1
|
Li Y, Wang X, Wu Q, Liu F, Yang L, Gong B, Zhang K, Ma Y, Li Y. miR-152-3p Represses the Proliferation of the Thymic Epithelial Cells by Targeting Smad2. Genes (Basel) 2022; 13:genes13040576. [PMID: 35456382 PMCID: PMC9028272 DOI: 10.3390/genes13040576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) control the proliferation of thymic epithelial cells (TECs) for thymic involution. Previous studies have shown that expression levels of miR-152-3p were significantly increased in the thymus and TECs during the involution of the mouse thymus. However, the possible function and potential molecular mechanism of miR-152-3p remains unclear. This study identified that the overexpression of miR-152-3p can inhibit, while the inhibition of miR-152-3p can promote, the proliferation of murine medullary thymic epithelial cell line 1 (MTEC1) cells. Moreover, miR-152-3p expression was quantitatively analyzed to negatively regulate Smad2, and the Smad2 gene was found to be a direct target of miR-152-3p, using the luciferase reporter assay. Importantly, silencing Smad2 was found to block the G1 phase of cells and inhibit the cell cycle, which was consistent with the overexpression of miR-152-3p. Furthermore, co-transfection studies of siRNA–Smad2 (siSmad2) and the miR-152-3p mimic further established that miR-152-3p inhibited the proliferation of MTEC1 cells by targeting Smad2 and reducing the expression of Smad2. Taken together, this study proved miR-152-3p to be an important molecule that regulates the proliferation of TECs and therefore provides a new reference for delaying thymus involution and thymus regeneration.
Collapse
|
2
|
Bao Z, Zhao B, Hu S, Yang N, Liu M, Li J, Liang S, Zhou T, Chen Y, Wu X. Characterization and functional analysis of SMAD2 regulation in hair follicle cycle in Angora rabbits. Gene 2020; 770:145339. [PMID: 33333220 DOI: 10.1016/j.gene.2020.145339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 11/26/2022]
Abstract
Hair follicle (HF) development is characterized by periodic growth cycles regulated by numerous factors. We previously showed that SMAD2 might be involved in the HF growth cycle in Angora rabbits. However, its extra role in the HF growth and development remains obscure. In this study, we cloned the complete coding sequence (CDS) of the Angora rabbit SMAD2 gene. Within SMAD2 CDS, we identified the open reading frame (ORF) had a length of 1314 bp and encoding 437 amino acids. Bioinformatics analyses revealed that the SMAD2 protein is unstable and hydrophilic, and predominatelylocalizesin the cell nucleus. We identified that SMAD2 expression was elevated in the telogen phase of the during HF cycle. The knockdown and overexpression of SMAD2 could regulate HF growth and development related genes, such as WNT2, FGF2, and LEF1.Furthermore, SMAD2 may upregulate TGF-β signaling pathway-related genes, including TFDP1, E2F4, and RBL1. In conclusion, our results indicate that SMAD2 plays a vital role in HF development by regulating the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, 48 South University Ave., Yangzhou, Jiangsu 225009, PR China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, 48 South University Ave., Yangzhou, Jiangsu 225009, PR China
| | - Shuaishuai Hu
- College of Animal Science and Technology, Yangzhou University, 48 South University Ave., Yangzhou, Jiangsu 225009, PR China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, 48 South University Ave., Yangzhou, Jiangsu 225009, PR China
| | - Ming Liu
- College of Animal Science and Technology, Yangzhou University, 48 South University Ave., Yangzhou, Jiangsu 225009, PR China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, 48 South University Ave., Yangzhou, Jiangsu 225009, PR China
| | - Shuang Liang
- College of Animal Science and Technology, Yangzhou University, 48 South University Ave., Yangzhou, Jiangsu 225009, PR China
| | - Tong Zhou
- College of Animal Science and Technology, Yangzhou University, 48 South University Ave., Yangzhou, Jiangsu 225009, PR China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, 48 South University Ave., Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, PR China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, 48 South University Ave., Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, PR China
| |
Collapse
|
3
|
Hu LF, Feng J, Dai X, Sun Y, Xiong M, Lai L, Zhong S, Yi C, Chen G, Li H, Yang Q, Kuang Q, Long T, Zhan J, Tang T, Ge C, Tan J, Xu M. Oral flavonoid fisetin treatment protects against prolonged high-fat-diet-induced cardiac dysfunction by regulation of multicombined signaling. J Nutr Biochem 2019; 77:108253. [PMID: 31835147 DOI: 10.1016/j.jnutbio.2019.108253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 08/03/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Excess high-fat diet (HFD) intake predisposes the occurrence of obesity-associated heart injury, but the mechanism is elusive. Fisetin (FIS), as a natural flavonoid, has potential activities to alleviate obesity-induced metabolic syndrome. However, the underlying molecular mechanisms of FIS against HFD-induced cardiac injury remain unclear. The present study was to explore the protective effects of FIS on cardiac dysfunction in HFD-fed mice. We found that FIS alleviated HFD-triggered metabolic disorder by reducing body weight, fasting blood glucose and insulin levels, and insulin resistance. Moreover, FIS supplements significantly alleviated dyslipidemia in both mouse hearts and cardiomyocytes stimulated by metabolic stress. FIS treatment abolished HFD-induced inflammatory response in heart tissues through suppressing TNF receptor-1/TNF receptor-associated factor-2 (Tnfr-1/Traf-2) signaling. Furthermore, FIS induced a strong reduction in the expression of fibrosis-related genes, contributing to the inhibition of fibrosis by inactivating transforming growth factor (Tgf)-β1/Smads/Erk1/2 signaling. Collectively, these results demonstrated that FIS could be a promising therapeutic strategy for the treatment of obesity-associated cardiac injury.
Collapse
Affiliation(s)
- Lin-Feng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jing Feng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Yan Sun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Mingxin Xiong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Lili Lai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Shaoyu Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Chao Yi
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Geng Chen
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Huanhuan Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Qiufeng Yang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Tingting Long
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jianxia Zhan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Tingting Tang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| |
Collapse
|
4
|
Yuan SM, Lin H. Expressions of Transforming Growth Factor β1 Signaling Cytokines in Aortic Dissection. Braz J Cardiovasc Surg 2019; 33:597-602. [PMID: 30652749 PMCID: PMC6326449 DOI: 10.21470/1678-9741-2018-0129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022] Open
Abstract
Objective To demonstrate the underlying mechanisms of aortic dissection compared to
those of coronary artery disease in terms of the transforming growth
factor-beta (TGF-β) signaling pathway. Methods Twenty consecutive aortic dissection patients and 20 consecutive coronary
artery disease patients undergoing a surgical treatment in this hospital
were enrolled into this study. The aortic tissues were sampled and the
TGF-β1 and its receptor TGF-β receptor I
(TβRI) were detected by Western blotting assay. Results TGF-β1 and TβRI were positively expressed in the
aortic tissues in both groups by Western blotting assay. The expressions of
the two proteins were significantly higher in the aortic tissue of patients
with aortic dissection than in those with coronary artery disease. The
quantitative analyses of the relative gray scales of the proteins disclosed
close correlations between the expressions of TGF-β1 and TβRI
in both the study and control group patients. Conclusions The aortic remodeling of aortic dissection might differ from that of coronary
artery atherosclerosis concerning the nature, mechanism, mode, and
activities of TGF-β signaling pathway. The development of aortic
dissection could be associated with a significantly enhanced function of
TGF-β1/Smad signaling transduction as a result of
aortic remodeling incorporating both vascular injury and repair.
Collapse
Affiliation(s)
- Shi-Min Yuan
- The First Municipal Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, Fujian Province, People's Republic of China
| | - Hong Lin
- The First Municipal Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, Fujian Province, People's Republic of China
| |
Collapse
|
5
|
Effect of parenteral glutamine supplementation combined with enteral nutrition on Hsp90 expression and lymphoid organ apoptosis in severely burned rats. Burns 2016; 42:1494-1506. [PMID: 27613477 DOI: 10.1016/j.burns.2016.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aim of this study is to investigate the effects of parenteral glutamine(GLN) supplementation combined with enteral nutrition (EN) on heat shock protein 90(Hsp90) expression, apoptosis of lymphoid organs and circulating lymphocytes, immunological function and survival in severely burned rats. METHODS Male SD rats were randomly assigned into 4 groups: a sham burn+EN+GLN-free amino acid (AA) group (n=10), a sham burn+EN+GLN group (n=10), a burn+EN+AA group (n=10), and a burn +EN +GLN group (n=10). Two hours after a 30% total body surface area (TBSA), full-thickness scald burn injury on the back was made, the burned rats in two experimental groups (the burn+EN+AA group and the burn+EN +GLN group) were fed with a conventional enteral nutrition solution by oral gavage for 7 days. Simultaneously, the rats in the burn+EN+GLN group were given 0.35g GLN/kg body weight/day once via a tail vein injection for 7 days, whereas those in the burn+EN+AA group were administered isocaloric/isonitrogenous GLN-free amino acid solution (Tyrosine) for comparison. The rats in two sham burn control groups (the sham burn+EN+AA group and the sham burn+EN +GLN group) were treated in the same procedure as above, except for burn injury. All rats in each of the four groups were given 175kcal/kg body wt/day. There was isonitrogenous, isovolumic and isocaloric intake among four groups. At the end of the 7th day after nutritional programme were finished, all rats were anesthetized and samples were collected for further analysis. Serum immunoglobulin quantification was conducted by ELISA. Circulating lymphocyte numbers were counted by Coulter LH-750 Analyzer. The percentages and apoptotic ratio of CD4 and CD8T lymphocytes in circulation were determined by flow cytometry (FCM). The neutrophil phagocytosis index (NPI) was examined. The GLN concentrations in plasma, thymus, spleen and skeletal muscle were measured by high performance liquid chromatography (HPLC). The organ index evaluation and TUNEL analysis of thymus and spleen were carried out. The expression of Hsp90 in thymus and spleen was analyzed by western blotting. Moreover, the survival in burned rats was observed. RESULTS The results revealed that parenteral GLN supplementation combined with EN significantly increased the GLN concentrations of plasma and tissues, the serum immunoglobulin content, the circulating lymphocyte number, the CD4/CD8 ratio, the indexes of thymus and spleen, NPI and survival as compared with the burn+EN+AA group (p<0.05). The expression of Hsp90 in thymus and spleen in the burn+EN+GLN group was significantly up-regulated as compared with the burn+EN+AA group (p<0.05). The apoptosis in circulating CD4 and CD8 lymphocytes, thymus and spleen in the burn+EN+GLN group was significantly decreased as compared with the burn+EN+AA group (p<0.05). CONCLUSION The results of this study show that parenteral GLN supplementation combined with EN may increase the GLN concentrations of plasma and tissues, up-regulate the expression of Hsp90, attenuate apoptosis in lymphoid organ and circulating lymphocyte, enhance the immunological function and improve survival in severely burned rats. Clinically, therapeutic efforts at the modulation of the immune dysfunction may contribute to a favorable outcome in severely burned patients.
Collapse
|
6
|
Up-regulation of tim-3 expression contributes to development of burn-induced T cell immune suppression in mice. ACTA ACUST UNITED AC 2011; 31:642. [DOI: 10.1007/s11596-011-0575-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Indexed: 01/08/2023]
|
7
|
Abstract
This review considers the roles of transforming growth factor-beta (TGF-beta), the signaling Smad proteins, and angiotensin II (AT II) in conditions leading to human fibrosis. The goal is to update the burn practitioner and researcher about this important pathway and to introduce AT II as a possible synergistic signal to TGF-beta in burn scarring. Literature searches of the MEDLINE database were performed for English manuscripts combinations of TGF-beta, Smad, angiotensin, fibrosis, burn, and scar. AT II and TGF-beta both activate the Smad protein system, which leads to the expression of genes related to fibrosis. In fibrotic conditions, such as tubulointerstitial nephritis, systemic sclerosis, and myocardial infarctions, AT II acts both independently and synergistically with TGF-beta. Both AT II and TGF-beta act through a messenger system, the Smad proteins that lead to excessive extracellular matrix formation. Treatment and research implications are reviewed. The interaction between AT II and TGF-beta leading to fibrosis is well described in some human diseases. This pathway may be of importance in human burn scarring as well.
Collapse
|
8
|
Hauri-Hohl MM, Zuklys S, Keller MP, Jeker LT, Barthlott T, Moon AM, Roes J, Holländer GA. TGF-beta signaling in thymic epithelial cells regulates thymic involution and postirradiation reconstitution. Blood 2008; 112:626-34. [PMID: 18474727 PMCID: PMC2481556 DOI: 10.1182/blood-2007-10-115618] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 03/28/2008] [Indexed: 01/21/2023] Open
Abstract
The thymus constitutes the primary lymphoid organ responsible for the generation of naive T cells. Its stromal compartment is largely composed of a scaffold of different subsets of epithelial cells that provide soluble and membrane-bound molecules essential for thymocyte maturation and selection. With senescence, a steady decline in the thymic output of T cells has been observed. Numeric and qualitative changes in the stromal compartment of the thymus resulting in reduced thymopoietic capacity have been suggested to account for this physiologic process. The precise cellular and molecular mechanisms underlying thymic senescence are, however, only incompletely understood. Here, we demonstrate that TGF-beta signaling in thymic epithelial cells exerts a direct influence on the cell's capacity to support thymopoiesis in the aged mouse as the physiologic process of thymic senescence is mitigated in mice deficient for the expression of TGF-beta RII on thymic epithelial cells. Moreover, TGF-beta signaling in these stromal cells transiently hinders the early phase of thymic reconstitution after myeloablative conditioning and hematopoietic stem cell transplantation. Hence, inhibition of TGF-beta signaling decelerates the process of age-related thymic involution and may hasten the reconstitution of regular thymopoiesis after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Mathias M Hauri-Hohl
- Laboratory of Pediatric Immunology, Center for Biomedicine, Department of Clinical-Biological Sciences, University of Basel and The University Children's Hospital (UKBB), Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The systemic pathophysiologic changes following thermal injuries affect multiple organs and body systems leading to clinical manifestations including shock, intestinal alterations, respiratory and renal failure, immunosuppression and others. Recent advances in the comprehension of mechanisms underlying systemic complications of thermal injuries have contributed to uncover part of the cellular and molecular basis that underlie such changes. Recently, programmed cell death (apoptosis) has been considered playing an important role in the development of such pathological events. Therefore, investigators utilizing animal models and clinical studies involving human primates have produced a large body of information suggesting that apoptosis is associated with most of the tissue damages triggered by severe thermal injuries. In order to draw the attention on the important role of apoptosis on systemic complications of thermal injuries, in this review we describe most of these studies, discuss possible cellular and molecular mechanisms and indicate ways to utilize them for the development of therapeutic strategies by which apoptosis may be prevented or counteracted.
Collapse
Affiliation(s)
- G Gravante
- Department of Surgery, University of Rome Tor Vergata, Via U Maddalena 40/a 00043, Ciampino, Rome, Italy.
| | | | | |
Collapse
|
10
|
Phan HH, Cho K, Sainz-Lyon KS, Shin S, Greenhalgh DG. CD14-dependent modulation of NF-κB alternative splicing in the lung after burn injury. Gene 2006; 371:121-9. [PMID: 16480837 DOI: 10.1016/j.gene.2005.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 11/16/2005] [Accepted: 11/17/2005] [Indexed: 11/20/2022]
Abstract
Nuclear factor kappa-B (NF-kappaB), a key downstream player of the LPS signaling pathway, has been shown to undergo alternative splicing in in vitro studies. In this study, we examined the effect of injury and the role of CD14 on NF-kappaB alternative splicing using a murine burn model. CD14 knockout and respective wild-type mice were sacrificed after 18% total body surface area burn. RT-PCR and subsequent sequencing analysis revealed that injury induced multiple novel splicing variants of relA, relB, and NF-kappaB2 in the lungs of CD14 knockout but not wild-type mice. These novel variants resulted either from exon skipping, alternative usage of splicing signals, or intron retention. All but one variant resulted in a frameshift leading to premature termination of translation. These splicing variants encoded for proteins that lacked the domains essential for NF-kappaB transcription factor functions. Two NF-kappaB2 variants acquired only minor changes in their C-terminus that might affect their post-translational cleavage into active isoforms. These results suggest that alternative splicing may be one of the mechanisms by which NF-kappaB activity in the lungs can be regulated after injury. Furthermore, the CD14-mediated LPS signaling pathway may play a role in the regulation of NF-kappaB alternative splicing in the lungs after injury.
Collapse
Affiliation(s)
- Ho H Phan
- Department of Surgery, University of California at Davis and Burn Research, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|
11
|
D'Elia M, Patenaude J, Hamelin C, Garrel DR, Bernier J. Corticosterone binding globulin regulation and thymus changes after thermal injury in mice. Am J Physiol Endocrinol Metab 2005; 288:E852-60. [PMID: 15598670 DOI: 10.1152/ajpendo.00407.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermal injury is extremely stressful, and data characterizing the systemic endocrine stress response to this injury are sparse. The objective of this study was to measure the effects of thermal injury on mice on corticosterone (Cort) levels in relation with corticosteroid-binding globulin (CBG) and thymus cell populations. The endocrine stress response was determined by measuring total Cort, free Cort, CBG binding capacity, liver CBG mRNA, and circulating CBG levels at 1, 2, 5, and 10 days postburn. Thymus cell populations were also analyzed. After thermal injury, a rapid increase of total Cort was observed in the first 48 h. This was associated with a decrease of hepatic CBG mRNA, protein levels, and binding capacity. Percentage of free Cort in the burn group peaked at day 2 postburn with a dramatic (+500%) increase. This correlated with a significant decrease of thymus cellularity (50% less). Phenotypic analyses showed that corticosensitive cells were significantly altered. After treatment (5 days), both endocrine and immune parameters returned to control levels. Our results demonstrate that, after a thermal injury, CBG is mainly responsible for Cort's action on corticosensitive immune cells.
Collapse
Affiliation(s)
- Michele D'Elia
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, 245 boul. Hymus, Pointe-Claire, Québec, Canada
| | | | | | | | | |
Collapse
|
12
|
Patenaude J, D'Elia M, Hamelin C, Garrel D, Bernier J. Burn injury induces a change in T cell homeostasis affecting preferentially CD4+T cells. J Leukoc Biol 2004; 77:141-50. [PMID: 15542542 DOI: 10.1189/jlb.0703314] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Burn injuries are known to be associated with altered immune functions, resulting in decreased resistance to subsequent infection. In the present study, we determined the in vivo changes in T cell homeostasis following burn injury. Two groups of mice were used: a sham-burn group receiving buprenorphine as an analgesic and a burn group receiving buprenorphine and subjected to burn injury on 20% of the total body surface area. Results showed an important decrease in splenocytes following burn injury. This decrease persisted for 5 days and was followed, at day 10, by a 63% increase in number of cells. In vivo cell proliferation, as determined by the incorporation of 5-bromo-2'-dexoxyuridine, showed a significant increase of cycling splenocytes between days 2 and 10 after burn injury. The percentage of CD4+ and CD8+ T cells in the spleen was altered for 10 days after thermal injury. Analysis of naive (CD62Lhigh CD44low) and effector/memory (CD62Llow CD44high) T cells showed a percent decrease, independent of the expression of CD4 or CD8 molecules. However, early activation markers, such as CD69+, were expressed only on CD4+ T cells after a number of days following injury. Even with an activated phenotype, 10 days post-burn injury, CD4+ naive T cells significantly increased spontaneous apoptosis, detected by using a fluorescent DNA-binding agent 7-amino-actinomycin D. CD8+ T lymphocytes did not express early activation markers and were more resistant to apoptosis. Using purified T cells, we have shown unresponsiveness at day 10. Overall, these results demonstrate that mechanisms of T cell homeostasis were perturbed following burn injury. However, after 10 days, this perturbation persisted only in CD4+ T cells.
Collapse
Affiliation(s)
- Julie Patenaude
- INRS-Institut Armand-Frappier, Pointe-Claire, Quebec, Canada
| | | | | | | | | |
Collapse
|
13
|
Pham TN, Cho K, Adamson LK, Hakimbashi M, Yang L, Tredget EE, Greenhalgh DG. Burn injury induces an inhibitory signal in the lung Smad pathway. Cytokine 2004; 27:66-73. [PMID: 15242695 DOI: 10.1016/j.cyto.2004.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Accepted: 03/03/2004] [Indexed: 12/22/2022]
Abstract
Smad signaling mediates the cellular response to transforming growth factor-beta (TGF-beta). We hypothesize that variations in Smad signaling modify the response to TGF-beta signaling in the lung after injury. C57BLKS/J mice were subjected to an 18% surface area burn injury, sacrificed at specific time points and their lung tissue was harvested. Lung TGF-beta1 expression, as determined by RT-PCR, ELISA and PAI/Luciferase assay, was not affected by injury. Western blots for Smad2/3 and Smad4 on nuclear fractions revealed decreased Smad2, Smad3, and Smad4 protein levels at 3h, while their total cellular levels did not differ from control mice. Smad7 protein increased transiently at 3 h. Correlating with Smad inhibition, transcription in type I alpha-2 collagen was also transiently depressed. By RT-PCR, Smad3 and Smad7 mRNAs decreased at 3 h, while Smad2 and Smad4 mRNA levels remained constitutive. Burn injury did not alter lung TGF-beta1 expression but caused Smad inhibition through decreased nuclear translocation of Smad2, Smad3, and Smad4, and upregulated Smad7. Transcription was not the key regulatory step in Smad protein expression, as transient decreases in Smad3 and Smad7 mRNA did not correlate with protein levels. It appears that Smad activity may in part attenuate TGF-beta activity after burn injury.
Collapse
Affiliation(s)
- Tam N Pham
- Burn Surgery, Shriners Hospitals for Children Northern California, and Department of Surgery, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Kalinina N, Agrotis A, Antropova Y, Ilyinskaya O, Smirnov V, Tararak E, Bobik A. Smad expression in human atherosclerotic lesions: evidence for impaired TGF-beta/Smad signaling in smooth muscle cells of fibrofatty lesions. Arterioscler Thromb Vasc Biol 2004; 24:1391-6. [PMID: 15166010 DOI: 10.1161/01.atv.0000133605.89421.79] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Transforming growth factor-beta (TGF-beta) has been implicated in the pathogenesis of human atherosclerosis but its actions during lesion progression are poorly understood. Smad2, Smad3, and Smad4 proteins are signaling molecules by which TGF-beta modulates gene transcription. Our objective was to define the actions of TGF-beta during lesion progression in humans by examining the expression of Smads in relation to TGF-beta-mediated responses. METHODS AND RESULTS Immunohistochemistry and reverse-transcription polymerase chain reaction demonstrated Smad2, Smad3, and Smad4 expression in macrophages of fibrofatty lesions and their upregulation after differentiation of monocytes to macrophages. The major Smad splice variants expressed by the macrophages were those that are transcriptionally most active. Macrophages also expressed cyclin inhibitors whose expression is induced via Smad proteins. The cytoplasmic location of p21(Waf1) suggests it may protect macrophages from apoptosis. Smooth muscle cells (SMCs) within the fibrofatty lesions did not express the Smad proteins or the cyclin inhibitors. SMCs of fibrous plaques expressed all 3 Smad proteins. CONCLUSIONS In human atherosclerotic lesions, the actions of TGF-beta appear restricted to SMCs in fibrous plaques and macrophages in fatty streaks/fibrofatty lesions. The lack of key TGF-beta signaling components in SMCs of fibrofatty lesions indicates impaired ability of these cells to initiate TGF-beta-mediated Smad-dependent transcriptional responses.
Collapse
Affiliation(s)
- Natalia Kalinina
- Baker Medical Research Institute, Alfred Hospital, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Jeong J, Adamson LK, Greenhalgh DG, Cho K. Injury-associated differential regulation of histone expression and modification in the thymus of mice. Exp Biol Med (Maywood) 2004; 229:327-34. [PMID: 15044716 DOI: 10.1177/153537020422900407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
One of the key events in the regulation of gene expression is chromatin remodeling involving histone regulation. We investigated the effects of burns on the expression of histone that might be associated with altered molecular and pathological profiles in the thymus. A markedly decreased expression of histone variant H2A.1 mRNA was identified in the thymus after burn during a differential display experiment. Subsequently, we examined the histone expression (mRNA and protein) and posttranslational modification in the thymus after burn. Also, changes in proliferating cell nuclear antigen (PCNA), a central molecule in chromatin assembly, was examined. Reverse-transcription polymerase chain reaction analysis revealed a transient decrease in the expression of several histone variants (H2A.1, H1(r1), H3-B, H3-1, and H4-D) mRNAs in the thymus at 1 day after burn. A decrease in histone subtypes H2A, H2B, H3, and H4, but not H1, was demonstrated 1 and 3 days after burn according to the results of Western blot. Furthermore, there were different levels of decreases in acetylated and dimethylated forms of histone H3 1 and 3 days after burn. In addition, decreased levels of PCNA were evident in the thymus 1 day after burn. Changes in the expression of histones and PCNA may reflect mere decrease in proliferating cells and/or a reorganization of the chromatin structure associated with altered transcriptional activities, eventually contributing to the phenotypic changes in the thymus after burn.
Collapse
Affiliation(s)
- Jayoung Jeong
- Burn Research, Shriners Hospitals for Children Northern California, Sacramento, California 95817, USA
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Jeffrey R Saffle
- Department of Surgery, Intermountain Burn Center, University of Utah Health Center, Salt Lake City, UT 84132, USA
| |
Collapse
|