1
|
Ryder S, Pedigo J, Ojennus DD. Elucidating the Role of a Calcium-Binding Loop in an x-Prolyl Aminodipeptidase from Lb. helveticus. ACS OMEGA 2023; 8:35410-35416. [PMID: 37779945 PMCID: PMC10536834 DOI: 10.1021/acsomega.3c05639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Prolyl aminodipeptidase (PepX) is an α/β hydrolase that cleaves at penultimate N-terminal prolyl peptide bonds. The crystal structure of PepX from Lactobacillus helveticus exhibits a calcium-binding loop within the catalytic domain. The calcium-binding sequence of xDxDxDGxxD within this loop is highly conserved in PepX proteins among lactic acid bacteria, but its purpose remains unknown. Enzyme activity is not significantly affected in the presence of the metal chelator ethylenediaminetetraacetic acid (EDTA), nor in the presence of excess calcium ions. To eliminate calcium binding, D196A and D194A/D196A mutations were constructed within the conserved calcium-binding sequence motif. Enzyme activity and stability of the D196A mutant were comparable to the wild-type enzyme by colorimetric kinetic assays and protein thermal shift assays. However, the D194A/D196A mutant was inactive though it retained native-like structure and thermal stability, contradicting the EDTA and calcium titration results. This suggests calcium binding to PepX may be essential for activity.
Collapse
Affiliation(s)
- Stephanie Ryder
- Department of Chemistry, Whitworth
University, 300 W. Hawthorne Rd., Spokane, Washington 99251, United States
| | | | - Deanna Dahlke Ojennus
- Department of Chemistry, Whitworth
University, 300 W. Hawthorne Rd., Spokane, Washington 99251, United States
| |
Collapse
|
2
|
MURATA K, KAWAI S, HASHIMOTO W. Bacteria with a mouth: Discovery and new insights into cell surface structure and macromolecule transport. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:529-552. [PMID: 36504195 PMCID: PMC9751261 DOI: 10.2183/pjab.98.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
A bacterium with a "mouth"-like pit structure isolated for the first time in the history of microbiology was a Gram-negative rod, containing glycosphingolipids in the cell envelope, and named Sphingomonas sp. strain A1. The pit was dynamic, with repetitive opening and closing during growth on alginate, and directly included alginate concentrated around the pit, particularly by flagellins, an alginate-binding protein localized on the cell surface. Alginate incorporated into the periplasm was subsequently transferred to the cytoplasm by cooperative interactions of periplasmic solute-binding proteins and an ATP-binding cassette transporter in the cytoplasmic membrane. The mechanisms of assembly, functions, and interactions between the above-mentioned molecules were clarified using structural biology. The pit was transplanted into other strains of sphingomonads, and the pitted recombinant cells were effectively applied to the production of bioethanol, bioremediation for dioxin removal, and other tasks. Studies of the function of the pit shed light on the biological significance of cell surface structures and macromolecule transport in bacteria.
Collapse
Affiliation(s)
| | - Shigeyuki KAWAI
- Research Institute for Bioresource and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Wataru HASHIMOTO
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
3
|
Okumura K, Maruyama Y, Takase R, Mikami B, Murata K, Hashimoto W. The role of calcium binding to the EF-hand-like motif in bacterial solute-binding protein for alginate import. Biosci Biotechnol Biochem 2021; 85:2410-2419. [PMID: 34610097 DOI: 10.1093/bbb/zbab170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022]
Abstract
Gram-negative Sphingomonas sp. A1 incorporates acidic polysaccharide alginate into the cytoplasm via a cell-surface alginate-binding protein (AlgQ2)-dependent ATP-binding cassette transporter (AlgM1M2SS). We investigated the function of calcium bound to the EF-hand-like motif in AlgQ2 by introducing mutations at the calcium-binding site. The X-ray crystallography of the AlgQ2 mutant (D179A/E180A) demonstrated the absence of calcium binding and significant disorder of the EF-hand-like motif. Distinct from the wild-type AlgQ2, the mutant was quite unstable at temperature of strain A1 growth, although unsaturated alginate oligosaccharides stabilized the mutant by formation of substrate/protein complex. In the assay of ATPase and alginate transport by AlgM1M2SS reconstructed in the liposome, the wild-type and mutant AlgQ2 induced AlgM1M2SS ATPase activity in the presence of unsaturated alginate tetrasaccharide. These results indicate that the calcium bound to EF-hand-like motif stabilizes the substrate-unbound AlgQ2 but is not required for the complexation of substrate-bound AlgQ2 and AlgM1M2SS.
Collapse
Affiliation(s)
- Kenji Okumura
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Yukie Maruyama
- Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Ryuichi Takase
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Bunzo Mikami
- Laboratory of Metabolic Sciences of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Kousaku Murata
- Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
4
|
Huang Z, Petersen JM, Martijn J, Ettema TJG, Shao Z. A novel alphaproteobacterium with a small genome identified from the digestive gland of multiple species of abalone. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:387-395. [PMID: 32307920 DOI: 10.1111/1758-2229.12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
We identified an alphaproteobacterium in the digestive gland of the abalone species Haliotis discus hannai. This phylotype dominated our 16S rRNA clone libraries from the digestive gland of H. discus hannai. Diversity surveys revealed that this phylotype was associated with H. discus hannai and also in another host species, H. gigantea. Whole genome phylogenies placed this bacterium as a new member affiliated with the family Rhodospirillaceae in Alphaproteobacteria. Gene annotation revealed a nearly complete glycolysis pathway but no TCA cycle, but the presence of anaerobic ribonucleoside-triphosphate reductase and oxygen-insensitive NAD(P)H-dependent nitroreductase, which show the genomic potential for anaerobic metabolism. A large cluster of genes encoding ankyrin repeat proteins (ANK) of eukaryotic-like repeat domains and a large gene set for the flagellar system were also detected. Alginate-binding periplasmic proteins and key genes responsible for alginate assimilation were found in the genome, which could potentially contribute to the breakdown of the host's alginate-rich macroalgal diet. These results raise the possibility that this novel alphaproteobacterium is a widespread member of the abalone microbiome that may use polysaccharides derived from its host's macroalgal diet.
Collapse
Affiliation(s)
- Zhaobin Huang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
| | - Jillian M Petersen
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Joran Martijn
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
| |
Collapse
|
5
|
Kaneko A, Uenishi K, Maruyama Y, Mizuno N, Baba S, Kumasaka T, Mikami B, Murata K, Hashimoto W. A solute-binding protein in the closed conformation induces ATP hydrolysis in a bacterial ATP-binding cassette transporter involved in the import of alginate. J Biol Chem 2017; 292:15681-15690. [PMID: 28768763 DOI: 10.1074/jbc.m117.793992] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/12/2017] [Indexed: 01/31/2023] Open
Abstract
The Gram-negative bacterium Sphingomonas sp. A1 incorporates alginate into cells via the cell-surface pit without prior depolymerization by extracellular enzymes. Alginate import across cytoplasmic membranes thereby depends on the ATP-binding cassette transporter AlgM1M2SS (a heterotetramer of AlgM1, AlgM2, and AlgS), which cooperates with the periplasmic solute-binding protein AlgQ1 or AlgQ2; however, several details of AlgM1M2SS-mediated alginate import are not well-understood. Herein, we analyzed ATPase and transport activities of AlgM1M2SS after reconstitution into liposomes with AlgQ2 and alginate oligosaccharide substrates having different polymerization degrees (PDs). Longer alginate oligosaccharides (PD ≥ 5) stimulated the ATPase activity of AlgM1M2SS but were inert as substrates of AlgM1M2SS-mediated transport, indicating that AlgM1M2SS-mediated ATP hydrolysis can be stimulated independently of substrate transport. Using X-ray crystallography in the presence of AlgQ2 and long alginate oligosaccharides (PD 6-8) and with the humid air and glue-coating method, we determined the crystal structure of AlgM1M2SS in complex with oligosaccharide-bound AlgQ2 at 3.6 Å resolution. The structure of the ATP-binding cassette transporter in complex with non-transport ligand-bound periplasmic solute-binding protein revealed that AlgM1M2SS and AlgQ2 adopt inward-facing and closed conformations, respectively. These in vitro assays and structural analyses indicated that interactions between AlgM1M2SS in the inward-facing conformation and periplasmic ligand-bound AlgQ2 in the closed conformation induce ATP hydrolysis by the ATP-binding protein AlgS. We conclude that substrate-bound AlgQ2 in the closed conformation initially interacts with AlgM1M2SS, the AlgM1M2SS-AlgQ2 complex then forms, and this formation is followed by ATP hydrolysis.
Collapse
Affiliation(s)
- Ai Kaneko
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, and
| | - Kasumi Uenishi
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, and
| | - Yukie Maruyama
- the Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan, and
| | - Nobuhiro Mizuno
- the Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo 679-5198, Japan
| | - Seiki Baba
- the Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- the Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo 679-5198, Japan
| | - Bunzo Mikami
- the Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kousaku Murata
- the Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan, and
| | - Wataru Hashimoto
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, and
| |
Collapse
|
6
|
Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium 2014; 57:151-65. [PMID: 25555683 DOI: 10.1016/j.ceca.2014.12.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022]
Abstract
With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.
Collapse
|
7
|
Nishitani Y, Maruyama Y, Itoh T, Mikami B, Hashimoto W, Murata K. Recognition of heteropolysaccharide alginate by periplasmic solute-binding proteins of a bacterial ABC transporter. Biochemistry 2012; 51:3622-33. [PMID: 22486720 DOI: 10.1021/bi300194f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alginate is a heteropolysaccharide that consists of β-D-mannuronate (M) and α-L-guluronate (G). The Gram-negative bacterium Sphingomonas sp. A1 directly incorporates alginate into the cytoplasm through the periplasmic solute-binding protein (AlgQ1 and AlgQ2)-dependent ABC transporter (AlgM1-AlgM2/AlgS-AlgS). Two binding proteins with at least four subsites strongly recognize the nonreducing terminal residue of alginate at subsite 1. Here, we show the broad substrate preference of strain A1 solute-binding proteins for M and G present in alginate and demonstrate the structural determinants in binding proteins for heteropolysaccharide recognition through X-ray crystallography of four AlgQ1 structures in complex with saturated and unsaturated alginate oligosaccharides. Alginates with different M/G ratios were assimilated by strain A1 cells and bound to AlgQ1 and AlgQ2. Crystal structures of oligosaccharide-bound forms revealed that in addition to interaction between AlgQ1 and unsaturated oligosaccharides, the binding protein binds through hydrogen bonds to the C4 hydroxyl group of the saturated nonreducing terminal residue at subsite 1. The M residue of saturated oligosaccharides is predominantly accommodated at subsite 1 because of the strict binding of Ser-273 to the carboxyl group of the residue. In unsaturated trisaccharide (ΔGGG or ΔMMM)-bound AlgQ1, the protein interacts appropriately with substrate hydroxyl groups at subsites 2 and 3 to accommodate M or G, while substrate carboxyl groups are strictly recognized by the specific residues Tyr-129 at subsite 2 and Lys-22 at subsite 3. Because of this substrate recognition mechanism, strain A1 solute-binding proteins can bind heteropolysaccharide alginate with different M/G ratios.
Collapse
Affiliation(s)
- Yu Nishitani
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Maruyama Y, Itoh T, Nishitani Y, Mikami B, Hashimoto W, Murata K. Crystallization and preliminary X-ray analysis of alginate importer from Sphingomonas sp. A1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:317-20. [PMID: 22442232 PMCID: PMC3310540 DOI: 10.1107/s1744309112001893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/16/2012] [Indexed: 11/10/2022]
Abstract
Sphingomonas sp. A1 directly incorporates alginate polysaccharides through a 'superchannel' comprising a pit on the cell surface, alginate-binding proteins in the periplasm and an ABC transporter (alginate importer) in the inner membrane. Alginate importer, consisting of four subunits, AlgM1, AlgM2 and two molecules of AlgS, was crystallized in the presence of the binding protein AlgQ2. Preliminary X-ray analysis showed that the crystal diffracted to 3.3 Å resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 72.5, b = 136.8, c = 273.3 Å, suggesting the presence of one complex in the asymmetric unit.
Collapse
Affiliation(s)
- Yukie Maruyama
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takafumi Itoh
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yu Nishitani
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kousaku Murata
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
9
|
Hashimoto W, Kawai S, Murata K. Bacterial supersystem for alginate import/metabolism and its environmental and bioenergy applications. Bioeng Bugs 2009; 1:97-109. [PMID: 21326935 DOI: 10.4161/bbug.1.2.10322] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 11/19/2022] Open
Abstract
Distinct from most alginate-assimilating bacteria that secrete polysaccharide lyases extracellularly, a gram-negative bacterium, Sphingomonas sp. A1 (strain A1), can directly incorporate alginate into its cytoplasm, without degradation, through a "superchannel" consisting of a mouth-like pit on the cell surface, periplasmic binding proteins, and a cytoplasmic membrane-bound ATP-binding cassette transporter. Flagellin homologues function as cell surface alginate receptors essential for expressing the superchannel. Cytoplasmic alginate lyases with different substrate specificities and action modes degrade the polysaccharide to its constituent monosaccharides. The resultant monosaccharides, α-keto acids, are converted to a reduced form by NADPH-dependent reductase, and are finally metabolized in the TCA cycle. Transplantation of the strain A1 superchannel to xenobiotic-degrading sphingomonads enhances bioremediation through the propagation of bacteria with an elevated transport activity. Furthermore, strain A1 cells transformed with Zymomonas mobilis genes for pyruvate decarboxylase and alcohol dehydrogenase II produce considerable amounts of biofuel ethanol from alginate when grown statically.
Collapse
Affiliation(s)
- Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology,; Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | | | | |
Collapse
|
10
|
|
11
|
Cuneo MJ, Beese LS, Hellinga HW. Ligand-induced conformational changes in a thermophilic ribose-binding protein. BMC STRUCTURAL BIOLOGY 2008; 8:50. [PMID: 19019243 PMCID: PMC2630998 DOI: 10.1186/1472-6807-8-50] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 11/19/2008] [Indexed: 01/07/2023]
Abstract
BACKGROUND Members of the periplasmic binding protein (PBP) superfamily are involved in transport and signaling processes in both prokaryotes and eukaryotes. Biological responses are typically mediated by ligand-induced conformational changes in which the binding event is coupled to a hinge-bending motion that brings together two domains in a closed form. In all PBP-mediated biological processes, downstream partners recognize the closed form of the protein. This motion has also been exploited in protein engineering experiments to construct biosensors that transduce ligand binding to a variety of physical signals. Understanding the mechanistic details of PBP conformational changes, both global (hinge bending, twisting, shear movements) and local (rotamer changes, backbone motion), therefore is not only important for understanding their biological function but also for protein engineering experiments. RESULTS Here we present biochemical characterization and crystal structure determination of the periplasmic ribose-binding protein (RBP) from the hyperthermophile Thermotoga maritima in its ribose-bound and unliganded state. The T. maritima RBP (tmRBP) has 39% sequence identity and is considerably more resistant to thermal denaturation (app Tm value is 108 degrees C) than the mesophilic Escherichia coli homolog (ecRBP) (app Tm value is 56 degrees C). Polar ligand interactions and ligand-induced global conformational changes are conserved among ecRBP and tmRBP; however local structural rearrangements involving side-chain motions in the ligand-binding site are not conserved. CONCLUSION Although the large-scale ligand-induced changes are mediated through similar regions, and are produced by similar backbone movements in tmRBP and ecRBP, the small-scale ligand-induced structural rearrangements differentiate the mesophile and thermophile. This suggests there are mechanistic differences in the manner by which these two proteins bind their ligands and are an example of how two structurally similar proteins utilize different mechanisms to form a ligand-bound state.
Collapse
Affiliation(s)
- Matthew J Cuneo
- The Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Lorena S Beese
- The Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Homme W Hellinga
- The Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710, USA
| |
Collapse
|
12
|
Zhou Y, Yang W, Kirberger M, Lee HW, Ayalasomayajula G, Yang JJ. Prediction of EF-hand calcium-binding proteins and analysis of bacterial EF-hand proteins. Proteins 2007; 65:643-55. [PMID: 16981205 DOI: 10.1002/prot.21139] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The EF-hand protein with a helix-loop-helix Ca(2+) binding motif constitutes one of the largest protein families and is involved in numerous biological processes. To facilitate the understanding of the role of Ca(2+) in biological systems using genomic information, we report, herein, our improvement on the pattern search method for the identification of EF-hand and EF-like Ca(2+)-binding proteins. The canonical EF-hand patterns are modified to cater to different flanking structural elements. In addition, on the basis of the conserved sequence of both the N- and C-terminal EF-hands within S100 and S100-like proteins, a new signature profile has been established to allow for the identification of pseudo EF-hand and S100 proteins from genomic information. The new patterns have a positive predictive value of 99% and a sensitivity of 96% for pseudo EF-hands. Furthermore, using the developed patterns, we have identified zero pseudo EF-hand motif and 467 canonical EF-hand Ca(2+) binding motifs with diverse cellular functions in the bacteria genome. The prediction results imply that pseudo EF-hand motifs are phylogenetically younger than canonical EF-hand motifs. Our prediction of Ca(2+) binding motifs provides not only an insight into the role of Ca(2+) and Ca(2+)-binding proteins in bacterial systems, but also a way to explore and define the role of Ca(2+) in other biological systems (calciomics).
Collapse
Affiliation(s)
- Yubin Zhou
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | |
Collapse
|
13
|
Harada KM, Aso Y, Hashimoto W, Mikami B, Murata K. Sequence and analysis of the 46.6-kb plasmid pA1 from Sphingomonas sp. A1 that corresponds to the typical IncP-1β plasmid backbone without any accessory gene. Plasmid 2006; 56:11-23. [PMID: 16445980 DOI: 10.1016/j.plasmid.2005.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 12/16/2005] [Accepted: 12/19/2005] [Indexed: 11/20/2022]
Abstract
Sphingomonas sp. A1 (strain A1) is capable of directly incorporating macromolecules (e.g., alginate) through the specialized import system--"super-channel." Here, we report the complete DNA sequence and genetic organization of plasmid pA1 from strain A1. Nucleotide sequence analysis revealed that pA1 comprises 46,557 bp encoding 49 open reading frames (ORFs) with 65% G+C content and abundant GCCG/CGGC motifs. Many predicted pA1 ORFs showed high similarity to pA81 ORFs; pA81 is supposedly a self-transmissible promiscuous incompatibility (Inc) group P-1beta plasmid. Unlike any reported IncP-1 plasmids, pA1 contains no inserted mobile genetic elements. The genetic organization and predicted pA1 ORFs showed greater similarity to the IncP-1beta plasmid backbone than to the IncP-1alpha plasmid backbone. pA1 contains restriction site-associated repeat sequences typical of the IncP-1beta but absent in the IncP-1alpha and delta subgroups. Thus, the overall pA1 structure corresponds to that of the typical IncP-1beta plasmids. Phylogenetic analysis of the replication-associated proteins suggested that pA1 may have diverged later along with the two IncP-1beta plasmids--pA81 and pB4. The 2.4-kb duplicates of stable inheritance genes klcAB and korC in pA1 possibly resulted from insertion and/or recombination events via the repeat sequences flanking these duplicates.
Collapse
Affiliation(s)
- Karen Mine Harada
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
14
|
Ochiai A, Hashimoto W, Murata K. A biosystem for alginate metabolism in Agrobacterium tumefaciens strain C58: molecular identification of Atu3025 as an exotype family PL-15 alginate lyase. Res Microbiol 2006; 157:642-9. [PMID: 16545947 DOI: 10.1016/j.resmic.2006.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 02/01/2006] [Accepted: 02/09/2006] [Indexed: 11/30/2022]
Abstract
The Gram-negative bacterium Sphingomonas sp. strain A1 (strain A1) has a peculiar biosystem to directly import and depolymerize a macromolecule, alginate, which is encoded by a cluster of genes on the genome. We identified five clustered ORFs homologous to some genes of the strain A1 cluster in the genome of Agrobacterium tumefaciens strain C58 (strain C58). These ORFs are Atu3021, Atu3022, Atu3023, and Atu3024, encoding a putative sugar ABC transporter system and Atu3025, which encodes a putative alginate lyase. We analyzed the involvement of this gene cluster in alginate metabolism. Strain C58 cells grew significantly on low-molecular-weight (LMW) alginate (average molecular weight, 1000), and we detected specific alginate-induced expression of Atu3024 and Atu3025. This strain does not grow on alginate (average molecular weight, 25,600), suggesting that the strain C58 gene cluster is involved in importing and degrading LMW alginate. One protein, Atu3025, purified from strain C58, was identified as an alginate lyase, and the enzyme overexpressed in Escherichia coli was further characterized. Atu3025 released monosaccharides specifically from alginate most efficiently at pH 7.3 and 30 degrees C through a beta-elimination reaction, indicating that Atu3025 is an exotype alginate lyase potentially involved in the assimilation of LMW alginate in strain C58.
Collapse
Affiliation(s)
- Akihito Ochiai
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
15
|
Aso Y, Miyamoto Y, Harada KM, Momma K, Kawai S, Hashimoto W, Mikami B, Murata K. Engineered membrane superchannel improves bioremediation potential of dioxin-degrading bacteria. Nat Biotechnol 2006; 24:188-9. [PMID: 16415854 DOI: 10.1038/nbt1181] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 11/21/2005] [Indexed: 11/10/2022]
Abstract
Sphingomonas sp. A1 possesses specialized membrane structures termed 'superchannels' that enable the direct incorporation of macromolecules into the cell. We have engineered two related sphingomonads, the dioxin-degrading S. wittichii RW1 and the polypropylene glycol-degrading S. subarctica IFO 16058(T), to incorporate this superchannel into their cell membranes. In both cases the bioremediation capability of the organisms was substantially increased pointing at the potential of this approach as a general strategy to improve bacterial degradation of hazardous compounds in the environment.
Collapse
Affiliation(s)
- Yuji Aso
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hashimoto W, He J, Wada Y, Nankai H, Mikami B, Murata K. Proteomics-Based Identification of Outer-Membrane Proteins Responsible for Import of Macromolecules inSphingomonassp. A1: Alginate-Binding Flagellin on the Cell Surface†,‡. Biochemistry 2005; 44:13783-94. [PMID: 16229468 DOI: 10.1021/bi050873b] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nonmotile gram-negative bacterium, Sphingomonas sp. A1, directly incorporates macromolecules such as alginate through a "super-channel" consisting of a pit formed on the cell surface, alginate-binding proteins in the periplasm, and an ATP-binding cassette transporter in the inner membrane. Here, we demonstrate the proteomics-based identification of cell-surface proteins involved in the formation of the pit and/or import of alginate. Cell-surface proteins were prepared from the outer membrane released as vesicles during the conversion of intact cells to spheroplasts. Seven proteins (p1-p7) with acidic isoelectric points were inducibly expressed in the outer membrane of strain A1 cells grown on alginate and showed significant identity with bacterial cell-surface proteins (p1-p4, TonB-dependent outer-membrane transporter; p5 and p6, flagellin; and p7, lipoprotein). Each mutant with a disruption of the p1-p4 or p6 gene showed significant growth retardation in the alginate medium. Flagellin homologues (p5 and p6) were further analyzed because strain A1 forms no flagellum. p5 was found to be uniformly distributed on the cell surface by immunogold-labeling electron microscopy and to exhibit alginate binding with a nanomolar dissociation constant by a surface plasmon resonance sensor. The cell surface of the p6 gene disruptant differed from that of the wild-type strain A1 in that pit formation was incomplete and cell-surface structures shifted from pleats to networks. These results suggest that, distinct from bacterial flagellins constituting a helical filament of flagella, strain A1 cell-surface flagellin homologues function as receptors for alginate and/or regulators of cell-surface structures.
Collapse
Affiliation(s)
- Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Momma K, Mishima Y, Hashimoto W, Mikami B, Murata K. Direct evidence for Sphingomonas sp. A1 periplasmic proteins as macromolecule-binding proteins associated with the ABC transporter: molecular insights into alginate transport in the periplasm. Biochemistry 2005; 44:5053-64. [PMID: 15794643 DOI: 10.1021/bi047781r] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Gram-negative bacterium, Sphingomonas sp. A1, has a macromolecule (alginate) import system consisting of a pit on the cell surface and an alginate-specific ATP-binding cassette importer in the inner membrane. Transport of alginate from the pit to the ABC importer is probably mediated by two periplasmic binding protein homologues (AlgQ1 and AlgQ2). Here we describe characteristics of binding of AlgQ1 and AlgQ2 to alginate and its oligosaccharides through surface plasmon resonance biosensor analysis, UV absorption difference spectroscopy, and X-ray crystallography. Both AlgQ1 and AlgQ2 were inducibly expressed in the periplasm of alginate-grown cells of strain A1. Biosensor analysis indicated that both proteins specifically bind alginate with a high degree of polymerization (>100) and that dissociation constants for alginate with an average molecular mass of 26 kDa are 2.3 x 10(-)(7) M for AlgQ1 and 1.5 x 10(-)(7) M for AlgQ2. An in vitro ATPase assay using the membrane complex, including the alginate ABC importer, suggested that both alginate-bound forms of AlgQ1 and AlgQ2 are closely associated with the importer. X-ray crystallography showed that AlgQ1 consisted of two domains separated by a deep cleft that binds alginate oligosaccharides through a conformational change in the two domains. These results directly show that alginate-binding proteins play an important role in the efficient transport of alginate macromolecules with different degrees of polymerization in the periplasm.
Collapse
Affiliation(s)
- Keiko Momma
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
18
|
Rigden DJ, Galperin MY. The DxDxDG Motif for Calcium Binding: Multiple Structural Contexts and Implications for Evolution. J Mol Biol 2004; 343:971-84. [PMID: 15476814 DOI: 10.1016/j.jmb.2004.08.077] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 08/12/2004] [Accepted: 08/25/2004] [Indexed: 11/30/2022]
|
19
|
He J, Nankai H, Hashimoto W, Murata K. Molecular identification and characterization of an alginate-binding protein on the cell surface of Sphingomonas sp. A1. Biochem Biophys Res Commun 2004; 322:712-7. [PMID: 15336522 DOI: 10.1016/j.bbrc.2004.07.184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Indexed: 11/28/2022]
Abstract
Cells of Sphingomonas sp. A1 (strain A1) directly incorporate a macromolecule, alginate, into cytoplasm through a biosystem, or "super-channel," consisting of a pit on the cell surface, alginate-binding proteins in periplasm, and an ABC transporter in the inner membrane. The pit functions as a concentrator for extracellular alginate. Through differential display analysis, a protein (p8) with a molecular mass of 20kDa and a pI of 7.4 was found to be inducibly expressed in the outer membrane of alginate-grown cells. The gene coding for p8 was identified in the genome of strain A1 and shown to be similar to that for the polyhydroxyalkanoate granule-associated protein of Ralstonia eutropha. The disruptant of p8 gene showed significant growth retardation in the alginate medium. An overexpression system for p8 was constructed in Escherichia coli, and the protein was purified and characterized. Surface plasmon resonance biosensor analysis indicated that p8 is able to bind alginate most efficiently at pH 4.0. The above results indicate that p8 is a cell surface protein able to bind alginate and facilitates the concentration of alginate in the pit on the cell surface of strain A1.
Collapse
Affiliation(s)
- Jinshan He
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | |
Collapse
|
20
|
Hashimoto W, Yamasaki M, Itoh T, Momma K, Mikami B, Murata K. Super-channel in bacteria: Structural and functional aspects of a novel biosystem for the import and depolymerization of macromolecules. J Biosci Bioeng 2004; 98:399-413. [PMID: 16233728 DOI: 10.1016/s1389-1723(05)00304-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 09/27/2004] [Indexed: 11/22/2022]
Abstract
Cells of Sphingomonas sp. A1 directly incorporate a macromolecule, alginate, into the cytoplasm through a biosystem, super-channel, consisting of a pit on the cell surface, alginate-binding proteins in the periplasm, and an ATP-binding cassette transporter in the inner membrane. The alginate is finally depolymerized into constituent monosaccharides by polysaccharide lyases present in the cytoplasm. The fundamental frame of the biosystem for alginate transport, and the functions of the pit, binding proteins, and ABC transporter have already been reviewed together with those of alginate-depolymerization processes [Hashimoto et al., J. Biosci. Bioeng., 87, 123-136 (1999)]. In this review, we have attempted to demonstrate the three-dimensional structure and evolution features of the super-channel, and alginate-depolymerization processes by using information obtained mainly through genomics, proteomics, and X-ray crystallography.
Collapse
Affiliation(s)
- Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Schiefner A, Breed J, Bösser L, Kneip S, Gade J, Holtmann G, Diederichs K, Welte W, Bremer E. Cation-pi interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein ProX from Escherichia coli. J Biol Chem 2003; 279:5588-96. [PMID: 14612446 DOI: 10.1074/jbc.m309771200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Compatible solutes such as glycine betaine and proline betaine are accumulated to exceedingly high intracellular levels by many organisms in response to high osmolarity to offset the loss of cell water. They are excluded from the immediate hydration shell of proteins and thereby stabilize their native structure. Despite their exclusion from protein surfaces, the periplasmic ligand-binding protein ProX from the Escherichia coli ATP-binding cassette transport system ProU binds the compatible solutes glycine betaine and proline betaine with high affinity and specificity. To understand the mechanism of compatible solute binding, we determined the high resolution structure of ProX in complex with its ligands glycine betaine and proline betaine. This crystallographic study revealed that cation-pi interactions between the positive charge of the quaternary amine of the ligands and three tryptophan residues forming a rectangular aromatic box are the key determinants of the high affinity binding of compatible solutes by ProX. The structural analysis was combined with site-directed mutagenesis of the ligand binding pocket to estimate the contributions of the tryptophan residues involved in binding.
Collapse
Affiliation(s)
- André Schiefner
- Fachbereich Biologie, Universität Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rigden DJ, Jedrzejas MJ, Moroz OV, Galperin MY. Structural diversity of calcium-binding proteins in bacteria: single-handed EF-hands? Trends Microbiol 2003; 11:295-7. [PMID: 12875810 DOI: 10.1016/s0966-842x(03)00153-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Daniel J Rigden
- National Center of Genetic Resources and Biotechnology, Cenargen/Embrapa, Brasília, D.F. 70770-900, Brazil
| | | | | | | |
Collapse
|
23
|
Mishima Y, Momma K, Miyake O, Hashimoto W, Mikami B, Murata K. A super-channel in bacteria: macromolecule uptake and depolymerization systems of Sphingomonas sp. A1 with a special cell surface structure. Biotechnol Genet Eng Rev 2003; 19:105-19. [PMID: 12520874 DOI: 10.1080/02648725.2002.10648025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yumiko Mishima
- Department of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Mishima Y, Momma K, Hashimoto W, Mikami B, Murata K. Crystal structure of AlgQ2, a macromolecule (alginate)-binding protein of Sphingomonas sp. A1, complexed with an alginate tetrasaccharide at 1.6-A resolution. J Biol Chem 2003; 278:6552-9. [PMID: 12486124 DOI: 10.1074/jbc.m209932200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingomonas sp. A1 possesses a high molecular weight (HMW) alginate uptake system composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. The transportation of HMW alginate from the pit to the ABC transporter is mediated by the periplasmic HMW alginate-binding proteins AlgQ1 and AlgQ2. We determined the crystal structure of AlgQ2 complexed with an alginate tetrasaccharide using an alginate-free (apo) form as a search model and refined it at 1.6-A resolution. One tetrasaccharide was found between the N and C-terminal domains, which are connected by three extended hinge loops. The tetrasaccharide complex took on a closed domain form, in contrast to the open domain form of the apo form. The tetrasaccharide was bound in the cleft between the domains through van der Waals interactions and the formation of hydrogen bonds. Among the four sugar residues, the nonreducing end residue was located at the bottom of the cleft and exhibited the largest number of interactions with the surrounding amino acid residues, suggesting that AlgQ2 mainly recognizes and binds to the nonreducing part of a HMW alginate and delivers the polymer to the ABC transporter through conformational changes (open and closed forms) of the two domains.
Collapse
Affiliation(s)
- Yumiko Mishima
- Department of Basic and Applied Molecular Biotechnology, Division of Food and Biological Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|