1
|
Mutore KT, Koduri R, Alatrash N, Nomellini V. THE USE OF POLOXAMER 188 IN BURN INJURY TREATMENT: A SYSTEMATIC LITERATURE REVIEW. Shock 2024; 62:461-469. [PMID: 39178216 DOI: 10.1097/shk.0000000000002439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Although there have been numerous advancements in burn wound management, burn injuries are still a major cause of morbidity and mortality in the United States, and novel therapeutics are still needed to improve outcomes. Poloxamer 188 (P188) is a synthetic copolymer with Food and Drug Administration (FDA) approval that has many biological applications. This study aimed to review the literature on P188 in burn injuries and its effects based on burn mechanisms. We employed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to complete this systematic literature review. We searched the databases of Google Scholar, PubMed, and SCOPUS using the keywords burn, p188, poloxamer 188, and pluronic F68 in combination. Two reviewers independently screened the articles for inclusion. Articles that were not in English, were book chapters or conference proceedings, or did not evaluate P188 in the setting of burn injuries were excluded. We included a total of 33 full-text articles with both in vivo and in vitro preclinical studies. P188 was found to be beneficial in animal and cell studies evaluating electrical and thermal burn injuries. P188 was also found to be useful in burn wound management. Although its utility may be limited in radiation injuries, P188 may be helpful in delaying the initial damage caused by radiation burns. P188 therefore has the potential to be used as a therapy in both burn wound management and in the treatment of systemic injuries sustained through burns. Future studies should aim to assess the efficacy of P188 in clinical models of burn injury.
Collapse
Affiliation(s)
- Kevin T Mutore
- Division of Burn, Trauma, Acute, and Critical Care Surgery, Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| | | | | | | |
Collapse
|
2
|
Fang Z, Cao P, Pan N, Lu H. Pluronic P85 decreases the delivery of phenytoin to the brain in drug-resistant rats with P-glycoprotein overexpressed chronic mesial temporal lobe epilepsy. IBRO Neurosci Rep 2023; 15:100-106. [PMID: 37485299 PMCID: PMC10362368 DOI: 10.1016/j.ibneur.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
P-glycoprotein (Pgp) overexpressed in blood brain barrier (BBB) is hypothesized to lower brain drug concentrations and thus inhibit anticonvulsant effects in drug-resistant epilepsy. Pluronic P85 (P85) was proved to enhance the delivery of drugs into the brain by inhibition of Pgp. To determine whether the surfactant P85 [versus Pgp inhibitor tariquidar (TQD)] enhance phenytoin (PHT) into the brain in drug-resistant rats with chronic mesial temporal lobe epilepsy (MTLE) induced by lithium-pilocarpine, in brain of which Pgp were overexpressed, then direct verification of PHT transport via measurement of PHT concentration in brain using microdialysis. The drug-resistant model rats were randomly divided into three groups, which were treated with PHT, 1%P85 + PHT, or PHT+TQD, respectively. 1%P85 + PHT treatment displayed a lower ratio of the area under the curve (AUC) of the PHT concentration in the brain/plasma even than that of the PHT treatment in model rats (p < 0.05), while PHT+TQD showed the highest ratio of the AUC of all treatments. However, the ratio of the PHT concentration in the liver/plasma was similar in three model groups (p > 0.05). For the ratio of the kidney/plasma, PHT+TQD treatment model group had the highest ratio of the other treatments in model rats. Thus, P85 oppositely decreased PHT concentration in brain in drug-resistant model rats with Pgp overexpressed MTLE while TQD could increase PHT distribution in brain.
Collapse
Affiliation(s)
- Ziyan Fang
- The Affiliated Brain Hospital of Guangzhou Medical University, 36th Mingxin Road, Guangzhou, Guangdong 510370, PR China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, 36th Mingxin Road, Guangzhou, Guangdong 510370, PR China
| | - Penghui Cao
- The Affiliated Brain Hospital of Guangzhou Medical University, 36th Mingxin Road, Guangzhou, Guangdong 510370, PR China
| | - Nannan Pan
- The Affiliated Brain Hospital of Guangzhou Medical University, 36th Mingxin Road, Guangzhou, Guangdong 510370, PR China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, 36th Mingxin Road, Guangzhou, Guangdong 510370, PR China
| | - Haoyang Lu
- The Affiliated Brain Hospital of Guangzhou Medical University, 36th Mingxin Road, Guangzhou, Guangdong 510370, PR China
| |
Collapse
|
3
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
4
|
Hahn D, Quick JD, Thompson BR, Crabtree A, Hackel BJ, Bates FS, Metzger JM. Rapid restitution of contractile dysfunction by synthetic copolymers in dystrophin-deficient single live skeletal muscle fibers. Skelet Muscle 2023; 13:9. [PMID: 37208786 PMCID: PMC10197332 DOI: 10.1186/s13395-023-00318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin, a cytoskeletal protein essential for the preservation of the structural integrity of the muscle cell membrane. DMD patients develop severe skeletal muscle weakness, degeneration, and early death. We tested here amphiphilic synthetic membrane stabilizers in mdx skeletal muscle fibers (flexor digitorum brevis; FDB) to determine their effectiveness in restoring contractile function in dystrophin-deficient live skeletal muscle fibers. After isolating FDB fibers via enzymatic digestion and trituration from thirty-three adult male mice (9 C57BL10, 24 mdx), these were plated on a laminin-coated coverslip and treated with poloxamer 188 (P188; PEO75-PPO30-PEO75; 8400 g/mol), architecturally inverted triblock (PPO15-PEO200-PPO15, 10,700 g/mol), and diblock (PEO75-PPO16-C4, 4200 g/mol) copolymers. We assessed the twitch kinetics of sarcomere length (SL) and intracellular Ca2+ transient by Fura-2AM by field stimulation (25 V, 0.2 Hz, 25 °C). Twitch contraction peak SL shortening of mdx FDB fibers was markedly depressed to 30% of the dystrophin-replete control FDB fibers from C57BL10 (P < 0.001). Compared to vehicle-treated mdx FDB fibers, copolymer treatment robustly and rapidly restored the twitch peak SL shortening (all P < 0.05) by P188 (15 μM = + 110%, 150 μM = + 220%), diblock (15 μM = + 50%, 150 μM = + 50%), and inverted triblock copolymer (15 μM = + 180%, 150 μM = + 90%). Twitch peak Ca2+ transient from mdx FDB fibers was also depressed compared to C57BL10 FDB fibers (P < 0.001). P188 and inverted triblock copolymer treatment of mdx FDB fibers increased the twitch peak Ca2+ transient (P < 0.001). This study shows synthetic block copolymers with varied architectures can rapidly and highly effectively enhance contractile function in live dystrophin-deficient skeletal muscle fibers.
Collapse
Affiliation(s)
- Dongwoo Hahn
- Department of Integrative Biology & Physiology, Medical School, University of Minnesota, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Joseph D Quick
- Department of Integrative Biology & Physiology, Medical School, University of Minnesota, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Brian R Thompson
- Department of Integrative Biology & Physiology, Medical School, University of Minnesota, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Adelyn Crabtree
- Chemical Engineering & Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Benjamin J Hackel
- Chemical Engineering & Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Frank S Bates
- Chemical Engineering & Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Joseph M Metzger
- Department of Integrative Biology & Physiology, Medical School, University of Minnesota, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Kumari K, Behera HT, Nayak PP, Sinha A, Nandi A, Ghosh A, Saha U, Suar M, Panda PK, Verma SK, Raina V. Amelioration of lipopeptide biosurfactants for enhanced antibacterial and biocompatibility through molecular antioxidant property by methoxy and carboxyl moieties. Biomed Pharmacother 2023; 161:114493. [PMID: 36906974 DOI: 10.1016/j.biopha.2023.114493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Biosurfactants having surface-active biomolecules have been the cynosure in environment research due to their vast application. However, the lack of information about their low-cost production and detailed mechanistic biocompatibility limits the applicability. The study explores techniques for the production and design of low-cost, biodegradable, and non-toxic biosurfactants from Brevibacterium casei strain LS14 and excavates the mechanistic details of their biomedical properties like antibacterial effects and biocompatibility. Taguchi's design of experiment was used to optimize for enhancing biosurfactant production by optimal factor combinations like Waste glycerol (1%v/v), peptone (1%w/v), NaCl 0.4% (w/v), and pH 6. Under optimal conditions, the purified biosurfactant reduced the surface tension to 35 mN/m from 72.8 mN/m (MSM) and a critical micelle concentration of 25 mg/ml was achieved. Spectroscopic analyses of the purified biosurfactant using Nuclear Magnetic Resonance suggested it as a lipopeptide biosurfactant. The evaluation of mechanistic antibacterial, antiradical, antiproliferative, and cellular effects indicated the efficient antibacterial activity (against Pseudomonas aeruginosa) of biosurfactants due to free radical scavenging activity and oxidative stress. Moreover, the cellular cytotoxicity was estimated by MTT and other cellular assays revealing the phenomenon as the dose-dependent induction of apoptosis due to free radical scavenging with an LC50 of 55.6 ± 2.3 mg/ml.
Collapse
Affiliation(s)
- Khushbu Kumari
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | | | | | - Adrija Sinha
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Aditya Nandi
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Aishee Ghosh
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Utsa Saha
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | | | - Pritam Kumar Panda
- Department of Physics and Astronomy (Materials Theory), Uppsala University, 75121, Sweden.
| | - Suresh K Verma
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India.
| | - Vishakha Raina
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India.
| |
Collapse
|
6
|
Kumar S, Lazau E, Kim C, N Thadhani N, R Prausnitz M. Serum Protects Cells and Increases Intracellular Delivery of Molecules by Nanoparticle-Mediated Photoporation. Int J Nanomedicine 2021; 16:3707-3724. [PMID: 34103912 PMCID: PMC8180297 DOI: 10.2147/ijn.s307027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction Intracellular delivery of molecules is central to applications in biotechnology, medicine, and basic research. Nanoparticle-mediated photoporation using carbon black nanoparticles exposed to pulsed, near-infrared laser irradiation offers a physical route to create transient cell membrane pores, enabling intracellular delivery. However, nanoparticle-mediated photoporation, like other physical intracellular delivery technologies, necessitates a trade-off between achieving efficient uptake of exogenous molecules and maintaining high cell viability. Methods In this study, we sought to shift this balance by adding serum to cells during nanoparticle-mediated photoporation as a viability protectant. DU-145 prostate cancer cells and human dermal fibroblasts were exposed to laser irradiation in the presence of carbon black (CB) nanoparticles and other formulation additives, including fetal bovine serum (FBS) and polymers. Results Our studies showed that FBS can protect cells from viability loss, even at high-fluence laser irradiation conditions that lead to high levels of intracellular delivery in two different mammalian cell types. Further studies revealed that full FBS was not needed: viability protection was achieved with denatured FBS, with just the high molecular weight fraction of FBS (>30 kDa), or even with individual proteins like albumin or hemoglobin. Finally, we found that viability protection was also obtained using certain neutral water-soluble polymers, including Pluronic F127, polyvinylpyrrolidone, poly(2-ethyl-2-oxazoline), and polyethylene glycol, which were more effective at increased concentration, molecular weight, or hydrophobicity. Conclusion Altogether, these findings suggest an interaction between amphiphilic domains of polymers with the cell membrane to help cells maintain viability, possibly by facilitating transmembrane pore closure. In this way, serum components or synthetic polymers can be used to increase intracellular delivery by nanoparticle-mediated photoporation while maintaining high cell viability.
Collapse
Affiliation(s)
- Simple Kumar
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Eunice Lazau
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Carter Kim
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Naresh N Thadhani
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
7
|
Amphiphilic Block Copolymer-Catalyzed Cell Membrane Sealing Is Linked to Decreased Membrane Tension. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Leek CC, Soulas JM, Sullivan AL, Killian ML. Using tools in mechanobiology to repair tendons. ACTA ACUST UNITED AC 2021; 1:31-40. [PMID: 33585822 DOI: 10.1007/s43152-020-00005-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purpose of review The purpose of this review is to describe the mechanobiological mechanisms of tendon repair as well as outline current and emerging tools in mechanobiology that might be useful for improving tendon healing and regeneration. Over 30 million musculoskeletal injuries are reported in the US per year and nearly 50% involve soft tissue injuries to tendons and ligaments. Yet current therapeutic strategies for treating tendon injuries are not always successful in regenerating and returning function of the healing tendon. Recent findings The use of rehabilitative strategies to control the motion and transmission of mechanical loads to repairing tendons following surgical reattachment is beneficial for some, but not all, tendon repairs. Scaffolds that are designed to recapitulate properties of developing tissues show potential to guide the mechanical and biological healing of tendon following rupture. The incorporation of biomaterials to control alignment and reintegration, as well as promote scar-less healing, are also promising. Improving our understanding of damage thresholds for resident cells and how these cells respond to bioelectrical cues may offer promising steps forward in the field of tendon regeneration. Summary The field of orthopaedics continues to advance and improve with the development of regenerative approaches for musculoskeletal injuries, especially for tendon, and deeper exploration in this area will lead to improved clinical outcomes.
Collapse
Affiliation(s)
- Connor C Leek
- College of Engineering, Department of Biomedical Engineering, 5 Innovation Way, Suite 200, University of Delaware, Newark, Delaware 19716
| | - Jaclyn M Soulas
- College of Engineering, Department of Biomedical Engineering, 5 Innovation Way, Suite 200, University of Delaware, Newark, Delaware 19716.,College of Agriculture and Natural Resources, Department of Animal Biosciences, 531 South College Avenue, University of Delaware, Newark, Delaware 19716
| | - Anna Lia Sullivan
- College of Engineering, Department of Biomedical Engineering, 5 Innovation Way, Suite 200, University of Delaware, Newark, Delaware 19716.,College of Agriculture and Natural Resources, Department of Animal Biosciences, 531 South College Avenue, University of Delaware, Newark, Delaware 19716
| | - Megan L Killian
- College of Engineering, Department of Biomedical Engineering, 5 Innovation Way, Suite 200, University of Delaware, Newark, Delaware 19716.,College of Medicine, Department of Orthopaedic Surgery, 109 Zina Pitcher Place, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
9
|
Chung EP, Wells AR, Kiamco MM, Leung KP. Dual Asymmetric Centrifugation Efficiently Produces a Poloxamer-Based Nanoemulsion Gel for Topical Delivery of Pirfenidone. AAPS PharmSciTech 2020; 21:265. [PMID: 33006045 PMCID: PMC7529632 DOI: 10.1208/s12249-020-01798-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
This study used dual asymmetric centrifugation (DAC) to produce a topical vehicle for Pirfenidone (Pf; 5-methyl-1-phenyl-2[1H]-pyridone)—a Food and Drug Administration-approved antifibrotic drug indicated for idiopathic fibrosis treatment. Pf was loaded (8 wt%) in a poloxamer nanoemulsion gel (PNG) formulation consisting of water (47.8 wt%), triacetin (27.6 wt%), poloxamer 407 (P407, 13.8 wt%), polysorbate 80 (1.8 wt%), and benzyl alcohol (0.9 wt%). To our knowledge, poloxamer gels are typically processed with either high-shear methods or temperature regulation and have not been emulsified using DAC. Using a single-step emulsification process, 2 min mixed at 2500 RPM resulted in the lowest Pf loading variability with a relative standard deviation (RSD) of 0.96% for a 1.5 g batch size. Batch sizes of 15 g and 100 g yield higher RSD of 4.18% and 3.05%, respectively, but still in compliance with USP guidelines. Ex vivo permeation in full thickness porcine skin after 24 h showed total Pf permeation of 404.90 ± 67.07 μg/cm2. Tested in vitro on human dermal fibroblasts stimulated with transforming growth factor-beta 1 (TGF-β1), Pf-PNG resulted in a > 2 fold decrease in α-SMA expression over vehicle control demonstrating that formulated Pf retained its biological activity. One-month stability testing at 25°C/60% relative humidity (RH) and 40°C/75% RH showed that % drug content, release kinetics, and biological activity were largely unchanged for both conditions; however, pH decreased from 6.7 to 5.5 (25°C/60% RH) and 4.5 (40°C/75% RH) after 1 month. Overall, these data demonstrate the utility of DAC to rapidly and reproducibly prepare lab-scale batches of emulsified gels for pharmaceutical formulation development.
Collapse
|
10
|
Singer AJ, Zhang N, Baer E. Comparison of a topical surfactant and a topical antibiotic in the rat comb burn model. Burns 2020; 46:1674-1680. [PMID: 32534891 DOI: 10.1016/j.burns.2020.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Burn injury progression in the secondary zone of ischemia is common leading to delayed healing and increased scarring. We hypothesized that a topical surfactant, would reduce burn injury progression in a validated rat comb burn model compared with topical antibiotic ointment. METHODS We created 40 comb burns on 20 rats which were randomized to daily topical application of the surfactant or a triple antibiotic ointment. The comb burns consisted of 4 full thickness burns with 3 unburned interspaces between the 4 burns. These unburned interspaces represented the zone of ischemia, and when left untreated, generally progress to full thickness necrosis within several days. Comb burns were assessed daily for the presence of gross necrosis of the interspaces. At 7 days the comb burns were excised and blindly evaluated for the presence of histological evidence of necrosis. The study had 80% power to detect a 25% difference in the percentages of necrotic interspaces on day 7. RESULTS There were no differences in the percentages of histologically necrotic interspaces at 7 days in burns treated with the surfactant or antibiotic ointment (85% [95%CI, 74 to 92] vs. 75% [95%CI, 63 to 84]; mean difference 10% [95%CI -4 to 24]). There were also no between group differences in the percentages of grossly necrotic interspaces on any of the seven days of the experiment. The surfactant remained intact and adherent while the antibiotic had been absorbed at each daily dressing change. CONCLUSIONS A topical surfactant did not reduce injury progression in the rat comb burn model when compared with antibiotic ointment. The surfactant was more durable than the antibiotic ointment.
Collapse
Affiliation(s)
- Adam J Singer
- Department of Emergency Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States.
| | - Nigel Zhang
- Department of Emergency Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Evyatar Baer
- Department of Emergency Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
11
|
Kim M, Heinrich F, Haugstad G, Yu G, Yuan G, Satija SK, Zhang W, Seo HS, Metzger JM, Azarin SM, Lodge TP, Hackel BJ, Bates FS. Spatial Distribution of PEO-PPO-PEO Block Copolymer and PEO Homopolymer in Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3393-3403. [PMID: 32216370 PMCID: PMC8097911 DOI: 10.1021/acs.langmuir.9b03208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Maintaining the integrity of cell membranes is indispensable for cellular viability. Poloxamer 188 (P188), a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer with a number-average molecular weight of 8700 g/mol and containing 80% by mass PEO, protects cell membranes from various external injuries and has the potential to be used as a therapeutic agent in diverse applications. The membrane protection mechanism associated with P188 is intimately connected with how this block copolymer interacts with the lipid bilayer, the main component of a cell membrane. Here, we report the distribution of P188 in a model lipid bilayer comprising 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) using neutron reflectivity (NR) and atomic force microscopy (AFM). We also investigated the association of a PEO homopolymer (PEO8.4K; Mn = 8400 g/mol) that does not protect living cell membranes. These experiments were conducted following incubation of a 4.5 mmol/L polymer solution in a buffer that mimics physiological conditions with supported POPC bilayer membranes followed by washing with the aqueous medium. In contrast to previous reports, which dealt with P188 and PEO in salt-free solutions, both P188 and PEO8.4K penetrate into the inner portion of the lipid bilayer as revealed by NR, with approximately 30% by volume occupancy across the membrane without loss of bilayer structural integrity. These results indicate that PEO is the chemical moiety that principally drives P188 binding to bilayer membranes. No defects or phase-separated domains were observed in either P188- or PEO8.4K-incubated lipid bilayers when examined by AFM, indicating that polymer chains mingle homogeneously with lipid molecules in the bilayer. Remarkably, the breakthrough force required for penetration of the AFM tip through the bilayer membrane is unaffected by the presence of the large amount of P188 and PEO8.4K.
Collapse
Affiliation(s)
- Mihee Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Greg Haugstad
- Characterization Facility, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guichuan Yu
- Informatics Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guangcui Yuan
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899, United States
- Department of Physics, Georgetown University, Washington, D.C. 20057, United States
| | - Sushil K Satija
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Wenjia Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hannah S Seo
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Effects of Intravenous Infusion of Vepoloxamer on Left Ventricular Function in Dogs with Advanced Heart Failure. Cardiovasc Drugs Ther 2020; 34:153-164. [PMID: 32146638 DOI: 10.1007/s10557-020-06953-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Vepoloxamer (VEPO), a rheologic agent, repairs damaged cell membranes, thus inhibiting unregulated Ca2+ entry into cardiomyocytes. This study examined the effects of i.v. infusion of VEPO on LV function in dogs with coronary microembolization-induced heart failure (HF) (LV ejection fraction, EF ~ 30%). METHODS Thirty-five HF dogs were studied. Study 1: 21 of 35 dogs were randomized to 2-h infusion of VEPO at dose of 450 mg/kg (n = 7) or VEPO at 225 mg/kg (n = 7) or normal saline (control, n = 7). Hemodynamics were measured at 2 h, 24 h, 1 week, and 2 weeks after infusion. Study 2: 14 HF dogs were randomized to 2-h infusions of VEPO (450 mg/kg, n = 7) or normal saline (control, n = 7). Each dog received 2 infusions of VEPO or saline (pulsed therapy) 3 weeks apart and hemodynamics measured at 24 h, and 1, 2, and 3 weeks after each infusion. In both studies, the change between pre-infusion measures and measures at other time points (treatment effect, Δ) was calculated. RESULTS Study 1: compared to pre-infusion, high dose VEPO increased LVEF by 11 ± 2% at 2 h, 8 ± 2% at 24 h (p < 0.05), 8 ± 2% at 1 week (p < 0.05), and 4 ± 2% at 2 weeks. LV EF also increased with low-dose VEPO but not with saline. Study 2: VEPO but not saline significantly increased LVEF by 6.0 ± 0.7% at 2 h (p < 0.05); 7.0 ± 0.7%% at 1 week (p < 0.05); 1.0 ± 0.6% at 3 weeks; 6.0 ± 1.3% at 4 weeks (p < 0.05); and 5.9 ± 1.3% at 6 weeks (p < 0.05). CONCLUSIONS Intravenous VEPO improves LV function for at least 1 week after infusion. The benefits can be extended with pulsed VEPO therapy. The results support development of VEPO for treating patients with acute on chronic HF.
Collapse
|
13
|
Kirsner RS, Amaya R, Bass K, Boyar V, Ciprandi G, Glat PM, Percival SL, Romanelli M, Pittinger TP. Effects of a surfactant-based gel on acute and chronic paediatric wounds: a panel discussion and case series. J Wound Care 2019; 28:398-408. [PMID: 31166855 DOI: 10.12968/jowc.2019.28.6.398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
On 20 November 2018, following the International Society for Paediatric Wound Care conference, a closed panel meeting took place in which the use of a surfactant-based gel (PluroGel (PMM), Medline Industries, Illinois, US) in paediatric wound care was discussed. The authors shared their experiences, thoughts, experimental data and clinical results. The panel identified the need for a product that can gently cleanse paediatric wounds and remove devitalised tissue without causing discomfort or skin reactions, as well as potentially promote healing. In adults, PMM has been shown to assist healing by hydrating the wound, controlling exudate and debriding non-viable tissue. Islands of neo-epithelium have also been reported to appear rapidly in different parts of the wound bed. No adverse effects on these proliferating cells have been observed. In vitro data suggest that PMM can remove biofilm, as well as potentially promote healing through cell salvage. The panel, therefore, set out to discuss their experiences of using PMM in the paediatric patients and to establish a consensus on the indications for its use and application in this population. This article will describe the main outcomes of that discussion and present case studies from paediatric patients with a variety of wound types, who were treated with PMM by members of the panel.
Collapse
Affiliation(s)
- Robert S Kirsner
- Chairman and Harvey Blank Professor, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, US
| | - Rene Amaya
- Director, Pediatric Wound Care and Laser Specialist, Houston, Texas, US
| | - Kathryn Bass
- Associate Professor of Surgery, Department of Pediatric Surgery, Women and Children's Hospital of Buffalo, New York, US
| | - Vita Boyar
- Director of Neonatal Wound Services, Neonatal-Perinatal Medicine, Alexandra and Steven Cohen Children's Medical Center of New York, Northwell Health, Zucker School of Medicine at Hofstra, Northwell, US
| | - Guido Ciprandi
- Paediatric and Plastic Surgeon, Bambino Gesù Children's Hospital, Department of Surgery, Division of Plastic and Maxillofacial Surgery, Head Wound Care Surgical Unit, Rome, Italy
| | - Paul M Glat
- Professor of Surgery and Pediatrics, Drexel University College of Medicine and Chief of Plastic Surgery, St. Christopher's Hospital for Children, Philadelphia, US
| | - Steven L Percival
- CEO of 5D Heath Protection Group Ltd, 5D Health Protection Group Ltd, Liverpool, UK
| | - Marco Romanelli
- Professor and Chairman, Department of Dermatology, University of Pisa, Italy
| | - Timothy P Pittinger
- Paediatric Surgeon, Department of Surgery & Regional Burn Center, Akron Children's Hospital, Akron, Ohio, US
| |
Collapse
|
14
|
Mayer D, Armstrong D, Schultz G, Percival S, Malone M, Romanelli M, Keast D, Jeffery S. Cell salvage in acute and chronic wounds: a potential treatment strategy. Experimental data and early clinical results. J Wound Care 2019; 27:594-605. [PMID: 30204575 DOI: 10.12968/jowc.2018.27.9.594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On 9 May 2018, the authors took part in a closed panel discussion on the impact of cell salvage in acute and chronic wounds. The goal was to deliberate the possible use of plurogel micelle matrix (PMM) as a new treatment strategy for wound healing and the authors openly shared their experiences, thoughts, experimental data and early clinical results. The outcome of the panel discussion has been abridged in this paper. The cell membrane consists of a lipid bilayer, which provides a diffusion barrier separating the inside of a cell from its environment. Cell membrane injury can result in acute cellular necrosis when defects are too large and cannot be resealed. There is a potential hazard to the body when these dying cells release endogenous alarm signals referred to as 'damage (or danger) associated molecular patterns' (DAMPs), which trigger the innate immune system and modulate inflammation. Cell salvage by membrane resealing is a promising target to ensure the survival of the individual cell and prevention of further tissue degeneration by inflammatory processes. Non-ionic surfactants such as poloxamers, poloxamines and PMM have the potential to resuscitate cells by inserting themselves into damaged membranes and stabilising the unstable portions of the lipid bilayers. The amphiphilic properties of these molecules are amenable to insertion into cell wall defects and so can play a crucial, reparative role. This new approach to cell rescue or salvage has gained increasing interest as several clinical conditions have been linked to cell membrane injury via oxidative stress-mediated lipid peroxidation or thermal disruption. The repair of the cell membrane is an important step in salvaging cells from necrosis to prevent further tissue degeneration by inflammatory processes. This is applicable to acute burns and chronic wounds such as diabetic foot ulcers (DFUs), chronic venous leg ulcers (VLUs), and pressure ulcers (PUs). Experimental data shows that PMM is biocompatible and able to insert itself into damaged membranes, salvaging their barrier function and aiding cell survival. Moreover, the six case studies presented in this paper reveal the potential of this treatment strategy.
Collapse
Affiliation(s)
| | | | | | | | - Matt Malone
- South West Sydney Limb Preservation and Wound Research, South Western Syndey Local Health District, Ingham Institute of Applied Medical Research, Syndey, Australia and Infectious Disease and Microbiology, School of Medicine, Western Sydney University, Sydney, Australia
| | | | | | - Steven Jeffery
- The Queen Elizabeth Hospital, Birmingham, UK and Birmingham City University
| |
Collapse
|
15
|
Chen R, Salisbury AM, Percival SL. In vitro cellular viability studies on a concentrated surfactant-based wound dressing. Int Wound J 2019; 16:703-712. [PMID: 30895731 DOI: 10.1111/iwj.13084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/27/2022] Open
Abstract
In this study, three cellular cytotoxic assays (direct contact assay, extraction assay, and cell insert assay) were applied to evaluate the effects of a concentrated surfactant gel preserved with antimicrobials and a concentrated surfactant gel with 1% silver sulfadiazine on both the mouse fibroblast cell line L929 and human dermal fibroblasts (HDFa). Also, the in vitro wound model was wounded by a 100 μL pipette tip and used to assess cell migration and wound closure after treatment with both gels. A needle-scratched membrane disruption model was used to preliminarily evaluate membrane stabilisation and the membrane-resealing effects of concentrated surfactant gels. It was demonstrated that the concentrated surfactant gel preserved with antimicrobials was not toxic to both L929 and HDFa. However, the concentrated surfactant gel with 1% silver sulfadiazine demonstrated a degree of cytotoxicity to both cell types. After treatment with a concentrated surfactant gel preserved with antimicrobials, cell movement to close the scratch gap was enhanced at 24 and 48 hours. The results also showed that cells treated with the concentrated surfactant gel preserved with antimicrobials decreased cell necrosis and improved cell resistance of the f-actin rearrangement after a needle scratch. The results demonstrated that a concentrated surfactant gel preserved with antimicrobials is non-cytotoxic and has ability to accelerate wound closure by enhancing cell mobility. Furthermore, the concentrated surfactant gel appeared to stabilise the plasma membrane and demonstrated a resealing ability and helped to retain the plasma membrane integrity and enhanced wound healing.
Collapse
Affiliation(s)
- Rui Chen
- Centre of Excellence for Biofilm Science (CEBS), 5D Health Protection Group Ltd., Liverpool Bio-Innovation Hub, Liverpool, UK
| | - Anne-Marie Salisbury
- Centre of Excellence for Biofilm Science (CEBS), 5D Health Protection Group Ltd., Liverpool Bio-Innovation Hub, Liverpool, UK
| | - Steven L Percival
- Centre of Excellence for Biofilm Science (CEBS), 5D Health Protection Group Ltd., Liverpool Bio-Innovation Hub, Liverpool, UK
| |
Collapse
|
16
|
O'Rourke BP, Kramer AH, Cao LL, Inayathullah M, Guzik H, Rajadas J, Nosanchuk JD, Sharp DJ. Fidgetin-Like 2 siRNA Enhances the Wound Healing Capability of a Surfactant Polymer Dressing. Adv Wound Care (New Rochelle) 2019; 8:91-100. [PMID: 30911440 PMCID: PMC6430983 DOI: 10.1089/wound.2018.0827] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/07/2018] [Indexed: 02/02/2023] Open
Abstract
Microtubules (MTs) are intracellular polymers that provide structure to the cell, serve as railways for intracellular transport, and regulate many cellular activities, including cell migration. The dynamicity and function of the MT cytoskeleton are determined in large part by its regulatory proteins, including the recently discovered MT severing enzyme Fidgetin-like 2 (FL2). Downregulation of FL2 expression with small interfering RNA (siRNA) results in a more than twofold increase in cell migration rate in vitro as well as translates into improved wound-healing outcomes in in vivo mouse models. Here we utilized a commercially available surfactant polymer dressing (SPD) as a vehicle to deliver FL2 siRNA. To this end we incorporated collagen microparticles containing FL2 siRNA into SPD (SPD-FL2-siRNA) for direct application to the injury site. Topical application of SPD-FL2 siRNA to murine models of full-thickness excision wounds and full-thickness burn wounds resulted in significant improvements in the rate and quality of wound healing, as measured clinically and histologically, compared with controls. Wound healing occurred more rapidly and with high fidelity, resulting in properly organized collagen substructure. Taken together, these findings indicate that the incorporation of FL2 siRNA into existing treatment options is a promising avenue to improve wound outcomes.
Collapse
Affiliation(s)
| | - Adam H. Kramer
- Physiology and Biophysics, and Albert Einstein College of Medicine, Bronx, New York
| | - Longyue L. Cao
- Department of Medicine, Children's Hospital Boston, Boston, Massachusetts
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, California
| | - Hillary Guzik
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, New York
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, California
| | - Joshua D. Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - David J. Sharp
- MicroCures, Inc., Research and Development, Bronx, New York
- Physiology and Biophysics, and Albert Einstein College of Medicine, Bronx, New York
- Department of Ophthalmology and Visual Sciences, and Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
17
|
Peng L, Cheng F, Zheng Y, Shi Z, He W. Multilayer Assembly of Tannic Acid and an Amphiphilic Copolymer Poloxamer 188 on Planar Substrates toward Multifunctional Surfaces with Discrete Microdome-Shaped Features. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10748-10756. [PMID: 30148369 DOI: 10.1021/acs.langmuir.8b01982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tannic acid (TA) is a natural polyphenol compound with a broad spectrum of biological activities, the most notable of which being antioxidation. Poloxamer 188 (P188), a synthetic triblock copolymer of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), is amphiphilic in nature and best known for its ability to seal structurally damaged cellular membranes. The integration of both substances onto planar substrates could bring a new option for multifunctional coatings that are advantageous for implantable biomedical devices. Here, we demonstrate the feasibility of multilayer assembly of TA/P188 toward such a coating based on hydrogen bonding between phenolic hydroxyls of TA and ether groups of P188, and the unique surface feature it generates. The interactions between these two compounds were studied both in solution and in substrate-supported layer-by-layer assembly. The multilayer assembly process exhibits an exponential growth pattern as characterized by UV-vis spectrophotometry and quartz crystal microbalance with dissipation. Morphologically unique, microdome-shaped surface features emerge and evolve with the number of layers assembled. Such features bring a reservoir function to this coating, as demonstrated by the loading of hydrophobic nile red dye. Furthermore, the presence of TA in the multilayers was revealed by silver nitrate staining, and its antioxidation activity was demonstrated through a 2,2-diphenyl-1-picryl-hydrazyl free-radical scavenging assay.
Collapse
Affiliation(s)
| | | | | | - Zengqian Shi
- Institute of Chemical and Engineering Sciences , Agency for Science, Technology and Research (A*STAR) , 1 Pesek Road , Jurong Island, Singapore 627833 , Singapore
| | | |
Collapse
|
18
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
19
|
Percival SL, Chen R, Mayer D, Salisbury AM. Mode of action of poloxamer-based surfactants in wound care and efficacy on biofilms. Int Wound J 2018; 15:749-755. [PMID: 29869367 DOI: 10.1111/iwj.12922] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/19/2022] Open
Abstract
Surfactants are widely used as detergents, emulsifiers, wetting agents, foaming agents, and dispersants in both the food and oil industry. Their use in a clinical setting is also common, particularly in wound care. Complicated or chronic wounds show clinical signs of delayed healing, persistent inflammation, and the production of non-viable tissue. These types of wounds also present challenges such as infection and potentially house antimicrobial-tolerant biofilms. The use of wound cleansers to aid cleaning and debridement of the wound is essential. A large proportion of skin and wound cleansers contain surfactants but there is only a small amount of data that shows the effectiveness of them in the enhancement of wound closure. This review paper aims to explore the available literature surrounding the use and mode of action of surfactants in wound healing, in particular Poloxamer 188 (Pluronic F-68) and Poloxamer 407 (Pluronic F-127), and also uncover the potential mechanisms behind the enhancement of wound healing and comparison to other surfactants used in wound care. Furthermore, the presence of a microbial biofilm in the wound is a significant factor in delayed wound healing. Therefore, the effect of clinically used surfactants on biofilms will be discussed, with emphasis on poloxamer-based surfactants.
Collapse
Affiliation(s)
- Steven L Percival
- Centre of Excellence in Biofilm Science and Technologies (CEBST), 5D Health Protection Group Ltd, Liverpool Bio-Innovation Hub, Liverpool, UK
| | - Rui Chen
- Centre of Excellence in Biofilm Science and Technologies (CEBST), 5D Health Protection Group Ltd, Liverpool Bio-Innovation Hub, Liverpool, UK
| | - Dieter Mayer
- Department of Surgery, HFR Fribourg - Cantonal Hospital, Fribourg, Switzerland
| | - Anne-Marie Salisbury
- Centre of Excellence in Biofilm Science and Technologies (CEBST), 5D Health Protection Group Ltd, Liverpool Bio-Innovation Hub, Liverpool, UK
| |
Collapse
|
20
|
Chen H, McFaul C, Titushkin I, Cho M, Lee R. Surfactant Copolymer Annealing of Chemically Permeabilized Cell Membranes. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 4:1-10. [PMID: 30906849 DOI: 10.1007/s40883-017-0044-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structural breakdown of the cell membrane is a primary mediator in trauma induced tissue necrosis. When membrane disruption exceeds intrinsic membrane sealing processes, biocompatible multi-block amphiphilic copolymer surfactants such as Poloxamer 188 (P188) have been found to be effective in catalyze or augment sealing. Although in living cells copolymer induced sealing of membrane defects has been detected by changes in membrane transport properties, it has not been directly imaged. In this project we used Atomic force microscopy (AFM) to directly image saponin permeabilized and poloxamer sealed plasma membranes of monolayer cultured MDCK and 3T3 fibroblasts. AFM image analysis resulted in the density and diameter ranges for membrane indentations per 5×5 μm area. For control, saponin lysed, and P188 treatment of saponin lysed membranes, the supra-threshold indentation density was 3.6 ± 2.8, 13.8 ± 6.7, and 4.9 ± 3.3/cell, respectively. These results indicated that P188 catalyzed reduction in size of AFM indentations which correlated with increase cell survival. This evidence confirm that biocompatible surfactant P188 augment natural cell membrane sealing capability when intrinsic processes are incapable alone.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Surgery, University of Chicago, Chicago, IL, USA, 60637
| | - Colin McFaul
- Department of Surgery, University of Chicago, Chicago, IL, USA, 60637
| | - Igor Titushkin
- Department of Surgery, University of Illinois at Chicago, Chicago IL, USA, 60605
| | - Michael Cho
- Department of Surgery, University of Illinois at Chicago, Chicago IL, USA, 60605
| | - Raphael Lee
- Department of Surgery, University of Chicago, Chicago, IL, USA, 60637
| |
Collapse
|
21
|
Houthaeve G, Robijns J, Braeckmans K, De Vos WH. Bypassing Border Control: Nuclear Envelope Rupture in Disease. Physiology (Bethesda) 2018; 33:39-49. [DOI: 10.1152/physiol.00029.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 11/22/2022] Open
Abstract
Recent observations in laminopathy patient cells and cancer cells have revealed that the nuclear envelope (NE) can transiently rupture during interphase. NE rupture leads to an uncoordinated exchange of nuclear and cytoplasmic material, thereby deregulating cellular homeostasis. Moreover, concurrently inflicted DNA damage could prime rupture-prone cells for genome instability. Thus, NE rupture may represent a novel pathogenic mechanism that has far-reaching consequences for cell and organism physiology.
Collapse
Affiliation(s)
- Gaëlle Houthaeve
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Joke Robijns
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Winnok H. De Vos
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Department of Molecular Biotechnology, Cell Systems and Imaging Research Group (CSI), Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Zhang W, Haman KJ, Metzger JM, Hackel BJ, Bates FS, Lodge TP. Quantifying Binding of Ethylene Oxide-Propylene Oxide Block Copolymers with Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12624-12634. [PMID: 29068209 PMCID: PMC6055234 DOI: 10.1021/acs.langmuir.7b02279] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Block copolymers composed of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) have been widely used in cell membrane stabilization and permeabilization. To explore the mechanism of interaction between PPO-PEO block copolymers and lipid membranes, we have investigated how polymer structure influences the polymer-lipid bilayer association by varying the overall molecular weight, the hydrophobic and hydrophilic block lengths, and the end-group structure systematically, using 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) unilamellar liposomes as model membranes. Pulsed-field-gradient NMR (PFG-NMR) was employed to probe polymer diffusion in the absence and presence of liposomes. The echo decay curves of free polymers in the absence of liposomes are single exponentials, indicative of simple translational diffusion, while in the presence of liposomes, the decays are biexponential, with the slower decay corresponding to polymers bound to liposomes. The binding percentage of polymer to the liposome was quantified by fitting the echo decay curves to a biexponential model. The NMR experiments show that increasing the total molecular weight and hydrophobicity of the polymer can significantly enhance the polymer-lipid bilayer association, as the binding percentage and liposome surface coverage both increase. We hypothesize that the hydrophobic PPO block inserts into the lipid bilayer due to the fact that little molecular exchange between bound and free polymers occurs on the time scale of the diffusion experiments. Additionally, as polymer concentration increases, the liposome surface coverage increases and approaches a limit. These results demonstrate that PFG-NMR is a simple yet powerful method to quantify interactions between polymers and lipid bilayers.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Karen J. Haman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Poellmann MJ, Lee RC. Repair and Regeneration of the Wounded Cell Membrane. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0031-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Wong SW, Yao Y, Hong Y, Ma Z, Kok SHL, Sun S, Cho M, Lee KKH, Mak AFT. Preventive Effects of Poloxamer 188 on Muscle Cell Damage Mechanics Under Oxidative Stress. Ann Biomed Eng 2016; 45:1083-1092. [PMID: 27650939 DOI: 10.1007/s10439-016-1733-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/10/2016] [Indexed: 12/31/2022]
Abstract
High oxidative stress can occur during ischemic reperfusion and chronic inflammation. It has been hypothesized that such oxidative challenges could contribute to clinical risks such as deep tissue pressure ulcers. Skeletal muscles can be challenged by inflammation-induced or reperfusion-induced oxidative stress. Oxidative stress reportedly can lower the compressive damage threshold of skeletal muscles cells, causing actin filament depolymerization, and reduce membrane sealing ability. Skeletal muscles thus become easier to be damaged by mechanical loading under prolonged oxidative exposure. In this study, we investigated the preventive effect of poloxamer 188 (P188) on skeletal muscle cells against extrinsic oxidative challenges (H2O2). It was found that with 1 mM P188 pre-treatment for 1 h, skeletal muscle cells could maintain their compressive damage threshold. The actin polymerization dynamics largely remained stable in term of the expression of cofilin, thymosin beta 4 and profilin. Laser photoporation demonstrated that membrane sealing ability was preserved even as the cells were challenged by H2O2. These findings suggest that P188 pre-treatment can help skeletal muscle cells retain their normal mechanical integrity in oxidative environments, adding a potential clinical use of P188 against the combined challenge of mechanical-oxidative stresses. Such effect may help to prevent deep tissue ulcer development.
Collapse
Affiliation(s)
- Sing Wan Wong
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yifei Yao
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Ye Hong
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Zhiyao Ma
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Stanton H L Kok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Shan Sun
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Kenneth K H Lee
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Arthur F T Mak
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| |
Collapse
|
25
|
Guler N, Abro S, Emanuele M, Iqbal O, Hoppensteadt D, Fareed J. The Protective Effect of Poloxamer-188 on Platelet Functions. Clin Appl Thromb Hemost 2016; 23:987-991. [PMID: 27651174 DOI: 10.1177/1076029616669785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Poloxamer-188 (MST-188) is effective in the repair/recovery of damaged cell membranes. MST-188 is a promising agent for protecting blood cell viability. The aim of the study is to test the hypothesis that MST-188 can extend the duration of platelet function. MATERIALS AND METHODS Blood samples were collected from 20 healthy volunteers. MST-188 (10 or 2 mg/mL) containing platelet-rich plasma (PRP) was prepared with 2 procedures. First, PRP prepared from MST-188 added whole blood (WB); second, MST-188 was added to PRP. These were referred to MST-188-WB preparation (WBP) and MST-188-PRP preparation (PRPP), respectively. For control, saline was used in the same manner. Agonist-induced aggregation (AIA) studies were performed at 30, 180, and 300 minutes using Platelet Aggregation Profiler (PAP-8) aggregometer (Bio/Data Corporation, Horsham, Pennsylvania) and Adenosine diphosphate (ADP), arachidonic acid, collagen, and epinephrine as agonists at final concentration of 20 µM, 500 µg/mL, 0.19 mg/mL, and 100 µM, respectively. RESULTS There was a protective effect of MST-188 on ADP and collagen AIA. At 300 minutes, ADP AIA was found to be 50.2% higher than saline control in 2-mg WBP, 43% at 10-mg PRPP, and 10.4% at 2-mg PRPP. Protective effect of on collagen AIA was 65.9% in 2-mg WBP, 42.74% at 10-mg PRPP, and 11.42% at 2-mg PRPP. In comparison between 30 and 300 minutes, MST-188 showed significant protection in terms of ADP and collagen receptors and for both types of preparations (WBP and PRPP). CONCLUSION The protective effects of MST-188 on ADP- and collagen-induced platelet aggregation may contribute to the preservation of platelet functionality upon storage in blood banks.
Collapse
Affiliation(s)
- Nil Guler
- 1 Department of Pathology and Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| | - Schuharazad Abro
- 1 Department of Pathology and Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| | | | - Omer Iqbal
- 1 Department of Pathology and Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| | - Debra Hoppensteadt
- 1 Department of Pathology and Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| | - Jawed Fareed
- 1 Department of Pathology and Pharmacology, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
26
|
Schwieger C, Blaffert J, Li Z, Kressler J, Blume A. Perfluorinated Moieties Increase the Interaction of Amphiphilic Block Copolymers with Lipid Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8102-15. [PMID: 27442444 DOI: 10.1021/acs.langmuir.6b01574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The interaction of amphiphilic and triphilic block copolymers with lipid monolayers has been studied. Amphiphilic triblock copolymer PGMA20-PPO34-PGMA20 (GP) is composed of a hydrophobic poly(propylene oxide) (PPO) middle block that is flanked by two hydrophilic poly(glycerol monomethacrylate) (PGMA) side blocks. The attachment of a perfluoro-n-nonyl residue (F9) to either end of GP yields a triphilic polymer with the sequence F9-PGMA20-PPO34-PGMA20-F9 (F-GP). The F9 chains are fluorophilic, i.e., they have a tendency to demix in hydrophilic as well as in lipophilic environments. We investigated (i) the adsorption of both polymers to differently composed lipid monolayers and (ii) the compression behavior of mixed polymer/lipid monolayers. The lipid monolayers are composed of phospholipids with PC or PE headgroups and acyl chains of different length and saturation. Both polymers interact with lipid monolayers by inserting their hydrophobic moieties (PPO, F9). The interaction is markedly enhanced in the presence of F9 chains, which act as membrane anchors. GP inserts into lipid monolayers up to a surface pressure of 30 mN/m, whereas F-GP inserts into monolayers at up to 45 mN/m, suggesting that F-GP also inserts into lipid bilayer membranes. The adsorption of both polymers to lipid monolayers with short acyl chains is favored. Upon compression, a two-step squeeze-out of F-GP occurs, with PPO blocks being released into the aqueous subphase at 28 mN/m and the F9 chains being squeezed out at 48 mN/m. GP is squeezed out in one step at 28 mN/m because of the lack of F9 anchor groups. The liquid expanded (LE) to liquid condensed (LC) phase transition of DPPC and DMPE is maintained in the presence of the polymers, indicating that the polymers can be accommodated in LE- and LC-phase monolayers. These results show how fluorinated moieties can be included in the rational design of membrane-binding polymers.
Collapse
Affiliation(s)
- Christian Schwieger
- Institute of Chemistry, Martin Luther University Halle-Wittenberg , D-06099 Halle (Saale), Germany
| | - Jacob Blaffert
- Institute of Chemistry, Martin Luther University Halle-Wittenberg , D-06099 Halle (Saale), Germany
| | - Zheng Li
- Institute of Chemistry, Martin Luther University Halle-Wittenberg , D-06099 Halle (Saale), Germany
| | - Jörg Kressler
- Institute of Chemistry, Martin Luther University Halle-Wittenberg , D-06099 Halle (Saale), Germany
| | - Alfred Blume
- Institute of Chemistry, Martin Luther University Halle-Wittenberg , D-06099 Halle (Saale), Germany
| |
Collapse
|
27
|
Sandez-Macho I, Casas M, Lage EV, Rial-Hermida MI, Concheiro A, Alvarez-Lorenzo C. Interaction of poloxamine block copolymers with lipid membranes: Role of copolymer structure and membrane cholesterol content. Colloids Surf B Biointerfaces 2015; 133:270-7. [DOI: 10.1016/j.colsurfb.2015.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
|
28
|
Dean L, Kwon YJ, Philpott MK, Stanciu CE, Seashols-Williams SJ, Dawson Cruz T, Sturgill J, Ehrhardt CJ. Separation of uncompromised whole blood mixtures for single source STR profiling using fluorescently-labeled human leukocyte antigen (HLA) probes and fluorescence activated cell sorting (FACS). Forensic Sci Int Genet 2015; 17:8-16. [DOI: 10.1016/j.fsigen.2015.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 01/30/2015] [Accepted: 03/10/2015] [Indexed: 12/19/2022]
|
29
|
Hädicke A, Blume A. Interactions of Pluronic block copolymers with lipid vesicles depend on lipid phase and Pluronic aggregation state. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3414-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Schwieger C, Achilles A, Scholz S, Rüger J, Bacia K, Saalwaechter K, Kressler J, Blume A. Binding of amphiphilic and triphilic block copolymers to lipid model membranes: the role of perfluorinated moieties. SOFT MATTER 2014; 10:6147-6160. [PMID: 24942348 DOI: 10.1039/c4sm00830h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel class of symmetric amphi- and triphilic (hydrophilic, lipophilic, fluorophilic) block copolymers has been investigated with respect to their interactions with lipid membranes. The amphiphilic triblock copolymer has the structure PGMA(20)-PPO(34)-PGMA(20) (GP) and it becomes triphilic after attaching perfluoroalkyl moieties (F9) to either end which leads to F(9)-PGMA(20)-PPO(34)-PGMA(20)-F(9) (F-GP). The hydrophobic poly(propylene oxide) (PPO) block is sufficiently long to span a lipid bilayer. The poly(glycerol monomethacrylate) (PGMA) blocks have a high propensity for hydrogen bonding. The hydrophobic and lipophobic perfluoroalkyl moieties have the tendency to phase segregate in aqueous as well as in hydrocarbon environments. We performed differential scanning calorimetry (DSC) measurements on polymer bound lipid vesicles under systematic variation of the bilayer thickness, the nature of the lipid headgroup, and the polymer concentration. The vesicles were composed of phosphatidylcholines (DMPC, DPPC, DAPC, DSPC) or phosphatidylethanolamines (DMPE, DPPE, POPE). We showed that GP as well as F-GP binding have membrane stabilizing and destabilizing components. PPO and F9 blocks insert into the hydrophobic part of the membrane concomitantly with PGMA block adsorption to the lipid headgroup layer. The F9 chains act as additional membrane anchors. The insertion of the PPO blocks of both GP and F-GP could be proven by 2D-NOESY NMR spectroscopy. By fluorescence microscopy we show that F-GP binding increases the porosity of POPC giant unilamellar vesicles (GUVs), allowing the influx of water soluble dyes as well as the translocation of the complete triphilic polymer and its accumulation at the GUV surface. These results open a new route for the rational design of membrane systems with specific properties.
Collapse
Affiliation(s)
- Christian Schwieger
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gaikwad VL, Bhatia MS. Polymers influencing transportability profile of drug. Saudi Pharm J 2014; 21:327-35. [PMID: 24227951 DOI: 10.1016/j.jsps.2012.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/26/2012] [Indexed: 11/28/2022] Open
Abstract
Drug release from various polymers is generally governed by the type of polymer/s incorporated in the formulation and mechanism of drug release from polymer/s. A single polymer may show one or more mechanisms of drug release out of which one mechanism is majorly followed for drug release. Some of the common mechanisms of drug release from polymers were, diffusion, swelling, matrix release, leaching of drug, etc. Mechanism or rate of drug release from a polymer or a combination of polymers can be predicted by using different computational methods or models. These models were capable of predicting drug release from its dosage form in advance without actual formulation and testing of drug release from dosage form. Quantitative structure-property relationship (QSPR) is an important tool used in the prediction of various physicochemical properties of actives as well as inactives. Since last several decades QSPR has been applied in new drug development for reducing the total number of drugs to be synthesized, as it involves a selection of the most desirable compound of interest. This technique was also applied in predicting in vivo performance of drug/s for various parameters. QSPR serves as a predictive tool to correlate structural descriptors of molecules with biological as well as physicochemical properties. Several researchers have contributed at different extents in this area to modify various properties of pharmaceuticals. The present review is focused on a study of different polymers that influence the transportability profiles of drugs along with the application of QSPR either to study different properties of polymers that regulate drug release or in predicting drug transportability from different polymer systems used in formulations.
Collapse
Affiliation(s)
- Vinod L Gaikwad
- Department of Pharmaceutics, P.E. Society's Modern College of Pharmacy, Nigdi, Pune-411044, Maharashtra State, India
| | | |
Collapse
|
32
|
Hädicke A, Blume A. Interactions of Pluronic block copolymers with lipid monolayers studied by epi-fluorescence microscopy and by adsorption experiments. J Colloid Interface Sci 2013; 407:327-38. [PMID: 23859816 DOI: 10.1016/j.jcis.2013.06.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
The interactions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers, i.e. Pluronics F87, F88 and F127, with monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were investigated with different monolayer techniques. Surface pressure-area isotherms were recorded of co-spread Pluronic/lipid mixtures with different Pluronic content to determine the influence of the polymers on the monolayer phase transitions. The squeeze-out pressure of the polymers upon film compression was dependent on the PPO block length. The monolayer compression experiments were coupled with fluorescence microscopy to visualize the phase separation into polymer-rich and lipid-rich domains and to monitor morphological changes of the lipid domains in the monolayer. Extensive phase separation was observed in the coexistence region between liquid-expanded (LE) and liquid-condensed (LC) lipid phases, where pure polymer domains coexisting with round LE-domains containing polymer, and polymer-free LC-domains were seen. We also investigated the adsorption of Pluronics to a lipid monolayer after injecting a polymer solution underneath a pre-formed lipid monolayer by following the change in pressure at constant area. The results show that polymer adsorption is a superposition of two individual processes with different kinetics. Pluronics with a higher hydrophobicity and with a smaller molecular weight adsorb faster and the type and phase state of the lipid determines the surface pressure where no further Pluronic molecules adsorb to the interface. This critical surface pressure depends on the PPO block length, whereas the strength of the interaction with the lipids is determined by the relative PEO content. This indicates that also interactions between the PEO blocks and the lipid headgroup region are occurring. The interactions with the unsaturated lipid POPC in the liquid-expanded phase turn out to be stronger than for lipids in the liquid-condensed phase, where the polymers are excluded.
Collapse
Affiliation(s)
- André Hädicke
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | | |
Collapse
|
33
|
Alternative erythropoietin-mediated signaling prevents secondary microvascular thrombosis and inflammation within cutaneous burns. Proc Natl Acad Sci U S A 2013; 110:3513-8. [PMID: 23401545 DOI: 10.1073/pnas.1214099110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Alternate erythropoietin (EPO)-mediated signaling via the heteromeric receptor composed of the EPO receptor and the β-common receptor (CD131) exerts the tissue-protective actions of EPO in various types of injuries. Herein we investigated the effects of the EPO derivative helix beta surface peptide (synonym: ARA290), which specifically triggers alternate EPO-mediated signaling, but does not bind the erythropoietic EPO receptor homodimer, on the progression of secondary tissue damage following cutaneous burns. For this purpose, a deep partial thickness cutaneous burn injury was applied on the back of mice, followed by systemic administration of vehicle or ARA290 at 1, 12, and 24 h postburn. With vehicle-only treatment, wounds exhibited secondary microvascular thrombosis within 24 h postburn, and subsequent necrosis of the surrounding tissue, thus converting to a full-thickness injury within 48 h. On the other hand, when ARA290 was systemically administered, patency of the microvasculature was maintained. Furthermore, ARA290 mitigated the innate inflammatory response, most notably tumor necrosis factor-alpha-mediated signaling. These findings correlated with long-term recovery of initially injured yet viable tissue components. In conclusion, ARA290 may be a promising therapeutic approach to prevent the conversion of partial- to full-thickness burn injuries. In a clinical setting, the decrease in burn depth and area would likely reduce the necessity for extensive surgical debridement as well as secondary wound closure by means of skin grafting. This use of ARA290 is consistent with its tissue-protective properties previously reported in other models of injury, such as myocardial infarction and hemorrhagic shock.
Collapse
|
34
|
Chen B, Zuberi M, Borgens RB, Cho Y. Affinity for, and localization of, PEG-functionalized silica nanoparticles to sites of damage in an ex vivo spinal cord injury model. J Biol Eng 2012; 6:18. [PMID: 22979980 PMCID: PMC3549791 DOI: 10.1186/1754-1611-6-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 09/06/2012] [Indexed: 11/18/2022] Open
Abstract
Background Traumatic spinal cord injury (SCI) leads to serious neurological and functional deficits through a chain of pathophysiological events. At the molecular level, progressive damage is initially revealed by collapse of plasma membrane organization and integrity produced by breaches. Consequently, the loss of its role as a semi-permeable barrier that generally mediates the regulation and transport of ions and molecules eventually results in cell death. In previous studies, we have demonstrated the functional recovery of compromised plasma membranes can be induced by the application of the hydrophilic polymer polyethylene glycol (PEG) after both spinal and brain trauma in adult rats and guinea pigs. Additionally, efforts have been directed towards a nanoparticle-based PEG application. The in vivo and ex vivo applications of PEG-decorated silica nanoparticles following CNS injury were able to effectively and efficiently enhance resealing of damaged cell membranes. Results The possibility for selectivity of tetramethyl rhodamine-dextran (TMR) dye-doped, PEG-functionalized silica nanoparticles (TMR-PSiNPs) to damaged spinal cord was evaluated using an ex vivo model of guinea pig SCI. Crushed and nearby undamaged spinal cord tissues exhibited an obvious difference in both the imbibement and accumulation of the TMR-PSiNPs, revealing selective labeling of compression-injured tissues. Conclusions These data show that appropriately functionalized nanoparticles can be an efficient means to both 1.) carry drugs, and 2.) apply membrane repair agents where they are needed in focally damaged nervous tissue.
Collapse
Affiliation(s)
- Bojun Chen
- Center for Paralysis Research, Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
35
|
Wang JY, Marks J, Lee KYC. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (I) effect of polymer hydrophobicity on its ability to protect liposomes from peroxidation. Biomacromolecules 2012; 13:2616-23. [PMID: 22808900 PMCID: PMC3689593 DOI: 10.1021/bm300847x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PEO-PPO-PEO triblock copolymers have opposing effects on lipid membrane integrity: they can behave either as membrane sealants or as membrane permeabilizers. To gain insights into their biomembrane activities, the fundamental interactions between a series of PEO-based polymers and phospholipid vesicles were investigated. Specifically, the effect of copolymer hydrophobicity on its ability to prevent liposomes from peroxidation was evaluated, and partitioning free energy and coefficient involved in the interactions were derived. Our results show that the high degree of hydrophilicity is a key feature of the copolymers that can effectively protect liposomes from peroxidation and the protective effect of the copolymers stems from their adsorption at the membrane surface without penetrating into the bilayer core. The origin of this protective effect induced by polymer absorption is attributed to the retardation of membrane hydration dynamics, which is further illustrated in the accompanying study on dynamic nuclear polarization (DNP)-derived hydration dynamics (Cheng, C.-Y.; Wang, J.-Y.; Kausik, R.; Lee, K. Y. C.; Han S. Biomacromolecules, 2012, DOI: 10.1021/bm300848c).
Collapse
Affiliation(s)
- Jia-Yu Wang
- Department of Chemistry, Institute for Biophysical Dynamics & James Franck Institute, the University of Chicago, Illinois 60637
| | - Jeremy Marks
- Department of Pediatrics, the University of Chicago, Illinois 60637
| | - Ka Yee C. Lee
- Department of Chemistry, Institute for Biophysical Dynamics & James Franck Institute, the University of Chicago, Illinois 60637
| |
Collapse
|
36
|
Juneman EB, Saleh L, Lancaster JJ, Thai HM, Markham B, Goldman S. The Effects of Poloxamer-188 on Left Ventricular Function in Chronic Heart Failure After Myocardial Infarction. J Cardiovasc Pharmacol 2012; 60:293-8. [DOI: 10.1097/fjc.0b013e31825f6f88] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Suzuki N, Akiyama T, Takahashi T, Komuro H, Warita H, Tateyama M, Itoyama Y, Aoki M. Continuous administration of poloxamer 188 reduces overload-induced muscular atrophy in dysferlin-deficient SJL mice. Neurosci Res 2011; 72:181-6. [PMID: 22044584 DOI: 10.1016/j.neures.2011.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 11/27/2022]
Abstract
Dysferlin-deficient SJL mice are commonly used to study dysferlinopathy. We demonstrated that poloxamer 188 (P188), a membrane sealant, is effective in reducing the loss of muscle mass in SJL mice when administered using an osmotic pump for 6 weeks. We did not observe significant changes over a 2-week administration period, suggesting that longthier observation is necessary to determine the effectiveness of P188. We also examined exercise endurance in P188-administered SJL mice using a rolling cage. Phosphorylated p38 was found to be reduced in P188-administered SJL mice; additionally, using microarray analysis, we found diminished expression of atrogin-1, an E3 ubiquitin ligase, as the effector of muscular atrophy. Chronic infusion of P188 to dysferlin-deficient SJL mice reduced muscular atrophy, and administering p38 and atrogin-1 in the gastrocnemius muscle improved its motor function. These results provide a basis for potential treatments for dysferlin-deficient skeletal muscle fibers.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cho Y, Borgens RB. Polymer and nano-technology applications for repair and reconstruction of the central nervous system. Exp Neurol 2011; 233:126-44. [PMID: 21985867 DOI: 10.1016/j.expneurol.2011.09.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 09/16/2011] [Accepted: 09/26/2011] [Indexed: 01/17/2023]
Abstract
The hydrophilic polymer PEG and its related derivatives, have served as therapeutic agents to reconstruct the phospholipid bilayers of damaged cell membranes by erasing defects in the plasmalemma. The special attributes of hydrophilic polymers when in contact with cell membranes have been used for several decades since these well-known properties have been exploited in the manufacture of monoclonal antibodies. However, while traditional therapeutic efforts to combat traumatic injuries of the central nervous system (CNS) have not been successful, nanotechnology-based drug delivery has become a new emerging strategy with the additional promise of targeted membrane repair. As such, this potential use of nanotechnology provides new avenues for nanomedicine that uses nanoparticles themselves as the therapeutic agent in addition to their other functionalities. Here we will specifically address new advances in experimental treatment of Spinal Cord and Traumatic Brain injury (SCI and TBI respectively). We focus on the concept of repair of the neurolemma and axolemma in the acute stage of injury, with less emphasis on the worthwhile, and voluminous, issues concerning regenerative medicine/nanomedicine. It is not that the two are mutually exclusive - they are not. However, the survival of the neuron and the tissues of white matter are critical to any further success in what will likely be a multi-component therapy for TBI and SCI. This review includes a brief explanation of the characteristics of traumatic spinal cord injury SCI, the biological basis of the injuries, and the treatment opportunities of current polymer-based therapies. In particular, we update our own progress in such applications for CNS injuries with various suggestions and discussion, primarily nanocarrier-based drug delivery systems. The application of nanoparticles as drug-delivery vehicles to the CNS may likely be advantageous over existing molecular-based therapies. As a "proof-of-concept", we will discuss the recent investigations that have preferentially facilitated repair and functional recovery from breaches in neural membranes via rapid sealing and reassembly of the compromised site with silica or chitosan nanoparticles.
Collapse
Affiliation(s)
- Youngnam Cho
- Center for Paralysis Research, School of Veterinary Medicine, Purdue University, W. Lafayette, IN 47907, USA
| | | |
Collapse
|
39
|
Plataki M, Lee YD, Rasmussen DL, Hubmayr RD. Poloxamer 188 facilitates the repair of alveolus resident cells in ventilator-injured lungs. Am J Respir Crit Care Med 2011; 184:939-47. [PMID: 21778295 DOI: 10.1164/rccm.201104-0647oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Wounded alveolus resident cells are identified in human and experimental acute respiratory distress syndrome models. Poloxamer 188 (P188) is an amphiphilic macromolecule shown to have plasma membrane-sealing properties in various cell types. OBJECTIVES To investigate whether P188 (1) protects alveolus resident cells from necrosis and (2) is associated with reduced ventilator-induced lung injury in live rats, isolated perfused rat lungs, and scratch and stretch-wounded alveolar epithelial cells. METHODS Seventy-four live rats and 18 isolated perfused rat lungs were ventilated with injurious or protective strategies while infused with P188 or control solution. Alveolar epithelial cell monolayers were subjected to scratch or stretch wounding in the presence or absence of P188. MEASUREMENTS AND MAIN RESULTS P188 was associated with fewer mortally wounded alveolar cells in live rats and isolated perfused lungs. In vitro, P188 reduced the number of injured and necrotic cells, suggesting that P188 promotes cell repair and renders plasma membranes more resilient to deforming stress. The enhanced cell survival was accompanied by improvement in conventional measures of lung injury (peak airway pressure, wet-to-dry weight ratio) only in the ex vivo-perfused lung preparation and not in the live animal model. CONCLUSIONS P188 facilitates plasma membrane repair in alveolus resident cells, but has no salutary effects on lung mechanics or vascular barrier properties in live animals. This discordance may have pathophysiological significance for the interdependence of different injury mechanisms and therapeutic implications regarding the benefits of prolonging the life of stress-activated cells.
Collapse
Affiliation(s)
- Maria Plataki
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
40
|
|
41
|
Electrodelivery of drugs into cancer cells in the presence of poloxamer 188. J Biomed Biotechnol 2010. [PMID: 20706647 DOI: 10.1155/2010/314213.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the present study it is shown that poloxamer 188, added before or immediately after an electrical pulse used for electroporation, decreases the number of dead cells and at the same time does not reduce the number of reversible electropores through which small molecules (cisplatin, bleomycin, or propidium iodide) can pass/diffuse. It was suggested that hydrophobic sections of poloxamer 188 molecules are incorporated into the edges of pores and that their hydrophilic parts act as brushy pore structures. The formation of brushy pores may reduce the expansion of pores and delay the irreversible electropermeability. Tumors were implanted subcutaneously in both flanks of nude mice using HeLa cells, transfected with genes for red fluorescent protein and luciferase. The volume of tumors stopped to grow after electrochemotherapy and the use of poloxamer 188 reduced the edema near the electrode and around the subcutaneously growing tumors.
Collapse
|
42
|
Tsoneva I, Iordanov I, Berger AJ, Tomov T, Nikolova B, Mudrov N, Berger MR. Electrodelivery of drugs into cancer cells in the presence of poloxamer 188. J Biomed Biotechnol 2010; 2010:314213. [PMID: 20706647 PMCID: PMC2913842 DOI: 10.1155/2010/314213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 04/07/2010] [Accepted: 06/10/2010] [Indexed: 12/21/2022] Open
Abstract
In the present study it is shown that poloxamer 188, added before or immediately after an electrical pulse used for electroporation, decreases the number of dead cells and at the same time does not reduce the number of reversible electropores through which small molecules (cisplatin, bleomycin, or propidium iodide) can pass/diffuse. It was suggested that hydrophobic sections of poloxamer 188 molecules are incorporated into the edges of pores and that their hydrophilic parts act as brushy pore structures. The formation of brushy pores may reduce the expansion of pores and delay the irreversible electropermeability. Tumors were implanted subcutaneously in both flanks of nude mice using HeLa cells, transfected with genes for red fluorescent protein and luciferase. The volume of tumors stopped to grow after electrochemotherapy and the use of poloxamer 188 reduced the edema near the electrode and around the subcutaneously growing tumors.
Collapse
Affiliation(s)
- Iana Tsoneva
- Institute of Biophysics, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | | | | | | | |
Collapse
|
43
|
Cho Y, Shi R, Borgens RB. Chitosan produces potent neuroprotection and physiological recovery following traumatic spinal cord injury. ACTA ACUST UNITED AC 2010; 213:1513-20. [PMID: 20400636 DOI: 10.1242/jeb.035162] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chitosan, a non-toxic biodegradable polycationic polymer with low immunogenicity, has been extensively investigated in various biomedical applications. In this work, chitosan has been demonstrated to seal compromised nerve cell membranes thus serving as a potent neuroprotector following acute spinal cord trauma. Topical application of chitosan after complete transection or compression of the guinea pig spinal cord facilitated sealing of neuronal membranes in ex vivo tests, and restored the conduction of nerve impulses through the length of spinal cords in vivo, using somatosensory evoked potential recordings. Moreover, chitosan preferentially targeted damaged tissues, served as a suppressor of reactive oxygen species (free radical) generation, and the resultant lipid peroxidation of membranes, as shown in ex vivo spinal cord samples. These findings suggest a novel medical approach to reduce the catastrophic loss of behavior after acute spinal cord and brain injury.
Collapse
Affiliation(s)
- Youngnam Cho
- Center for Paralysis Research, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
44
|
Poloxamer 188 protects against ischemia-reperfusion injury in a murine hind-limb model. Plast Reconstr Surg 2010; 125:1651-1660. [PMID: 20517088 DOI: 10.1097/prs.0b013e3181ccdbef] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury can activate pathways generating reactive oxygen species, which can injure cells by creating holes in the cell membranes. Copolymer surfactants such as poloxamer 188 are capable of sealing defects in cell membranes. The authors postulated that a single-dose administration of poloxamer 188 would decrease skeletal myocyte injury and mortality following ischemia-reperfusion injury. METHODS Mice underwent normothermic hind-limb ischemia for 2 hours. Animals were treated with 150 microl of poloxamer 188 or dextran at three time points: (1) 10 minutes before ischemia; (2) 10 minutes before reperfusion; and (3) 2 or 4 hours after reperfusion. After 24 hours of reperfusion, tissues were analyzed for myocyte injury (histology) and metabolic dysfunction (muscle adenosine 5'-triphosphate). Additional groups of mice were followed for 7 days to assess mortality. RESULTS When poloxamer 188 treatment was administered 10 minutes before ischemia, injury was reduced by 84 percent, from 50 percent injury in the dextran group to 8 percent injury in the poloxamer 188 group (p < 0.001). When administered 10 minutes before reperfusion, poloxamer 188 animals demonstrated a 60 percent reduction in injury compared with dextran controls (12 percent versus 29 percent). Treatment at 2 hours, but not at 4 hours, postinjury prevented substantial myocyte injury. Preservation of muscle adenosine 5'-triphosphate paralleled the decrease in myocyte injury in poloxamer 188-treated animals. Poloxamer 188 treatment significantly reduced mortality following injury (10 minutes before, 75 percent versus 25 percent survival, p = 0.0077; 2 hours after, 50 percent versus 8 percent survival, p = 0.032). CONCLUSION Poloxamer 188 administered to animals decreased myocyte injury, preserved tissue adenosine 5'-triphosphate levels, and improved survival following hind-limb ischemia-reperfusion injury.
Collapse
|
45
|
Cho Y, Shi R, Ben Borgens R. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury. J Biol Eng 2010; 4:2. [PMID: 20205817 PMCID: PMC2824642 DOI: 10.1186/1754-1611-4-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 01/29/2010] [Indexed: 12/28/2022] Open
Abstract
Background The highly reactive aldehyde acrolein is a very potent endogenous toxin with a long half-life. Acrolein is produced within cells after insult, and is a central player in slow and progressive "secondary injury" cascades. Indeed, acrolein-biomolecule complexes formed by cross-linking with proteins and DNA are associated with a number of pathologies, especially central nervous system (CNS) trauma and neurodegenerative diseases. Hydralazine is capable of inhibiting or reducing acrolein-induced damage. However, since hydralazine's principle activity is to reduce blood pressure as a common anti-hypertension drug, the possible problems encountered when applied to hypotensive trauma victims have led us to explore alternative approaches. This study aims to evaluate such an alternative - a chitosan nanoparticle-based therapeutic system. Results Hydralazine-loaded chitosan nanoparticles were prepared using different types of polyanions and characterized for particle size, morphology, zeta potential value, and the efficiency of hydralazine entrapment and release. Hydralazine-loaded chitosan nanoparticles ranged in size from 300 nm to 350 nm in diameter, and with a tunable, or adjustable, surface charge. Conclusions We evaluated the utility of chitosan nanoparticles with an in-vitro model of acrolein-mediated cell injury using PC -12 cells. The particles effectively, and statistically, reduced damage to membrane integrity, secondary oxidative stress, and lipid peroxidation. This study suggests that a chitosan nanoparticle-based therapy to interfere with "secondary" injury may be possible.
Collapse
Affiliation(s)
- Youngnam Cho
- Center for Paralysis Research, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Riyi Shi
- Center for Paralysis Research, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Richard Ben Borgens
- Center for Paralysis Research, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
46
|
Nandni D, Vohra KK, Mahajan RK. Study of micellar and phase separation behavior of mixed systems of triblock polymers. J Colloid Interface Sci 2009; 338:420-7. [DOI: 10.1016/j.jcis.2009.06.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 11/30/2022]
|
47
|
Roach KL, King KR, Uygun K, Hand SC, Kohane IS, Yarmush ML, Toner M. High-throughput single cell arrays as a novel tool in biopreservation. Cryobiology 2009; 58:315-21. [PMID: 19303403 PMCID: PMC2717893 DOI: 10.1016/j.cryobiol.2009.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 01/13/2009] [Accepted: 03/10/2009] [Indexed: 11/16/2022]
Abstract
Microwell array cytometry is a novel high-throughput experimental technique that makes it possible to correlate pre-stress cell phenotypes and post-stress outcomes with single cell resolution. Because the cells are seeded in a high density grid of cell-sized microwells, thousands of individual cells can be tracked and imaged through manipulations as extreme as freezing or drying. Unlike flow cytometry, measurements can be made at multiple time points for the same set of cells. Unlike conventional image cytometry, image analysis is greatly simplified by arranging the cells in a spatially defined pattern and physically separating them from one another. To demonstrate the utility of microwell array cytometry in the field of biopreservation, we have used it to investigate the role of mitochondrial membrane potential in the cryopreservation of primary hepatocytes. Even with optimized cryopreservation protocols, the stress of freezing almost always leads to dysfunction or death in part of the cell population. To a large extent, cell fate is dominated by the stochastic nature of ice crystal nucleation, membrane rupture, and other biophysical processes, but natural variation in the initial cell population almost certainly plays an important and under-studied role. Understanding why some cells in a population are more likely to survive preservation will be invaluable for the development of new approaches to improve preservation yields. For this paper, primary hepatocytes were seeded in microwell array devices, imaged using the mitochondrial dyes Rh123 or JC-1, cryopreserved for up to a week, rapidly thawed, and checked for viability after a short recovery period. Cells with a high mitochondrial membrane potential before freezing were significantly less likely to survive the freezing process, though the difference in short term viability was fairly small. The results demonstrate that intrinsic cell factors do play an important role in cryopreservation survival, even in the short term where extrinsic biophysical factors would be expected to dominate. We believe that microwell array cytometry will be an important tool for a wide range of studies in biopreservation and stress biology.
Collapse
Affiliation(s)
- Kenneth L. Roach
- Center for Engineering in Medicine, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Kevin R. King
- Center for Engineering in Medicine, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Steven C. Hand
- Division of Cellular, Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Isaac S. Kohane
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Informatics Program, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, USA
| | - Martin L. Yarmush
- Center for Engineering in Medicine, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Mehmet Toner
- Center for Engineering in Medicine, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
48
|
Abstract
Burn injury leads to a direct damaging effect on cells, disrupting the assembly of the cell and denaturing proteins. Although modern medicine has significantly improved the survival of burn victims, a method to treat injury at the cellular level is presented. In particular, the cell membrane is most vulnerable to heat injury. Copolymer surfactants have been shown to repair the cell membrane, and agents such as poloxamer 188 have demonstrated this effect in numerous studies. Furthermore, copolymer surfactants have been shown to act as molecular chaperones, allowing denatured proteins to regain their native confirmation. Pharmaceutical agents may be developed to repair the cell membrane and refold proteins, mimicking endogenous repair mechanisms and salvaging cells that would otherwise be lost.
Collapse
|
49
|
Wilmink GJ, Opalenik SR, Beckham JT, Abraham AA, Nanney LB, Mahadevan-Jansen A, Davidson JM, Jansen ED. Molecular imaging-assisted optimization of hsp70 expression during laser-induced thermal preconditioning for wound repair enhancement. J Invest Dermatol 2008; 129:205-16. [PMID: 18580963 DOI: 10.1038/jid.2008.175] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patients at risk for impaired healing may benefit from prophylactic measures aimed at improving wound repair. Several photonic devices claim to enhance repair by thermal and photochemical mechanisms. We hypothesized that laser-induced thermal preconditioning would enhance surgical wound healing that was correlated with hsp70 expression. Using a pulsed diode laser (lambda=1.85 microm, tau(p)=2 ms, 50 Hz, H=7.64 mJ cm(-2)), the skin of transgenic mice that contain an hsp70 promoter-driven luciferase was preconditioned 12 hours before surgical incisions were made. Laser protocols were optimized in vitro and in vivo using temperature, blood flow, and hsp70-mediated bioluminescence measurements as benchmarks. Biomechanical properties and histological parameters of wound healing were evaluated for up to 14 days. Bioluminescent imaging studies indicated that an optimized laser protocol increased hsp70 expression by 10-fold. Under these conditions, laser-preconditioned incisions were two times stronger than control wounds. Our data suggest that this molecular imaging approach provides a quantitative method for optimization of tissue preconditioning and that mild laser-induced heat shock may be a useful therapeutic intervention prior to surgery.
Collapse
Affiliation(s)
- Gerald J Wilmink
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ng R, Metzger JM, Claflin DR, Faulkner JA. Poloxamer 188 reduces the contraction-induced force decline in lumbrical muscles from mdx mice. Am J Physiol Cell Physiol 2008; 295:C146-50. [PMID: 18495816 DOI: 10.1152/ajpcell.00017.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Duchenne Muscular Dystrophy is a genetic disease caused by the lack of the protein dystrophin. Dystrophic muscles are highly susceptible to contraction-induced injury, and following contractile activity, have disrupted plasma membranes that allow leakage of calcium ions into muscle fibers. Because of the direct relationship between increased intracellular calcium concentration and muscle dysfunction, therapeutic outcomes may be achieved through the identification and restriction of calcium influx pathways. Our purpose was to determine the contribution of sarcolemmal lesions to the force deficits caused by contraction-induced injury in dystrophic skeletal muscles. Using isolated lumbrical muscles from dystrophic (mdx) mice, we demonstrate for the first time that poloxamer 188 (P188), a membrane-sealing poloxamer, is effective in reducing the force deficit in a whole mdx skeletal muscle. A reduction in force deficit was also observed in mdx muscles that were exposed to a calcium-free environment. These results, coupled with previous observations of calcium entry into mdx muscle fibers during a similar contraction protocol, support the interpretation that extracellular calcium enters through sarcolemmal lesions and contributes to the force deficit observed in mdx muscles. The results provide a basis for potential therapeutic strategies directed at membrane stabilization of dystrophin-deficient skeletal muscle fibers.
Collapse
Affiliation(s)
- Rainer Ng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | |
Collapse
|