1
|
Huang C, Liu Y, Beenken A, Jiang L, Gao X, Huang Z, Hsu A, Gross GJ, Wang YG, Mohammadi M, Schultz JEJ. A novel fibroblast growth factor-1 ligand with reduced heparin binding protects the heart against ischemia-reperfusion injury in the presence of heparin co-administration. Cardiovasc Res 2017; 113:1585-1602. [PMID: 29016740 PMCID: PMC5852627 DOI: 10.1093/cvr/cvx165] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/20/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
AIMS Fibroblast growth factor 1 (FGF1), a heparin/heparan sulfate-binding growth factor, is a potent cardioprotective agent against myocardial infarction (MI). The impact of heparin, the standard of care for MI patients entering the emergency room, on cardioprotective effects of FGF1 is unknown, however. METHODS AND RESULTS To address this, a rat model of MI was employed to compare cardioprotective potentials (lower infarct size and improve post-ischemic function) of native FGF1 and an engineered FGF1 (FGF1ΔHBS) with reduced heparin-binding affinity when given at the onset of reperfusion in the absence or presence of heparin. FGF1 and FGF1ΔHBS did not alter heparin's anticoagulant properties. Treatment with heparin alone or native FGF1 significantly reduced infarct size compared to saline (P < 0.05). Surprisingly, treatment with FGF1ΔHBS markedly lowered infarct size compared to FGF1 (P < 0.05). Both native and modified FGF1 restored contractile and relaxation function (P < 0.05 versus saline or heparin). Furthermore, FGF1ΔHBS had greater improvement in cardiac function compared to FGF1 (P < 0.05). Heparin negatively impacted the cardioprotective effects (infarct size, post-ischemic recovery of function) of FGF1 (P < 0.05) but not of FGF1ΔHBS. Heparin also reduced the biodistribution of FGF1, but not FGF1ΔHBS, to the left ventricle. FGF1 and FGF1ΔHBS bound and triggered FGFR1-induced downstream activation of ERK1/2 (P < 0.05); yet, heparin co-treatment decreased FGF1-produced ERK1/2 activation, but not that activated by FGF1ΔHBS. CONCLUSION These findings demonstrate that modification of the heparin-binding region of FGF1 significantly improves the cardioprotective efficacy, even in the presence of heparin, identifying a novel FGF ligand available for therapeutic use in ischemic heart disease.
Collapse
Affiliation(s)
- Chahua Huang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Cardiology, Second Affiliated Hospital, Nanchang University, Nanchang 330006, China
| | - Yang Liu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Andrew Beenken
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Lin Jiang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiang Gao
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhifeng Huang
- School of Pharmacy and Center for Structural Biology, Wenzhou Medical University, Zhejiang 325035, China
| | - Anna Hsu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Garrett J. Gross
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yi-Gang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Moosa Mohammadi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Jo El J. Schultz
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
2
|
Wu ZS, Liu CF, Fu B, Chou RH, Yu C. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity. Biochem Biophys Res Commun 2016; 477:861-867. [PMID: 27387234 DOI: 10.1016/j.bbrc.2016.06.149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/28/2016] [Indexed: 01/07/2023]
Abstract
The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs.
Collapse
Affiliation(s)
- Zong-Sian Wu
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Che Fu Liu
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Brian Fu
- Northwood High School, Irvine, CA, USA.
| | - Ruey-Hwang Chou
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; Department of Biotechnology, Asia University, Taiwan.
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| |
Collapse
|
3
|
Chen G, Hua Y, Ou C, Zhang X, Mao D, Yang Z, Ding D, Chen M. Nanostructure formation-induced fluorescence turn-on for selectively detecting protein thiols in solutions, bacteria and live cells. Chem Commun (Camb) 2015; 51:10758-61. [PMID: 26051694 DOI: 10.1039/c5cc01349f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the design and synthesis of a light-up probe of DBT-2(EEGK-maleimide), which can serve as a unique probe for selectively detecting protein thiols in various environments, including aqueous solutions, bacteria and live cells.
Collapse
Affiliation(s)
- Guoqin Chen
- Cardiovascular Medicine Department of Guangzhou Panyu Central Hospital, 8 Fuyudonglu Qiaonanjie Panyu District, Guangzhou, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Yuan Y, Wang X, Mei B, Zhang D, Tang A, An L, He X, Jiang J, Liang G. Labeling thiols on proteins, living cells, and tissues with enhanced emission induced by FRET. Sci Rep 2013; 3:3523. [PMID: 24343586 PMCID: PMC3865488 DOI: 10.1038/srep03523] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/29/2013] [Indexed: 11/24/2022] Open
Abstract
Using N-(2-Aminoethyl)maleimide-cysteine(StBu) (Mal-Cys) as a medium, protein thiols were converted into N-terminal cysteines. After a biocompatible condensation reaction between the N-terminal cysteine and fluorescent probe 2-cyanobenzothiazole-Gly-Gly-Gly-fluorescein isothiocyanate (CBT-GGG-FITC), a new fluorogenic structure Luciferin-GGG-FITC was obtained. The latter exhibits near one order of magnitude (7 folds) enhanced fluorescence emission compared to the precursor moiety due to fluorescence resonance energy transfer (FRET) effect between the newly formed luciferin structure and the FITC motif. Theoretical investigations revealed the underlying mechanism that satisfactorily explained the experimental results. With this method, enhanced fluorescence imaging of thiols on proteins, outer membranes of living cells, translocation of membrane proteins, and endothelial cell layers of small arteries was successfully achieved.
Collapse
Affiliation(s)
- Yue Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xijun Wang
- Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Bin Mei
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Dongxin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Anming Tang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Linna An
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jun Jiang
- 1] Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China [2] Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Normal College, Guiyang 550018, China
| | - Gaolin Liang
- 1] CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China [2] State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
5
|
Sokic S, Papavasiliou G. FGF-1 and proteolytically mediated cleavage site presentation influence three-dimensional fibroblast invasion in biomimetic PEGDA hydrogels. Acta Biomater 2012; 8:2213-22. [PMID: 22426138 PMCID: PMC3348386 DOI: 10.1016/j.actbio.2012.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/30/2012] [Accepted: 03/07/2012] [Indexed: 01/25/2023]
Abstract
Controlled scaffold degradation is a critical design criterion for the clinical success of tissue-engineered constructs. Here, we exploited a biomimetic poly(ethylene glycol) diacrylate (PEGDA) hydrogel system immobilized with tethered YRGDS as the cell adhesion ligand and with either single (SSite) or multiple (MSite) collagenase-sensitive domains between crosslinks, to systematically study the effect of proteolytic cleavage site presentation on hydrogel degradation rate and three-dimensional (3-D) fibroblast invasion in vitro. Through the incorporation of multiple collagenase-sensitive domains between cross-links, hydrogel degradation rate was controlled and enhanced independent of alterations in compressive modulus. As compared to SSite hydrogels, MSite hydrogels resulted in increased 3-D fibroblast invasion in vitro, which occurred over a wider range of compressive moduli. Furthermore, encapsulated soluble acidic fibroblast growth factor (FGF-1), a potent mitogen during processes such as vascularization and wound healing, was incorporated into SSite and MSite PEGDA scaffolds to determine its in vitro potential on fibroblast cell invasion. Hydrogels containing soluble FGF-1 significantly enhanced 3-D fibroblast invasion in a dose-dependent manner within the different types of PEG matrices investigated over a period of 15 days. The methodology presented provides flexibility in designing PEG scaffolds with desired mechanical properties, but with increased susceptibility to proteolytically mediated degradation. These results indicate that effective tuning of initial matrix stiffness and hydrogel degradation kinetics plays a critical role in effectively designing PEG scaffolds that promote controlled 3-D cellular behavior and in situ tissue regeneration.
Collapse
Affiliation(s)
- Sonja Sokic
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Georgia Papavasiliou
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
6
|
Pang Y, Wang X, Ucuzian AA, Brey EM, Burgess WH, Jones KJ, Alexander TD, Greisler HP. Local delivery of a collagen-binding FGF-1 chimera to smooth muscle cells in collagen scaffolds for vascular tissue engineering. Biomaterials 2009; 31:878-85. [PMID: 19853908 DOI: 10.1016/j.biomaterials.2009.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/02/2009] [Indexed: 11/17/2022]
Abstract
We investigated the delivery of R136K-CBD (a collagen-binding mutant chimera of fibroblast growth factor-1) with a type I collagen scaffold as the delivery vehicle to smooth muscle cells (SMCs) for vascular tissue engineering. The binding affinity of R136K-CBD to 3-D collagen scaffolds was investigated both in the presence and absence of cells and/or salts. 2-D and 3-D visualization of delivery of R136K-CBD into SMCs were accomplished by combined fluorescent and reflection confocal microscopy. The mitogenic effect of collagen-immobilized R136K-CBD on SMCs in 3-D collagen was studied by Cyquant assay at different time intervals. In the group devoid of salt and cells, no detectable release of R136K-CBD into overlying culture media was found, compared with burst-and-continuous release of R136K and FGF-1 over a 14-day period in all other groups. The release rate of R136K-CBD was 1.7 and 1.6-fold less than R-136K and FGF-1 when media was supplemented with 2m salt (P<0.0001), and 2.6 and 2.5-fold less in cell-populated collagen hydrogels (P<0.0001), respectively. R136K-CBD showed essentially uniform binding to collagen and its distribution was dependent on that of the collagen scaffold. Internalization of R136K-CBD into SMCs was documented by confocal microscopy. 3-D local delivery of collagen-immobilized R136K-CBD increased the proliferation of SMCs in the collagen matrix to significantly greater levels and for a significantly greater duration than R136K or FGF-1, with 2.0 and 2.1-fold more mitogenicity than R136K and FGF-1 respectively (P<0.0001) at day 7. The results suggest that our collagen-binding fusion protein is an effective strategy for growth factor delivery for vascular tissue engineering.
Collapse
MESH Headings
- Animals
- Biocompatible Materials/chemistry
- Biomimetic Materials/chemistry
- Blood Vessels/growth & development
- Cell Culture Techniques/methods
- Cells, Cultured
- Collagen/chemistry
- Crystallization/methods
- Dogs
- Drug Carriers/chemistry
- Fibroblast Growth Factor 1/administration & dosage
- Fibroblast Growth Factor 1/chemistry
- Materials Testing
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Particle Size
- Surface Properties
- Tissue Engineering/methods
Collapse
Affiliation(s)
- Yonggang Pang
- Department of Surgery, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Neovascularization can be categorized into two general processes: vasculogenesis and angiogenesis. Angiogenesis is the formation of new capillaries from pre-existing vessels, requiring growth factor driven recruitment, migration, proliferation, and differentiation of endothelial cells (ECs). Complex cell-cell and cell-extracellular matrix (ECM) interactions contribute to this process, leading finally to a network of tube-like formations of endothelial cells supported by surrounding mural cells. The study of angiogenesis has broad clinical implications in the fields of peripheral and coronary vascular disease, oncology, hematology, wound healing, dermatology, and ophthalmology, among others. As such, novel, clinically relevant models of angiogenesis in vitro are crucial to the understanding of angiogenic processes. We highlight some of the advances made in the development of these models, and discuss the importance of incorporating the three-dimensional cell-matrix and EC-mural cell interactions into these in vitro assays of angiogenesis. This review also discusses our own 3-D angiogenesis assay and some of the in vitro results from our lab as they relate to therapeutic neovascularization and tissue engineering of vascular grafts.
Collapse
Affiliation(s)
- Areck A Ucuzian
- Department of Surgery, Loyola University Medical Center, 2160 South First Ave, Maywood, Illinois 60153, USA
| | | |
Collapse
|
8
|
Brewster L, Brey E, Greisler H. Cardiovascular gene delivery: The good road is awaiting. Adv Drug Deliv Rev 2006; 58:604-29. [PMID: 16769148 PMCID: PMC3337725 DOI: 10.1016/j.addr.2006.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 03/24/2006] [Indexed: 01/13/2023]
Abstract
Atherosclerotic cardiovascular disease is a leading cause of death worldwide. Despite recent improvements in medical, operative, and endovascular treatments, the number of interventions performed annually continues to increase. Unfortunately, the durability of these interventions is limited acutely by thrombotic complications and later by myointimal hyperplasia followed by progression of atherosclerotic disease over time. Despite improving medical management of patients with atherosclerotic disease, these complications appear to be persisting. Cardiovascular gene therapy has the potential to make significant clinical inroads to limit these complications. This article will review the technical aspects of cardiovascular gene therapy; its application for promoting a functional endothelium, smooth muscle cell growth inhibition, therapeutic angiogenesis, tissue engineered vascular conduits, and discuss the current status of various applicable clinical trials.
Collapse
Affiliation(s)
- L.P. Brewster
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - E.M. Brey
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
- Research and Surgical Services, Edward J. Hines Jr. V.A. Hospital, Hines, IL, 60141, USA
| | - H.P. Greisler
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, Maywood, IL, 60153, USA
- Research and Surgical Services, Edward J. Hines Jr. V.A. Hospital, Hines, IL, 60141, USA
- Corresponding author. Loyola University Medical Center, Department of Surgery, 2160 South First Avenue, Maywood, IL, 60153, USA. Tel.: +1 708 216 8541; fax: +1 708 216 6300. (H.P. Greisler)
| |
Collapse
|
9
|
Brey EM, Uriel S, Greisler HP, McIntire LV. Therapeutic neovascularization: contributions from bioengineering. ACTA ACUST UNITED AC 2005; 11:567-84. [PMID: 15869435 DOI: 10.1089/ten.2005.11.567] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A number of pathological entities and surgical interventions could benefit from therapeutic stimulation of new blood vessel formation. Although strategies designed for promoting neovascularization have shown promise in preclinical models, translation to human application has met with limited success when angiogenesis is used as the single therapeutic mechanism. While clinical protocols continue to be optimized, a number of exciting new approaches are being developed. Bioengineering has played an important role in the progress of many of these innovative new strategies. In this review, we present a general outline of therapeutic neovascularization, with an emphasis on investigations using engineering principles to address this vexing clinical problem. In addition, we identify some limitations and suggest areas for future research.
Collapse
Affiliation(s)
- Eric M Brey
- Pritzker Institute of Biomedical Science and Engineering, Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, 60616, USA.
| | | | | | | |
Collapse
|
10
|
Bagnasco P, MacMillan-Crow LA, Greendorfer JS, Young CJ, Andrews L, Thompson JA. Peroxynitrite modulates acidic fibroblast growth factor (FGF-1) activity. Arch Biochem Biophys 2003; 419:178-89. [PMID: 14592461 DOI: 10.1016/j.abb.2003.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To establish peroxynitrite (ONOO(-)) as a mediator of acidic fibroblast growth factor (FGF-1) function, preparations of recombinant human FGF-1 were treated with the pro-oxidant in vitro and identified amino acid modifications were correlated with biologic activity. The sequence of FGF-1 amino acid modifications induced by increasing concentrations of ONOO(-) was from cysteine oxidation to dityrosine formation, and to tyrosine/tryptophan nitration. Low steady-state ONOO(-) concentrations (10-50 microM) induced formation of dityrosine, which involved less than 0.1% of the total tyrosines. Treatment of FGF-1 with ONOO(-) induced a dose-dependent (10-50 microM) loss of sulfhydryl groups that correlated with formation of reducible (dithiothreitol, arsenite) FGF-1 aggregates containing 50% latent biologic activity. Treatment with 0.1-0.5mM ONOO(-) induced increasing formation of non-reducible, inactivated FGF-1 structures. Combination of real-time spectral analysis and electrospray mass spectroscopy revealed that six residues (Y29, Y69, Y108, Y111, Y139, and W121) were nitrated by ONOO(-). ONOO(-) treatment (0.1mM) of an active FGF-1 mutant (cysteines converted to serines) induced dose-dependent, non-reversible inhibition of biologic activity that correlated with nitration of Y108 and Y111, both of which reside within a conserved domain encompassing the putative FGF-1 receptor binding site. Collectively, these observations predict a role for low levels of ONOO(-) during secretion of FGF-1 as an extracellular complex containing latent biologic activity. High steady-state levels of ONOO(-) may induce extensive cysteine oxidation, critical tyrosine nitration, and non-reversible inactivation of FGF-1, a potential inhibitory feedback mechanism restoring cellular homeostatis during the resolution of inflammation and repair.
Collapse
Affiliation(s)
- Patricia Bagnasco
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
11
|
Erzurum VZ, Bian JF, Husak VA, Ellinger J, Xue L, Burgess WH, Greisler HP. R136K fibroblast growth factor-1 mutant induces heparin-independent migration of endothelial cells through fibrin glue. J Vasc Surg 2003; 37:1075-81. [PMID: 12756357 DOI: 10.1067/mva.2003.177] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES R136K is a mutation of fibroblast growth factor-1 (FGF-1) in which arginine replaces lysine at the primary thrombin cleavage site. This may be important in vivo in inducing endothelial cell (EC) migration and coverage of arterial injury sites by allowing R136K to be used in a fibrin glue delivery system, without thrombin-induced degradation, in the absence of heparin. The objectives of this study were to determine whether R136K, with and without heparin, can induce migration of EC and smooth muscle cells (SMC) through fibrin glue, and to compare these results with those of wild-type FGF-1; and to determine the resistance of R136K to thrombin-induced degradation versus FGF-1. METHODS The dose-response migration through fibrin glue induced by wild-type FGF-1 and the R136K mutant in the presence and absence of heparin was tested with EC and SMC. Migration was tested with 50, 100, and 200 ng/mL of both FGF-1 and R136K, either with or without 5 U/mL of heparin. Migration of EC was also assessed after growth inhibition with mitomycin C. A novel modified Boyden chamber-type migration assay using fibrin glue on the upper surface of the chamber filter was used to test migration. The fluorescent marker calcein was used to identify those cells that had migrated through the fibrin glue and were embedded in the filter. Molecular degradation by thrombin was assessed with sodium dodecylsulfate polyacrylamide gel electrophoresis. RESULTS For EC, R136K in the absence of heparin induced significantly more migration than did FGF-1 at 50 (P <.002), 100 (P <.0001), and 200 (P <.0001) ng/mL. In the presence of heparin, a chemotactic response of EC to cytokine was seen at all doses, with no significant difference between FGF-1 and R136K. A dose-dependent difference was noted in this group between the 100 and 200 ng/mL concentrations of cytokine (for FGF-1, P <.0001; for R136K, P <.0001). SMC showed no difference in migration with FGF-1, R136K, or negative control at any dose in the presence or absence of heparin. Gel electrophoresis demonstrated that R136K was more resistant to thrombin degradation than was FGF-1. CONCLUSION Site-directed mutagenesis of FGF-1 to R136K enables induction of heparin-independent migration of EC through fibrin glue at an optimal concentration of 100 ng/mL. Neither FGF-1 nor R136K elicits SMC migration through fibrin glue. The ability of R136K to induce EC migration through fibrin glue in the absence of heparin may prove useful in vivo by inducing EC migration and coverage of arterial injury sites, thus potentially reducing thrombogenicity and intimal hyperplasia.
Collapse
|
12
|
Arunkumar AI, Kumar TKS, Kathir KM, Srisailam S, Wang HM, Leena PST, Chi YH, Chen HC, Wu CH, Wu RT, Chang GG, Chiu IM, Yu C. Oligomerization of acidic fibroblast growth factor is not a prerequisite for its cell proliferation activity. Protein Sci 2002; 11:1050-61. [PMID: 11967362 PMCID: PMC2373565 DOI: 10.1110/ps.2270102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2001] [Revised: 01/23/2002] [Accepted: 01/29/2002] [Indexed: 10/14/2022]
Abstract
Oligomerization of fibroblast growth factors (FGFs) induced on binding to heparin or heparan sulfate proteoglycan is considered to be crucial for receptor activation and initiation of biological responses. To gain insight into the mechanism of activation of the receptor by FGFs, in the present study we investigate the effect(s) of interaction of a heparin analog, sucrose octasulfate (SOS), on the structure, stability, and biological activities of a recombinant acidic FGF from Notophthalmus viridescens (nFGF-1). SOS is found to bind to nFGF-1 and significantly increase the thermodynamic stability of the protein. Using a variety of techniques such as size-exclusion chromatography, sedimentation velocity, and multidimensional nuclear magnetic resonance (NMR) spectroscopy, it is shown that binding of SOS to nFGF-1 retains the protein in its monomeric state. In its monomeric state (complexed to SOS), n-FGF-1 shows significant cell proliferation activity. (15)N and (1)H chemical shift perturbation and the intermolecular nuclear Overhauser effects (NOEs) between SOS and nFGF-1 reveal that the ligand binds to the dense, positively charged cluster located in the groove enclosed by beta-strands 10 and 11. In addition, molecular modeling based on the NOEs observed for the SOS-nFGF-1 complex, indicates that SOS and heparin share a common binding site on the protein. In conclusion, the results of the present study clearly show that heparin-induced oligomerization of nFGF-1 is not mandatory for its cell proliferation activity.
Collapse
|
13
|
Xue L, Tassiopoulos AK, Woloson SK, Stanton DL, Ms CS, Hampton B, Burgess WH, Greisler HP. Construction and biological characterization of an HB-GAM/FGF-1 chimera for vascular tissue engineering. J Vasc Surg 2001; 33:554-60. [PMID: 11241127 DOI: 10.1067/mva.2001.112229] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Cardiovascular tissue engineering approaches to vessel wall restoration have focused on the potent but relatively nonspecific and heparin-dependent mesenchymal cell mitogen fibroblast growth factor 1 (FGF-1). We hypothesized that linking FGF-1 to a sequence likely to bind to cell surface receptors relatively more abundant on endothelial cells (ECs) might induce a relative greater EC bioavailability of the FGF-1. We constructed a heparin-binding growth-associated molecule (HB-GAM)/FGF-1 chimera by linking full-length human HB-GAM to the amino-terminus of human FGF-1beta (21-154) and tested its activities on smooth muscle cells (SMCs) and ECs. METHODS Primary canine carotid SMCs and jugular vein ECs were plated in 96-well plates in media containing 10% fetal bovine serum and grown to approximately 80% confluence. After being growth arrested in serum-free media for 24 hours, the cells were exposed to concentration ranges of cytokines and heparin, and proliferation was measured with tritiated-thymidine incorporation. Twenty percent fetal bovine serum was used as positive control, and phosphate-buffered saline was used as negative control. RESULTS In the presence of heparin the HB-GAM/FGF-1 chimera stimulated less SMC proliferation than did the wild-type FGF-1 with a median effective dose of approximately 0.3 nmol versus approximately 0.1 nmol (P <.001). By contrast, the chimera retained full stimulating activity on EC proliferation with a median effective dose of 0.06 nmol for both cytokines. Unlike the wild-type protein, the chimera possessed heparin-independent activity. In the absence of heparin, the chimera induced dose-dependent EC and SMC proliferation at 0.06 nmol or more compared with the wild-type FGF-1, which stimulated minimal DNA synthesis at 6.0-nmol concentrations. CONCLUSIONS The HB-GAM/FGF-1 chimera displays significantly greater and uniquely heparin-independent mitogenic activity for both cell types, and in the presence of heparin it displays a significantly greater EC specificity.
Collapse
Affiliation(s)
- L Xue
- Department of Surgery, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | |
Collapse
|