1
|
Dayie TK, Olenginski LT, Taiwo KM. Isotope Labels Combined with Solution NMR Spectroscopy Make Visible the Invisible Conformations of Small-to-Large RNAs. Chem Rev 2022; 122:9357-9394. [PMID: 35442658 PMCID: PMC9136934 DOI: 10.1021/acs.chemrev.1c00845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 02/07/2023]
Abstract
RNA is central to the proper function of cellular processes important for life on earth and implicated in various medical dysfunctions. Yet, RNA structural biology lags significantly behind that of proteins, limiting mechanistic understanding of RNA chemical biology. Fortunately, solution NMR spectroscopy can probe the structural dynamics of RNA in solution at atomic resolution, opening the door to their functional understanding. However, NMR analysis of RNA, with only four unique ribonucleotide building blocks, suffers from spectral crowding and broad linewidths, especially as RNAs grow in size. One effective strategy to overcome these challenges is to introduce NMR-active stable isotopes into RNA. However, traditional uniform labeling methods introduce scalar and dipolar couplings that complicate the implementation and analysis of NMR measurements. This challenge can be circumvented with selective isotope labeling. In this review, we outline the development of labeling technologies and their application to study biologically relevant RNAs and their complexes ranging in size from 5 to 300 kDa by NMR spectroscopy.
Collapse
Affiliation(s)
- Theodore K. Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Taiwo KM, Olenginski LT, Nußbaumer F, Nam H, Hilber S, Kreutz C, Dayie TK. Synthesis of [7- 15N]-GTPs for RNA structure and dynamics by NMR spectroscopy. MONATSHEFTE FUR CHEMIE 2022; 153:293-299. [PMID: 35400760 PMCID: PMC8948113 DOI: 10.1007/s00706-022-02892-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/23/2022]
Abstract
Several isotope-labeling strategies have been developed for the study of RNA by nuclear magnetic resonance (NMR) spectroscopy. Here, we report a combined chemical and enzymatic synthesis of [7-15N]-guanosine-5'-triphosphates for incorporation into RNA via T7 RNA polymerase-based in vitro transcription. We showcase the utility of these labels to probe both structure and dynamics in two biologically important RNAs. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s00706-022-02892-1.
Collapse
Affiliation(s)
- Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742 USA
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742 USA
| | - Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Hyeyeon Nam
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742 USA
- Present Address: Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| | - Stefan Hilber
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
3
|
Olenginski LT, Dayie TK. Quantifying the effects of long-range 13C- 13C dipolar coupling on measured relaxation rates in RNA. JOURNAL OF BIOMOLECULAR NMR 2021; 75:203-211. [PMID: 33914223 PMCID: PMC8131303 DOI: 10.1007/s10858-021-00368-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Selective stable isotope labeling has transformed structural and dynamics analysis of RNA by NMR spectroscopy. These methods can remove 13C-13C dipolar couplings that complicate 13C relaxation analyses. While these phenomena are well documented for sites with adjacent 13C nuclei (e.g. ribose C1'), less is known about so-called isolated sites (e.g. adenosine C2). To investigate and quantify the effects of long-range (> 2 Å) 13C-13C dipolar interactions on RNA dynamics, we simulated adenosine C2 relaxation rates in uniformly [U-13C/15N]-ATP or selectively [2-13C]-ATP labeled RNAs. Our simulations predict non-negligible 13C-13C dipolar contributions from adenosine C4, C5, and C6 to C2 longitudinal (R1) relaxation rates in [U-13C/15N]-ATP labeled RNAs. Moreover, these contributions increase at higher magnetic fields and molecular weights to introduce discrepancies that exceed 50%. This will become increasingly important at GHz fields. Experimental R1 measurements in the 61 nucleotide human hepatitis B virus encapsidation signal ε RNA labeled with [U-13C/15N]-ATP or [2-13C]-ATP corroborate these simulations. Thus, in the absence of selectively labeled samples, long-range 13C-13C dipolar contributions must be explicitly taken into account when interpreting adenosine C2 R1 rates in terms of motional models for large RNAs.
Collapse
Affiliation(s)
- Lukasz T Olenginski
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Theodore K Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
4
|
Melidis L, Styles IB, Hannon MJ. Targeting structural features of viral genomes with a nano-sized supramolecular drug. Chem Sci 2021; 12:7174-7184. [PMID: 34123344 PMCID: PMC8153246 DOI: 10.1039/d1sc00933h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
RNA targeting is an exciting frontier for drug design. Intriguing targets include functional RNA structures in structurally-conserved untranslated regions (UTRs) of many lethal viruses. However, computational docking screens, valuable in protein structure targeting, fail for inherently flexible RNA. Herein we harness MD simulations with Markov state modeling to enable nanosize metallo-supramolecular cylinders to explore the dynamic RNA conformational landscape of HIV-1 TAR untranslated region RNA (representative for many viruses) replicating experimental observations. These cylinders are exciting as they have unprecedented nucleic acid binding and are the first supramolecular helicates shown to have anti-viral activity in cellulo: the approach developed in this study provides additional new insight about how such viral UTR structures might be targeted with the cylinder binding into the heart of an RNA-bulge cavity, how that reduces the conformational flexibility of the RNA and molecular details of the insertion mechanism. The approach and understanding developed represents a new roadmap for design of supramolecular drugs to target RNA structural motifs across biology and nucleic acid nanoscience.
Collapse
Affiliation(s)
- Lazaros Melidis
- Physical Sciences for Health Centre, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Iain B Styles
- Physical Sciences for Health Centre, University of Birmingham Edgbaston Birmingham B15 2TT UK
- School of Computer Science, University of Birmingham Edgbaston Birmingham B15 2TT UK
- Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham The Midlands UK
- Alan Turing Institute London UK
| | - Michael J Hannon
- Physical Sciences for Health Centre, University of Birmingham Edgbaston Birmingham B15 2TT UK
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
5
|
Le MT, Brown RE, Simon AE, Dayie TK. In vivo, large-scale preparation of uniformly (15)N- and site-specifically (13)C-labeled homogeneous, recombinant RNA for NMR studies. Methods Enzymol 2016; 565:495-535. [PMID: 26577743 DOI: 10.1016/bs.mie.2015.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Knowledge of how ribonucleic acid (RNA) structures fold to form intricate, three-dimensional structures has provided fundamental insights into understanding the biological functions of RNA. Nuclear magnetic resonance (NMR) spectroscopy is a particularly useful high-resolution technique to investigate the dynamic structure of RNA. Effective study of RNA by NMR requires enrichment with isotopes of (13)C or (15)N or both. Here, we present a method to produce milligram quantities of uniformly (15)N- and site-specifically (13)C-labeled RNAs using wild-type K12 and mutant tktA Escherichia coli in combination with a tRNA-scaffold approach. The method includes a double selection protocol to obtain an E. coli clone with consistently high expression of the recombinant tRNA-scaffold. We also present protocols for the purification of the tRNA-scaffold from a total cellular RNA extract and the excision of the RNA of interest from the tRNA-scaffold using DNAzymes. Finally, we showcase NMR applications to demonstrate the benefit of using in vivo site-specifically (13)C-labeled RNA.
Collapse
Affiliation(s)
- My T Le
- Department of Chemistry and Biochemistry,Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA
| | - Rachel E Brown
- Department of Chemistry and Biochemistry, Department of Cellular Biology and Molecular Genetics, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA
| | - Anne E Simon
- Department of Chemistry and Biochemistry, Department of Cellular Biology and Molecular Genetics, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA
| | - T Kwaku Dayie
- Department of Chemistry and Biochemistry,Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
6
|
Merriman DK, Xue Y, Yang S, Kimsey IJ, Shakya A, Clay M, Al-Hashimi HM. Shortening the HIV-1 TAR RNA Bulge by a Single Nucleotide Preserves Motional Modes over a Broad Range of Time Scales. Biochemistry 2016; 55:4445-56. [PMID: 27232530 DOI: 10.1021/acs.biochem.6b00285] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Helix-junction-helix (HJH) motifs are flexible building blocks of RNA architecture that help define the orientation and dynamics of helical domains. They are also frequently involved in adaptive recognition of proteins and small molecules and in the formation of tertiary contacts. Here, we use a battery of nuclear magnetic resonance techniques to examine how deleting a single bulge residue (C24) from the human immunodeficiency virus type 1 (HIV-1) transactivation response element (TAR) trinucleotide bulge (U23-C24-U25) affects dynamics over a broad range of time scales. Shortening the bulge has an effect on picosecond-to-nanosecond interhelical and local bulge dynamics similar to that casued by increasing the Mg(2+) and Na(+) concentration, whereby a preexisting two-state equilibrium in TAR is shifted away from a bent flexible conformation toward a coaxial conformation, in which all three bulge residues are flipped out and flexible. Surprisingly, the point deletion minimally affects microsecond-to-millisecond conformational exchange directed toward two low-populated and short-lived excited conformational states that form through reshuffling of bases pairs throughout TAR. The mutant does, however, adopt a slightly different excited conformational state on the millisecond time scale, in which U23 is intrahelical, mimicking the expected conformation of residue C24 in the excited conformational state of wild-type TAR. Thus, minor changes in HJH topology preserve motional modes in RNA occurring over the picosecond-to-millisecond time scales but alter the relative populations of the sampled states or cause subtle changes in their conformational features.
Collapse
Affiliation(s)
- Dawn K Merriman
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Yi Xue
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Shan Yang
- Baxter Health Care (Suzhou) Company, Ltd. , Suzhou, Jiang Su 215028, China
| | - Isaac J Kimsey
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Anisha Shakya
- Department of Chemistry and Biophysics, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Mary Clay
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Hashim M Al-Hashimi
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States.,Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| |
Collapse
|
7
|
Emani PS, Bardaro MF, Huang W, Aragon S, Varani G, Drobny GP. Elucidating molecular motion through structural and dynamic filters of energy-minimized conformer ensembles. J Phys Chem B 2014; 118:1726-42. [PMID: 24479561 PMCID: PMC3983377 DOI: 10.1021/jp409386t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Complex RNA structures are constructed
from helical segments connected
by flexible loops that move spontaneously and in response to binding
of small molecule ligands and proteins. Understanding the conformational
variability of RNA requires the characterization of the coupled time
evolution of interconnected flexible domains. To elucidate the collective
molecular motions and explore the conformational landscape of the
HIV-1 TAR RNA, we describe a new methodology that utilizes energy-minimized
structures generated by the program “Fragment Assembly of RNA
with Full-Atom Refinement (FARFAR)”. We apply structural filters
in the form of experimental residual dipolar couplings (RDCs) to select
a subset of discrete energy-minimized conformers and carry out principal
component analyses (PCA) to corroborate the choice of the filtered
subset. We use this subset of structures to calculate solution T1 and T1ρ relaxation times for 13C spins in multiple residues in different domains of the molecule
using two simulation protocols that we previously published. We match
the experimental T1 times to within 2% and the T1ρ times to within less than 10% for helical residues. These results
introduce a protocol to construct viable dynamic trajectories for
RNA molecules that accord well with experimental NMR data and support
the notion that the motions of the helical portions of this small
RNA can be described by a relatively small number of discrete conformations
exchanging over time scales longer than 1 μs.
Collapse
Affiliation(s)
- Prashant S Emani
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | | | | | | | | | | |
Collapse
|
8
|
Berlin K, Longhini A, Dayie TK, Fushman D. Deriving quantitative dynamics information for proteins and RNAs using ROTDIF with a graphical user interface. JOURNAL OF BIOMOLECULAR NMR 2013; 57:333-352. [PMID: 24170368 PMCID: PMC3939081 DOI: 10.1007/s10858-013-9791-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/11/2013] [Indexed: 05/28/2023]
Abstract
To facilitate rigorous analysis of molecular motions in proteins, DNA, and RNA, we present a new version of ROTDIF, a program for determining the overall rotational diffusion tensor from single- or multiple-field nuclear magnetic resonance relaxation data. We introduce four major features that expand the program's versatility and usability. The first feature is the ability to analyze, separately or together, (13)C and/or (15)N relaxation data collected at a single or multiple fields. A significant improvement in the accuracy compared to direct analysis of R2/R1 ratios, especially critical for analysis of (13)C relaxation data, is achieved by subtracting high-frequency contributions to relaxation rates. The second new feature is an improved method for computing the rotational diffusion tensor in the presence of biased errors, such as large conformational exchange contributions, that significantly enhances the accuracy of the computation. The third new feature is the integration of the domain alignment and docking module for relaxation-based structure determination of multi-domain systems. Finally, to improve accessibility to all the program features, we introduced a graphical user interface that simplifies and speeds up the analysis of the data. Written in Java, the new ROTDIF can run on virtually any computer platform. In addition, the new ROTDIF achieves an order of magnitude speedup over the previous version by implementing a more efficient deterministic minimization algorithm. We not only demonstrate the improvement in accuracy and speed of the new algorithm for synthetic and experimental (13)C and (15)N relaxation data for several proteins and nucleic acids, but also show that careful analysis required especially for characterizing RNA dynamics allowed us to uncover subtle conformational changes in RNA as a function of temperature that were opaque to previous analysis.
Collapse
Affiliation(s)
- Konstantin Berlin
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | | | | | | |
Collapse
|
9
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
10
|
Bardaro MF, Varani G. Independent alignment of RNA for dynamic studies using residual dipolar couplings. JOURNAL OF BIOMOLECULAR NMR 2012; 54:69-80. [PMID: 22806132 DOI: 10.1007/s10858-012-9655-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 06/26/2012] [Indexed: 06/01/2023]
Abstract
Molecular motion and dynamics play an essential role in the biological function of many RNAs. An important source of information on biomolecular motion can be found in residual dipolar couplings which contain dynamics information over the entire ms-ps timescale. However, these methods are not fully applicable to RNA because nucleic acid molecules tend to align in a highly collinear manner in different alignment media. As a consequence, information on dynamics that can be obtained with this method is limited. In order to overcome this limitation, we have generated a chimeric RNA containing both the wild type TAR RNA, the target of our investigation of dynamics, as well as the binding site for U1A protein. When U1A protein was bound to the portion of the chimeric RNA containing its binding site, we obtained independent alignment of TAR by exploiting the physical chemical characteristics of this protein. This technique can allow the extraction of new information on RNA dynamics, which is particularly important for time scales not covered by relaxation methods where important RNA motions occur.
Collapse
Affiliation(s)
- Michael F Bardaro
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | | |
Collapse
|
11
|
Bardaro MF, Varani G. Examining the relationship between RNA function and motion using nuclear magnetic resonance. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:122-32. [PMID: 22180312 DOI: 10.1002/wrna.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biological function of proteins and nucleic acids relies on their complex structures, yet dynamics provides an additional layer of functional adaptability. Numerous studies have demonstrated that RNA is only able to perform the multitude of functions for which it is responsible by readily changing its conformation in response to binding of proteins or small molecules. Examination of RNA dynamics is therefore essential to understanding its biological function. Nuclear magnetic resonance (NMR) has emerged as a leading technique for the examination of RNA motion and conformational transitions. It can examine domain motions as well as motion with atomic level resolution over a wide range of time scales. This review examines how NMR spectroscopy can be applied to examine the relationship between function and dynamics in RNA.
Collapse
|
12
|
Dominguez C, Schubert M, Duss O, Ravindranathan S, Allain FHT. Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:1-61. [PMID: 21241883 DOI: 10.1016/j.pnmrs.2010.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/24/2010] [Indexed: 05/30/2023]
Affiliation(s)
- Cyril Dominguez
- Institute for Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Chen WH, Fu JY, Kourentzi K, Willson RC. Nucleic acid affinity of clustered-charge anion exchange adsorbents: Effects of ionic strength and ligand density. J Chromatogr A 2011; 1218:258-62. [DOI: 10.1016/j.chroma.2010.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/08/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
|
14
|
Thakur CS, Sama JN, Jackson ME, Chen B, Dayie TK. Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle. JOURNAL OF BIOMOLECULAR NMR 2010; 48:179-92. [PMID: 21057854 PMCID: PMC2988204 DOI: 10.1007/s10858-010-9454-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/28/2010] [Indexed: 05/05/2023]
Abstract
Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon sites in nucleotides. In this paper, we show that growth of a mutant E. coli strain DL323 (lacking succinate and malate dehydrogenases) on (13)C-2-glycerol and (13)C-1,3-glycerol enables selective labeling at many useful sites for RNA NMR spectroscopy. For DL323 E. coli grown in (13)C-2-glycerol without labeled formate, all the ribose carbon atoms are labeled except the C3' and C5' carbon positions. Consequently the C1', C2' and C4' positions remain singlet. In addition, only the pyrimidine base C6 atoms are substantially labeled to ~96% whereas the C2 and C8 atoms of purine are labeled to ~5%. Supplementing the growth media with (13)C-formate increases the labeling at C8 to ~88%, but not C2. Not unexpectedly, addition of exogenous formate is unnecessary for attaining the high enrichment levels of ~88% for the C2 and C8 purine positions in a (13)C-1,3-glycerol based growth. Furthermore, the ribose ring is labeled in all but the C4' carbon position, such that the C2' and C3' positions suffer from multiplet splitting but the C5' position remains singlet and the C1' position shows a small amount of residual C1'-C2' coupling. As expected, all the protonated base atoms, except C6, are labeled to ~90%. In addition, labeling with (13)C-1,3-glycerol affords an isolated methylene ribose with high enrichment at the C5' position (~90%) that makes it particularly attractive for NMR applications involving CH(2)-TROSY modules without the need for decoupling the C4' carbon. To simulate the tumbling of large RNA molecules, perdeuterated glycerol was added to a mixture of the four nucleotides, and the methylene TROSY experiment recorded at various temperatures. Even under conditions of slow tumbling, all the expected carbon correlations were observed, which indicates this approach of using nucleotides obtained from DL323 E. coli will be applicable to high molecular weight RNA systems.
Collapse
Affiliation(s)
- Chandar S. Thakur
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - Jacob N. Sama
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - Melantha E. Jackson
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - Bin Chen
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| |
Collapse
|
15
|
Chen Y, Eldho NV, Dayie TK, Carey PR. Probing adenine rings and backbone linkages using base specific isotope-edited Raman spectroscopy: application to group II intron ribozyme domain V. Biochemistry 2010; 49:3427-35. [PMID: 20225830 PMCID: PMC2863103 DOI: 10.1021/bi902117w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Raman difference spectroscopy is used to probe the properties of a 36-nt RNA molecule, "D5", which lies at the heart of the catalytic apparatus in group II introns. For D5 that has all of its adenine residues labeled with (13)C and (15)N and utilizing Raman difference spectroscopy, we identify the conformationally sensitive -C-O-P-O-C- stretching modes of the unlabeled bonds adjacent to adenine bases, as well as the adenine ring modes themselves. The phosphodiester modes can be assigned to individual adenine residues based on earlier NMR data. The effect of Mg(2+) binding was explored by analyzing the Raman difference spectra for [D5 + Mg(2+)] minus [D5 no Mg(2+)], for D5 unlabeled, or D5 labeled with (13)C/(15)N-enriched adenine. In both sets of data we assign differential features to G ring modes perturbed by Mg(2+) binding at the N7 position. In the A-labeled spectra we attribute a Raman differential near 1450 cm(-1) and changes of intensity at 1296 cm(-1) to Mg binding at the N7 position of adenine bases. The A and G bases involved in Mg(2+) binding again can be identified using earlier NMR results. For the unlabeled D5, a change in the C-O-P-O-C stretch profile at 811 cm(-1) upon magnesium binding is due to a "tightening up" (in the sense of a more rigid molecule with less dynamic interchange among competing ribose conformers) of the D5 structure. For adenine-labeled D5, small changes in the adenine backbone bond signatures in the 810-830 cm(-1) region suggest that small conformational changes occur in the tetraloop and bulge regions upon binding of Mg(2+). The PO(2)(-) stretching vibration, near 1100 cm(-1), from the nonbridging phosphate groups, probes the effect of Mg(2+)-hydrate inner-sphere interactions that cause an upshift. In turn, the upshift is modulated by the presence of monovalent cations since in the presence of Na(+) and Li(+) the upshift is 23 +/- 2 cm(-1) while in the presence of K(+) and Cs(+) it is 13 +/- 3 cm(-1), a finding that correlates with the differences in hydration radii. These subtle differences in electrostatic interactions may be related to observed variations in catalytic activity. For a reconstructed ribozyme comprising domains 1-3 (D123) connected in cis plus domain 5 (D5) supplied in trans, cleavage of spliced exon substrates in the presence of magnesium and K(+) or Cs(+) is more efficient than that in the presence of magnesium with Na(+) or Li(+).
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935, Tel: 216- 368-0031, Fax: 216-368-3419
| | - Nadukkudy V. Eldho
- Departments of Chemistry and Biochemistry, College of Chemical and Life Sciences, University of Maryland, College Park, MD 20742-3360, Tel: 301-405-3165, Fax: 301-314-0386
| | - T. Kwaku Dayie
- Departments of Chemistry and Biochemistry, College of Chemical and Life Sciences, University of Maryland, College Park, MD 20742-3360, Tel: 301-405-3165, Fax: 301-314-0386
| | - Paul R. Carey
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935, Tel: 216- 368-0031, Fax: 216-368-3419
| |
Collapse
|
16
|
Ferner J, Suhartono M, Breitung S, Jonker HRA, Hennig M, Wöhnert J, Göbel M, Schwalbe H. Structures of HIV TAR RNA-ligand complexes reveal higher binding stoichiometries. Chembiochem 2009; 10:1490-4. [PMID: 19444830 DOI: 10.1002/cbic.200900220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Target TAR by NMR: Tripeptides containing arginines as terminal residues and non-natural amino acids as central residues are good leads for drug design to target the HIV trans-activation response element (TAR). The structural characterization of the RNA-ligand complex by NMR spectroscopy reveals two specific binding sites that are located at bulge residue U23 and around the pyrimidine-stretch U40-C41-U42 directly adjacent to the bulge.
Collapse
Affiliation(s)
- Jan Ferner
- Institut für Organische Chemie und Chemische Biologie, Zentrum für Biomolekulare Magnetische Resonanz (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Olsen GL, Bardaro MF, Echodu DC, Drobny GP, Varani G. Hydration dependent dynamics in RNA. JOURNAL OF BIOMOLECULAR NMR 2009; 45:133-142. [PMID: 19669102 DOI: 10.1007/s10858-009-9355-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 06/27/2009] [Indexed: 05/28/2023]
Abstract
The essential role played by local and collective motions in RNA function has led to a growing interest in the characterization of RNA dynamics. Recent investigations have revealed that even relatively simple RNAs experience complex motions over multiple time scales covering the entire ms-ps motional range. In this work, we use deuterium solid-state NMR to systematically investigate motions in HIV-1 TAR RNA as a function of hydration. We probe dynamics at three uridine residues in different structural environments ranging from helical to completely unrestrained. We observe distinct and substantial changes in (2)H solid-state relaxation times and lineshapes at each site as hydration levels increase. By comparing solid-state and solution state (13)C relaxation measurements, we establish that ns-micros motions that may be indicative of collective dynamics suddenly arise in the RNA as hydration reaches a critical point coincident with the onset of bulk hydration. Beyond that point, we observe smaller changes in relaxation rates and lineshapes in these highly hydrated solid samples, compared to the dramatic activation of motion occurring at moderate hydration.
Collapse
Affiliation(s)
- Greg L Olsen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
18
|
Frank AT, Stelzer AC, Al-Hashimi HM, Andricioaei I. Constructing RNA dynamical ensembles by combining MD and motionally decoupled NMR RDCs: new insights into RNA dynamics and adaptive ligand recognition. Nucleic Acids Res 2009; 37:3670-9. [PMID: 19369218 PMCID: PMC2699496 DOI: 10.1093/nar/gkp156] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We describe a strategy for constructing atomic resolution dynamical ensembles of RNA molecules, spanning up to millisecond timescales, that combines molecular dynamics (MD) simulations with NMR residual dipolar couplings (RDC) measured in elongated RNA. The ensembles are generated via a Monte Carlo procedure by selecting snap-shot from an MD trajectory that reproduce experimentally measured RDCs. Using this approach, we construct ensembles for two variants of the transactivation response element (TAR) containing three (HIV-1) and two (HIV-2) nucleotide bulges. The HIV-1 TAR ensemble reveals significant mobility in bulge residues C24 and U25 and to a lesser extent U23 and neighboring helical residue A22 that give rise to large amplitude spatially correlated twisting and bending helical motions. Omission of bulge residue C24 in HIV-2 TAR leads to a significant reduction in both the local mobility in and around the bulge and amplitude of inter-helical bending motions. In contrast, twisting motions of the helices remain comparable in amplitude to HIV-1 TAR and spatial correlations between them increase significantly. Comparison of the HIV-1 TAR dynamical ensemble and ligand bound TAR conformations reveals that several features of the binding pocket and global conformation are dynamically preformed, providing support for adaptive recognition via a ‘conformational selection’ type mechanism.
Collapse
Affiliation(s)
- Aaron T Frank
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences 2, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
19
|
Bardaro MF, Shajani Z, Patora-Komisarska K, Robinson JA, Varani G. How binding of small molecule and peptide ligands to HIV-1 TAR alters the RNA motional landscape. Nucleic Acids Res 2009; 37:1529-40. [PMID: 19139066 PMCID: PMC2655691 DOI: 10.1093/nar/gkn1074] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The HIV-1 TAR RNA represents a well-known paradigm to study the role of dynamics and conformational change in RNA function. This regulatory RNA changes conformation in response to binding of Tat protein and of a variety of peptidic and small molecule ligands, indicating that its conformational flexibility and intrinsic dynamics play important roles in molecular recognition. We have used 13C NMR relaxation experiments to examine changes in the motional landscape of HIV-1 TAR in the presence of three ligands of different affinity and specificity. The ligands are argininamide, a linear peptide mimic of the Tat basic domain and a cyclic peptide that potently inhibits Tat-dependent activation of transcription. All three molecules induce the same motional characteristics within the three nucleotides bulge that represents the Tat-binding site. However, the cyclic peptide has a unique motional signature in the apical loop, which represents a binding site for the essential host co-factor cyclin T1. These results suggest that all peptidic mimics of Tat induce the same dynamics in TAR within this protein binding site. However, the new cyclic peptide mimic of Tat represents a new class of ligands with a unique effect on the dynamics and the structure of the apical loop.
Collapse
Affiliation(s)
- Michael F Bardaro
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | | | | | | | | |
Collapse
|
20
|
Johnson JE, Hoogstraten CG. Extensive backbone dynamics in the GCAA RNA tetraloop analyzed using 13C NMR spin relaxation and specific isotope labeling. J Am Chem Soc 2008; 130:16757-69. [PMID: 19049467 PMCID: PMC2729180 DOI: 10.1021/ja805759z] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Conformational dynamics play a key role in the properties and functions of proteins and nucleic acids. Heteronuclear NMR spin relaxation is a uniquely powerful site-specific probe of dynamics in proteins and has found increasing applications to nucleotide base side chains and anomeric sites in RNA. Applications to the nucleic acid ribose backbone, however, have been hampered by strong magnetic coupling among ring carbons in uniformly 13C-labeled samples. In this work, we apply a recently developed, metabolically directed isotope labeling scheme that places 13C with high efficiency and specificity at the nucleotide ribose C2' and C4' sites. We take advantage of this scheme to explore backbone dynamics in the well-studied GCAA RNA tetraloop. Using a combination of CPMG (Carr-Purcell-Meiboom-Gill) and R(1rho) relaxation dispersion spectroscopy to explore exchange processes on the microsecond to millisecond time scale, we find an extensive pattern of dynamic transitions connecting a set of relatively well-defined conformations. In many cases, the observed transitions appear to be linked to C3'-endo/C2'-endo sugar pucker transitions of the corresponding nucleotides, and may also be correlated across multiple nucleotides within the tetraloop. These results demonstrate the power of NMR spin relaxation based on alternate-site isotope labeling to open a new window into the dynamic properties of ribose backbone groups in RNA.
Collapse
Affiliation(s)
- James E Johnson
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
21
|
Abstract
Although RNA duplex regions are highly structured and inflexible, other elements of an RNA molecule are capable of dynamic motions. These flexible regions are the sites of interactions with small molecules, proteins, and other RNAs, yet there are few descriptions of these regions that include the timescale and amplitude of their motions. No one technique is sufficient to accurately describe these motions, but the combination of in vitro methods, particularly NMR relaxation methods, and more robust in silico methods, is beginning to yield the type of data that can be used to understand RNA function. Very few RNAs have been described by both techniques, and here one such RNA and one RNA:protein complex are reviewed.
Collapse
Affiliation(s)
- Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
22
|
Gherghe CM, Shajani Z, Wilkinson KA, Varani G, Weeks KM. Strong correlation between SHAPE chemistry and the generalized NMR order parameter (S2) in RNA. J Am Chem Soc 2008; 130:12244-5. [PMID: 18710236 PMCID: PMC2712629 DOI: 10.1021/ja804541s] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The functions of most RNA molecules are critically dependent on the distinct local dynamics that characterize secondary structure and tertiary interactions and on structural changes that occur upon binding by proteins and small molecule ligands. Measurements of RNA dynamics at nucleotide resolution set the foundation for understanding the roles of individual residues in folding, catalysis, and ligand recognition. In favorable cases, local order in small RNAs can be quantitatively analyzed by NMR in terms of a generalized order parameter, S2. Alternatively, SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) chemistry measures local nucleotide flexibility in RNAs of any size using structure-sensitive reagents that acylate the 2'-hydroxyl position. In this work, we compare per-residue RNA dynamics, analyzed by both S2 and SHAPE, for three RNAs: the HIV-1 TAR element, the U1A protein binding site, and the Tetrahymena telomerase stem loop 4. We find a very strong correlation between the two measurements: nucleotides with high SHAPE reactivities consistently have low S2 values. We conclude that SHAPE chemistry quantitatively reports local nucleotide dynamics and can be used with confidence to analyze dynamics in large RNAs, RNA-protein complexes, and RNAs in vivo.
Collapse
Affiliation(s)
- Costin M Gherghe
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | | | |
Collapse
|
23
|
Oberstrass FC, Allain FHT, Ravindranathan S. Changes in Dynamics of SRE-RNA on Binding to the VTS1p-SAM Domain Studied by 13C NMR Relaxation. J Am Chem Soc 2008; 130:12007-20. [DOI: 10.1021/ja8023115] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Florian C. Oberstrass
- Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zürich, Switzerland, and Central NMR Facility, National Chemical Laboratory, Pune 411008, India
| | - Frédéric H.-T. Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zürich, Switzerland, and Central NMR Facility, National Chemical Laboratory, Pune 411008, India
| | - Sapna Ravindranathan
- Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zürich, Switzerland, and Central NMR Facility, National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
24
|
Characterizing complex dynamics in the transactivation response element apical loop and motional correlations with the bulge by NMR, molecular dynamics, and mutagenesis. Biophys J 2008; 95:3906-15. [PMID: 18621815 DOI: 10.1529/biophysj.108.140285] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The HIV-1 transactivation response element (TAR) RNA binds a variety of proteins and is a target for developing anti-HIV therapies. TAR has two primary binding sites: a UCU bulge and a CUGGGA apical loop. We used NMR residual dipolar couplings, carbon spin relaxation (R(1) and R(2)), and relaxation dispersion (R(1rho)) in conjunction with molecular dynamics and mutagenesis to characterize the dynamics of the TAR apical loop and investigate previously proposed long-range interactions with the distant bulge. Replacement of the wild-type apical loop with a UUCG loop did not significantly affect the structural dynamics at the bulge, indicating that the apical loop and the bulge act largely as independent dynamical recognition centers. The apical loop undergoes complex dynamics at multiple timescales that are likely important for adaptive recognition: U31 and G33 undergo limited motions, G32 is highly flexible at picosecond-nanosecond timescales, and G34 and C30 form a dynamic Watson-Crick basepair in which G34 and A35 undergo a slow (approximately 30 mus) likely concerted looping in and out motion, with A35 also undergoing large amplitude motions at picosecond-nanosecond timescales. Our study highlights the power of combining NMR, molecular dynamics, and mutagenesis in characterizing RNA dynamics.
Collapse
|
25
|
Olsen GL, Echodu DC, Shajani Z, Bardaro MF, Varani G, Drobny GP. Solid-state deuterium NMR studies reveal micros-ns motions in the HIV-1 transactivation response RNA recognition site. J Am Chem Soc 2008; 130:2896-7. [PMID: 18275190 PMCID: PMC2743919 DOI: 10.1021/ja0778803] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Solution and solid-state NMR measurements were used together to examine motion in three sites in the HIV-1 TAR RNA. We wished to investigate the dynamics facilitating the conformational rearrangements the TAR RNA must undergo for tat binding, and in particular to characterize the full range of motional timescales accessible to this RNA. Our results demonstrate that the dynamics in TAR involving residues essential to tat binding include not only the faster motions detected by solution relaxation measurements, but also a significant component in the μs-ns timescale.
Collapse
Affiliation(s)
- Greg L Olsen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
26
|
Ludwig V, Krebs A, Stoll M, Dietrich U, Ferner J, Schwalbe H, Scheffer U, Dürner G, Göbel MW. Tripeptides from synthetic amino acids block the Tat-TAR association and slow down HIV spread in cell cultures. Chembiochem 2008; 8:1850-6. [PMID: 17886825 DOI: 10.1002/cbic.200700232] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Non-natural amino acids with aromatic or heteroaromatic side chains were incorporated into tripeptides of the general structure Arg-X-Arg and tested as ligands of the HIV RNA element TAR. Some of these compounds could compete efficiently with the association of TAR and Tat and downregulated a TAR-controlled reporter gene in HeLa cells. Peptide 7, which contains a 2-pyrimidinyl-alkyl chain, also inhibited the spread of HIV-1 in cell cultures. NMR studies of 7 bound to HIV-2-TAR gave evidence for contacts in the bulge region.
Collapse
Affiliation(s)
- Verena Ludwig
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Petzold K, Duchardt E, Flodell S, Larsson G, Kidd-Ljunggren K, Wijmenga S, Schleucher J. Conserved nucleotides in an RNA essential for hepatitis B virus replication show distinct mobility patterns. Nucleic Acids Res 2007; 35:6854-61. [PMID: 17933777 PMCID: PMC2175316 DOI: 10.1093/nar/gkm774] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The number of regulatory RNAs with identified non-canonical structures is increasing, and structural transitions often play a role in their biological function. This stimulates interest in internal motions of RNA, which can underlie structural transitions. Heteronuclear NMR relaxation measurements, which are commonly used to study internal motion, only report on local motions of few sites within the molecule. Here we have studied a 27-nt segment of the human hepatitis B virus (HBV) pregenomic RNA, which is essential for viral replication. We combined heteronuclear relaxation with the new off-resonance ROESY technique, which reports on internal motions of H,H contacts. Using off-resonance ROESY, we could for the first time detect motion of through-space H,H contacts, such as in intra-residue base-ribose contacts or inter-nucleotide contacts, both essential for NMR structure determination. Motions in non-canonical structure elements were found primarily on the sub-nanosecond timescale. Different patterns of mobility were observed among several mobile nucleotides. The most mobile nucleotides are highly conserved among different HBV strains, suggesting that their mobility patterns may be necessary for the RNA’s biological function.
Collapse
Affiliation(s)
- Katja Petzold
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
28
|
Farès C, Carlomagno T. SHARP-TACSY: triple-band tailored correlated spectroscopy for base-to-sugar transfer in nucleic acid residues with intermediate time scale motions. J Am Chem Soc 2007; 128:9856-62. [PMID: 16866543 DOI: 10.1021/ja061424h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Established experiments to identify the sugar-to-base connectivity in isotopically labeled RNA require long transfer periods and are inefficient for residues undergoing intermediate time scale motions (microsecond to millisecond). Here, an alternative transfer experiment is introduced, whereby the C1'-N1/9-C6/8 spin system is selectively brought to the so-called Hartmann-Hahn condition using selectiveheteronuclear planar triple-band tailored correlated spectroscopy (SHARP-TACSY). Results are shown for the fully labeled 30-mer oligonucleotide TAR RNA with particular attention placed on residues from and close to the bulge and the loop. For these residues, the faster relaxation can be attributed to exchange contributions stemming from transient stacking and unstacking of the bases and/or from the isomerization of the ribose sugar pucker. The new experiment shows improved signal-to-noise for residues exhibiting large microsecond-millisecond time scale motions with respect to established experiments, thus providing a valid alternative for resonance assignment in mobile RNA regions.
Collapse
Affiliation(s)
- Christophe Farès
- Max-Planck-Institute for Biophysical Chemistry, Department of NMR-Based Structural Biology, Am Fassberg 11, D-37077 Göttingen, Germany
| | | |
Collapse
|
29
|
Abstract
RNA and DNA molecules experience motions on a wide range of time scales, ranging from rapid localized motions to much slower collective motions of entire helical domains. The many functions of RNA in biology very often require this molecule to change its conformation in response to biological signals in the form of small molecules, proteins or other nucleic acids, whereas local motions in DNA may facilitate protein recognition and allow enzymes acting on DNA to access functional groups on the bases that would otherwise be buried in Watson-Crick base pairs. Although these statements make a compelling case to study the sequence dependent dynamics in nucleic acids, there are few residue-specific studies of nucleic acid dynamics. Fortunately, NMR studies of dynamics of nucleic acids and nucleic acids-protein complexes are gaining increased attention. The aim of this review is to provide an update of the recent progress in studies of nucleic acid dynamics by NMR based on the application of solution relaxation techniques.
Collapse
Affiliation(s)
- Zahra Shajani
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | | |
Collapse
|
30
|
Landes CF, Zeng Y, Liu HW, Musier-Forsyth K, Barbara PF. Single-Molecule Study of the Inhibition of HIV-1 Transactivation Response Region DNA/DNA Annealing by Argininamide. J Am Chem Soc 2007; 129:10181-8. [PMID: 17658799 DOI: 10.1021/ja071491r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-molecule spectroscopy was used to examine how a model inhibitor of HIV-1, argininamide, modulates the nucleic acid chaperone activity of the nucleocapsid protein (NC) in the minus-strand transfer step of HIV-1 reverse transcription, in vitro. In minus-strand transfer, the transactivation response region (TAR) RNA of the genome is annealed to the complementary "TAR DNA" generated during minus-strand strong-stop DNA synthesis. Argininamide and its analogs are known to bind to the hairpin bulge region of TAR RNA as well as to various DNA loop structures, but its ability to inhibit the strand transfer process has only been implied. Here, we explore how argininamide modulates the annealing kinetics and secondary structure of TAR DNA. The studies reveal that the argininamide inhibitory mechanism involves a shift of the secondary structure of TAR, away from the NC-induced "Y" form, an intermediate in reverse transcription, and toward the free closed or "C" form. In addition, more potent inhibition of the loop-mediated annealing pathway than stem-mediated annealing is observed. Taken together, these data suggest a molecular mechanism wherein argininamide inhibits NC-facilitated TAR RNA/DNA annealing in vitro by interfering with the formation of key annealing intermediates.
Collapse
Affiliation(s)
- Christy F Landes
- Department of Chemistry and Biochemistry, Center for Nano and Molecular Science and Technology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
31
|
Casiano-Negroni A, Sun X, Al-Hashimi HM. Probing Na(+)-induced changes in the HIV-1 TAR conformational dynamics using NMR residual dipolar couplings: new insights into the role of counterions and electrostatic interactions in adaptive recognition. Biochemistry 2007; 46:6525-35. [PMID: 17488097 PMCID: PMC3319146 DOI: 10.1021/bi700335n] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many regulatory RNAs undergo large changes in structure upon recognition of proteins and ligands, but the mechanism by which this occurs remains poorly understood. Using NMR residual dipolar coupling (RDCs), we characterized Na+-induced changes in the structure and dynamics of the bulge-containing HIV-1 transactivation response element (TAR) RNA that mirrors changes induced by small molecules bearing a different number of cationic groups. Increasing the Na+ concentration from 25 to 320 mM led to a continuous reduction in the average inter-helical bend angle (from 46 degrees to 22 degrees ), inter-helical twist angle (from 66 degrees to -18 degrees ), and inter-helix flexibility (as measured by an increase in the internal generalized degree of order from 0.56 to 0.74). Similar conformational changes were observed with Mg2+, indicating that nonspecific electrostatic interactions drive the conformational transition, although results also suggest that Na+ and Mg2+ may associate with TAR in distinct modes. The transition can be rationalized on the basis of a population-weighted average of two ensembles comprising an electrostatically relaxed bent and flexible TAR conformation that is weakly associated with counterions and a globally rigid coaxial conformation that has stronger electrostatic potential and association with counterions. The TAR inter-helical orientations that are stabilized by small molecules fall around the metal-induced conformational pathway, indicating that counterions may help predispose the TAR conformation for target recognition. Our results underscore the intricate sensitivity of RNA conformational dynamics to environmental conditions and demonstrate the ability to detect subtle conformational changes using NMR RDCs.
Collapse
Affiliation(s)
- Anette Casiano-Negroni
- Department of Chemistry, Biophysics Research Division, & Program in Bioinformatics The University of Michigan, 930 North University Avenue Ann Arbor, MI 48109-1055, USA
| | - Xiaoyan Sun
- Department of Chemistry, Biophysics Research Division, & Program in Bioinformatics The University of Michigan, 930 North University Avenue Ann Arbor, MI 48109-1055, USA
| | - Hashim M. Al-Hashimi
- Department of Chemistry, Biophysics Research Division, & Program in Bioinformatics The University of Michigan, 930 North University Avenue Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
32
|
Vallurupalli P, Scott L, Williamson JR, Kay LE. Strong coupling effects during X-pulse CPMG experiments recorded on heteronuclear ABX spin systems: artifacts and a simple solution. JOURNAL OF BIOMOLECULAR NMR 2007; 38:41-6. [PMID: 17334825 DOI: 10.1007/s10858-006-9139-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 05/14/2023]
Abstract
Simulation and experiment have been used to establish that significant artifacts can be generated in X-pulse CPMG relaxation dispersion experiments recorded on heteronuclear ABX spin-systems, such as (13)C( i )-(13)C( j )-(1)H, where (13)C( i ) and (13)C( j ) are strongly coupled. A qualitative explanation of the origin of these artifacts is presented along with a simple method to significantly reduce them. An application to the measurement of (1)H CPMG relaxation dispersion profiles in an HIV-2 TAR RNA molecule where all ribose sugars are protonated at the 2' position, deuterated at all other sugar positions and (13)C labeled at all sugar carbons is presented to illustrate the problems that strong (13)C-(13)C coupling introduces and a simple solution is proposed.
Collapse
Affiliation(s)
- Pramodh Vallurupalli
- Department of Medical Genetics, The University of Toronto, Toronto, ON, Canada, M5S 1A8
| | | | | | | |
Collapse
|
33
|
Shajani Z, Drobny G, Varani G. Binding of U1A protein changes RNA dynamics as observed by 13C NMR relaxation studies. Biochemistry 2007; 46:5875-83. [PMID: 17469848 DOI: 10.1021/bi602658x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recognition of RNA by proteins and small molecules often involves large changes in RNA structure and dynamics, yet very few studies have so far characterized these motional changes. Here we extend to the protein-bound RNA recent 13C relaxation studies of motions in the RNA recognized by human U1A protein, a well-known model for protein-RNA recognition. Changes in relaxation observed upon complex formation demonstrate that the protein-binding site becomes rigid in the complex, but the upper stem-loop that defines the secondary structure of this RNA experiences unexpected motional freedom. By using a helix elongation strategy, we observe that the upper stem-loop moves independently of the remainder of the structure also in the absence of U1A. Surprisingly, RNA residues making important intermolecular contacts in the structure of the complex exhibit increased flexibility in the presence of the protein. Both of these results support the hypothesis that RNA-binding proteins select a structure that optimizes intermolecular contacts in the manifold of conformations sampled by the free RNA and that protein binding quenches these motions. Together with previous studies of the RNA-bound protein, they also demonstrate that protein-RNA interfaces experience complex motions that modulate the strength of individual interactions.
Collapse
Affiliation(s)
- Zahra Shajani
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | |
Collapse
|
34
|
Eldho NV, Dayie KT. Internal Bulge and Tetraloop of the Catalytic Domain 5 of a Group II Intron Ribozyme Are Flexible: Implications for Catalysis. J Mol Biol 2007; 365:930-44. [PMID: 17098254 DOI: 10.1016/j.jmb.2006.10.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/28/2006] [Accepted: 10/09/2006] [Indexed: 01/27/2023]
Abstract
RNA molecules have an inherent flexibility that enables recognition of other interacting partners through potential disorder-order transitions, yet studies to quantify such motional dynamics remain few. With an increasing database of three-dimensional structures of biologically important RNA molecules, quantifying such motions becomes important to link structural deformations with function. One such system studied intensely is domain 5 (D5) from the self-splicing group II introns, which is at the heart of its catalytic machinery. We report the dynamics of a 36 nucleotide D5 from the Pylaiella littoralis group II intron in the presence and absence of magnesium ions, and at a range of temperatures (298K-318 K). Using high-resolution NMR experiments of heteronuclear nuclear Overhauser enhancement (NOE), spin-lattice (R(1)), and spin-spin (R(2)) (13)C relaxation rates, we determined the rotational diffusion tensor of D5 using the ROTDIF program modified for RNA dynamic analysis (ROTDIF_RNA). The D5 rotational diffusion tensor has an axial symmetric ratio (D(||)/D(perpendicular)) of 1.7+/-0.3, consistent with an estimated overall rotational correlation time of tau(m)=(2D(||)+4D(perpendicular))(-1) of 6.1(+/-0.3) ns at 298 K and 4.1(+/-0.2) ns at 318 K. The measured relaxation data were analyzed with the reduced spectral density mapping formalism using assumed values of the chemical shift anisotropy of the (13)C spins. Both the relaxation data and the values of the spectral density function reveal that the functional groups in D5 implicated in magnesium ion binding and catalysis (catalytic triad, internal bulge, and tetraloop regions) exhibit thermally induced motion on a wide variety of timescales. Because these motions parallel those observed in the intramolecular stem-loop of the U6 element within the spliceosome, we hypothesize that such extensive dynamic disorder likely facilitates D5 engaging both binding and catalytic regions of the ribozyme, and these may be a conserved feature of the catalytic machinery essential for catalysis.
Collapse
Affiliation(s)
- Nadukkudy V Eldho
- Department of Molecular Genetics and Center for Structural Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
35
|
Johnson JE, Julien KR, Hoogstraten CG. Alternate-site isotopic labeling of ribonucleotides for NMR studies of ribose conformational dynamics in RNA. JOURNAL OF BIOMOLECULAR NMR 2006; 35:261-74. [PMID: 16937241 DOI: 10.1007/s10858-006-9041-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 06/02/2006] [Indexed: 05/04/2023]
Abstract
Heteronuclear NMR spin relaxation studies of conformational dynamics are coming into increasing use to help understand the functions of ribozymes and other RNAs. Due to strong 13C-13C magnetic interactions within the ribose ring, however, these studies have thus far largely been limited to (13)C and (15)N resonances on the nucleotide base side chains. We report here the application of the alternate-site (13)C isotopic labeling scheme, pioneered by LeMaster for relaxation studies of amino acid side chains, to nucleic acid systems. We have used different strains of E. coli to prepare mononucleotides containing (13)C label in one of two patterns: Either C1' or C2' in addition to C4', termed (1'/2',4') labeling, or nearly complete labeling at the C2' and C4' sites only, termed (2',4') labeling. These patterns provide isolated 13C-1H spin systems on the labeled carbon atoms and thus allow spin relaxation studies without interference from 13C-13C scalar or dipolar coupling. Using relaxation studies of AMP dissolved in glycerol at varying temperature to produce systems with correlation times characteristic of different size RNAs, we demonstrate the removal of errors due to 13C-13C interaction in T (1) measurements of larger nucleic acids and in T (1rho) measurements in RNA molecules. By extending the applicability of spin relaxation measurements to backbone ribose groups, this technology should greatly improve the flexibility and completeness of NMR analyses of conformational dynamics in RNA.
Collapse
Affiliation(s)
- James E Johnson
- Department of Biochemistry & Molecular Biology, Michigan State University, 212 Biochemistry Building, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
36
|
Richards RJ, Wu H, Trantirek L, O'Connor CM, Collins K, Feigon J. Structural study of elements of Tetrahymena telomerase RNA stem-loop IV domain important for function. RNA (NEW YORK, N.Y.) 2006; 12:1475-85. [PMID: 16809815 PMCID: PMC1524899 DOI: 10.1261/rna.112306] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Tetrahymena telomerase RNA (TER) contains several regions in addition to the template that are important for function. Central among these is the stem-loop IV domain, which is involved in both catalysis and RNP assembly, and includes binding sites for both the holoenzyme assembly protein p65 and telomerase reverse transcriptase (TERT). Stem-loop IV contains two regions with high evolutionary sequence conservation: a central GA bulge between helices, and a terminal loop. We solved the solution structure of loop IV and modeled the structure of the helical region containing the GA bulge, using NMR and residual dipolar couplings. The central GA bulge with flanking C-G base pairs induces a approximately 50 degrees semi-rigid bend in the helix. Loop IV is highly structured, and contains a conserved C-U base pair at the top of the helical stem. Analysis of new and previous biochemical data in light of the structure provides a rationale for some of the sequence conservation in this region of TER. The results suggest that during holoenzyme assembly the protein p65 recognizes a bend in stem IV, and this binding to central stem IV helps to position the structured loop IV for interaction with TERT and other region(s) of TER.
Collapse
Affiliation(s)
- Rebecca J Richards
- Department of Molecular Biology and Biochemistry, University of South Bohemia, Czech Republic
| | | | | | | | | | | |
Collapse
|
37
|
Shajani Z, Deka P, Varani G. Decoding RNA motional codes. Trends Biochem Sci 2006; 31:421-4. [PMID: 16815707 DOI: 10.1016/j.tibs.2006.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/08/2006] [Accepted: 06/16/2006] [Indexed: 11/21/2022]
Abstract
When proteins and small molecules bind to RNA, they often alter its conformation. These structural changes are an essential aspect of the ability of RNA to sense signaling molecules and modulate gene expression. Thus far, few studies have been dedicated to understanding how RNA moves at a residue level and how these motions change upon complex formation. A recent report highlights how intrinsic motions in RNA correlate with its ability to bind to cognate ligands.
Collapse
Affiliation(s)
- Zahra Shajani
- Department of Chemistry, University of Washington Seattle, WA 98195-1700, USA
| | | | | |
Collapse
|
38
|
Vallurupalli P, Scott L, Hennig M, Williamson JR, Kay LE. New RNA Labeling Methods Offer Dramatic Sensitivity Enhancements in 2H NMR Relaxation Spectra. J Am Chem Soc 2006; 128:9346-7. [PMID: 16848466 DOI: 10.1021/ja0632512] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new labeling strategy is presented that greatly facilitates the measurement of 2H spin relaxation rates in RNA molecules as a probe of pico- to nanosecond time scale dynamics. In this labeling scheme the sugar positions are uniformly 13C-labeled, with position 2' protonated and all other sites on the sugar deuterated. Pulse sequences are presented for measurement of 2H R1 and R2 relaxation rates at positions 1', 3', and 4' with sensitivity gains that are on the order of 5-fold relative to previous methods that employed random fractional deuteration. The improved sensitivity is transformative and facilitates the study of motion in moderately sized RNA molecules with good sensitivity. The utility of the approach is demonstrated with an application to HIV-2 TAR, where the site-specific measures of molecular dynamics at sugar positions obtained here complement previous studies of dynamics at aromatic sites in the molecule.
Collapse
Affiliation(s)
- Pramodh Vallurupalli
- Department of Medical Genetics, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S1A8, Canada
| | | | | | | | | |
Collapse
|
39
|
Hennig M, Munzarova ML, Bermel W, Scott LG, Sklenar V, Williamson JR. Measurement of long-range 1H-19F scalar coupling constants and their glycosidic torsion dependence in 5-fluoropyrimidine-substituted RNA. J Am Chem Soc 2006; 128:5851-8. [PMID: 16637654 PMCID: PMC2556634 DOI: 10.1021/ja060165t] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Long-range scalar 5J(H1',F) couplings were observed in 5-fluoropyrimidine-substituted RNA. We developed a novel S3E-19F-alpha,beta-edited NOESY experiment for quantitation of these long-range scalar 5J(H1',F) couplings, where the J-couplings can be extracted from inspection of intraresidual (H1',H6) NOE cross-peaks. Quantum chemical calculations were exploited to investigate the relation between scalar couplings and conformations around the glycosidic bond in oligonucleotides. The theoretical dependence of the observed 5J(H1',F) couplings on the torsion angle chi can be described by a generalized Karplus relationship. The corresponding density functional theory (DFT) analysis is outlined. Additional NMR experiments facilitating the resonance assignments of 5-fluoropyrimidine-substituted RNAs are described, and chemical shift changes due to altered shielding in the presence of fluorine-19 (19F) are presented.
Collapse
Affiliation(s)
- Mirko Hennig
- Department of Molecular Biology and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, MB 33, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Nielsen KE, Spielmann HP. The structure of a mixed LNA/DNA:RNA duplex is driven by conformational coupling between LNA and deoxyribose residues as determined from 13C relaxation measurements. J Am Chem Soc 2006; 127:15273-82. [PMID: 16248670 DOI: 10.1021/ja051026z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A study of the internal dynamics of an LNA/DNA:RNA duplex has been performed to further characterize the conformational changes associated with the incorporation of locked nucleic acid (LNA) nucleotides in a DNA:RNA duplex. In general, it was demonstrated that the LNA/DNA:RNA duplex has a very high degree of order compared to dsDNA and dsRNA duplexes. The order parameters of the aromatic carbon atoms in the LNA/DNA strand are uniformly high, whereas a sharp drop in the degree of order was seen in the RNA strand in the beginning of the AUAU stretch in the middle of the strand. This can be related to a return to normal dsRNA dynamics for the central A:U base pair. The high order of the heteroduplex is consistent with preorganization of the chimera strand for an A-form duplex conformation. These results partly explain the dramatic increase in T(m) of the chimeric heteroduplex over dsDNA and DNA:RNA hybrids of the same sequence.
Collapse
Affiliation(s)
- Katrine E Nielsen
- Nucleic Acid Center, Department of Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | |
Collapse
|
41
|
Al-Hashimi HM. Dynamics-based amplification of RNA function and its characterization by using NMR spectroscopy. Chembiochem 2006; 6:1506-19. [PMID: 16138302 DOI: 10.1002/cbic.200500002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ever-increasing cellular roles ascribed to RNA raise fundamental questions regarding how a biopolymer composed of only four chemically similar building-block nucleotides achieves such functional diversity. Here, I discuss how RNA achieves added mechanistic and chemical complexity by undergoing highly controlled conformational changes in response to a variety of cellular signals. I examine pathways for achieving selectivity in these conformational changes that rely to different extents on the structure and dynamics of RNA. Finally, I review solution-state NMR techniques that can be used to characterize RNA structural dynamics and its relationship to function.
Collapse
Affiliation(s)
- Hashim M Al-Hashimi
- Department of Chemistry and Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
42
|
Latham MP, Brown DJ, McCallum SA, Pardi A. NMR methods for studying the structure and dynamics of RNA. Chembiochem 2006; 6:1492-505. [PMID: 16138301 DOI: 10.1002/cbic.200500123] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Proper functioning of RNAs requires the formation of complex three-dimensional structures combined with the ability to rapidly interconvert between multiple functional states. This review covers recent advances in isotope-labeling strategies and NMR experimental approaches that have promise for facilitating solution structure determinations and dynamics studies of biologically active RNAs. Improved methods for the production of isotopically labeled RNAs combined with new multidimensional heteronuclear NMR experiments make it possible to dramatically reduce spectral crowding and simplify resonance assignments for RNAs. Several novel applications of experiments that directly detect hydrogen-bonding interactions are discussed. These studies demonstrate how NMR spectroscopy can be used to distinguish between possible secondary structures and identify mechanisms of ligand binding in RNAs. A variety of recently developed methods for measuring base and sugar residual dipolar couplings are described. NMR residual dipolar coupling techniques provide valuable data for determining the long-range structure and orientation of helical regions in RNAs. A number of studies are also presented where residual dipolar coupling constraints are used to determine the global structure and dynamics of RNAs. NMR relaxation data can be used to probe the dynamics of macromolecules in solution. The power dependence of transverse rotating-frame relaxation rates was used here to study dynamics in the minimal hammerhead ribozyme. Improved methods for isotopically labeling RNAs combined with new types of structural data obtained from a growing repertoire of NMR experiments are facilitating structural and dynamic studies of larger RNAs.
Collapse
Affiliation(s)
- Michael P Latham
- Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, CO 80309-0215, USA
| | | | | | | |
Collapse
|
43
|
Mu Y, Stock G. Conformational dynamics of RNA-peptide binding: a molecular dynamics simulation study. Biophys J 2005; 90:391-9. [PMID: 16239331 PMCID: PMC1367046 DOI: 10.1529/biophysj.105.069559] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics simulations of the binding of the heterochiral tripeptide KkN to the transactivation responsive (TAR) RNA of HIV-1 is presented, using an all-atom force field with explicit water. To obtain starting structures for the TAR-KkN complex, semirigid docking calculations were performed that employ an NMR structure of free TAR RNA. The molecular dynamics simulations show that the starting structures in which KkN binds to the major groove of TAR (as it is the case for the Tat-TAR complex of HIV-1) are unstable. On the other hand, the minor-groove starting structures are found to lead to several binding modes, which are stabilized by a complex interplay of stacking, hydrogen bonding, and electrostatic interactions. Although the ligand does not occupy the binding position of Tat protein, it is shown to hinder the interhelical motion of free TAR RNA. The latter is presumably necessary to achieve the conformational change of TAR RNA to bind Tat protein. Considering the time evolution of the trajectories, the binding process is found to be ligand-induced and cooperative. That is, the conformational rearrangement only occurs in the presence of the ligand and the concerted motion of the ligand and a large part of the RNA binding site is necessary to achieve the final low-energy binding state.
Collapse
Affiliation(s)
- Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore and School of Physics and Microelectronics, Shandong University, Jinan, China
| | | |
Collapse
|
44
|
Blad H, Reiter NJ, Abildgaard F, Markley JL, Butcher SE. Dynamics and metal ion binding in the U6 RNA intramolecular stem-loop as analyzed by NMR. J Mol Biol 2005; 353:540-55. [PMID: 16181635 DOI: 10.1016/j.jmb.2005.08.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 07/30/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
The U6 RNA intramolecular stem-loop (ISL) is a conserved component of the spliceosome, and contains an essential metal ion binding site centered between a protonated adenine, A79, and U80. Correlated with protonation of A79, U80 undergoes a base-flipping conformational change accompanied by significant helical movement. We have investigated the dynamics of the U6 ISL by analyzing the power dependence of 13C NMR relaxation rates in the rotating frame. The data provide evidence that the conformational transition is centered around an exchange lifetime of 84 micros. The U80 nucleotide displays low internal mobility on the picosecond time-scale at pH 7.0 but high internal mobility at pH 6.0, in agreement with the global transition resulting in the base of U80 adopting a looped-out conformation with increased dynamic disorder. A kinetic analysis suggests that the conformational change, rather than adenine protonation, is the rate-limiting step in the pathway of the conformational transition. Two nucleotides, U70 and U80, were found from chemical shift perturbation mapping to interact with the magnesium ion, with apparent K(d) values in the micromolar to millimolar range. These nucleotides also displayed metal ion-induced elevation of R1 rates, which can be explained by a model that assumes dynamic metal ion coordination concomitant with an induced higher shielding anisotropy for the base 13C nuclei. Addition of Mg2+ shifts the conformational equilibrium toward the high-pH (base-stacked) structure, accompanied by a significant drop in the apparent pK(a) of A79.
Collapse
Affiliation(s)
- Heike Blad
- NMRFAM, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
45
|
Qin PZ, Feigon J, Hubbell WL. Site-directed spin labeling studies reveal solution conformational changes in a GAAA tetraloop receptor upon Mg(2+)-dependent docking of a GAAA tetraloop. J Mol Biol 2005; 351:1-8. [PMID: 15993422 DOI: 10.1016/j.jmb.2005.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 05/31/2005] [Accepted: 06/01/2005] [Indexed: 11/23/2022]
Abstract
The Mg(2+)-dependent GAAA tetraloop interaction with its 11 nucleotide receptor is one of the most frequently occurring long-range tertiary interactions in RNAs. To explore conformational changes in the receptor during tetraloop docking, nitroxide spin labels were attached at each of four uridine bases, one at a time, within an RNA molecule containing the receptor sequence. In the presence of Mg2+ and the tetraloop, the electron paramagnetic resonance (EPR) spectrum of one of the labeled bases reflected a large increase in mobility, indicating unstacking of the base upon tetraloop docking. This provides direct evidence that base unstacking is an intrinsic feature of the solution tetraloop-receptor complex formed in the presence of Mg2+. Additional evidence suggests that in solution the bound receptor conformation is similar to that observed in the crystal structure of a group I intron ribozyme domain. In Mg2+ alone, a receptor conformation with an unstacked base was not detectable, suggesting that this conformation is of higher standard state free energy than that of the free receptor. This leads to the conclusion that the extensive RNA-RNA interactions observed in the crystal structure of the tetraloop-receptor complex provide larger interaction energy than the measured apparent affinity between the tetraloop and the free receptor. This is compatible with a high specificity of the tetraloop-receptor interaction.
Collapse
Affiliation(s)
- Peter Z Qin
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
46
|
Edwards TE, Robinson BH, Sigurdsson ST. Identification of amino acids that promote specific and rigid TAR RNA-tat protein complex formation. ACTA ACUST UNITED AC 2005; 12:329-37. [PMID: 15797217 DOI: 10.1016/j.chembiol.2005.01.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 01/19/2005] [Accepted: 01/20/2005] [Indexed: 11/28/2022]
Abstract
The Tat protein and the transactivation responsive (TAR) RNA form an essential complex in the HIV lifecycle, and mutations in the basic region of the Tat protein alter this RNA-protein molecular recognition. Here, EPR spectroscopy was used to identify amino acids, flanking an essential arginine of the Tat protein, which contribute to specific and rigid TAR-Tat complex formation by monitoring changes in the mobility of nitroxide spin-labeled TAR RNA nucleotides upon binding. Arginine to lysine N-terminal mutations did not affect TAR RNA interfacial dynamics. In contrast, C-terminal point mutations, R56 in particular, affected the mobility of nucleotides U23 and U38, which are involved in a base-triple interaction in the complex. This report highlights the role of dynamics in specific molecular complex formation and demonstrates the ability of EPR spectroscopy to study interfacial dynamics of macromolecular complexes.
Collapse
Affiliation(s)
- Thomas E Edwards
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
47
|
Showalter SA, Baker NA, Tang C, Hall KB. Iron responsive element RNA flexibility described by NMR and isotropic reorientational eigenmode dynamics. JOURNAL OF BIOMOLECULAR NMR 2005; 32:179-93. [PMID: 16132819 DOI: 10.1007/s10858-005-7948-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 05/01/2005] [Indexed: 05/04/2023]
Abstract
The first example of the application of reorientational eigenmode dynamics (RED) to RNA is shown here for the small and floppy Iron Responsive Element (IRE) RNA hairpin. Order parameters calculated for bases and riboses from a 12 ns molecular dynamics trajectory are compared to experimentally determined order parameters from 13C-1H NMR relaxation experiments, and shown to be in qualitative agreement. Given the small size of the IRE hairpin and its very flexible loop, isotropic RED (iRED) was also used to analyze the trajectory in order to describe its dynamic motions. iRED analysis shows that the global and internal dynamics of the IRE are not rigorously separable, which will result in inaccurate experimental order parameters. In addition, the iRED analysis described the many correlated motions that comprise the dynamics of the IRE RNA. The combined use of NMR relaxation, RED, and iRED provide a uniquely detailed description of IRE RNA dynamics.
Collapse
Affiliation(s)
- Scott A Showalter
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
48
|
Vallurupalli P, Kay LE. A suite of 2H NMR spin relaxation experiments for the measurement of RNA dynamics. J Am Chem Soc 2005; 127:6893-901. [PMID: 15869313 DOI: 10.1021/ja0427799] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A suite of (2)H-based spin relaxation NMR experiments is presented for the measurement of molecular dynamics in a site-specific manner in uniformly (13)C, randomly fractionally deuterated ( approximately 50%) RNA molecules. The experiments quantify (2)H R(1) and R(2) relaxation rates that can subsequently be analyzed to obtain information about dynamics on a pico- to nanosecond time scale. Sensitivity permitting, the consistency of the data can be evaluated by measuring all five rates that are accessible for a spin 1 particle and establishing that the rates obey relations that are predicted from theory. The utility of the methodology is demonstrated with studies of the dynamics of a 14-mer RNA containing the UUCG tetraloop at temperatures of 25 and 5 degrees C. The high quality of the data, even at 5 degrees C, suggests that the experiments will be of use for the study of RNA molecules that are as large as 30 nucleotides.
Collapse
Affiliation(s)
- Pramodh Vallurupalli
- Protein Engineering Network Centers of Excellence and the Departments of Medical Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | | |
Collapse
|
49
|
Olsen GL, Edwards TE, Deka P, Varani G, Sigurdsson ST, Drobny GP. Monitoring tat peptide binding to TAR RNA by solid-state 31P-19F REDOR NMR. Nucleic Acids Res 2005; 33:3447-54. [PMID: 15961729 PMCID: PMC1151589 DOI: 10.1093/nar/gki626] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 05/13/2005] [Accepted: 05/13/2005] [Indexed: 11/17/2022] Open
Abstract
Complexes of the HIV transactivation response element (TAR) RNA with the viral regulatory protein tat are of special interest due in particular to the plasticity of the RNA at this binding site and to the potential for therapeutic targeting of the interaction. We performed REDOR solid-state NMR experiments on lyophilized samples of a 29 nt HIV-1 TAR construct to measure conformational changes in the tat-binding site concomitant with binding of a short peptide comprising the residues of the tat basic binding domain. Peptide binding was observed to produce a nearly 4 A decrease in the separation between phosphorothioate and 2'F labels incorporated at A27 in the upper helix and U23 in the bulge, respectively, consistent with distance changes observed in previous solution NMR studies, and with models showing significant rearrangement in position of bulge residue U23 in the bound-form RNA. In addition to providing long-range constraints on free TAR and the TAR-tat complex, these results suggest that in RNAs known to undergo large deformations upon ligand binding, 31P-19F REDOR measurements can also serve as an assay for complex formation in solid-state samples. To our knowledge, these experiments provide the first example of a solid-state NMR distance measurement in an RNA-peptide complex.
Collapse
Affiliation(s)
- Greg L. Olsen
- Department of Chemistry, University of WashingtonSeattle, WA 98195-1700, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center1100 Fairview Avenue North, Seattle, WA 98109, USA
- Science Institute, University of IcelandDunhaga 3, IS-107 Reykjavik, Iceland
| | - Thomas E. Edwards
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Pritilekha Deka
- Department of Chemistry, University of WashingtonSeattle, WA 98195-1700, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center1100 Fairview Avenue North, Seattle, WA 98109, USA
- Science Institute, University of IcelandDunhaga 3, IS-107 Reykjavik, Iceland
| | - Gabriele Varani
- Department of Chemistry, University of WashingtonSeattle, WA 98195-1700, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center1100 Fairview Avenue North, Seattle, WA 98109, USA
- Science Institute, University of IcelandDunhaga 3, IS-107 Reykjavik, Iceland
| | | | - Gary P. Drobny
- To whom correspondence should be addressed. Tel: +1 206 685 2052; Fax: +1 206 685 8665;
| |
Collapse
|
50
|
Calabro V, Daugherty MD, Frankel AD. A single intermolecular contact mediates intramolecular stabilization of both RNA and protein. Proc Natl Acad Sci U S A 2005; 102:6849-54. [PMID: 15857951 PMCID: PMC1100766 DOI: 10.1073/pnas.0409282102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An arginine-rich peptide from the Jembrana disease virus (JDV) Tat protein is a structural "chameleon" that binds bovine immunodeficiency virus (BIV) or HIV TAR RNAs in two different binding modes, with an affinity for BIV TAR even higher than the cognate BIV peptide. We determined the NMR structure of the JDV Tat-BIV TAR high-affinity complex and found that the C-terminal tyrosine in JDV Tat forms a network of inter- and intramolecular hydrogen bonding and stacking interactions that simultaneously stabilize the beta-hairpin conformation of the peptide and a base triple in the RNA. A neighboring histidine also appears to help stabilize the peptide conformation. Induced fit binding is recurrent in protein-protein and protein-nucleic acid interactions, and the JDV Tat complex demonstrates how high affinity can be achieved not only by optimization of the binding interface but also by inducing new intramolecular contacts that stabilize each binding partner. Comparison to the cognate BIV Tat peptide-TAR complex shows how such a costabilization mechanism can evolve with only small changes to the peptide sequence. In addition, the bound structure of BIV TAR in the chameleon peptide complex is strikingly similar to the bound conformation of HIV TAR, suggesting new strategies for the development of HIV TAR binding molecules.
Collapse
Affiliation(s)
- Valerie Calabro
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2280, USA
| | | | | |
Collapse
|