmpR-dependent ompF and ompC transcription. Over-expression of EnvZc reduced activity, indicating that the EnvZ/OmpR system is not robust. Our results support a model in which osmolytes stabilize helix one in the four-helix bundle of EnvZ by increased hydrogen bonding of the peptide backbone, increasing autophosphorylation and downstream signaling. The likelihood that additional histidine kinases use similar cytoplasmic sensing mechanisms is discussed.
Collapse
Affiliation(s)
- Yong Hwee Foo
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Yunfeng Gao
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Hongfang Zhang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Linda J Kenney
- Mechanobiology Institute, National University of Singapore, Singapore; Jesse Brown Veterans Affairs Medical Center, Chicago, USA; University of Illinois-Chicago, USA.
| |
Collapse
|
19
|
Quinn HJ, Cameron ADS, Dorman CJ. Bacterial regulon evolution: distinct responses and roles for the identical OmpR proteins of Salmonella Typhimurium and Escherichia coli in the acid stress response. PLoS Genet 2014; 10:e1004215. [PMID: 24603618 PMCID: PMC3945435 DOI: 10.1371/journal.pgen.1004215] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/16/2014] [Indexed: 12/26/2022] Open
Abstract
The evolution of new gene networks is a primary source of genetic innovation that allows bacteria to explore and exploit new niches, including pathogenic interactions with host organisms. For example, the archetypal DNA binding protein, OmpR, is identical between Salmonella Typhimurium serovar Typhimurium and Escherichia coli, but regulatory specialization has resulted in different environmental triggers of OmpR expression and largely divergent OmpR regulons. Specifically, ompR mRNA and OmpR protein levels are elevated by acid pH in S. Typhimurium but not in E. coli. This differential expression pattern is due to differences in the promoter regions of the ompR genes and the E. coli ompR orthologue can be made acid-inducible by introduction of the appropriate sequences from S. Typhimurium. The OmpR regulon in S. Typhimurium overlaps that of E. coli at only 15 genes and includes many horizontally acquired genes (including virulence genes) that E. coli does not have. We found that OmpR binds to its genomic targets in higher abundance when the DNA is relaxed, something that occurs in S. Typhimurium as a result of acid stress and which is a requirement for optimal expression of its virulence genes. The genomic targets of OmpR do not share a strong nucleotide sequence consensus: we propose that the ability of OmpR to recruit additional genes to its regulon arises from its modest requirements for specificity in its DNA targets with its preference for relaxed DNA allowing it to cooperate with DNA-topology-based allostery to modulate transcription in response to acid stress.
Collapse
Affiliation(s)
- Heather J. Quinn
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Andrew D. S. Cameron
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Charles J. Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
20
|
Pawelczyk S, Scott KA, Hamer R, Blades G, Deane CM, Wadhams GH. Predicting inter-species cross-talk in two-component signalling systems. PLoS One 2012; 7:e37737. [PMID: 22629451 PMCID: PMC3358273 DOI: 10.1371/journal.pone.0037737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/23/2012] [Indexed: 11/17/2022] Open
Abstract
Phosphosignalling pathways are an attractive option for the synthetic biologist looking for a wide repertoire of modular components from which to build. We demonstrate that two-component systems can be used in synthetic biology. However, their potential is limited by the fact that host cells contain many of their own phosphosignalling pathways and these may interact with, and cross-talk to, the introduced synthetic components. In this paper we also demonstrate a simple bioinformatic tool that can help predict whether interspecies cross-talk between introduced and native two-component signalling pathways will occur and show both in vitro and in vivo that the predicted interactions do take place. The ability to predict potential cross-talk prior to designing and constructing novel pathways or choosing a host organism is essential for the promise that phosphosignalling components hold for synthetic biology to be realised.
Collapse
Affiliation(s)
- Sonja Pawelczyk
- Department of Biochemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
21
|
The inner membrane histidine kinase EnvZ senses osmolality via helix-coil transitions in the cytoplasm. EMBO J 2012; 31:2648-59. [PMID: 22543870 DOI: 10.1038/emboj.2012.99] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 03/14/2012] [Indexed: 11/08/2022] Open
Abstract
Two-component systems mediate bacterial signal transduction, employing a membrane sensor kinase and a cytoplasmic response regulator (RR). Environmental sensing is typically coupled to gene regulation. Understanding how input stimuli activate kinase autophosphorylation remains obscure. The EnvZ/OmpR system regulates expression of outer membrane proteins in response to osmotic stress. To identify EnvZ conformational changes associated with osmosensing, we used HDXMS to probe the effects of osmolytes (NaCl, sucrose) on the cytoplasmic domain of EnvZ (EnvZ(c)). Increasing osmolality decreased deuterium exchange localized to the four-helix bundle containing the autophosphorylation site (His(243)). EnvZ(c) exists as an ensemble of multiple conformations and osmolytes favoured increased helicity. High osmolality increased autophosphorylation of His(243), suggesting that these two events are linked. In-vivo analysis showed that the cytoplasmic domain of EnvZ was sufficient for osmosensing, transmembrane domains were not required. Our results challenge existing claims of robustness in EnvZ/OmpR and support a model where osmolytes promote intrahelical H-bonding enhancing helix stabilization, increasing autophosphorylation and downstream signalling. The model provides a conserved mechanism for signalling proteins that respond to diverse physical and mechanical stimuli.
Collapse
|
22
|
Oligomerization of the response regulator ComE from Streptococcus mutans is affected by phosphorylation. J Bacteriol 2011; 194:1127-35. [PMID: 22210762 DOI: 10.1128/jb.06565-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have previously characterized the interactions of the response regulator ComE from Streptococcus mutans and DNA binding sites through DNase I footprinting and electrophoretic mobility shift assay analysis. Since response regulator functions are often affected by their phosphorylation state, we investigated how phosphorylation affects the biochemical function of ComE. Unlike many response regulators, we found that the phosphorylation state of ComE does not likely play a role in DNA binding affinity but rather seems to induce the formation of an oligomeric form of the protein. The role of this oligomerization state for ComE function is discussed.
Collapse
|
23
|
Intergenic sequence comparison of Escherichia coli isolates reveals lifestyle adaptations but not host specificity. Appl Environ Microbiol 2011; 77:7620-32. [PMID: 21908635 DOI: 10.1128/aem.05909-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Establishing the risk of human infection is one of the goals of public health. For bacterial pathogens, the virulence and zoonotic potential can often be related to their host source. Escherichia coli bacteria are common contaminants of water associated with human recreation and consumption, and many strains are pathogenic. In this study, we analyzed three promoter-containing intergenic regions from 284 diverse E. coli isolates in an attempt to identify molecular signatures associated with specific host types. Promoter sequences controlling production of curli fimbriae, flagella, and nutrient import yielded a phylogenetic tree with isolates clustered by established phylogenetic grouping (A, B1, B2, and D) but not by host source. Virulence genes were more prevalent in groups B2 and D isolates and in human isolates. Group B1 isolates, primarily from nonhuman sources, were the most genetically similar, indicating that they lacked molecular adaptations to specific host environments and were likely host generalists. Conversely, B2 isolates, primarily from human sources, displayed greater genetic distances and were more likely to be host adapted. In agreement with these hypotheses, prevalence of σ(S) activity and the rdar morphotype, phenotypes associated with environmental survival, were significantly higher in B1 isolates than in B2 isolates. Based on our findings, we speculate that E. coli host specificity is not defined by genome-wide sequence changes but, rather, by the presence or absence of specific genes and associated promoter elements. Furthermore, the requirements for colonization of the human gastrointestinal tract may lead to E. coli lifestyle changes along with selection for increased virulence.
Collapse
|
24
|
Hwang S, Kim M, Ryu S, Jeon B. Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni. PLoS One 2011; 6:e22300. [PMID: 21811584 PMCID: PMC3139631 DOI: 10.1371/journal.pone.0022300] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/18/2011] [Indexed: 11/20/2022] Open
Abstract
CosR (Campylobacter oxidative stress regulator; Cj0355c) is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE) was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA) or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator) but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni.
Collapse
Affiliation(s)
- Sunyoung Hwang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Minkyeong Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Byeonghwa Jeon
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
25
|
The residue threonine 82 of DevR (DosR) is essential for DevR activation and function in Mycobacterium tuberculosis despite its atypical location. J Bacteriol 2011; 193:4849-58. [PMID: 21764934 DOI: 10.1128/jb.05051-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The DevR (DosR) response regulator initiates the bacterial adaptive response to a variety of signals, including hypoxia in in vitro models of dormancy. Its receiver domain works as a phosphorylation-mediated switch to activate the DNA binding property of its output domain. Receiver domains are characterized by the presence of several highly conserved residues, and these sequence features correlate with structure and hence function. In response regulators, interaction of phosphorylated aspartic acid at the active site with the conserved threonine is believed to be crucial for phosphorylation-mediated conformational change. DevR contains all the conserved residues, but the structure of its receiver domain in the unphosphorylated protein is strikingly different, and key threonine (T82), tyrosine (Y101), and lysine (K104) residues are placed uncharacteristically far from the D54 phosphorylation site. In view of the atypical location of T82 in DevR, the present study aimed to examine the importance of this residue in the activation mechanism. Mycobacterium tuberculosis expressing a DevR T82A mutant protein is defective in autoregulation and supports hypoxic induction of the DevR regulon only very weakly. These defects are ascribed to slow and partial phosphorylation and the failure of T82A mutant protein to bind cooperatively with DNA. Our results indicate that the T82 residue is crucial in implementing conformational changes in DevR that are essential for cooperative binding and for subsequent gene activation. We propose that the function of the T82 residue in the activation mechanism of DevR is conserved in spite of the unusual architecture of its receiver domain.
Collapse
|
26
|
Kenney LJ. How important is the phosphatase activity of sensor kinases? Curr Opin Microbiol 2010; 13:168-76. [PMID: 20223700 DOI: 10.1016/j.mib.2010.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/29/2022]
Abstract
In two-component signaling systems, phosphorylated response regulators (RRs) are often dephosphorylated by their partner kinases in order to control the in vivo concentration of phospho-RR (RR approximately P). This activity is easily demonstrated in vitro, but these experiments have typically used very high concentrations of the histidine kinase (HK) compared to the RR approximately P. Many two-component systems exhibit exquisite control over the ratio of HK to RR in vivo. The question thus arises as to whether the phosphatase activity of HKs is significant in vivo. This topic will be explored in the present review.
Collapse
Affiliation(s)
- Linda J Kenney
- Department of Microbiology & Immunology, University of Illinois at Chicago, 835 S. Wolcott St. M/C 790, Chicago, IL 60612, USA.
| |
Collapse
|
27
|
Belcheva A, Verma V, Golemi-Kotra D. DNA-binding activity of the vancomycin resistance associated regulator protein VraR and the role of phosphorylation in transcriptional regulation of the vraSR operon. Biochemistry 2009; 48:5592-601. [PMID: 19419158 DOI: 10.1021/bi900478b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Staphylococcus aureus the VraSR two-component system acts as a sentinel that can rapidly sense cell wall peptidoglycan damage and coordinate a response to enhance the resistance phenotype. VraR is a transcription factor and its cognate kinase, VraS, modulates the DNA-binding activity of VraR by regulating its phosphorylation state and hence its dimerization state. Here we provide the first report on the VraR transcriptional activity by investigating the interaction with the vraSR operon control region. We found that this region contains three VraR-binding sites, each with unique VraR-binding features. VraR binding to the most conserved site is phosphorylation independent, and dimerization is proposed to be induced through binding to DNA. By contrast, binding to the less conserved site requires phosphorylation of VraR. This site overlaps with the binding site of the sigma subunit of the RNA polymerase complex, suggesting that VraR could be interacting with the transcription machinery in the presence of the cell wall stress signal. Mutagenesis studies on the VraR binding sites suggest that there is directionality in the binding of VraR to the target DNA, probably dictated by VraR dimerization. We also constructed a P(vraSR)-fused lux operon reporter vector to investigate in vivo the significance of our in vitro studies. These studies show that upon cell wall stress, induced by oxacillin, the expression level of the lux operon goes up and it is affected by the integrity of the two identified VraR-binding sites in agreement with the in vitro studies. Further, they demonstrate that the VraR most conserved binding site is essential to the vraSR operon expression. On the other hand, they suggest that the role of the VraR less conserved site could be that of mediating high levels of vraSR operon expression during cell wall stress conditions.
Collapse
Affiliation(s)
- Antoaneta Belcheva
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | |
Collapse
|
28
|
Park D, Ciezki K, van der Hoeven R, Singh S, Reimer D, Bode HB, Forst S. Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila. Mol Microbiol 2009; 73:938-49. [PMID: 19682255 DOI: 10.1111/j.1365-2958.2009.06817.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Xenocoumacin 1 (Xcn1) and xenocoumacin 2 (Xcn2) are the major antimicrobial compounds produced by Xenorhabdus nematophila. To study the role of Xcn1 and Xcn2 in the life cycle of X. nematophila the 14 gene cluster (xcnA-N) required for their synthesis was identified. Overlap RT-PCR analysis identified six major xcn transcripts. Individual inactivation of the non-ribosomal peptide synthetase genes, xcnA and xcnK, and polyketide synthetase genes, xcnF, xcnH and xcnL, eliminated Xcn1 production. Xcn1 levels and expression of xcnA-L were increased in an ompR strain while Xcn2 levels and xcnMN expression were reduced. Xcn1 production was also increased in a strain lacking acetyl-phosphate that can donate phosphate groups to OmpR. Together these findings suggest that OmpR-phosphate negatively regulates xcnA-L gene expression while positively regulating xcnMN expression. HPLC-MS analysis revealed that Xcn1 was produced first and was subsequently converted to Xcn2. Inactivation of xcnM and xcnN eliminated conversion of Xcn1 to Xcn2 resulting in elevated Xcn1 production. The viability of the xcnM strain was reduced 20-fold relative to the wild-type strain supporting the idea that conversion of Xcn1 to Xcn2 provides a mechanism to avoid self-toxicity. Interestingly, inactivation of ompR enhanced cell viability during prolonged culturing.
Collapse
Affiliation(s)
- Dongjin Park
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53201, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
A critical process controlled by MalT and OmpR is revealed through synthetic lethality. J Bacteriol 2009; 191:5320-4. [PMID: 19502392 DOI: 10.1128/jb.00522-09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The death of cells harboring defects in two distinct pathways implicates these pathways in the control of an essential process. Here we report that cells lacking OmpR and harboring constitutively active MalT undergo premature death that involves increased expression of the outer membrane porin LamB.
Collapse
|
30
|
Lin WJ, Walthers D, Connelly JE, Burnside K, Jewell KA, Kenney LJ, Rajagopal L. Threonine phosphorylation prevents promoter DNA binding of the Group B Streptococcus response regulator CovR. Mol Microbiol 2009; 71:1477-95. [PMID: 19170889 DOI: 10.1111/j.1365-2958.2009.06616.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
All living organisms communicate with the external environment for their survival and existence. In prokaryotes, communication is achieved by two-component systems (TCS) comprising histidine kinases and response regulators. In eukaryotes, signalling is accomplished by serine/threonine and tyrosine kinases. Although TCS and serine/threonine kinases coexist in prokaryotes, direct cross-talk between these families was first described in Group B Streptococcus (GBS). A serine/threonine kinase (Stk1) and a TCS (CovR/CovS) co-regulate toxin expression in GBS. Typically, promoter binding of regulators like CovR is controlled by phosphorylation of the conserved active site aspartate (D53). In this study, we show that Stk1 phosphorylates CovR at threonine 65. The functional consequence of threonine phosphorylation of CovR in GBS was evaluated using phosphomimetic and silencing substitutions. GBS encoding the phosphomimetic T65E allele are deficient for CovR regulation unlike strains encoding the non-phosphorylated T65A allele. Further, compared with wild-type or T65A CovR, the T65E CovR is unable to bind promoter DNA and is decreased for phosphorylation at D53, similar to Stk1-phosphorylated CovR. Collectively, we provide evidence for a novel mechanism of response regulator control that enables GBS (and possibly other prokaryotes) to fine-tune gene expression for environmental adaptation.
Collapse
Affiliation(s)
- Wan-Jung Lin
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, WA 98101, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Carroll RK, Liao X, Morgan LK, Cicirelli EM, Li Y, Sheng W, Feng X, Kenney LJ. Structural and functional analysis of the C-terminal DNA binding domain of the Salmonella typhimurium SPI-2 response regulator SsrB. J Biol Chem 2009; 284:12008-19. [PMID: 19126546 DOI: 10.1074/jbc.m806261200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In bacterial pathogenesis, virulence gene regulation is controlled by two-component regulatory systems. In Escherichia coli, the EnvZ/OmpR two-component system is best understood as regulating expression of outer membrane proteins, but in Salmonella enterica, OmpR activates transcription of the SsrA/B two-component system located on Salmonella pathogenicity island 2 (SPI-2). The response regulator SsrB controls expression of a type III secretory system in which effectors modify the vacuolar membrane and prevent its degradation via the endocytic pathway. Vacuolar modification enables Salmonella to survive and replicate in the macrophage phagosome and disseminate to the liver and spleen to cause systemic infection. The signals that activate EnvZ and SsrA are unknown but are related to the acidic pH encountered in the vacuole. Our previous work established that SsrB binds to regions of DNA that are AT-rich, with poor sequence conservation. Although SsrB is a major virulence regulator in Salmonella, very little is known regarding how it binds DNA and activates transcription. In the present work, we solved the structure of the C-terminal DNA binding domain of SsrB (SsrB(C)) by NMR and analyzed the effect of amino acid substitutions on function. We identified residues in the DNA recognition helix (Lys(179), Met(186)) and the dimerization interface (Val(197), Leu(201)) that are important for SsrB transcriptional activation and DNA binding. An essential cysteine residue in the N-terminal receiver domain was also identified (Cys(45)), and the effect of Cys(203) on dimerization was evaluated. Our results suggest that although disulfide bond formation is not required for dimerization, dimerization occurs upon DNA binding and is required for subsequent activation of transcription. Disruption of the dimer interface by a C203E substitution reduces SsrB activity. Modification of Cys(203) or Cys(45) may be an important mode of SsrB inactivation inside the host.
Collapse
Affiliation(s)
- Ronan K Carroll
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Rhee JE, Sheng W, Morgan LK, Nolet R, Liao X, Kenney LJ. Amino acids important for DNA recognition by the response regulator OmpR. J Biol Chem 2008; 283:8664-77. [PMID: 18195018 PMCID: PMC2417188 DOI: 10.1074/jbc.m705550200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 12/27/2007] [Indexed: 11/06/2022] Open
Abstract
Response regulators undergo regulated phosphorylation and dephosphorylation at conserved aspartic acid residues in bacterial signal transduction systems. OmpR is a winged helix-turnhelix DNA-binding protein that functions as a global regulator in bacteria and is also important in pathogenesis. A detailed mechanistic picture of how OmpR binds to DNA and activates transcription is lacking. We used NMR spectroscopy to solve the solution structure of the C-terminal domain of OmpR (OmpR(C)) and to analyze the chemical shift changes that occur upon DNA binding. There is little overlap in the interaction surface with residues of PhoB that were reportedly involved in protein/protein interactions in its head-to-tail dimer. Multiple factors account for the lack of overlap. One is that the spacing between the OmpR half-sites is shorter than observed with PhoB, requiring the arrangement of the two OmpR molecules to be different from that of the PhoB dimer on DNA. A second is the demonstration herein that OmpR can bind to its high affinity site as a monomer. As a result, OmpR(C) appears to be capable of adopting alternative orientations depending on the precise base composition of the binding site, which also contributes to the lack of overlap. In the presence of DNA, chemical shift changes occur in OmpR in the recognition alpha-helix 3, the loop between beta-strand 4 and alpha-helix 1, and the loop between beta-strands 5 and 6. DNA contact residues are Val(203) (T), Arg(207) (G), and Arg(209) (phosphate backbone). Our results suggest that OmpR binds to DNA as a monomer and then forms a symmetric or asymmetric dimer, depending on the binding site. We propose that during activation OmpR binds to DNA and undergoes a conformational change that promotes phosphorylation of the N-terminal receiver domain, the receiver domains dimerize, and then the second monomer binds to DNA. The flexible linker of OmpR enables the second monomer to bind in multiple orientations (head-to-tail and head-to-head), depending on the specific DNA contacts.
Collapse
Affiliation(s)
- Jee Eun Rhee
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
33
|
PhoP-PhoP interaction at adjacent PhoP binding sites is influenced by protein phosphorylation. J Bacteriol 2007; 190:1317-28. [PMID: 18065544 DOI: 10.1128/jb.01074-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis PhoP regulates the expression of unknown virulence determinants and the biosynthesis of complex lipids. PhoP, like other members of the OmpR family, comprises a phosphorylation domain at the amino-terminal half and a DNA-binding domain at the carboxy-terminal half of the protein. To explore structural effect of protein phosphorylation and to examine effect of phosphorylation on DNA binding, purified PhoP was phosphorylated by acetyl phosphate in a reaction that was dependent on Mg2+ and Asp-71. Protein phosphorylation was not required for DNA binding; however, phosphorylation enhanced in vitro DNA binding through protein-protein interaction(s). Evidence is presented here that the protein-protein interface is different in the unphosphorylated and phosphorylated forms of PhoP and that specific DNA binding plays a critical role in changing the nature of the protein-protein interface. We show that phosphorylation switches the transactivation domain to a different conformation, which specifies additional protein-protein contacts between PhoP protomers bound to adjacent cognate sites. Together, our observations raise the possibility that PhoP, in the unphosphorylated and phosphorylated forms, may be capable of adopting different orientations as it binds to a vast array of genes to activate or repress transcription.
Collapse
|
34
|
Abstract
The group A streptococcus (GAS) causes a variety of human diseases, including toxic shock syndrome and necrotizing fasciitis, which are both associated with significant mortality. Even the superficial self-limiting diseases caused by GAS, such as pharyngitis, impose a significant economic burden on society. GAS can cause a wide spectrum of diseases because it elaborates virulence factors that enable it to spread and survive in different environmental niches within the human host. The production of many of these virulence factors is directly controlled by the activity of the CovR/S two-component regulatory system. CovS acts in one direction as a kinase primarily to activate the response regulator CovR and repress the expression of major virulence factors and in the other direction as a phosphatase to permit gene expression in response to environmental changes that mimic conditions found during human infection. This Janus-like behaviour of the CovR/S system is recapitulated in the binding of CovR to the promoters that it directly regulates. Interactions between different faces of the CovR DNA binding domain appear to depend upon DNA sequence, leading to the potential for differential regulation of virulence gene expression.
Collapse
Affiliation(s)
- Gordon Churchward
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
35
|
McKenzie NL, Nodwell JR. Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J Bacteriol 2007; 189:5284-92. [PMID: 17513473 PMCID: PMC1951880 DOI: 10.1128/jb.00305-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The AbsA two-component signal transduction system, comprised of the sensor kinase AbsA1 and the response regulator AbsA2, acts as a negative regulator of antibiotic production in Streptomyces coelicolor, for which the phosphorylated form of AbsA2 (AbsA2 approximately P) is the agent of repression. In this study, we used chromatin immunoprecipitation to show that AbsA2 binds the promoter regions of actII-ORF4, cdaR, and redZ, which encode pathway-specific activators for actinorhodin, calcium-dependent antibiotic, and undecylprodigiosin, respectively. We confirm that these interactions also occur in vitro and that the binding of AbsA2 to each gene is enhanced by phosphorylation. Induced expression of actII-ORF4 and redZ in the hyperrepressive absA1 mutant (C542) brought about pathway-specific restoration of actinorhodin and undecylprodigiosin production, respectively. Our results suggest that AbsA2 approximately P interacts with as many as four sites in the region that includes the actII-ORF4 promoter. These data suggest that AbsA2 approximately P inhibits antibiotic production by directly interfering with the expression of pathway-specific regulators of antibiotic biosynthetic gene clusters.
Collapse
Affiliation(s)
- Nancy L McKenzie
- Department of Biochemistry & Biomedical Sciences, McMaster University, Health Sciences Centre, 1200 Main St. W., Hamilton, Ontario, Canada
| | | |
Collapse
|
36
|
Caille O, Rossier C, Perron K. A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. J Bacteriol 2007; 189:4561-8. [PMID: 17449606 PMCID: PMC1913472 DOI: 10.1128/jb.00095-07] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of copper (Cu) on trace metal and antibiotic resistance of Pseudomonas aeruginosa have been investigated. Cu treatments induced resistance not only to this metal but also, surprisingly, to zinc (Zn). Quantitative reverse transcription-PCR (qRT-PCR) revealed that after Cu treatment the transcription of the czcRS two-component system (TCS) operon was enhanced as well as that of the czcCBA operon encoding an efflux pump specific for zinc, cadmium, and cobalt. Cu treatments at the same time caused a decrease in the production of OprD porin, resulting in resistance to the carbapenem antibiotic imipenem. The CzcR regulator was known to repress oprD. However, Cu was still able to decrease the production of OprD and induce imipenem resistance in a czcRS knockout mutant. This strongly suggested that another Cu-dependent regulatory system was acting negatively on oprD expression. TCS regulator genes copR-copS have been shown to be involved in Cu tolerance in P. aeruginosa. qRT-PCR showed that overproduction of the CopR or of the CzcR regulator resulted in increased transcription of the czcC gene as well as in a decrease in oprD gene transcription, either in the wild-type strain or in the czcRS knockout mutant. Overproduction experiments suggest that a metal-dependent mechanism operates at the posttranscriptional level to control the production of the CzcCBA efflux pump. This study shows that CopR is a new negative regulator of OprD porin and that it links Zn, Cu, and imipenem resistances by interacting with the CzcRS TCS.
Collapse
Affiliation(s)
- Olivier Caille
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
37
|
Park D, Forst S. Co-regulation of motility, exoenzyme and antibiotic production by the EnvZ-OmpR-FlhDC-FliA pathway in Xenorhabdus nematophila. Mol Microbiol 2006; 61:1397-412. [PMID: 16889644 DOI: 10.1111/j.1365-2958.2006.05320.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xenorhabdus nematophila is an emerging model for both mutualism and pathogenicity in different invertebrate hosts. Here we conduct a mutant study of the EnvZ-OmpR two-component system and the flagella sigma factor, FliA (sigma28). Both ompR and envZ strains displayed precocious swarming behaviour, elevated flhD and fliA mRNA levels and early production of lipase, protease, haemolysin and antibiotic activity. Inactivation of fliA eliminated exoenzyme production which was restored by complementation with the fliAZ operon. Inactivation of flhA, a gene encoding a component of the flagella export apparatus, eliminated lipase but not protease or haemolysin production indicating these enzymes are secreted by different export pathways. FliA-regulated lipase (xlpA) and protease (xrtA) genes were identified. Their expression and level of production were elevated in the ompR and envZ strains and markedly reduced in the fliA strain while both were expressed normally in the flhA strain. We also found that expression of nrps1 which encodes a non-ribosomal peptide synthetase was elevated in the ompR and envZ strains. The fliA strain was pathogenic towards the insect host indicating that motility and FliA-regulated exoenzyme production were not essential for virulence. These findings support a model in which the EnvZ-OmpR-FlhDC-FliA regulatory network co-ordinately controls flagella synthesis, and exoenzyme and antibiotic production in X. nematophila.
Collapse
Affiliation(s)
- Dongjin Park
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53201, USA
| | | |
Collapse
|
38
|
Prüss BM, Besemann C, Denton A, Wolfe AJ. A complex transcription network controls the early stages of biofilm development by Escherichia coli. J Bacteriol 2006; 188:3731-9. [PMID: 16707665 PMCID: PMC1482888 DOI: 10.1128/jb.01780-05] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Birgit M Prüss
- Department of Veterinary and Microbiological Sciences, North Dakota State University, 1523 Centennial Blvd., Fargo, ND 58105, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
We have used a fusion of GFP to the response regulator OmpR to image the spatial distribution of OmpR in live cells of Escherichia coli. We observed foci of increased OmpR-GFP fluorescence that appear to be due to interactions with the histidine kinase EnvZ. We also observed colocalization of OmpR-GFP with clusters of plasmids carrying OmpR binding sites, which enabled us to develop a simple method for imaging the binding of OmpR to DNA in live cells. We used the peak fluorescence intensity within cells to quantify the extent of OmpR-GFP localization either due to interactions with EnvZ or due to binding DNA. With these assays we compared the effects of osmolarity and procaine, both of which are believed to modulate EnvZ activity. Our results suggest that, at least under our growth conditions, procaine activates EnvZ-OmpR signalling whereas osmolarity has, at best, a weak effect on the EnvZ-OmpR system.
Collapse
Affiliation(s)
- Eric Batchelor
- Department of Physics, University of Pennsylvania, Philadelphia, 19104, USA
| | | |
Collapse
|
40
|
Koo IC, Walthers D, Hefty PS, Kenney LJ, Stephens RS. ChxR is a transcriptional activator in Chlamydia. Proc Natl Acad Sci U S A 2006; 103:750-5. [PMID: 16407127 PMCID: PMC1325966 DOI: 10.1073/pnas.0509690103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chlamydia spp. are obligate intracellular bacterial pathogens that alternate between two metabolically and morphologically distinct developmental forms, and differentiation depends on transcriptional regulation. Genome sequencing of Chlamydia trachomatis revealed an ORF, CT630 (chxR), whose amino acid sequence contains a winged helix-turn-helix motif similar to the DNA-binding domain of response regulators in the OmpR subfamily. ChxR differs from many response regulators in that essential residues in the receiver or phosphorylation domain are lacking. ChxR functions as a transcriptional regulator because it activated transcription of ompF and ompC when expressed in Escherichia coli. In vitro transcription combined with microarray analysis also demonstrated that ChxR activates its own expression by binding directly to sites upstream of chxR; it also activates infA, tufA, oppA, and CT084. DNase I protection studies showed that ChxR bound to sites in the ompF and ompC promoter proximal regions that overlap but were distinct from OmpR binding sites. Both proteins could bind simultaneously to their nonoverlapping binding sites. This report identifies a stage-specific transcriptional regulator and some of its target genes in Chlamydia.
Collapse
Affiliation(s)
- Ingrid Chou Koo
- Program in Infectious Diseases, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | | | | | | | | |
Collapse
|
41
|
Ventre I, Goodman AL, Vallet-Gely I, Vasseur P, Soscia C, Molin S, Bleves S, Lazdunski A, Lory S, Filloux A. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A 2005; 103:171-6. [PMID: 16373506 PMCID: PMC1324988 DOI: 10.1073/pnas.0507407103] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is responsible for a wide range of acute and chronic infections. The transition to chronic infections is accompanied by physiological changes in the bacteria favoring formation of biofilm communities. Here we report the identification of LadS, a hybrid sensor kinase that controls the reciprocal expression of genes for type III secretion and biofilm-promoting polysaccharides. Domain organization of LadS and the range of LadS-controlled genes suggest that it counteracts the activities of another sensor kinase, RetS. These two pathways converge by controlling the transcription of a small regulatory RNA, RsmZ. This work identifies a previously undescribed signal transduction network in which the activities of signal-receiving sensor kinases LadS, RetS, and GacS regulate expression of virulence genes associated with acute or chronic infection by transcriptional and posttranscriptional mechanisms.
Collapse
Affiliation(s)
- Isabelle Ventre
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Centre National de la Recherche Scientifique, Institut de Biologie Structurale et Microbiologie, Unité Propre de Recherche 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Batchelor E, Walthers D, Kenney LJ, Goulian M. The Escherichia coli CpxA-CpxR envelope stress response system regulates expression of the porins ompF and ompC. J Bacteriol 2005; 187:5723-31. [PMID: 16077119 PMCID: PMC1196077 DOI: 10.1128/jb.187.16.5723-5731.2005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We performed transposon mutagenesis of a two-color fluorescent reporter strain to identify new regulators of the porin genes ompF and ompC in Escherichia coli. Screening of colonies by fluorescence microscopy revealed numerous mutants that exhibited interesting patterns of porin expression. One mutant harbored an insertion in the gene encoding the histidine kinase CpxA, the sensor for a two-component signaling system that responds to envelope stress. The cpxA mutant exhibited increased transcription of ompC and a very strong decrease in transcription of ompF under conditions in which acetyl phosphate levels were high. Subsequent genetic analysis revealed that this phenotype is dependent on phosphorylation of the response regulator CpxR and that activation of CpxA in wild-type cells results in similar regulation of porin expression. Using DNase I footprinting, we demonstrated that CpxR binds upstream of both the ompF and ompC promoters. It thus appears that two distinct two-component systems, CpxA-CpxR and EnvZ-OmpR, converge at the porin promoters. Within the context of envelope stress, outer membrane beta-barrel proteins have generally been associated with the sigma E pathway. However, at least for the classical porins OmpF and OmpC, our results show that the Cpx envelope stress response system plays a role in regulating their expression.
Collapse
Affiliation(s)
- Eric Batchelor
- Department of Physics, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
43
|
Maris AE, Walthers D, Mattison K, Byers N, Kenney LJ. The Response Regulator OmpR Oligomerizes via β-Sheets to Form Head-to-head Dimers. J Mol Biol 2005; 350:843-56. [PMID: 15979641 DOI: 10.1016/j.jmb.2005.05.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 05/18/2005] [Accepted: 05/24/2005] [Indexed: 11/29/2022]
Abstract
In Escherichia coli, the EnvZ/OmpR two-component regulatory system regulates expression of the porin genes ompF and ompC in response to changes in osmolarity. It has recently become apparent that OmpR functions as a global regulator, by regulating the expression of many genes in addition to the porin genes. OmpR consists of two domains; phosphorylation of the N-terminal receiver domain increases DNA binding affinity of the C-terminal domain and vice versa. Many response regulators including PhoB and FixJ dimerize upon phosphorylation. Here, we demonstrate that OmpR dimerization is stimulated by phosphorylation or by DNA binding. The dimerization interface revealed here was unanticipated and had previously not been predicted. Using the accepted head-to-tail tandem-binding model as a guide, we set out to examine the intermolecular interactions between OmpR dimers bound to DNA by protein-protein cross-linking methods. Surprisingly, amino acid positions that we expected to form cross-linked dimers did not. Conversely, positions predicted not to form dimers did. Because of these results, we designed a series of 23 cysteine-substituted OmpR mutants that were used to investigate dimer interfaces formed via the beta-sheet region. This four-stranded beta-sheet is a unique feature of the OmpR group of winged helix-turn-helix proteins. Many of the cysteine-substituted mutants are dominant to wild-type OmpR, are phosphorylated by acetyl phosphate as well as the cognate kinase EnvZ, and the cross-linked proteins are capable of binding to DNA. Our results are consistent with a model in which OmpR binds to DNA in a head-to-head orientation, in contrast to the previously proposed asymmetric head-to-tail model. They also raise the possibility that OmpR may be capable of adopting more than one orientation as it binds to a vast array of genes to activate or repress transcription.
Collapse
Affiliation(s)
- Ann E Maris
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | | | |
Collapse
|
44
|
Zhang Z, Gosset G, Barabote R, Gonzalez CS, Cuevas WA, Saier MH. Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. J Bacteriol 2005; 187:980-90. [PMID: 15659676 PMCID: PMC545712 DOI: 10.1128/jb.187.3.980-990.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 10/26/2004] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, the ferric uptake regulator (Fur) controls expression of the iron regulon in response to iron availability while the cyclic AMP receptor protein (Crp) regulates expression of the carbon regulon in response to carbon availability. We here identify genes subject to significant changes in expression level in response to the loss of both Fur and Crp. Many iron transport genes and several carbon metabolic genes are subject to dual control, being repressed by the loss of Crp and activated by the loss of Fur. However, the sodB gene, encoding superoxide dismutase, and the aceBAK operon, encoding the glyoxalate shunt enzymes, show the opposite responses, being activated by the loss of Crp and repressed by the loss of Fur. Several other genes including the sdhA-D, sucA-D, and fumA genes, encoding key constituents of the Krebs cycle, proved to be repressed by the loss of both transcription factors. Finally, the loss of both Crp and Fur activated a heterogeneous group of genes under sigmaS control encoding, for example, the cyclopropane fatty acid synthase, Cfa, the glycogen synthesis protein, GlgS, the 30S ribosomal protein, S22, and the mechanosensitive channel protein, YggB. Many genes appeared to be regulated by the two transcription factors in an apparently additive fashion, but apparent positive or negative cooperativity characterized several putative Crp/Fur interactions. Relevant published data were evaluated, putative Crp and Fur binding sites were identified, and representative results were confirmed by real-time PCR. Molecular explanations for some, but not all, of these effects are provided.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Carbon/metabolism
- Cyclic AMP Receptor Protein
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Glucose/metabolism
- Iron/metabolism
- Kinetics
- Nucleic Acid Hybridization
- Phenotype
- Polymerase Chain Reaction
- RNA, Bacterial/genetics
- RNA, Bacterial/isolation & purification
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Regulatory Sequences, Nucleic Acid
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Zhongge Zhang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | | | |
Collapse
|
45
|
Batchelor E, Goulian M. Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. Proc Natl Acad Sci U S A 2003; 100:691-6. [PMID: 12522261 PMCID: PMC141058 DOI: 10.1073/pnas.0234782100] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The EnvZ/OmpR system in Escherichia coli, which regulates the expression of the porins OmpF and OmpC, is one of the simplest and best-characterized examples of two-component signaling. Like many other histidine kinases, EnvZ is bifunctional; it phosphorylates and dephosphorylates the response regulator OmpR. We have analyzed a mathematical model of the EnvZ-mediated cycle of OmpR phosphorylation and dephosphorylation. The model predicts that when EnvZ is much less abundant than OmpR, as is the case in E. coli, the steady-state level of phosphorylated OmpR (OmpR-P) is insensitive to variations in the concentration of EnvZ. The model also predicts that the level of OmpR-P is insensitive to variations in the concentration of OmpR when the OmpR concentration is sufficiently high. To test these predictions, we have perturbed the porin regulatory circuit in E. coli by varying the expression levels of EnvZ and OmpR. We have constructed two-color fluorescent reporter strains in which ompF and ompC transcription can be easily measured in the same culture. Using these strains we have shown that, consistent with the predictions of our model, the transcription of ompC and ompF is indeed robust or insensitive to a wide range of expression levels of both EnvZ and OmpR.
Collapse
Affiliation(s)
- Eric Batchelor
- Department of Physics and Astronomy, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
46
|
Walthers D, Tran VK, Kenney LJ. Interdomain linkers of homologous response regulators determine their mechanism of action. J Bacteriol 2003; 185:317-24. [PMID: 12486069 PMCID: PMC141822 DOI: 10.1128/jb.185.1.317-324.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OmpR and PhoB are response regulators that contain an N-terminal phosphorylation domain and a C-terminal DNA binding effector domain connected by a flexible interdomain linker. Phosphorylation of the N terminus results in an increase in affinity for specific DNA and the subsequent regulation of gene expression. Despite their sequence and structural similarity, OmpR and PhoB employ different mechanisms to regulate their effector domains. Phosphorylation of OmpR in the N terminus stimulates the DNA binding affinity of the C terminus, whereas phosphorylation of the PhoB N terminus relieves inhibition of the C terminus, enabling it to bind to DNA. Chimeras between OmpR and PhoB containing either interdomain linker were constructed to explore the basis of the differences in their activation mechanisms. Our results indicate that effector domain regulation by either N terminus requires its cognate interdomain linker. In addition, our findings suggest that the isolated C terminus of OmpR is not sufficient for a productive interaction with RNA polymerase.
Collapse
Affiliation(s)
- Don Walthers
- Department of Molecular Microbiology & Immunology L220, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA
| | | | | |
Collapse
|
47
|
Mattison K, Oropeza R, Kenney LJ. The linker region plays an important role in the interdomain communication of the response regulator OmpR. J Biol Chem 2002; 277:32714-21. [PMID: 12077136 DOI: 10.1074/jbc.m204122200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OmpR is the response regulator of a two-component regulatory system that controls the expression of the porin genes ompF and ompC in Escherichia coli. This regulator consists of two domains joined by a flexible linker region. The amino-terminal domain is phosphorylated by the sensor kinase EnvZ, and the carboxyl-terminal domain binds DNA via a winged helix-turn-helix motif. In vitro studies have shown that amino-terminal phosphorylation enhances the DNA binding affinity of OmpR and, conversely, that DNA binding by the carboxyl terminus increases OmpR phosphorylation. In the present work, we demonstrate that the linker region contributes to this communication between the two domains of OmpR. Changing the specific amino acid composition of the linker alters OmpR function, as does increasing or decreasing its length. Three linker mutants give rise to an OmpF(+) OmpC(-) phenotype, but the defects are not due to a shared molecular mechanism. Currently, functional homology between response regulators is predicted based on similarities in the amino and carboxyl-terminal domains. The results presented here indicate that linker length and composition should also be considered. Furthermore, classification of response regulators in the same subfamily does not necessarily imply that they share a common response mechanism.
Collapse
Affiliation(s)
- Kirsten Mattison
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|