1
|
Salamatova E, Cunha AV, Bloem R, Roeters SJ, Woutersen S, Jansen TLC, Pshenichnikov MS. Hydrophobic Collapse in N-Methylacetamide-Water Mixtures. J Phys Chem A 2018; 122:2468-2478. [PMID: 29425450 PMCID: PMC6028151 DOI: 10.1021/acs.jpca.8b00276] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Indexed: 11/28/2022]
Abstract
Aqueous N-methylacetamide solutions were investigated by polarization-resolved pump-probe and 2D infrared spectroscopy (2D IR), using the amide I mode as a reporter. The 2D IR results are compared with molecular dynamics simulations and spectral calculations to gain insight into the molecular structures in the mixture. N-Methylacetamide and water molecules tend to form clusters with "frozen" amide I dynamics. This is driven by a hydrophobic collapse as the methyl groups of the N-methylacetamide molecules cluster in the presence of water. Since the studied system can be considered as a simplified model for the backbone of proteins, the present study forms a convenient basis for understanding the structural and vibrational dynamics in proteins. It is particularly interesting to find out that a hydrophobic collapse as the one driving protein folding is observed in such a simple system.
Collapse
Affiliation(s)
- Evgeniia Salamatova
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ana V. Cunha
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Robbert Bloem
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Steven J. Roeters
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sander Woutersen
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maxim S. Pshenichnikov
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Surya W, Li Y, Torres J. Structural model of the SARS coronavirus E channel in LMPG micelles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1309-1317. [PMID: 29474890 PMCID: PMC7094280 DOI: 10.1016/j.bbamem.2018.02.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 01/27/2023]
Abstract
Coronaviruses (CoV) cause common colds in humans, but are also responsible for the recent Severe Acute, and Middle East, respiratory syndromes (SARS and MERS, respectively). A promising approach for prevention are live attenuated vaccines (LAVs), some of which target the envelope (E) protein, which is a small membrane protein that forms ion channels. Unfortunately, detailed structural information is still limited for SARS-CoV E, and non-existent for other CoV E proteins. Herein, we report a structural model of a SARS-CoV E construct in LMPG micelles with, for the first time, unequivocal intermolecular NOEs. The model corresponding to the detergent-embedded region is consistent with previously obtained orientational restraints obtained in lipid bilayers and in vivo escape mutants. The C-terminal domain is mostly α-helical, and extramembrane intermolecular NOEs suggest interactions that may affect the TM channel conformation.
Collapse
Affiliation(s)
- Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
3
|
Ghosh A, Ostrander JS, Zanni MT. Watching Proteins Wiggle: Mapping Structures with Two-Dimensional Infrared Spectroscopy. Chem Rev 2017; 117:10726-10759. [PMID: 28060489 PMCID: PMC5500453 DOI: 10.1021/acs.chemrev.6b00582] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins exhibit structural fluctuations over decades of time scales. From the picosecond side chain motions to aggregates that form over the course of minutes, characterizing protein structure over these vast lengths of time is important to understanding their function. In the past 15 years, two-dimensional infrared spectroscopy (2D IR) has been established as a versatile tool that can uniquely probe proteins structures on many time scales. In this review, we present some of the basic principles behind 2D IR and show how they have, and can, impact the field of protein biophysics. We highlight experiments in which 2D IR spectroscopy has provided structural and dynamical data that would be difficult to obtain with more standard structural biology techniques. We also highlight technological developments in 2D IR that continue to expand the scope of scientific problems that can be accessed in the biomedical sciences.
Collapse
Affiliation(s)
| | - Joshua S. Ostrander
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Manor J, Arbely E, Beerlink A, Akkawi M, Arkin IT. Use of Isotope-Edited FTIR to Derive a Backbone Structure of a Transmembrane Protein. J Phys Chem Lett 2014; 5:2573-2579. [PMID: 26277945 DOI: 10.1021/jz501055d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Solving structures of membrane proteins has always been a formidable challenge, yet even upon success, the results are normally obtained in a mimetic environment that can be substantially different from a biological membrane. Herein, we use noninvasive isotope-edited FTIR spectroscopy to derive a structural model for the SARS coronavirus E protein transmembrane domain in lipid bilayers. Molecular-dynamics-based structural refinement, incorporating the IR-derived orientational restraints points to the formation of a helical hairpin structure. Disulfide cross-linking and X-ray reflectivity depth profiling provide independent support of the results. The unusually short helical hairpin structure of the protein might explain its ability to deform bilayers and is reminiscent of other peptides with membrane disrupting functionalities. Taken together, we show that isotope-edited FTIR is a powerful tool to analyze small membrane proteins in their native environment, enabling us to relate the unusual structure of the SARS E protein to its function.
Collapse
Affiliation(s)
- Joshua Manor
- †Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Eyal Arbely
- †Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Andrè Beerlink
- ‡Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen 37077 Germany
| | - Mutaz Akkawi
- §Faculty of Science and Technology, Al-Quds University, Abu Dis, Palestinian National Authority
| | - Isaiah T Arkin
- †Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|
5
|
Castro M, van Santen HM, Férez M, Alarcón B, Lythe G, Molina-París C. Receptor Pre-Clustering and T cell Responses: Insights into Molecular Mechanisms. Front Immunol 2014; 5:132. [PMID: 24817867 PMCID: PMC4012210 DOI: 10.3389/fimmu.2014.00132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/15/2014] [Indexed: 11/13/2022] Open
Abstract
T cell activation, initiated by T cell receptor (TCR) mediated recognition of pathogen-derived peptides presented by major histocompatibility complex class I or II molecules (pMHC), shows exquisite specificity and sensitivity, even though the TCR-pMHC binding interaction is of low affinity. Recent experimental work suggests that TCR pre-clustering may be a mechanism via which T cells can achieve such high sensitivity. The unresolved stoichiometry of the TCR makes TCR-pMHC binding and TCR triggering, an open question. We formulate a mathematical model to characterize the pre-clustering of T cell receptors (TCRs) on the surface of T cells, motivated by the experimentally observed distribution of TCR clusters on the surface of naive and memory T cells. We extend a recently introduced stochastic criterion to compute the timescales of T cell responses, assuming that ligand-induced cross-linked TCR is the minimum signaling unit. We derive an approximate formula for the mean time to signal initiation. Our results show that pre-clustering reduces the mean activation time. However, additional mechanisms favoring the existence of clusters are required to explain the difference between naive and memory T cell responses. We discuss the biological implications of our results, and both the compatibility and complementarity of our approach with other existing mathematical models.
Collapse
Affiliation(s)
- Mario Castro
- Grupo de Dinámica No-Lineal and Grupo Interdisciplinar de Sistemas Complejos (GISC), Escuela Técnica Superior de Ingeniería (ICAI), Universidad Pontificia Comillas , Madrid , Spain
| | - Hisse M van Santen
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid , Madrid , Spain
| | - María Férez
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid , Madrid , Spain
| | - Balbino Alarcón
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid , Madrid , Spain
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds , Leeds , UK
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds , Leeds , UK
| |
Collapse
|
6
|
Dunbar KL, Mitchell DA. Insights into the mechanism of peptide cyclodehydrations achieved through the chemoenzymatic generation of amide derivatives. J Am Chem Soc 2013; 135:8692-701. [PMID: 23721104 DOI: 10.1021/ja4029507] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Current strategies for generating peptides and proteins bearing amide carbonyl derivatives rely on solid-phase peptide synthesis for amide functionalization. Although such strategies have been successfully implemented, technical limitations restrict both the length and sequence of the synthetic fragments. Herein we report the repurposing of a thiazole/oxazole-modified microcin (TOMM) cyclodehydratase to site-specifically install amide backbone labels onto diverse peptide substrates, a method we refer to as azoline-mediated peptide backbone labeling (AMPL). This convenient chemoenzymatic strategy can generate both thioamides and amides with isotopically labeled oxygen atoms. Moreover, we demonstrate the first leader peptide-independent activity of a TOMM synthetase, circumventing the requirement that sequences of interest be fused to a leader peptide for modification. Through bioinformatics-guided site-directed mutagenesis, we also convert a strictly dehydrogenase-dependent TOMM azole synthetase into an azoline synthetase. This vastly expands the spectrum of substrates modifiable by AMPL by allowing any in vitro reconstituted TOMM synthetase to be employed. To demonstrate the utility of AMPL for mechanistic enzymology studies, an (18)O-labeled substrate was generated to provide direct evidence that cyclodehydrations in TOMMs occur through the phosphorylation of the carbonyl oxygen preceding the cyclized residue. Furthermore, we demonstrate that AMPL is a useful tool for establishing the location of azolines both on in vitro modified peptides and azoline-containing natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
7
|
Manor J, Arkin IT. Gaining insight into membrane protein structure using isotope-edited FTIR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012. [PMID: 23196348 DOI: 10.1016/j.bbamem.2012.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
FTIR spectroscopy has long been used as a tool used to gain average structural information on proteins. With the advent of stable isotope editing, FTIR can be used to derive accurate information on isolated amino acids. In particular, in an anisotropic sample such as membrane layers, it is possible to measure the orientation of the peptidic carbonyl groups. Herein, we review the theory that enables one to obtain accurate restraints from FTIR spectroscopy, alongside considerations for sample suitability and general applicability. We also propose approaches that may be used to generate structural models of simple membrane proteins based on FTIR orientational restraints. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.
Collapse
Affiliation(s)
- Joshua Manor
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem, 91904, Israel
| | | |
Collapse
|
8
|
Hohlweg W, Kosol S, Zangger K. Determining the orientation and localization of membrane-bound peptides. Curr Protein Pept Sci 2012; 13:267-79. [PMID: 22044140 PMCID: PMC3394173 DOI: 10.2174/138920312800785049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 10/01/2011] [Accepted: 10/10/2011] [Indexed: 01/06/2023]
Abstract
Many naturally occurring bioactive peptides bind to biological membranes. Studying and elucidating the mode of interaction is often an essential step to understand their molecular and biological functions. To obtain the complete orientation and immersion depth of such compounds in the membrane or a membrane-mimetic system, a number of methods are available, which are separated in this review into four main classes: solution NMR, solid-state NMR, EPR and other methods. Solution NMR methods include the Nuclear Overhauser Effect (NOE) between peptide and membrane signals, residual dipolar couplings and the use of paramagnetic probes, either within the membrane-mimetic or in the solvent. The vast array of solid state NMR methods to study membrane-bound peptide orientation and localization includes the anisotropic chemical shift, PISA wheels, dipolar waves, the GALA, MAOS and REDOR methods and again the use of paramagnetic additives on relaxation rates. Paramagnetic additives, with their effect on spectral linewidths, have also been used in EPR spectroscopy. Additionally, the orientation of a peptide within a membrane can be obtained by the anisotropic hyperfine tensor of a rigidly attached nitroxide label. Besides these magnetic resonance techniques a series of other methods to probe the orientation of peptides in membranes has been developed, consisting of fluorescence-, infrared- and oriented circular dichroism spectroscopy, colorimetry, interface-sensitive X-ray and neutron scattering and Quartz crystal microbalance.
Collapse
Affiliation(s)
| | | | - Klaus Zangger
- Institute of Chemistry / Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|
9
|
Manor J, Feldblum ES, Zanni MT, Arkin IT. Environment Polarity in Proteins Mapped Noninvasively by FTIR Spectroscopy. J Phys Chem Lett 2012; 3:939-944. [PMID: 22563521 PMCID: PMC3341589 DOI: 10.1021/jz300150v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The polarity pattern of a macromolecule is of utmost importance to its structure and function. For example, one of the main driving forces for protein folding is the burial of hydrophobic residues. Yet polarity remains a difficult property to measure experimentally, due in part to its non-uniformity in the protein interior. Herein, we show that FTIR linewidth analysis of noninvasive 1-(13)C=(18)O labels can be used to obtain a reliable measure of the local polarity, even in a highly multi-phasic system, such as a membrane protein. We show that in the Influenza M2 H(+) channel, residues that line the pore are located in an environment that is as polar as fully solvated residues, while residues that face the lipid acyl chains are located in an apolar environment. Taken together, FTIR linewidth analysis is a powerful, yet chemically non-perturbing approach to examine one of the most important properties in proteins - polarity.
Collapse
Affiliation(s)
- Joshua Manor
- The Alexander Silberman Institute of Life Sciences. Department of Biological Chemistry. The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem, 91904, Israel
| | - Esther S. Feldblum
- The Alexander Silberman Institute of Life Sciences. Department of Biological Chemistry. The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem, 91904, Israel
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin, Madison, WI 53706-1396, USA
| | - Isaiah T. Arkin
- The Alexander Silberman Institute of Life Sciences. Department of Biological Chemistry. The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem, 91904, Israel
| |
Collapse
|
10
|
Thielges MC, Axup JY, Wong D, Lee HS, Chung JK, Schultz PG, Fayer MD. Two-dimensional IR spectroscopy of protein dynamics using two vibrational labels: a site-specific genetically encoded unnatural amino acid and an active site ligand. J Phys Chem B 2011; 115:11294-304. [PMID: 21823631 PMCID: PMC3261801 DOI: 10.1021/jp206986v] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protein dynamics and interactions in myoglobin (Mb) were characterized via two vibrational dynamics labels (VDLs): a genetically incorporated site-specific azide (Az) bearing unnatural amino acid (AzPhe43) and an active site CO ligand. The Az-labeled protein was studied using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy. CO bound at the active site of the heme serves as a second VDL located nearby. Therefore, it was possible to use Fourier transform infrared (FT-IR) and 2D IR spectroscopic experiments on the Az in unligated Mb and in Mb bound to CO (MbAzCO) and on the CO in MbCO and MbAzCO to investigate the environment and motions of different states of one protein from the perspective of two spectrally resolved VDLs. A very broad bandwidth 2D IR spectrum, encompassing both the Az and CO spectral regions, found no evidence of direct coupling between the two VDLs. In MbAzCO, both VDLs reported similar time scale motions: very fast homogeneous dynamics, fast, ∼1 ps dynamics, and dynamics on a much slower time scale. Therefore, each VDL reports independently on the protein dynamics and interactions, and the measured dynamics are reflective of the protein motions rather than intrinsic to the chemical nature of the VDL. The AzPhe VDL also permitted study of oxidized Mb dynamics, which could not be accessed previously with 2D IR spectroscopy. The experiments demonstrate that the combined application of 2D IR spectroscopy and site-specific incorporation of VDLs can provide information on dynamics, structure, and interactions at virtually any site throughout any protein.
Collapse
Affiliation(s)
- Megan C. Thielges
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jun Y. Axup
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Daryl Wong
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 121-742, Korea
| | - Jean K. Chung
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Peter G. Schultz
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Smith EE, Linderman BY, Luskin AC, Brewer SH. Probing Local Environments with the Infrared Probe: l-4-Nitrophenylalanine. J Phys Chem B 2011; 115:2380-5. [DOI: 10.1021/jp109288j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Emily E. Smith
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Barton Y. Linderman
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Austin C. Luskin
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Scott H. Brewer
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| |
Collapse
|
12
|
A Transmembrane Polar Interaction Is Involved in the Functional Regulation of Integrin αLβ2. J Mol Biol 2010; 398:569-83. [DOI: 10.1016/j.jmb.2010.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 01/30/2023]
|
13
|
Bordag N, Keller S. α-Helical transmembrane peptides: A “Divide and Conquer” approach to membrane proteins. Chem Phys Lipids 2010; 163:1-26. [PMID: 19682979 DOI: 10.1016/j.chemphyslip.2009.07.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 11/26/2022]
|
14
|
Peng WC, Lin X, Torres J. The strong dimerization of the transmembrane domain of the fibroblast growth factor receptor (FGFR) is modulated by C-terminal juxtamembrane residues. Protein Sci 2009; 18:450-9. [PMID: 19165726 DOI: 10.1002/pro.65] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The fibroblast growth factor receptor 3 (FGFR3) is a member of the FGFR subfamily of the receptor tyrosine kinases (RTKs) involved in signaling across the plasma membrane. Generally, ligand binding leads to receptor dimerization and activation. Dimerization involves the transmembrane (TM) domain, where mutations can lead to constitutive activation in certain cancer types and also in skeletal malformations. Thus, it has been postulated that FGFR homodimerization must be inherently weak to allow regulation, a feature reminiscent of alpha and beta integrin TM interactions. However, we show herein that in FGFR3-TM, four C-terminal residues, CRLR, have a profound destabilizing effect in an otherwise strongly dimerizing TM peptide. In the absence of these four residues, the dimerizing propensity of FGFR3-TM is comparable to glycophorin, as shown using various detergents. In addition, the expected enhanced dimerization induced by the mutation associated to the Crouzon syndrome A391E, was observed only when these four C-terminal residues were present. In the absence of these four residues, A391E was dimer-destabilizing. Finally, using site specific infrared dichroism and convergence with evolutionary conservation data, we have determined the backbone model of the FGFR3-TM homodimer in model lipid bilayers. This model is consistent with, and correlates with the effects of, most known pathological mutations found in FGFR-TM.
Collapse
|
15
|
Miyake-Stoner SJ, Miller AM, Hammill JT, Peeler JC, Hess KR, Mehl RA, Brewer SH. Probing Protein Folding Using Site-Specifically Encoded Unnatural Amino Acids as FRET Donors with Tryptophan. Biochemistry 2009; 48:5953-62. [DOI: 10.1021/bi900426d] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Andrew M. Miller
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003
| | - Jared T. Hammill
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003
| | - Jennifer C. Peeler
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003
| | - Kenneth R. Hess
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003
| | - Ryan A. Mehl
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003
| | - Scott H. Brewer
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003
| |
Collapse
|
16
|
Two-dimensional IR spectroscopy and isotope labeling defines the pathway of amyloid formation with residue-specific resolution. Proc Natl Acad Sci U S A 2009; 106:6614-9. [PMID: 19346479 DOI: 10.1073/pnas.0805957106] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
There is considerable interest in uncovering the pathway of amyloid formation because the toxic properties of amyloid likely stems from prefibril intermediates and not the fully formed fibrils. Using a recently invented method of collecting 2-dimensional infrared spectra and site-specific isotope labeling, we have measured the development of secondary structures for 6 residues during the aggregation process of the 37-residue polypeptide associated with type 2 diabetes, the human islet amyloid polypeptide (hIAPP). By monitoring the kinetics at 6 different labeled sites, we find that the peptides initially develop well-ordered structure in the region of the chain that is close to the ordered loop of the fibrils, followed by formation of the 2 parallel beta-sheets with the N-terminal beta-sheet likely forming before the C-terminal sheet. This experimental approach provides a detailed view of the aggregation pathway of hIAPP fibril formation as well as a general methodology for studying other amyloid forming proteins without the use of structure-perturbing labels.
Collapse
|
17
|
Lin YS, Shorb JM, Mukherjee P, Zanni MT, Skinner JL. Empirical amide I vibrational frequency map: application to 2D-IR line shapes for isotope-edited membrane peptide bundles. J Phys Chem B 2009; 113:592-602. [PMID: 19053670 PMCID: PMC2633092 DOI: 10.1021/jp807528q] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The amide I vibrational mode, primarily associated with peptide-bond carbonyl stretches, has long been used to probe the structures and dynamics of peptides and proteins by infrared (IR) spectroscopy. A number of ab initio-based amide I vibrational frequency maps have been developed for calculating IR line shapes. In this paper, a new empirical amide I vibrational frequency map is developed. To evaluate its performance, we applied this map to a system of isotope-edited CD3-zeta membrane peptide bundles in aqueous solution. The calculated 2D-IR diagonal line widths vary from residue to residue and show an asymmetric pattern as a function of position in the membrane. The theoretical results are in fair agreement with experiments on the same system. Through analysis of the computed frequency time-correlation functions, it is found that the 2D-IR diagonal widths are dominated by contributions from the inhomogeneous frequency distributions, from which it follows that these widths are a good probe of the extent of local structural fluctuations. Thus, the asymmetric pattern of line widths follows from the asymmetric structure of the bundle in the membrane.
Collapse
Affiliation(s)
- Y-S Lin
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
18
|
Parthasarathy K, Lin X, Tan SM, Law SKA, Torres J. Transmembrane helices that form two opposite homodimeric interactions: an asparagine scan study of alphaM and beta2 integrins. Protein Sci 2008; 17:930-8. [PMID: 18369198 DOI: 10.1110/ps.073234208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Integrins are alpha/beta heterodimers, but recent in vitro and in vivo experiments also suggest an ability to associate through their transmembrane domains to form homomeric interactions. While the results of some in vitro experiments are consistent with an interaction mediated by a GxxxG-like motif, homo-oligomers observed after in vivo cross-linking are consistent with an almost opposite helix-helix interface. We have shown recently that both models of interaction are compatible with evolutionary conservation data, and we predicted that the alpha-helices in both models would have a similar rotational orientation. Herein, we have tested our prediction using in vitro asparagine scan of five consecutive residues along the GxxxG-like motif of the transmembrane domain of alpha and beta integrins, alphaM and beta2. We show that Asn-mediated dimerization occurs twice for every turn of the helix, consistent with two almost opposite forms of interaction as suggested previously for alphaIIb and beta3 transmembrane domains. The orientational parameters helix tilt and rotational orientation of each of these two Asn-stabilized dimers were measured by site-specific infrared dichroism (SSID) in model lipid bilayers and were found to be consistent with our predicted computational models. Our results highlight an intrinsic tendency for integrin transmembrane alpha-helices to form two opposite types of homomeric interaction in addition to their heteromeric interactions and suggest that integrins may form complex and specific networks at the transmembrane domain during function.
Collapse
|
19
|
Affiliation(s)
- Minhaeng Cho
- Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University, Seoul 136-701, Korea.
| |
Collapse
|
20
|
Marecek J, Song B, Brewer S, Belyea J, Dyer RB, Raleigh DP. A Simple and Economical Method for the Production of 13C,18O-Labeled Fmoc-Amino Acids with High Levels of Enrichment: Applications to Isotope-Edited IR Studies of Proteins. Org Lett 2007; 9:4935-7. [DOI: 10.1021/ol701913p] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James Marecek
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, and Physical Chemistry and Applied Spectroscopy Group, Los Alamos National Laboratory, Mail Stop J567, Los Alamos, New Mexico 87545
| | - BenBen Song
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, and Physical Chemistry and Applied Spectroscopy Group, Los Alamos National Laboratory, Mail Stop J567, Los Alamos, New Mexico 87545
| | - Scott Brewer
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, and Physical Chemistry and Applied Spectroscopy Group, Los Alamos National Laboratory, Mail Stop J567, Los Alamos, New Mexico 87545
| | - Jenifer Belyea
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, and Physical Chemistry and Applied Spectroscopy Group, Los Alamos National Laboratory, Mail Stop J567, Los Alamos, New Mexico 87545
| | - R. Brian Dyer
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, and Physical Chemistry and Applied Spectroscopy Group, Los Alamos National Laboratory, Mail Stop J567, Los Alamos, New Mexico 87545
| | - Daniel P. Raleigh
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, and Physical Chemistry and Applied Spectroscopy Group, Los Alamos National Laboratory, Mail Stop J567, Los Alamos, New Mexico 87545
| |
Collapse
|
21
|
Abstract
Fertilin is a transmembrane protein heterodimer formed by the two subunits fertilin alpha and fertilin beta that plays an important role in sperm-egg fusion. Fertilin alpha and beta are members of the ADAM family, and contain each one transmembrane alpha-helix, and are termed ADAM 1 and ADAM 2, respectively. ADAM 1 is the subunit that contains a putative fusion peptide, and we have explored the possibility that the transmembrane alpha-helical domain of ADAM 1 forms homotrimers, in common with other viral fusion proteins. Although this peptide was found to form various homooligomers in SDS, the infrared dichroic data obtained with the isotopically labeled peptide at specific positions is consistent with the presence of only one species in DMPC or POPC lipid bilayers. Comparison of the experimental orientational data with molecular dynamics simulations performed with sequence homologues of ADAM 1 show that the species present in lipid bilayers is only consistent with an evolutionarily conserved homotrimeric model for which we provide a backbone structure. These results support a model where ADAM 1 forms homotrimers as a step to create a fusion active intermediate.
Collapse
Affiliation(s)
- Siok Wan Gan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | | | |
Collapse
|
22
|
Mukherjee P, Kass I, Arkin IT, Zanni MT. Structural disorder of the CD3zeta transmembrane domain studied with 2D IR spectroscopy and molecular dynamics simulations. J Phys Chem B 2006; 110:24740-9. [PMID: 17134238 PMCID: PMC2722928 DOI: 10.1021/jp0640530] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a recently reported study [Mukherjee, et al. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 3528] we used 2D IR spectroscopy and 1-(13)C=(18)O isotope labeling to measure the vibrational dynamics of 11 amide I modes in the CD3zeta transmembrane domain. We found that the homogeneous line widths and population relaxation times were all nearly identical, but that the amount of inhomogeneous broadening correlated with the position of the amide group inside the membrane. In this study, we use molecular dynamics simulations to investigate the structural and dynamical origins of these experimental observations. We use two models to convert the simulations to frequency trajectories from which the mean frequencies, standard deviations, frequency correlation functions, and 2D IR spectra are calculated. Model 1 correlates the hydrogen-bond length to the amide I frequency, whereas model 2 uses an ab initio-based electrostatic model. We find that the structural distributions of the peptidic groups and their environment are reflected in the vibrational dynamics of the amide I modes. Environmental forces from the water and lipid headgroups partially denature the helices, shifting the infrared frequencies and creating larger inhomogeneous distributions for residues near the ends. The least inhomogeneously broadened residues are those located in the middle of the membrane where environmental electrostatic forces are weakest and the helices are most ordered. Comparison of the simulations to experiment confirms that the amide I modes near the C-terminal are larger than at the N-terminal because of the asymmetric structure of the peptide bundle in the membrane. The comparison also reveals that residues at a kink in the alpha-helices have broader line widths than more helical parts of the peptide because the peptide backbone at the kink exhibits a larger amount of structural disorder. Taken together, the simulations and experiments reveal that infrared line shapes are sensitive probes of membrane protein structural and environmental heterogeneity.
Collapse
Affiliation(s)
- Prabuddha Mukherjee
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53706
| | - Itamar Kass
- The Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Isaiah T. Arkin
- The Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53706
| |
Collapse
|
23
|
Mukherjee P, Krummel AT, Fulmer EC, Kass I, Arkin IT, Zanni MT. Site-specific vibrational dynamics of the CD3zeta membrane peptide using heterodyned two-dimensional infrared photon echo spectroscopy. J Chem Phys 2006; 120:10215-24. [PMID: 15268045 DOI: 10.1063/1.1718332] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Heterodyned two-dimensional infrared (2D IR) spectroscopy has been used to study the amide I vibrational dynamics of a 27-residue peptide in lipid vesicles that encompasses the transmembrane domain of the T-cell receptor CD3zeta. Using 1-(13)C[Double Bond](18)O isotope labeling, the amide I mode of the 49-Leucine residue was spectroscopically isolated and the homogeneous and inhomogeneous linewidths of this mode were measured by fitting the 2D IR spectrum collected with a photon echo pulse sequence. The pure dephasing and inhomogeneous linewidths are 2 and 32 cm(-1), respectively. The population relaxation time of the amide I band was measured with a transient grating, and it contributes 9 cm(-1) to the linewidth. Comparison of the 49-Leucine amide I mode and the amide I band of the entire CD3zeta peptide reveals that the vibrational dynamics are not uniform along the length of the peptide. Possible origins for the large amount of inhomogeneity present at the 49-Leucine site are discussed.
Collapse
Affiliation(s)
- Prabuddha Mukherjee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
24
|
Arkin IT. Isotope-edited IR spectroscopy for the study of membrane proteins. Curr Opin Chem Biol 2006; 10:394-401. [PMID: 16935550 PMCID: PMC7185810 DOI: 10.1016/j.cbpa.2006.08.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 08/15/2006] [Indexed: 11/25/2022]
Abstract
Fourier transform infrared (FTIR) spectroscopy has long been a powerful tool for structural analysis of membrane proteins. However, because of difficulties in resolving contributions from individual residues, most of the derived measurements tend to yield average properties for the system under study. Isotope editing, through its ability to resolve individual vibrations, establishes FTIR as a method that is capable of yielding accurate structural data on individual sites in a protein.
Collapse
Affiliation(s)
- Isaiah T Arkin
- The Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry, The Hebrew University of Jerusalem, Edmund J Safra Campus, Givat-Ram, Jerusalem, Israel.
| |
Collapse
|
25
|
Torres J, Parthasarathy K, Lin X, Saravanan R, Kukol A, Liu DX. Model of a putative pore: the pentameric alpha-helical bundle of SARS coronavirus E protein in lipid bilayers. Biophys J 2006; 91:938-47. [PMID: 16698774 PMCID: PMC1563757 DOI: 10.1529/biophysj.105.080119] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The coronavirus responsible for the severe acute respiratory syndrome contains a small envelope protein, E, with putative involvement in host apoptosis and virus morphogenesis. To perform these functions, it has been suggested that protein E can form a membrane destabilizing transmembrane (TM) hairpin, or homooligomerize to form a TM pore. Indeed, in a recent study we reported that the α-helical putative transmembrane domain of E protein (ETM) forms several SDS-resistant TM interactions: a dimer, a trimer, and two pentameric forms. Further, these interactions were found to be evolutionarily conserved. Herein, we have studied multiple isotopically labeled ETM peptides reconstituted in model lipid bilayers, using the orientational parameters derived from infrared dichroic data. We show that the topology of ETM is consistent with a regular TM α-helix. Further, the orientational parameters obtained unequivocally correspond to a homopentameric model, by comparison with previous predictions. We have independently confirmed that the full polypeptide of E protein can also aggregate as pentamers after expression in Escherichia coli. This interaction must be stabilized, at least partially, at the TM domain. The model we report for this pentameric α-helical bundle may explain some of the permabilizing properties of protein E, and should be the basis of mutagenesis efforts in future functional studies.
Collapse
Affiliation(s)
- Jaume Torres
- School of Biological Sciences, Nanyang Technological University, Singapore.
| | | | | | | | | | | |
Collapse
|
26
|
Mukherjee P, Kass I, Arkin IT, Zanni MT. Picosecond dynamics of a membrane protein revealed by 2D IR. Proc Natl Acad Sci U S A 2006; 103:3528-33. [PMID: 16505377 PMCID: PMC1383493 DOI: 10.1073/pnas.0508833103] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fast protein dynamics can be missed with techniques that have relatively slow observation times. Using 2D IR spectroscopy and isotope labeling, we have probed the rapid, picosecond dynamics of a membrane protein in its native environment. By measuring the homogeneous and inhomogeneous IR linewidths of 11 amide I modes (backbone carbonyl stretch), we have captured the structural distributions and dynamics of the CD3zeta protein along its transmembrane segment that are lost with slower time-scale techniques. We find that the homogeneous lifetimes and population relaxation times are the same for almost all of the residues. In contrast, the inhomogeneous linewidths vary significantly with the largest inhomogeneous distribution occurring for residues near the N terminus and the narrowest near the center. This behavior is highly consistent with a recently reported experimental model of the protein and water accessibility as observed by molecular dynamics simulations. The data support the proposed CD3zeta peptide structure, and the simulations point to the structural disorder of water and lipid head-groups as the main source of inhomogeneous broadening. Taken together, this rigorous analysis of the vibrational dynamics of a membrane peptide provides experimental insight into a time regime of motions that has so far been largely unexplored.
Collapse
Affiliation(s)
- Prabuddha Mukherjee
- Department of Chemistry, University of Wisconsin, Madison, WI 53706-1396; and
| | - Itamar Kass
- The Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry, Hebrew University of Jerusalem, Edmund Safra Campus, Givat-Ram, Jerusalem 91904, Israel
| | - Isaiah T. Arkin
- The Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry, Hebrew University of Jerusalem, Edmund Safra Campus, Givat-Ram, Jerusalem 91904, Israel
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin, Madison, WI 53706-1396; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Manor J, Khattari Z, Salditt T, Arkin IT. Disorder influence on linear dichroism analyses of smectic phases. Biophys J 2005; 89:563-71. [PMID: 15834005 PMCID: PMC1366556 DOI: 10.1529/biophysj.104.058842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Linear dichroism, the unequal absorption of parallel and perpendicular linear polarized light, is often used to determine the anisotropic ordering of rodlike polymers in a smectic phase, such as helices in a lipid bilayer. It is a measure of two properties of the sample: 1), orientation of the chromophore transition dipole moment (TDM) and 2), disorder. Since it is the orientation of the chromophore TDM that is needed for high resolution structural studies, it is imperative to either deconvolve sample disorder, or at a minimum, estimate its effect upon the calculated TDM orientation. Herein, a rigorous analysis of the effects of disorder is undertaken based on the recently developed Gaussian disorder model implemented in linear dichroism data. The calculation of both the rod tilt and rotational pitch angles as a function of the disorder and dichroism, yield the following conclusions: Disorders smaller than 5 degrees have a vanishingly small effect on the calculated polymer orientation, whereas values smaller than 10 degrees have a negligible effect on the calculated parameters. Disorders larger than 10 degrees have an appreciable effect on the calculated orientational parameters and as such must be estimated before any structural characterization. Finally the theory is tested on the HIV vpu transmembrane domain, employing experimental mosaicity measurements from x-ray reflectivity rocking scans and linear dichroism.
Collapse
Affiliation(s)
- Joshua Manor
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | |
Collapse
|
28
|
Kass I, Arbely E, Arkin IT. Modeling sample disorder in site-specific dichroism studies of uniaxial systems. Biophys J 2004; 86:2502-7. [PMID: 15041686 PMCID: PMC1304097 DOI: 10.1016/s0006-3495(04)74305-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Site-specific infrared dichroism is an emerging method capable of proposing a model for the backbone structure of a transmembrane alpha-helix within a helical bundle. Dichroism measurements of single, isotopically enhanced vibrational modes (e.g., Amide I 13C=18O or Gly CD2 stretching modes) can yield precise orientational restraints for the monomer helix protomer that can be used as refinement constraints in model building of the entire helical bundle. Essential, however, for the interpretation of the dichroism measurements, is an accurate modeling of the sample disorder. In this study we derive an enhanced and more realistic modeling of the sample disorder based on a Gaussian distribution of the chromophore around a particular angle. The enhanced utility of the Gaussian model is exemplified by the comparative data analysis based on the aforementioned model to previously employed models.
Collapse
Affiliation(s)
- Itamar Kass
- The Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry, The Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
29
|
Abstract
Infrared spectroscopy has long been used to examine the average secondary structure and orientation of membrane proteins. With the recent utilization of site-specific isotope labeling (e.g., peptidic 1-(13)C = (18)O) it is now possible to examine localized properties, rather than global averages. The technique of site-specific infrared dichroism (SSID) capitalized on this fact, and derives site-specific orientational restraints for the labeled amino acids. These restraints can then be used to solve the backbone structure of simple alpha-helical bundles, emphasizing the capabilities of this approach. So far SSID has been carried out in attenuated total internal reflection optical mode, with all of the respective caveats of attenuated total internal reflection. In this report we extend SSID through the use of transmission infrared spectroscopy tilt series. We develop the corresponding theory and demonstrate that accurate site-specific orientational restraints can be derived from a simple transmission experiment.
Collapse
Affiliation(s)
- Eyal Arbely
- The Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry, The Hebrew University, Givat-Ram, Jerusalem, Israel
| | | | | |
Collapse
|
30
|
Marsh D. Infrared Dichroism of Isotope-edited α-Helices and β-Sheets. J Mol Biol 2004; 338:353-67. [PMID: 15066437 DOI: 10.1016/j.jmb.2004.02.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 02/23/2004] [Accepted: 02/24/2004] [Indexed: 10/26/2022]
Abstract
Isotope editing of amide infrared bands not only localises secondary structural elements within the protein but also yields conformational information that is not available from the linear dichroism of aligned samples without isotope editing. The additional information that can be derived on the orientational distribution of alpha-helices in membranes by the combined use of different amide bands and several positions of labelling is presented here. Also, the relationship between the azimuthal orientation of the transition moment and the protein structure is treated explicitly. A comprehensive analysis of the infrared dichroism for beta-sheets and beta-barrels is given here, for the first time. The orientation of the individual transition moments in a beta-sheet that is essential for this analysis is derived for the different amide bands.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie, 37070 Göttingen, Germany.
| |
Collapse
|
31
|
Kochva U, Leonov H, Arkin IT, Adams PD. Modeling Membrane Proteins Utilizing Information from Silent Amino Acid Substitutions. ACTA ACUST UNITED AC 2004; Chapter 5:Unit5.3. [DOI: 10.1002/0471250953.bi0503s04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Abstract
Historically, the task of determining the structure of membrane proteins has been hindered by experimental difficulties associated with their lipid-embedded domains. Here, we provide an overview of recently developed experimental and predictive tools that are changing our view of this largely unexplored territory - the 'Wild West' of structural biology. Crystallography, single-particle methods and atomic force microscopy are being used to study huge membrane proteins with increasing detail. Solid-state nuclear magnetic resonance strategies provide orientational constraints for structure determination of transmembrane (TM) alpha-helices and accurate measurements of intramolecular distances, even in very complex systems. Longer distance constraints are determined by site-directed spin-labelling electron paramagnetic resonance, but current labelling strategies still constitute some limitation. Other methods, such as site-specific infrared dichroism, enable orientational analysis of TM alpha-helices in aligned bilayers and, combined with novel computational and predictive tools that use evolutionary conservation data, are being used to analyze TM alpha-helical bundles.
Collapse
Affiliation(s)
- Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 637616, Singapore.
| | | | | |
Collapse
|
33
|
Arkin IT. Structural aspects of oligomerization taking place between the transmembrane alpha-helices of bitopic membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1565:347-63. [PMID: 12409206 DOI: 10.1016/s0005-2736(02)00580-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent advances in biophysical methods have been able to shed more light on the structures of helical bundles formed by the transmembrane segments of bitopic membrane proteins. In this manuscript, I attempt to review the biological importance and diversity of these interactions, the energetics of bundle formation, motifs capable of inducing oligomerization and methods capable of detecting, solving and predicting the structures of these oligomeric bundles. Finally, the structures of the best characterized instances of transmembrane alpha-helical bundles formed by bitopic membrane proteins are described in detail.
Collapse
Affiliation(s)
- Isaiah T Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel.
| |
Collapse
|
34
|
Torres J, Briggs JAG, Arkin IT. Convergence of experimental, computational and evolutionary approaches predicts the presence of a tetrameric form for CD3-zeta. J Mol Biol 2002; 316:375-84. [PMID: 11851345 DOI: 10.1006/jmbi.2001.5268] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental results using multiple site-specific infrared dichroism have shown that, when reconstituted into lipid bilayers, the orientation of the transmembrane domain of CD3-zeta is not compatible with a dimeric right-handed model reported previously. This model, obtained using a computational approach that uses evolutionary data, is in agreement with mutagenesis data and homology modelling. This suggested that, in our experimental conditions, the oligomeric state of CD3-zeta may not be dimeric. We have explored this possibility by performing global searching molecular dynamics simulations assuming different homo-oligomeric sizes (from 2 to 6). In these simulations, the helix tilt was restrained to the average helix tilt obtained experimentally, 12 degrees. Only a left-handed tetrameric model was compatible with the experimentally observed tilt and rotational orientation of the helix, and was also the lowest-energy model amongst the candidate structures obtained. Furthermore, simulations performed using close homologues demonstrate that this model is compatible with evolutionary conservation data. Finally, the pattern of residue conservation in the zeta family of proteins strongly argues in favour of the presence of a left-handed hetero-oligomer with an orientation compatible with the tetramer we present. These results show that both the known dimeric and the so far undetected tetrameric form may be of functional importance in the cell.
Collapse
Affiliation(s)
- Jaume Torres
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | | | | |
Collapse
|