1
|
Ramadhan F, Alfiko Y, Purwantomo S, Mubarok AF, Budinarta W, Suwanto A, Budiarti S. A New Approach for Controlling Agrobacterium tumefaciens Post Transformation Using Lytic Bacteriophage. PLANTS (BASEL, SWITZERLAND) 2022; 11:3124. [PMID: 36432853 PMCID: PMC9698577 DOI: 10.3390/plants11223124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Overgrowth of Agrobacterium tumefaciens has frequently been found in Agrobacterium-mediated plant transformation. This overgrowth can reduce transformation efficiency and even lead to explant death. Therefore, this research investigates an alternative way to mitigate or eliminate Agrobacterium after transformation using a bacteriophage. To develop this alternative method, we conducted effectiveness studies of two lytic bacteriophages (ΦK2 and ΦK4) and performed an application test to control Agrobacterium growth after transformation. According to plaque morphological characterization and molecular analysis, the two bacteriophages used in this experiment were distinct. Moreover, some stability physicochemical and growth kinetics, such as adsorption time and susceptibility test, also showed that both bacteriophages differed. On the other hand, the optimum temperature and pH of both phages were the same at 28-30 °C and pH 7. Further investigation showed that both ΦK2 and ΦK4 were able to reduce the overgrowth of A. tumefaciens post transformation. Moreover, applying the cocktail (mixture of ΦK2 and ΦK4) with antibiotic application eradicated A. tumefaciens (0% overgrowth percentage). This result indicates that the application of bacteriophage could be used as an alternative way to eradicate the overgrowth of A. tumefaciens subsequent to transformation.
Collapse
Affiliation(s)
- Fiqih Ramadhan
- Graduate School of Biotechnology, IPB University, Bogor 16680, Indonesia
| | - Yuzer Alfiko
- Biotech Laboratory, Wilmar Benih Indonesia, Bekasi 17530, Indonesia
| | - Sigit Purwantomo
- Biotech Laboratory, Wilmar Benih Indonesia, Bekasi 17530, Indonesia
| | | | - Widyah Budinarta
- Biotech Laboratory, Wilmar Benih Indonesia, Bekasi 17530, Indonesia
| | - Antonius Suwanto
- Graduate School of Biotechnology, IPB University, Bogor 16680, Indonesia
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Sri Budiarti
- Graduate School of Biotechnology, IPB University, Bogor 16680, Indonesia
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
2
|
Selma S, Gianoglio S, Uranga M, Vázquez‐Vilar M, Espinosa‐Ruiz A, Drapal M, Fraser PD, Daròs J, Orzáez D. Potato virus X-delivered CRISPR activation programs lead to strong endogenous gene induction and transient metabolic reprogramming in Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1550-1564. [PMID: 35822533 PMCID: PMC9541417 DOI: 10.1111/tpj.15906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 05/11/2023]
Abstract
Programmable transcriptional regulators based on CRISPR architecture are promising tools for the induction of plant gene expression. In plants, CRISPR gene activation is effective with respect to modulating development processes, such as the flowering time or customizing biochemical composition. The most widely used method for delivering CRISPR components into the plant is Agrobacterium tumefaciens-mediated genetic transformation, either transient or stable. However, as a result of their versatility and their ability to move, virus-derived systems have emerged as an interesting alternative for supplying the CRISPR components to the plant, in particular guide RNA (gRNA), which represents the variable component in CRISPR strategies. In the present study, we describe a Potato virus X-derived vector that, upon agroinfection in Nicotiana benthamiana, serves as a vehicle for delivery of gRNAs, producing highly specific virus-induced gene activation. The system works in combination with a N. benthamiana transgenic line carrying the remaining complementary CRISPR gene activation components, specifically the dCasEV2.1 cassette, which has been shown previously to mediate strong programmable transcriptional activation in plants. Using an easily scalable, non-invasive spraying method, we show that gRNA-mediated activation programs move locally and systemically, generating a strong activation response in different target genes. Furthermore, by activating three different endogenous MYB transcription factors, we demonstrate that this Potato virus X-based virus-induced gene reprogramming strategy results in program-specific metabolic fingerprints in N. benthamiana leaves characterized by distinctive phenylpropanoid-enriched metabolite profiles.
Collapse
Affiliation(s)
- Sara Selma
- Instituto Biología Molecular y celular de PlantasCSIC‐Universitat Politècnica de ValènciaValencia46022Spain
| | - Silvia Gianoglio
- Instituto Biología Molecular y celular de PlantasCSIC‐Universitat Politècnica de ValènciaValencia46022Spain
| | - Mireia Uranga
- Instituto Biología Molecular y celular de PlantasCSIC‐Universitat Politècnica de ValènciaValencia46022Spain
| | - Marta Vázquez‐Vilar
- Instituto Biología Molecular y celular de PlantasCSIC‐Universitat Politècnica de ValènciaValencia46022Spain
| | - Ana Espinosa‐Ruiz
- Instituto Biología Molecular y celular de PlantasCSIC‐Universitat Politècnica de ValènciaValencia46022Spain
| | | | | | - José‐Antonio Daròs
- Instituto Biología Molecular y celular de PlantasCSIC‐Universitat Politècnica de ValènciaValencia46022Spain
| | - Diego Orzáez
- Instituto Biología Molecular y celular de PlantasCSIC‐Universitat Politècnica de ValènciaValencia46022Spain
| |
Collapse
|
3
|
Buyel JF, Stöger E, Bortesi L. Targeted genome editing of plants and plant cells for biomanufacturing. Transgenic Res 2021; 30:401-426. [PMID: 33646510 PMCID: PMC8316201 DOI: 10.1007/s11248-021-00236-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Plants have provided humans with useful products since antiquity, but in the last 30 years they have also been developed as production platforms for small molecules and recombinant proteins. This initially niche area has blossomed with the growth of the global bioeconomy, and now includes chemical building blocks, polymers and renewable energy. All these applications can be described as "plant molecular farming" (PMF). Despite its potential to increase the sustainability of biologics manufacturing, PMF has yet to be embraced broadly by industry. This reflects a combination of regulatory uncertainty, limited information on process cost structures, and the absence of trained staff and suitable manufacturing capacity. However, the limited adaptation of plants and plant cells to the requirements of industry-scale manufacturing is an equally important hurdle. For example, the targeted genetic manipulation of yeast has been common practice since the 1980s, whereas reliable site-directed mutagenesis in most plants has only become available with the advent of CRISPR/Cas9 and similar genome editing technologies since around 2010. Here we summarize the applications of new genetic engineering technologies to improve plants as biomanufacturing platforms. We start by identifying current bottlenecks in manufacturing, then illustrate the progress that has already been made and discuss the potential for improvement at the molecular, cellular and organism levels. We discuss the effects of metabolic optimization, adaptation of the endomembrane system, modified glycosylation profiles, programmable growth and senescence, protease inactivation, and the expression of enzymes that promote biodegradation. We outline strategies to achieve these modifications by targeted gene modification, considering case-by-case examples of individual improvements and the combined modifications needed to generate a new general-purpose "chassis" for PMF.
Collapse
Affiliation(s)
- J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany.
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - E Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - L Bortesi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
4
|
Characterisation of novel regulatory sequences compatible with modular assembly in the diatom Phaeodactylum tricornutum. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Sethi L, Kumari K, Dey N. Engineering of Plants for Efficient Production of Therapeutics. Mol Biotechnol 2021; 63:1125-1137. [PMID: 34398446 PMCID: PMC8365136 DOI: 10.1007/s12033-021-00381-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Plants are becoming useful platforms for recombinant protein production at present time. With the advancement of efficient molecular tools of genomics, proteomics, plants are now being used as a biofactory for production of different life saving therapeutics. Plant-based biofactory is an established production system with the benefits of cost-effectiveness, high scalability, rapid production, enabling post-translational modification, and being devoid of harmful pathogens contamination. This review introduces the main challenges faced by plant expression system: post-translational modifications, protein stability, biosafety concern and regulation. It also summarizes essential factors to be considered in engineering plants, including plant expression system, promoter, post-translational modification, codon optimization, and fusion tags, protein stabilization and purification, subcellular targeting, and making vaccines in an edible way. This review will be beneficial and informative to scholars and readers in the field of plant biotechnology.
Collapse
Affiliation(s)
- Lini Sethi
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India ,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi) 121001 India
| | - Khushbu Kumari
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India ,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi) 121001 India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India
| |
Collapse
|
6
|
Wang Y, Wang C, Rajaofera MJN, Zhu L, Xu X, Liu W, Zheng F, Miao W. WY195, a New Inducible Promoter From the Rubber Powdery Mildew Pathogen, Can Be Used as an Excellent Tool for Genetic Engineering. Front Microbiol 2020; 11:610252. [PMID: 33424812 PMCID: PMC7793764 DOI: 10.3389/fmicb.2020.610252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Until now, there are few studies and reports on the use of endogenous promoters of obligate biotrophic fungi. The WY195 promoter in the genome of Oidium heveae, the rubber powdery mildew pathogen, was predicted using PromoterScan and its promoter function was verified by the transient expression of the β-glucuronidase (GUS) gene. WY195 drove high levels of GUS expression in dicotyledons and monocotyledons. qRT-PCR indicated that GUS expression regulated by the WY195 promoter was 17.54-fold greater than that obtained using the CaMV 35S promoter in dicotyledons (Nicotiana tabacum), and 5.09-fold greater than that obtained using the ACT1 promoter in monocotyledons (Oryza sativa). Furthermore, WY195-regulated GUS gene expression was induced under high-temperature and drought conditions. Soluble proteins extracted from WY195-hpaXm transgenic tobacco was bioactive. Defensive micro-HR induced by the transgene expression of hpaXm was observed on transgenic tobacco leaves. Disease resistance bioassays showed that WY195-hpaXm transgenic tobacco enhanced the resistance to tobacco mosaic virus (TMV). WY195 has great potential for development as a new tool for genetic engineering. Further in-depth studies will help to better understand the transcriptional regulation mechanisms and the pathogenic mechanisms of O. heveae.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Chen Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Mamy Jayne Nelly Rajaofera
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Li Zhu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Xinze Xu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Fucong Zheng
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
7
|
|
8
|
Chandran H, Meena M, Barupal T, Sharma K. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00450. [PMID: 32373483 PMCID: PMC7193120 DOI: 10.1016/j.btre.2020.e00450] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/17/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022]
Abstract
Plants have been used throughout the world for its medicinal powers since ancient time. The pharmacological properties of plants are based on their phytochemical components especially the secondary metabolites which are outstanding sources of value added bioactive compounds. Secondary metabolites have complex chemical composition and are produced in response to various forms of stress to perform different physiological tasks in plants. They are used in pharmaceutical industries, cosmetics, dietary supplements, fragrances, flavors, dyes, etc. Extended use of these metabolites in various industrial sectors has initiated a need to focus research on increasing the production by employing plant tissue culture (PTC) techniques and optimizing their large scale production using bioreactors. PTC techniques being independent of climatic and geographical conditions will provide an incessant, sustainable, economical and viable production of secondary metabolites. This review article intends to assess the advantages of using plant tissue culture, distribution of important secondary metabolites in plant families, strategies involved for optimal metabolite production and the industrial importance of selected secondary metabolites.
Collapse
Affiliation(s)
- Hema Chandran
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Mukesh Meena
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Tansukh Barupal
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Kanika Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| |
Collapse
|
9
|
Palaci J, Virdi V, Depicker A. Transformation strategies for stable expression of complex hetero-multimeric proteins like secretory immunoglobulin A in plants. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1760-1769. [PMID: 30801876 PMCID: PMC6686127 DOI: 10.1111/pbi.13098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 05/03/2023]
Abstract
Plant expression systems have proven to be exceptional in producing high-value complex polymeric proteins such as secretory IgAs (SIgAs). However, polymeric protein production requires the expression of multiple genes, which can be transformed as single or multiple T-DNA units to generate stable transgenic plant lines. Here, we evaluated four strategies to stably transform multiple genes and to obtain high expression of all components. Using the in-seed expression of a simplified secretory IgA (sSIgA) as a reference molecule, we conclude that it is better to spread the genes over two T-DNAs than to contain them in a single T-DNA, because of the presence of homologous recombination events and gene silencing. These T-DNAs can be cotransformed to obtain transgenic plants in one transformation step. However, if time permits, more transformants with high production levels of the polymeric protein can be obtained either by sequential transformation or by in-parallel transformation followed by crossing of transformants independently selected for excellent expression of the genes in each T-DNA.
Collapse
Affiliation(s)
- Jorge Palaci
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- VIB Center for Plant Systems BiologyGentBelgium
| | - Vikram Virdi
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- VIB Center for Plant Systems BiologyGentBelgium
- Department of Biochemistry and MicrobiologyGhent UniversityGentBelgium
- VIB Center for Medical BiotechnologyGentBelgium
| | - Ann Depicker
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- VIB Center for Plant Systems BiologyGentBelgium
| |
Collapse
|
10
|
Tien NQD, Huy NX, Kim MY. Improved expression of porcine epidemic diarrhea antigen by fusion with cholera toxin B subunit and chloroplast transformation in Nicotiana tabacum. PLANT CELL, TISSUE AND ORGAN CULTURE 2019; 137:213-223. [PMID: 32214566 PMCID: PMC7089040 DOI: 10.1007/s11240-019-01562-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/21/2019] [Indexed: 05/24/2023]
Abstract
The porcine epidemic diarrhea virus (PEDV) belongs to the coronavirus family, which causes acute diarrhea in pigs with higher mortality in piglets less than 2 weeks old. The PEDV is one of the major concerns of the pig industry around the world, including Asian countries and Noth America since first identified in Europe. Currently, there is no PEDV licensed vaccine to effectively prevent this disease. This study was performed for the development of a mucosal PEDV vaccine and B subunit of cholera toxin (CTB) as a carrier was employed to surpass the tolerogenic nature of GALT and induce potent immune responses against the target antigen fused to CTB. An epitope (S1D) alone or conjugated with CTB was constructed into the tobacco chloroplasts expression vector which is controlled under the chloroplast rRNA operon promoter with T7g10 5' UTR and the psbA 3'UTR as a terminator. The homoplastomic lines were obtained by third round screening via organogenesis from the leaf tissues which were verified by PCR with antigen and chloroplast specific primers and then confirmed by Southern blot analysis. While the expression level of the S1D alone as detected by Western blotting was approximately 0.07% of total soluble protein, the CTB-S1D fusion protein was expressed up to 1.4%. The fusion protein showed binding to the intestinal membrane GM1-ganglioside receptor, demonstrating its functionality. The result shows that the highest expression of S1D could be achieved by fusion with a stable CTB protein and chloroplast transformation. Furthermore, the CTB-S1D expressed in chloroplasts of Nicotiana tabacum cv. Maryland could be assembled to pentameric form which increases the possibility to develop a mucosal vaccine against PEDV.
Collapse
Affiliation(s)
- Nguyen-Quang-Duc Tien
- Bioactive Material Science, Chonbuk National University, Jeonju, South Korea
- College of Sciences, Hue University, Hue City, Vietnam
| | - Nguyen-Xuan Huy
- Department of Molecular Biology, Chonbuk National University, Jeonju, South Korea
- College of Education, Hue University, Hue City, Vietnam
| | - Mi-Young Kim
- Department of Molecular Biology, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
11
|
Chabeda A, Yanez RJR, Lamprecht R, Meyers AE, Rybicki EP, Hitzeroth II. Therapeutic vaccines for high-risk HPV-associated diseases. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2018; 5:46-58. [PMID: 29277575 PMCID: PMC5887015 DOI: 10.1016/j.pvr.2017.12.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 12/16/2022]
Abstract
Cancer is the second leading cause of death worldwide, and it is estimated that Human papillomavirus (HPV) related cancers account for 5% of all human cancers. Current HPV vaccines are extremely effective at preventing infection and neoplastic disease; however, they are prophylactic and do not clear established infections. Therapeutic vaccines which trigger cell-mediated immune responses for the treatment of established infections and malignancies are therefore required. The E6 and E7 early genes are ideal targets for vaccine therapy due to their role in disruption of the cell cycle and their constitutive expression in premalignant and malignant tissues. Several strategies have been investigated for the development of therapeutic vaccines, including live-vector, nucleic acid, peptide, protein-based and cell-based vaccines as well as combinatorial approaches, with several vaccine candidates progressing to clinical trials. With the current understanding of the HPV life cycle, molecular mechanisms of infection, carcinogenesis, tumour biology, the tumour microenvironment and immune response mechanisms, an approved HPV therapeutic vaccine seems to be a goal not far from being achieved. In this article, the status of therapeutic HPV vaccines in clinical trials are reviewed, and the potential for plant-based vaccine production platforms described.
Collapse
Affiliation(s)
- Aleyo Chabeda
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Romana J R Yanez
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Renate Lamprecht
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
12
|
Tien NQD, Kim TJ, Kim TG. Viral hemorrhagic septicemia virus glycoprotein production in tobacco. Protein Expr Purif 2017; 133:170-176. [PMID: 28192199 DOI: 10.1016/j.pep.2017.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/12/2017] [Accepted: 02/08/2017] [Indexed: 11/27/2022]
Abstract
Viral hemorrhagic septicemia virus (VHSV) causes mortality in numerous marine and freshwater fish species resulting in heavy losses in fish farming. The glycoprotein gene of VHSV was fused with the cholera toxin B subunit (CTB) and expressed transiently in leaf tissues of Nicotiana benthamiana via the agroinfiltration method. The glycoprotein gene was divided into two parts to improve assembly of CTB fusion proteins (CTB-VHSV99-235 and CTB-VHSV258-417). Production of CTB fusion proteins was confirmed in the agroinfiltrated leaf tissue by western blot analysis. The plant-produced CTB fusion proteins showed biological activity to GM1-ganglioside, a receptor for biologically active CTB, on GM1-ELISA. The expression level of the CTB-VHSV fusion proteins was 0.86% (CTB-VHSV99-235) and 0.93% (CTB-VHSV258-417) of total proteins in agroinfiltrated leaf tissue, as determined by GM1-ELISA. These results suggest that Agrobacterium-mediated transient expression of CTB fusion antigens of VHSV is a rapid and convenient method and demonstrate the feasibility of using agroinfiltrated plant leaf tissues expressing CTB-fusion antigens as a plant-based vaccine to prevent VHSV infection.
Collapse
Affiliation(s)
- Nguyen-Quang-Duc Tien
- Department of Bioactive Material Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeollabuk-do 54896, Republic of Korea
| | - Tae-Jung Kim
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Tae-Geum Kim
- Center for Jeongup Industry-Academy-Institute Cooperation, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
13
|
Khan S, ur Rahman L. Pathway Modulation of Medicinal and Aromatic Plants Through Metabolic Engineering Using Agrobacterium tumefaciens. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-28669-3_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Komakhin RA, Vysotskii DA, Shukurov RR, Voblikova VD, Komakhina VV, Strelnikova SR, Vetchinkina EM, Babakov AV. Novel strong promoter of antimicrobial peptides gene pro-SmAMP2 from chickweed (Stellaria media). BMC Biotechnol 2016; 16:43. [PMID: 27189173 PMCID: PMC4870781 DOI: 10.1186/s12896-016-0273-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/11/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In a previous study we found that in chickweed the expression level of the pro-SmAMP2 gene was comparable or even higher to that of the β-actin gene. This high level of the gene expression has attracted our attention as an opportunity for the identification of novel strong promoters of plant origin, which could find its application in plant biotechnology. Therefore, in the present study we focused on the nucleotide sequence identification and the functional characteristics of the pro-SmAMP2 promoter in transgenic plants. RESULTS In chickweed (Stellaria media), a 2120 bp promoter region of the pro-SmAMP2 gene encoding antifungal peptides was sequenced. Six 5'-deletion variants -2120, -1504, -1149, -822, -455, and -290 bp of pro-SmAMP2 gene promoter were fused with the coding region of the reporter gene gusA in the plant expression vector pCambia1381Z. Independent transgenic plants of tobacco Nicotiana tabacum were obtained with each genetic structure. GUS protein activity assay in extracts from transgenic plants showed that all deletion variants of the promoter, except -290 bp, expressed the gusA gene. In most transgenic plants, the GUS activity level was comparable or higher than in plants with the viral promoter CaMV 35S. GUS activity remains high in progenies and its level correlates positively with the amount of gusA gene mRNA in T3 homozygous plants. The activity of the рro-SmAMP2 promoter was detected in all organs of the transgenic plants studied, during meiosis and in pollen as well. CONCLUSION Our results show that the рro-SmAMP2 promoter can be used for target genes expression control in transgenic plants.
Collapse
Affiliation(s)
- Roman A Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Timiriazevskaya 42, 127550, Moscow, Russia.
| | - Denis A Vysotskii
- All-Russia Research Institute of Agricultural Biotechnology, Timiriazevskaya 42, 127550, Moscow, Russia
| | | | - Vera D Voblikova
- All-Russia Research Institute of Agricultural Biotechnology, Timiriazevskaya 42, 127550, Moscow, Russia
| | - Vera V Komakhina
- All-Russia Research Institute of Agricultural Biotechnology, Timiriazevskaya 42, 127550, Moscow, Russia
| | - Svetlana R Strelnikova
- All-Russia Research Institute of Agricultural Biotechnology, Timiriazevskaya 42, 127550, Moscow, Russia
| | - Ekaterina M Vetchinkina
- All-Russia Research Institute of Agricultural Biotechnology, Timiriazevskaya 42, 127550, Moscow, Russia
| | - Alexey V Babakov
- All-Russia Research Institute of Agricultural Biotechnology, Timiriazevskaya 42, 127550, Moscow, Russia
| |
Collapse
|
15
|
On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect. ACTA ACUST UNITED AC 2014; 2:499-518. [PMID: 25621170 DOI: 10.4155/pbp.14.32] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world's first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher's disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable.
Collapse
|
16
|
Kim TG, Kim MY, Tien NQD, Huy NX, Yang MS. Dengue virus E glycoprotein production in transgenic rice callus. Mol Biotechnol 2014; 56:1069-78. [PMID: 25069989 DOI: 10.1007/s12033-014-9787-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dengue is a disease caused by dengue virus and represents the most important arthropod-borne viral disease in humans. Dengue virus enters host cells via binding of envelope glycoprotein (E) to a receptor. In this study, plant expression vectors containing native and synthetic glycoprotein E genes (sE) modified based on plant-optimized codon usage and fused with an ER retention signal were constructed under control of the rice amylase 3D promoter expression system. Plant expression vectors were introduced into rice callus (Oryza sativa L. cv. Dongin) via particle bombardment-mediated transformation. The integration and expression of target genes were confirmed in the transgenic callus by genomic DNA PCR and Northern blot analyses, respectively. The plant-codon optimized sE gene with an ER retention signal showed high protein production levels based on Western blot analysis of approximately 18.5 ug/g dried calli weight by immunoblot-based densitometric analysis. These results suggest that the plant-codon optimized sE gene with an ER retention signal was highly produced in the transgenic rice callus.
Collapse
Affiliation(s)
- Tae-Geum Kim
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Dukjindong 664-14, Jeollabuk-do, 561-756, Republic of Korea
| | | | | | | | | |
Collapse
|
17
|
Yue W, Ming QL, Lin B, Rahman K, Zheng CJ, Han T, Qin LP. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol 2014; 36:215-32. [PMID: 24963701 DOI: 10.3109/07388551.2014.923986] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of plant tissue (including organ and cell) cultures for the production of secondary metabolites has been underway for more than three decades. Plant cell cultures with the production of high-value secondary metabolites are promising potential alternative sources for the production of pharmaceutical agents of industrial importance. Medicinal plant cell suspension cultures (MPCSC), which are characterized with the feature of fermentation with plant cell totipotency, could be a promising alternative "chemical factory". However, low productivity becomes an inevitable obstacle limiting further commercialization of MPCSC and the application to large-scale production is still limited to a few processes. This review generalizes and analyzes the recent progress of this bioproduction platform for the provision of medicinal chemicals and outlines a range of trials taken or underway to increase product yields from MPCSC. The scale-up of MPCSC, which could lead to an unlimited supply of pharmaceuticals, including strategies to overcome and solution of the associated challenges, is discussed.
Collapse
Affiliation(s)
- Wei Yue
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China .,b School of Life Science , East China Normal University , Shanghai , China
| | - Qian-Liang Ming
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Bing Lin
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Khalid Rahman
- c Faculty of Science, School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , UK , and
| | - Cheng-Jian Zheng
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Ting Han
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China .,d School of Forestry and Biotechnology , ZheJiang Agriculture & Forestry University , Lin'an , Hangzhou , China
| | - Lu-Ping Qin
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| |
Collapse
|
18
|
Li M, Song B, Zhang Q, Liu X, Lin Y, Ou Y, Zhang H, Liu J. A synthetic tuber-specific and cold-induced promoter is applicable in controlling potato cold-induced sweetening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:41-7. [PMID: 23542182 DOI: 10.1016/j.plaphy.2013.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/19/2013] [Indexed: 05/03/2023]
Abstract
Cold-induced sweetening (CIS) in potato seriously hinders the potato processing industry. It could be of great value for genetic improvement of potato CIS to have a target gene specifically expressed in cold stored tubers. In this study, we used a synthetic promoter, pCL, in potato transformation to drive an antisense expression of StvacINV1, the acid vacuolar invertase gene from Solanum tuberosum. The measurements of expression and enzyme activity of target gene showed that pCL promoter could efficiently govern target gene to express specifically and remarkably regulate the activity of acid vacuolar invertase in potato tubers at low temperature, furthermore, it had almost no effect in other tissues or the tubers under room temperature. The transgenic tubers showed decrease in reducing sugar content during storage at low temperature and acceptable chip color without significant changes observed in plant morphology and tuberization between the nontransgenic and transgenic lines. This tuber-specific and cold-induced feature could maximally reduce the background expression of the target gene which might bring about potential negative or detrimental effects to plant development. The synthetic promoter confirmed here would be optimal for gene function research in potato tubers in response to low temperature.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China.
| | - Botao Song
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China.
| | - Qiong Zhang
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Xun Liu
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Yuan Lin
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Yongbin Ou
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Huiling Zhang
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China
| | - Jun Liu
- Key Laboratory of Horticulture Plant Biology, Huazhong Agricultural University, National Center for Vegetable Improvement (Central China), Ministry of Education, Wuhan 430070, People's Republic of China.
| |
Collapse
|
19
|
Yoon JM, Zhao L, Shanks JV. Metabolic engineering with plants for a sustainable biobased economy. Annu Rev Chem Biomol Eng 2013; 4:211-37. [PMID: 23540288 DOI: 10.1146/annurev-chembioeng-061312-103320] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plants are bona fide sustainable organisms because they accumulate carbon and synthesize beneficial metabolites from photosynthesis. To meet the challenges to food security and health threatened by increasing population growth and depletion of nonrenewable natural resources, recent metabolic engineering efforts have shifted from single pathways to holistic approaches with multiple genes owing to integration of omics technologies. Successful engineering of plants results in the high yield of biomass components for primary food sources and biofuel feedstocks, pharmaceuticals, and platform chemicals through synthetic biology and systems biology strategies. Further discovery of undefined biosynthesis pathways in plants, integrative analysis of discrete omics data, and diversified process developments for production of platform chemicals are essential to overcome the hurdles for sustainable production of value-added biomolecules from plants.
Collapse
Affiliation(s)
- Jong Moon Yoon
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.
| | | | | |
Collapse
|
20
|
Petolino JF, Davies JP. Designed transcriptional regulators for trait development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 201-202:128-36. [PMID: 23352411 DOI: 10.1016/j.plantsci.2012.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 05/21/2023]
Abstract
Development is largely controlled by proteins that regulate gene expression at the level of transcription. These regulatory proteins, the genes that control them, and the genes that they control, are organized in a hierarchical structure of complex interactions. Altering the expression of genes encoding regulatory proteins controlling critical nodes in this hierarchy has potential for dramatic phenotypic modification. Constitutive over-expression of genes encoding regulatory proteins in transgenic plants has resulted in agronomically interesting phenotypes along with developmental abnormalities. For trait development, the magnitude and timing of expression of genes encoding key regulatory proteins will need to be precisely controlled and targeted to specific cells and tissues at certain developmental timepoints. Such control is made possible by designed transcriptional regulators which are fusions of engineered DNA binding proteins and activator or repressor domains. Expression of genes encoding such designed transcriptional regulators enable the selective modulation of endogenous gene expression. Genes encoding proteins controlling regulatory networks are prime targets for up- or down-regulation via such designed transcriptional regulators.
Collapse
MESH Headings
- Adaptation, Physiological
- Crops, Agricultural/genetics
- Crops, Agricultural/metabolism
- Crops, Agricultural/physiology
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Droughts
- Gene Expression Regulation, Plant
- Genes, Plant
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/physiology
- Protein Interaction Mapping
- Protein Structure, Tertiary
- Regulatory Elements, Transcriptional
- Regulatory Sequences, Nucleic Acid
- Temperature
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation
Collapse
|
21
|
Kumar D, Patro S, Ghosh J, Das A, Maiti IB, Dey N. Development of a salicylic acid inducible minimal sub-genomic transcript promoter from Figwort mosaic virus with enhanced root- and leaf-activity using TGACG motif rearrangement. Gene 2012; 503:36-47. [PMID: 22561698 DOI: 10.1016/j.gene.2012.04.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 04/14/2012] [Accepted: 04/18/2012] [Indexed: 11/24/2022]
Abstract
In Figwort mosaic virus sub-genomic transcript promoter (F-Sgt), function of the TGACG-regulatory motif, was investigated in the background of artificially designed promoter sequences. The 131bp (FS, -100 to +31) long F-Sgt promoter sequence containing one TGACG motif [FS-(TGACG)] was engineered to generate a set of three modified promoter constructs: [FS-(TGACG)(2), containing one additional TGACG motif at 7 nucleotides upstream of the original one], [FS-(TGACG)(3), containing two additional TGACG motifs at 7 nucleotides upstream and two nucleotides downstream of the original one] and [FS-(TGCTG)(mu), having a mutated TGACG motif]. EMSA and foot-printing analysis confirmed binding of tobacco nuclear factors with modified TGACG motif/s. The transcription-activation of the GUS gene by the TGACG motif/s in above promoter constructs was examined in transgenic tobacco and Arabidopsis plants and observed that the transcription activation was affected by the spacing/s and number/s of the TGACG motif/s. The FS-(TGACG)(2) promoter showed strongest root-activity compared to other modified and CaMV35S promoters. Also under salicylic acid (SA) stress, the leaf-activity of the said promoter was further enhanced. All above findings were confirmed by real-time and semi-qRT PCR analysis. Taken together, these results clearly demonstrated that the TGACG motif plays an important role in inducing the root-specific expression of the F-Sgt promoter. This study advocates the importance of genetic manipulation of functional cis-motif for amending the tissue specificity of a plant promoter. SA inducible FS-(TGACG)(2) promoter with enhanced activity could be a useful candidate promoter for developing plants with enhanced crop productivity.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Gene Function and Regulation, Institute of Life Sciences, Government of India, Chandrasekherpur, Orissa, India.
| | | | | | | | | | | |
Collapse
|
22
|
Park SH, Bang SW, Jeong JS, Jung H, Redillas MCFR, Kim HI, Lee KH, Kim YS, Kim JK. Analysis of the APX, PGD1 and R1G1B constitutive gene promoters in various organs over three homozygous generations of transgenic rice plants. PLANTA 2012; 235:1397-408. [PMID: 22212906 DOI: 10.1007/s00425-011-1582-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/20/2011] [Indexed: 05/09/2023]
Abstract
We have previously characterized the constitutively active promoters of the APX, PGD1 and R1G1B genes in rice (Park et al. 2010 in J Exp Bot 61:2459-2467). To have potential crop biotechnology applications, gene promoters must be stably active over many generations. In our current study, we report our further detailed analysis of the APX, PGD1 and R1G1B gene promoters in various organs and tissues of transgenic rice plants for three (T₃₋₅) homozygous generations. The copy numbers in 37 transgenic lines that harbor promoter:gfp constructs were determined and promoter activities were measured by real-time qPCR. Analysis of the 37 lines revealed that 15 contained a single copy of one of the three promoter:gfp chimeric constructs. The promoter activity levels were generally higher in multi-copy lines, whereas variations in these levels over the T₃₋₅ generations studied were observed to be smaller in single-copy than in multi-copy lines. The three promoters were further found to be highly active in the whole plant body at both the vegetative and reproductive stages of plant growth, with the exception of the APX in the ovary and R1G1B in the pistil and filaments where zero or very low levels of activity were detected. Of note, the spatial activities of the PGD1 promoter were found to be strikingly similar to those of the ZmUbi1, a widely used constitutive promoter. Our comparison of promoter activities between T₃, T₄ and T₅ plants revealed that the APX, PGD1 and R1G1B promoters maintained their activities at comparable levels in leaves and roots over three homozygous generations and are therefore potentially viable alternative promoters for crop biotechnology applications.
Collapse
Affiliation(s)
- Su-Hyun Park
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wilson SA, Roberts SC. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:249-68. [PMID: 22059985 PMCID: PMC3288596 DOI: 10.1111/j.1467-7652.2011.00664.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant cell culture systems were initially explored for use in commercial synthesis of several high-value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field-grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field-grown crops is significant and therefore processes must be optimized with regard to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes.
Collapse
Affiliation(s)
- Sarah A Wilson
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | | |
Collapse
|
24
|
Kumar S, Jaggi M, Sinha AK. Ectopic overexpression of vacuolar and apoplastic Catharanthus roseus peroxidases confers differential tolerance to salt and dehydration stress in transgenic tobacco. PROTOPLASMA 2012; 249:423-32. [PMID: 21643888 DOI: 10.1007/s00709-011-0294-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/22/2011] [Indexed: 05/30/2023]
Abstract
CrPrx and CrPrx1 are class III peroxidases previously cloned and characterized from Catharanthus roseus. CrPrx is known to be apoplastic in nature, while CrPrx1 is targeted to vacuoles. In order to study their role in planta, these two peroxidases were expressed in Nicotiana tabacum. The transformed plants exhibited increased peroxidase activity. Increased oxidative stress tolerance was also observed in transgenics when treated with H(2)O(2) under strong light conditions. However, differential tolerance to salt and dehydration stress was observed during germination of T1 transgenic seeds. Under these stresses, the seed germination of CrPrx-transformed plants and wild-type plants was clearly suppressed, whereas CrPrx1 transgenic lines showed improved germination. CrPrx-transformed lines exhibited better cold tolerance than CrPrx1-transformed lines. These results indicate that vacuolar peroxidase plays an important role in salt and dehydration stress over cell wall-targeted peroxidase, while cell wall-targeted peroxidase renders cold stress tolerance.
Collapse
Affiliation(s)
- Santosh Kumar
- National Institute of Plant Genome Research, 10531, Aruna Asaf Ali Road, New Delhi, 110 067, India
| | | | | |
Collapse
|
25
|
Gatica-Arias A, Farag MA, Stanke M, Matoušek J, Wessjohann L, Weber G. Flavonoid production in transgenic hop (Humulus lupulus L.) altered by PAP1/MYB75 from Arabidopsis thaliana L. PLANT CELL REPORTS 2012; 31:111-9. [PMID: 21912858 DOI: 10.1007/s00299-011-1144-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 05/25/2023]
Abstract
Hop is an important source of secondary metabolites, such as flavonoids. Some of these are pharmacologically active. Nevertheless, the concentration of some classes as flavonoids in wild-type plants is rather low. To enhance the production in hop, it would be interesting to modify the regulation of genes in the flavonoid biosynthetic pathway. For this purpose, the regulatory factor PAP1/AtMYB75 from Arabidopsis thaliana L. was introduced into hop plants cv. Tettnanger by Agrobacterium-mediated genetic transformation. Twenty kanamycin-resistant transgenic plants were obtained. It was shown that PAP1/AtMYB75 was stably incorporated and expressed in the hop genome. In comparison to the wild-type plants, the color of female flowers and cones of transgenic plants was reddish to pink. Chemical analysis revealed higher levels of anthocyanins, rutin, isoquercitin, kaempferol-glucoside, kaempferol-glucoside-malonate, desmethylxanthohumol, xanthohumol, α-acids and β-acids in transgenic plants compared to wild-type plants.
Collapse
Affiliation(s)
- A Gatica-Arias
- Plant Breeding and Biotechnology, Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Liu YK, Huang LF, Ho SL, Liao CY, Liu HY, Lai YH, Yu SM, Lu CA. Production of mouse granulocyte-macrophage colony-stimulating factor by gateway technology and transgenic rice cell culture. Biotechnol Bioeng 2011; 109:1239-47. [PMID: 22125231 DOI: 10.1002/bit.24394] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/04/2011] [Accepted: 11/16/2011] [Indexed: 12/14/2022]
Abstract
To establish a production platform for recombinant proteins in rice suspension cells, we first constructed a Gateway-compatible binary T-DNA destination vector. It provided a reliable and effective method for the rapid directional cloning of target genes into plant cells through Agrobacterium-mediated transformation. We used the approach to produce mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) in a rice suspension cell system. The promoter for the αAmy3 amylase gene, which is induced strongly by sugar depletion, drove the expression of mGM-CSF. The resulting recombinant protein was fused with the αAmy3 signal peptide and was secreted into the culture medium. The production of rice-derived mGM-CSF (rmGM-CSF) was scaled up successfully in a 2-L bioreactor, in which the highest yield of rmGM-CSF was 24.6 mg/L. Due to post-translational glycosylation, the molecular weight of rmGM-CSF was larger than that of recombinant mGM-CSF produced in Escherichia coli. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60.
Collapse
Affiliation(s)
- Yu-Kuo Liu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Kwei-Shan, Taoyuan County, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chandra S. Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 2011; 34:407-15. [DOI: 10.1007/s10529-011-0785-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/18/2011] [Indexed: 11/24/2022]
|
28
|
Safarnejad MR, Jouzani GS, Tabatabaie M, Twyman RM, Schillberg S. Antibody-mediated resistance against plant pathogens. Biotechnol Adv 2011; 29:961-71. [DOI: 10.1016/j.biotechadv.2011.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 08/12/2011] [Accepted: 08/12/2011] [Indexed: 02/06/2023]
|
29
|
Metabolic Engineering and Oil Supplementation of Physcomitrella patens for Activation of C22 Polyunsaturated Fatty Acid Production. J AM OIL CHEM SOC 2011. [DOI: 10.1007/s11746-011-1927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Morey KJ, Antunes MS, Albrecht KD, Bowen TA, Troupe JF, Havens KL, Medford JI. Developing a synthetic signal transduction system in plants. Methods Enzymol 2011; 497:581-602. [PMID: 21601104 DOI: 10.1016/b978-0-12-385075-1.00025-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One area of focus in the emerging field of plant synthetic biology is the manipulation of systems involved in sensing and response to environmental signals. Sensing and responding to signals, including ligands, typically involves biological signal transduction. Plants use a wide variety of signaling systems to sense and respond to their environment. One of these systems, a histidine kinase (HK) based signaling system, lends itself to manipulation using the tools of synthetic biology. Both plants and bacteria use HKs to relay signals, which in bacteria can involve as few as two proteins (two-component systems or TCS). HK proteins are evolutionarily conserved between plants and bacteria and plant HK components have been shown to be functional in bacteria. We found that this conservation also applies to bacterial HK components which can function in plants. This conservation of function led us to hypothesize that synthetic HK signaling components can be designed and rapidly tested in bacteria. These novel HK signaling components form the foundation for a synthetic signaling system in plants, but typically require modifications such as codon optimization and proper targeting to allow optimal function. We describe the process and methodology of producing a synthetic signal transduction system in plants. We discovered that the bacterial response regulator (RR) PhoB shows HK-dependent nuclear translocation in planta. Using this discovery, we engineered a partial synthetic pathway in which a synthetic promoter (PlantPho) is activated using a plant-adapted PhoB (PhoB-VP64) and the endogenous HK-based cytokinin signaling pathway. Building on this work, we adapted an input or sensing system based on bacterial chemotactic binding proteins and HKs, resulting in a complete eukaryotic signal transduction system. Input to our eukaryotic signal transduction system is provided by a periplasmic binding protein (PBP), ribose-binding protein (RBP). RBP interacts with the membrane-localized chemotactic receptor Trg. PBPs like RBP have been computationally redesigned to bind small ligands, such as the explosive 2,4,6-trinitrotoluene (TNT). A fusion between the chemotactic receptor Trg and the HK, PhoR, enables signal transduction via PhoB, which undergoes nuclear translocation in response to phosphorylation, resulting in transcriptional activation of an output gene under control of a synthetic plant promoter. Collectively, these components produce a novel ligand-responsive signal transduction system in plants and provide a means to engineer a eukaryotic synthetic signaling system.
Collapse
Affiliation(s)
- Kevin J Morey
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Ha SH, Liang YS, Jung H, Ahn MJ, Suh SC, Kweon SJ, Kim DH, Kim YM, Kim JK. Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:928-38. [PMID: 20649940 DOI: 10.1111/j.1467-7652.2010.00543.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Coordination of multiple transgenes is essential for metabolic engineering of biosynthetic pathways. Here, we report the utilization of two bicistronic systems involving the 2A sequence from the foot-and-mouth disease virus and the internal ribosome entry site (IRES) sequence from the crucifer-infecting tobamovirus to the biosynthesis of carotenoids in rice endosperm. Two carotenoid biosynthetic genes, phytoene synthase (Psy) from Capsicum and carotene desaturase (CrtI) from Pantoea, were linked via either the synthetic 2A sequence that was optimized for rice codons or the IRES sequence under control of the rice globulin promoter, generating PAC (Psy-2A-CrtI) and PIC (Psy-IRES-CrtI) constructs, respectively. The transgenic endosperm of PAC rice had a more intense golden color than did PIC rice, demonstrating that 2A was more efficient than IRES in coordinating gene expression. The 2A and IRES constructs were equally effective in driving transgene transcription. However, immunoblot analysis of CRTI, a protein encoded by the downstream open reading frame of the bicistronic constructs, revealed that 2A was ninefold more effective than IRES in driving translation. The PAC endosperms accumulated an average of 1.3 μg/g of total carotenoids, which was ninefold higher than was observed for PIC endosperms. In particular, accumulation of β-carotene was much higher in PAC endosperms than in PIC endosperms. Collectively, these results demonstrate that both 2A and IRES systems can coordinate the expression of two biosynthetic genes, with the 2A system exhibiting greater efficiency. Thus, the 2A expression system described herein is an effective new tool for multigene stacking in crop biotechnology.
Collapse
Affiliation(s)
- Sun-Hwa Ha
- National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
An extensive case study of hairy-root cultures for enhanced secondary-metabolite production through metabolic-pathway engineering. Biotechnol Appl Biochem 2010; 56:161-72. [DOI: 10.1042/ba20100171] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Yi N, Kim YS, Jeong MH, Oh SJ, Jeong JS, Park SH, Jung H, Choi YD, Kim JK. Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth. PLANTA 2010; 232:743-54. [PMID: 20567981 DOI: 10.1007/s00425-010-1212-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/10/2010] [Indexed: 05/05/2023]
Abstract
There are few efficient promoters for use with stress-inducible gene expression in plants, and in particular for monocotyledonous crops. Here, we report the identification of six genes, Rab21, Wsi18, Lea3, Uge1, Dip1, and R1G1B that were induced by drought stress in rice microarray experiments. Gene promoters were linked to the gfp reporter and their activities were analyzed in transgenic rice plants throughout all stages of plant growth, from dry seeds to vegetative tissues to flowers, both before and after drought treatments. In fold induction levels, Rab21 and Wsi18 promoters ranged from 65- and 36-fold in leaves to 1,355- and 492-fold in flowers, respectively, whereas Lea3 and Uge1 were higher in leaves, but lower in roots and flowers, as compared with Rab21 and Wsi18. Dip1 and R1G1B promoters had higher basal levels of activity under normal growth conditions in all tissues, resulting in smaller fold-induction levels than those of the others. In drought treatment time course, activities of Dip1 and R1G1B promoters rapidly increased, peaked at 2 h, and remained constant until 8 h, while that of Lea3 slowly yet steadily increased until 8 h. Interestingly, Rab21 activity increased rapidly and steadily in response to drought stress until expression peaked at 8 h. Thus, we have isolated and characterized six rice promoters that are all distinct in fold induction, tissue specificity, and induction kinetics under drought conditions, providing a variety of drought-inducible promoters for crop biotechnology.
Collapse
Affiliation(s)
- Nari Yi
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Analysis of the Wsi18, a stress-inducible promoter that is active in the whole grain of transgenic rice. Transgenic Res 2010; 20:153-63. [DOI: 10.1007/s11248-010-9400-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/21/2010] [Indexed: 10/19/2022]
|
35
|
Park SH, Yi N, Kim YS, Jeong MH, Bang SW, Choi YD, Kim JK. Analysis of five novel putative constitutive gene promoters in transgenic rice plants. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2459-67. [PMID: 20363869 PMCID: PMC2877896 DOI: 10.1093/jxb/erq076] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 02/27/2010] [Accepted: 03/09/2010] [Indexed: 05/19/2023]
Abstract
Novel constitutive gene promoters are essential components of crop biotechnology. Our analysis of five such promoters, APX, SCP1, PGD1, R1G1B, and EIF5, in transgenic rice plants is reported here. The five promoter regions were linked to the gfp reporter gene and transformed into rice. Using fluorescent microscopy and q-RT-PCR, promoter activities were analysed in comparison with OsCc1, Act1, and ZmUbi1, previously characterized as strong constitutive promoters. The APX and PGD1 promoters direct high levels of gene expression in all tissues and stages, producing GFP at levels of up to 1.3% of the total soluble protein. PGD1 is particularly active in flowers and mature roots. The R1G1B is active in the whole grain including the embryo, endosperm, and aleurone layer, and thus represents a constitutive promoter with activity in whole seeds that has not been described previously. The ZmUbi1 and R1G1B promoters are markedly less active in young roots and mature leaves whilst the APX, PGD1, OsCc1, and Act1 promoters are highly active in both vegetative and reproductive tissues. Overall, our results demonstrate that APX, PGD1, and R1G1B are novel gene promoters that are highly active at all stages of plant growth with distinct levels of activity.
Collapse
Affiliation(s)
- Su-Hyun Park
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | - Nari Yi
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
- School of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Youn Shic Kim
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | - Min-Ho Jeong
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | - Seung-Woon Bang
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | - Yang Do Choi
- School of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Ju-Kon Kim
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Desai PN, Shrivastava N, Padh H. Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 2010; 28:427-35. [PMID: 20152894 DOI: 10.1016/j.biotechadv.2010.01.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/01/2010] [Accepted: 01/25/2010] [Indexed: 11/25/2022]
Abstract
Plants are a promising expression system for the production of heterologous proteins, especially therapeutic proteins. Currently the majority of therapeutic proteins are produced in mammalian cell lines or bacteria. In a few cases insects, yeast and fungi have been developed for production of human proteins. However, these expression systems have limitations in terms of suitability, cost, scalability, purification and post-translational modifications. Therefore, alternative expression systems are being developed in transgenic animals and transgenic plants. Transgenic plants could provide an attractive alternative in terms of low production cost and lower capital investment in infrastructure, and with appropriate post-translational modifications. The potential of plants as an expression host has not been capitalized, primarily due to lower level of expression of transgenes in plants. The present review will evaluate the rate limiting steps of plant expression systems and suggest strategies to optimize protein expression at each of the steps: gene integration, transcription, translation and protein accumulation.
Collapse
Affiliation(s)
- Priti N Desai
- B. V. Patel Pharmaceutical Education and Research Development Centre, Ahmedabad, India
| | | | | |
Collapse
|
37
|
Fruit-specific expression of sweet protein Brazzein in transgenic tomato plants. YI CHUAN = HEREDITAS 2009; 31:663-7. [DOI: 10.3724/sp.j.1005.2009.00663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 2009; 26:1001-43. [PMID: 19636448 DOI: 10.1039/b802662a] [Citation(s) in RCA: 1206] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is much epidemiological evidence that diets rich in fruit and vegetables can reduce the incidence of non-communicable diseases such as cardiovascular diseases, diabetes, cancer and stroke. These protective effects are attributed, in part, to phenolic secondary metabolites. This review summarizes the chemistry, biosynthesis and occurrence of the compounds involved, namely the C6-C3-C6 flavonoids-anthocyanins, dihydrochalcones, flavan-3-ols, flavanones, flavones, flavonols and isoflavones. It also includes tannins, phenolic acids, hydroxycinnamates and stilbenes and the transformation of plant phenols associated with food processing (for example, production of black tea, roasted coffee and matured wines), these latter often being the major dietary sources. Events that occur following ingestion are discussed, in particular, the deglycosylation, glucuronidation, sulfation and methylation steps that occur at various points during passage through the wall of the small intestine into the circulatory system and subsequent transport to the liver in the portal vein.We also summarise the fate of compounds that are not absorbed in the small intestine, but which pass into the large intestine where they are degraded by the colonic microflora to phenolic acids, which can be absorbed into the circulatory system and subjected to phase II metabolism prior to excretion. Initially, the protective effect of dietary phenolics was thought to be due to their antioxidant properties which resulted in a lowering of the levels of free radicals within the body.However, there is now emerging evidence that themetabolites of dietary phenolics,which appear in the circulatory systemin nmol/L to low mmol/L concentrations, exertmodulatory effects in cells through selective actions on different components of the intracellular signalling cascades vital for cellular functions such as growth, proliferation and apoptosis. In addition, the intracellular concentrations required to affect cell signalling pathways are considerably lower than those required to impact on antioxidant capacity. The mechanisms underlying these processes are discussed.
Collapse
Affiliation(s)
- Alan Crozier
- Graham Kerr Building, Division of Ecology and Evolutionary Biology, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
39
|
Taylor LE, Dai Z, Decker SR, Brunecky R, Adney WS, Ding SY, Himmel ME. Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol 2008; 26:413-24. [PMID: 18579242 DOI: 10.1016/j.tibtech.2008.05.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 05/01/2008] [Accepted: 05/07/2008] [Indexed: 11/18/2022]
Abstract
The concept of expressing non-plant glycosyl hydrolase genes in plant tissue is nearly two decades old, yet relatively little work in this field has been reported. However, resurgent interest in technologies aimed at enabling processes that convert biomass to sugars and fuels has turned attention toward this intuitive solution. There are several challenges facing researchers in this field, including the development of better and more specifically targeted delivery systems for hydrolytic genes, the successful folding and post-translational modification of heterologous proteins and the development of cost-effective process strategies utilizing these transformed plants. The integration of these concepts, from the improvement of biomass production and conversion characteristics to the heterologous production of glycosyl hydrolases in a high yielding bioenergy crop, holds considerable promise for improving the lignocellulosic conversion of biomass to ethanol and subsequently to fuels.
Collapse
Affiliation(s)
- Larry E Taylor
- Chemical and Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Abdullah MA, Ali AM, Lajis NH, Marziah M, Sinskey AJ, Rha C. Issues in Plant Cell Culture Engineering for Enhancement of Productivity. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/apj.5500130507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Shkryl YN, Veremeichik GN, Bulgakov VP, Tchernoded GK, Mischenko NP, Fedoreyev SA, Zhuravlev YN. Individual and combined effects of the rolA, B, and C genes on anthraquinone production in Rubia cordifolia transformed calli. Biotechnol Bioeng 2008; 100:118-25. [PMID: 18023060 DOI: 10.1002/bit.21727] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is known that the rolA, rolB, and rolC genes of Agrobacterium rhizogenes T-DNA affect processes of plant development and activate the synthesis of secondary metabolites in transformed plant cells. Although a synergistic activity of the rol genes on root formation is well-documented, little is known about their individual and combined action on secondary metabolism. In the present investigation, we provide evidence indicating that individual rolA, rolB, and rolC genes are capable of increasing biosynthesis of anthraquinones (AQs) in transformed calli of Rubia cordifolia. The stimulatory effect was due to the increased transcription of a key gene of AQ biosynthesis, the isochorismate synthase (ICS) gene. The strongest AQ-stimulating activity was shown for an R. cordifolia culture expressing rolB at high levels, where rolB ensured a 15-fold increase of AQ accumulation compared with the control, non-transformed calli. A tyrosine phosphatase inhibitor abolished the rolB-induced increase of AQ production, thus indicating the involvement of tyrosine (de)phosphorylation in the rolB-mediated AQ stimulation. The rolA- and rolC-expressing cultures produced 2.8- and 4.3-fold higher levels of AQs, respectively, when compared with the control calli. However, the effect of rolA, rolB, and rolC on AQ biosynthesis was not synergistic because rolA and rolC apparently attenuated the stimulatory effect of rolB on AQ biosynthesis. Therefore, the rol-gene-mediated signals that promote root formation and those which activate biosynthesis of secondary metabolites seem to have a point of divergence.
Collapse
Affiliation(s)
- Yuri N Shkryl
- Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia.
| | | | | | | | | | | | | |
Collapse
|
42
|
Gerjets T, Sandmann M, Zhu C, Sandmann G. Metabolic engineering of ketocarotenoid biosynthesis in leaves and flowers of tobacco species. Biotechnol J 2007; 2:1263-9. [PMID: 17619231 DOI: 10.1002/biot.200700040] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ketocarotenoids and especially astaxanthin are high-valued pigments used as feed additives. Conventionally, they are provided by chemical synthesis. Their biological production is a promising alternative. For the development of a plant production system, Nicotiana glauca, a species with carotenoid-containing yellow pigmented flower petals, was transformed with a cyanobacterial ketolase gene. The resulting plants accumulated 4-ketozeaxantin (adinoxanthin), which is the first ketocarotenoid synthesized in flower petals by genetic modification. Due to the very late flowering in this tobacco species, N. tabacum was used to optimize the yield and ketocarotenoid product pattern by metabolic engineering of the ketolation steps of carotenogenesis. The highly carotenogenic nectary tissue in the flowers represents a model of a flower chromoplast system. By expression of a ketolase gene, it was possible to engineer the biosynthetic pathway towards the formation of 3'-hydroxyechinenone, 3-hydroxyechinenone, 4-ketozeaxanthin, 4-ketozeaxanthin esters, 4-ketolutein and 4-ketolutein esters. Some of these ketocarotenoids were also formed in the leaves of the trangenic plants. In particular, by co-expression of the ketolase gene in combination with a hydroxylase gene under an ubiquitous promoter, the formation of total carotenoids in nectaries increased by more than 2.5-fold. In the nectaries of this type of transformants, more than 50% of the accumulating carotenoids were keto derivatives. In addition, the levels of ketocarotenoid esters were much lower and a higher percentage of the free ketocarotenoids accumulated. These results open new promising perspectives for a successful metabolic engineering of keto-hydroxy carotenoid production in carotenogenic flowers.
Collapse
Affiliation(s)
- Tanja Gerjets
- Molecular Biosciences, J.W. Goethe Universität, Frankfurt/M., Germany
| | | | | | | |
Collapse
|
43
|
Agbasi-Porter C, Ryman-Rasmussen J, Franzen S, Feldheim D. Transcription inhibition using oligonucleotide-modified gold nanoparticles. Bioconjug Chem 2007; 17:1178-83. [PMID: 16984126 DOI: 10.1021/bc060100f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The capture of T7 RNA polymerase using double-stranded promoter DNA on the surface of gold nanoparticles has been demonstrated. The competitive binding and inhibition of T7 RNA polymerase due to specific interactions on the nanoparticle surface represents a transcription factor decoy approach in a model system. The efficiency of inhibition was determined for various nanoparticle sizes, surface coverage, and linker length for double-stranded promoter DNA on gold nanoparticles. The experiments provide a basis for determining the accessibility of binding sites on nanoparticle surfaces for applications involving cell targeting or the use of nanoparticles as binding agents in solution.
Collapse
|
44
|
Ismaili A, Jalali-Javaran M, Rasaee MJ, Rahbarizadeh F, Forouzandeh-Moghadam M, Memari HR. Production and characterization of anti-(mucin MUC1) single-domain antibody in tobacco (Nicotiana tabacum cultivar Xanthi). Biotechnol Appl Biochem 2007; 47:11-9. [PMID: 17073735 DOI: 10.1042/ba20060071] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Members of the Camelidae (camels, dromedaries, llamas, alpacas, guanacos and vicunas) are known to produce Igs (immunoglobulins) devoid of light chains and CH1s (constant heavy-chain domains). The antigen-specific binding fragments of these heavy-chain antibodies therefore comprise one single domain (the so-called 'VHH') and are of great importance in biotechnological applications. To evaluate the expression and biological activity of sdAbs (single-domain antibodies) in plants, which, on account of their small size and antigen-recognition properties, would have a major impact on antibody-engineering strategies, we constructed a pBI121-VHH gene encoding the recombinant sdAb fragments with specificity for a cancer-associated mucin, MUC1. Analysis of transgenic tobacco (Nicotiana tabacum cultivar Xanthi) plants by PCR and Western blotting demonstrated the expression of sdAb, while ELISA results with various MUC1 antigens and immunocytochemistry with cancerous cell lines confirmed that the activity of these molecules compared favourably with that of the parent recombinant antibodies. Protein purification was achieved by using sequential (NH4)2SO4 precipitation, gel filtration and immunoaffinity chromatography. Analysis of the purified VHH by ELISA indicated that the purified antibody fragments were able to react successfully with a MUC1-related peptide. These results reaffirm that the tobacco plant is a suitable host for the production of correctly folded VHH antibody fragments with diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ahmad Ismaili
- Department of Plant Breeding, School of Agriculture, Tarbiat Modarres University, Jalale-Ale-Ahmad High Way, Tehran 14115-336, Iran
| | | | | | | | | | | |
Collapse
|
45
|
Venter M. Synthetic promoters: genetic control through cis engineering. TRENDS IN PLANT SCIENCE 2007; 12:118-24. [PMID: 17292658 DOI: 10.1016/j.tplants.2007.01.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/12/2006] [Accepted: 01/29/2007] [Indexed: 05/03/2023]
Abstract
Technological advances in plant genetics integrated with systems biology and bioinformatics has yielded a myriad of novel biological data and insights into plant metabolism. This unprecedented advance has provided a platform for targeted manipulation of transcriptional activity through synthetic promoter engineering, and holds great promise as a way to further our understanding of regulatory complexity. The challenge and strategy for predictive experimental gene expression is the accurate design and use of molecular 'switches' and modules that will regulate single or multiple plant transgenes in direct response to specific environmental, physiological and chemical cues. In particular, focusing on cis-motif rearrangement, future plant biotechnology applications and the elucidation of cis- and trans-regulatory mechanisms could greatly benefit from using plant synthetic promoters.
Collapse
Affiliation(s)
- Mauritz Venter
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
46
|
|
47
|
Sandmann G, Römer S, Fraser PD. Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metab Eng 2006; 8:291-302. [PMID: 16621640 DOI: 10.1016/j.ymben.2006.01.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 01/26/2006] [Accepted: 01/31/2006] [Indexed: 02/03/2023]
Abstract
As a proof of concept, the qualitative and quantitative engineering of carotenoid formation has been achieved in crop plants. Successful reports in tomato, potato, rice, and canola all describe the enhancement of carotenoid with nutritional value, while in model systems such as tobacco and Arabidopsis the engineering of carotenoid to confer abiotic stress has been described. For all the successful applications there have been many examples of unintended/unpredicted phenotypes and results. Typically this has resided from our lack of understanding of carotenoid formation and its regulation. In the present article, we will review advances in carotenoid formation and its regulation to illustrate how metabolic engineering experiments have shed light on regulatory mechanisms.
Collapse
Affiliation(s)
- Gerhard Sandmann
- Molecular Biosciences 213, P.O. Box 111932, J. W. Goethe Universität, D-60054 Frankfurt, Germany.
| | | | | |
Collapse
|
48
|
Abstract
The majority of well-documented cases of horizontal transfer between higher eukaryotes involve the movement of transposable elements between animals. Surprisingly, although plant genomes often contain vast numbers of these mobile genetic elements, no evidence of horizontal transfer of a nuclear-encoded transposon between plant species has been detected to date. The most mutagenic known plant transposable element system is the Mutator system in maize. Mu-like elements (MULEs) are widespread among plants, and previous analysis has suggested that the distribution of various subgroups of MULEs is patchy, consistent with horizontal transfer. We have sequenced portions of MULE transposons from a number of species of the genus Setaria and compared them to each other and to publicly available databases. A subset of these elements is remarkably similar to a small family of MULEs in rice. A comparison of noncoding and synonymous sequences revealed that the observed similarity is not due to selection at the amino acid level. Given the amount of time separating Setaria and rice, the degree of similarity between these elements excludes the possibility of simple vertical transmission of this class of MULEs. This is the first well-documented example of horizontal transfer of any nuclear-encoded genes between higher plants. Sequencing and analysis of MULE transposons and their surrounding genomic regions from closely related grass species and rice provides evidence of horizontal transfer in plants.
Collapse
Affiliation(s)
- Xianmin Diao
- 1Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California, United States of America
| | - Michael Freeling
- 1Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California, United States of America
| | - Damon Lisch
- 1Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California, United States of America
| |
Collapse
|
49
|
Leduc M, Tikhomiroff C, Cloutier M, Perrier M, Jolicoeur M. Development of a kinetic metabolic model: application to Catharanthus roseus hairy root. Bioprocess Biosyst Eng 2006; 28:295-313. [PMID: 16453114 PMCID: PMC1705518 DOI: 10.1007/s00449-005-0034-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 11/10/2005] [Indexed: 01/07/2023]
Abstract
A kinetic metabolic model describing Catharanthus roseus hairy root growth and nutrition was developed. The metabolic network includes glycolysis, pentose-phosphate pathway, TCA cycle and the catabolic reactions leading to cell building blocks such as amino acids, organic acids, organic phosphates, lipids and structural hexoses. The central primary metabolic network was taken at pseudo-steady state and metabolic flux analysis technique allowed reducing from 31 metabolic fluxes to 20 independent pathways. Hairy root specific growth rate was described as a function of intracellular concentration in cell building blocks. Intracellular transport and accumulation kinetics for major nutrients were included. The model uses intracellular nutrients as well as energy shuttles to describe metabolic regulation. Model calibration was performed using experimental data obtained from batch and medium exchange liquid cultures of C. roseus hairy root using a minimal medium in Petri dish. The model is efficient in estimating the growth rate.
Collapse
Affiliation(s)
- M. Leduc
- Canada Research Chair on the Development of Metabolic Engineering Tools BIO-P2 Research Unit, Department of Chemical Engineering, École Polytechnique de Montréal, PO Box 6079, Centre-ville Station, Montréal, Québec Canada H3C 3A7
| | - C. Tikhomiroff
- Canada Research Chair on the Development of Metabolic Engineering Tools BIO-P2 Research Unit, Department of Chemical Engineering, École Polytechnique de Montréal, PO Box 6079, Centre-ville Station, Montréal, Québec Canada H3C 3A7
| | - M. Cloutier
- Canada Research Chair on the Development of Metabolic Engineering Tools BIO-P2 Research Unit, Department of Chemical Engineering, École Polytechnique de Montréal, PO Box 6079, Centre-ville Station, Montréal, Québec Canada H3C 3A7
| | - M. Perrier
- Canada Research Chair on the Development of Metabolic Engineering Tools BIO-P2 Research Unit, Department of Chemical Engineering, École Polytechnique de Montréal, PO Box 6079, Centre-ville Station, Montréal, Québec Canada H3C 3A7
| | - M. Jolicoeur
- Canada Research Chair on the Development of Metabolic Engineering Tools BIO-P2 Research Unit, Department of Chemical Engineering, École Polytechnique de Montréal, PO Box 6079, Centre-ville Station, Montréal, Québec Canada H3C 3A7
| |
Collapse
|
50
|
El-Shemy HA, Khalafalla MM, Fujita K, Ishimoto M. Molecular control of gene co-suppression in transgenic soybean via particle bombardment. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 39:61-7. [PMID: 16466639 DOI: 10.5483/bmbrep.2006.39.1.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Molecular co-suppression phenomena are important to consider in transgene experiments. Embryogenic cells were obtained from immature cotyledons and engineered with two different gene constructs (pHV and pHVS) through particle bombardment. Both constructs contain a gene conferring resistance to hygromycin (hpt) as a selective marker and a modified glycinin (11S globulin) gene (V3-1) as a target. sGFP(S65T) as a reporter gene was, however, inserted into the flanking region of the V3-1 gene (pHVS). Fluorescence microscopic screening after the selection of hygromycin, identified clearly the expression of sGFP(S65T) in the transformed soybean embryos bombarded with the pHVS construct. Stable integration of the transgenes was confirmed by polymerase chain reaction (PCR) and Southern blot analysis. Seeds of transgenic plants obtained from the pHV construct frequently lacked an accumulation of endogenous glycinin, which is encoded by homologous genes to the target gene V3-1. Most of the transgenic plants expressing sGFP(S65T) showed highly accumulation of glycinin. The expression of sGFP(S65T) and V3-1 inherits into the next generations. sGFP(S65T) as a reporter gene may be useful to increase the transformation efficiency of transgenic soybean with avoiding gene co-suppression.
Collapse
Affiliation(s)
- Hany A El-Shemy
- National Agricultural Research Center for Western Region, 6-12-1 Nishifukatsu, Fukuyama, Hiroshima, 721-8514, Japan.
| | | | | | | |
Collapse
|