1
|
Wong NK, Yip SP, Huang CL. Establishing Functional Retina in a Dish: Progress and Promises of Induced Pluripotent Stem Cell-Based Retinal Neuron Differentiation. Int J Mol Sci 2023; 24:13652. [PMID: 37686457 PMCID: PMC10487913 DOI: 10.3390/ijms241713652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The human eye plays a critical role in vision perception, but various retinal degenerative diseases such as retinitis pigmentosa (RP), glaucoma, and age-related macular degeneration (AMD) can lead to vision loss or blindness. Although progress has been made in understanding retinal development and in clinical research, current treatments remain inadequate for curing or reversing these degenerative conditions. Animal models have limited relevance to humans, and obtaining human eye tissue samples is challenging due to ethical and legal considerations. Consequently, researchers have turned to stem cell-based approaches, specifically induced pluripotent stem cells (iPSCs), to generate distinct retinal cell populations and develop cell replacement therapies. iPSCs offer a novel platform for studying the key stages of human retinogenesis and disease-specific mechanisms. Stem cell technology has facilitated the production of diverse retinal cell types, including retinal ganglion cells (RGCs) and photoreceptors, and the development of retinal organoids has emerged as a valuable in vitro tool for investigating retinal neuron differentiation and modeling retinal diseases. This review focuses on the protocols, culture conditions, and techniques employed in differentiating retinal neurons from iPSCs. Furthermore, it emphasizes the significance of molecular and functional validation of the differentiated cells.
Collapse
Affiliation(s)
- Nonthaphat Kent Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
2
|
Starr C, Chen B. Adeno-associated virus mediated gene therapy for neuroprotection of retinal ganglion cells in glaucoma. Vision Res 2023; 206:108196. [PMID: 36812679 PMCID: PMC10085843 DOI: 10.1016/j.visres.2023.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023]
Abstract
Glaucoma is a group of diseases typically characterized by the degeneration of the optic nerve and is one of the world's leading causes of blindness. Although there is no cure for glaucoma, reducing intraocular pressure is an approved treatment to delay optic nerve degeneration and retinal ganglion cell (RGC) death in most patients. Recent clinical trials have evaluated the safety and efficacy of gene therapy vectors for the treatment of inherited retinal degenerations (IRDs), and the results are promising, generating enthusiasm for the treatment of other retinal diseases. While there have been no reports on successful clinical trials for gene therapy-based neuroprotective treatment of glaucoma, and only a few studies assessing the efficacy of gene therapy vectors for the treatment of Leber hereditary optic neuropathy (LHON), the potential for neuroprotective treatment of glaucoma and other diseases affecting RGCs is still widely recognized. Here, we review recent progress and cover current limitations pertaining to targeting RGCs with adeno-associated virus-based gene therapy for the treatment of glaucoma.
Collapse
Affiliation(s)
- Christopher Starr
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Optometry and Vision Science, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
3
|
de Fisenne MA, Yilmaz Z, De Decker R, Suain V, Buée L, Ando K, Brion JP, Leroy K. Alzheimer PHF-tau aggregates do not spread tau pathology to the brain via the Retino-tectal projection after intraocular injection in mouse models. Neurobiol Dis 2022; 174:105875. [PMID: 36154878 DOI: 10.1016/j.nbd.2022.105875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/27/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022] Open
Abstract
Neurofibrillary tangles (NFT), a neuronal lesion found in Alzheimer's disease (AD), are composed of fibrillary aggregates of modified forms of tau proteins. The propagation of NFT follows neuroanatomical pathways suggesting that synaptically connected neurons could transmit tau pathology by the recruitment of normal tau in a prion-like manner. Moreover, the intracerebral injection of pathological tau from AD brains induces the seeding of normal tau in mouse brain. Creutzfeldt-Jacob disease has been transmitted after ocular transplants of cornea or sclera and the scrapie agent can spread across the retino-tectal pathway after intraocular injection of scrapie mouse brain homogenates. In AD, a tau pathology has been detected in the retina. To investigate the potential risk of tau pathology transmission during eye surgery using AD tissue material, we have analysed the development of tau pathology in the visual pathway of mice models expressing murine tau, wild-type or mutant human tau after intraocular injection of pathological tau proteins from AD brains. Although these pathological tau proteins were internalized in retinal ganglion cells, they did not induce aggregation of endogenous tau nor propagation of a tau pathology in the retino-tectal pathway after a 6-month incubation period. These results suggest that retinal ganglion cells exhibit a resistance to develop a tau pathology, and that eye surgery is not a major iatrogenic risk of transmission of tau pathology, contrary to what has been observed for transmission of infectious prions in prion diseases.
Collapse
Affiliation(s)
- M-A de Fisenne
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - Z Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - R De Decker
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - V Suain
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - L Buée
- INSERM, U837. Université de Lille 2, Lille, France
| | - K Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - J-P Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - K Leroy
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium.
| |
Collapse
|
4
|
Herrera E, Escalante A. Transcriptional Control of Axon Guidance at Midline Structures. Front Cell Dev Biol 2022; 10:840005. [PMID: 35265625 PMCID: PMC8900194 DOI: 10.3389/fcell.2022.840005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The development of the nervous system is a time-ordered and multi-stepped process that includes neurogenesis and neuronal specification, axonal navigation, and circuits assembly. During axonal navigation, the growth cone, a dynamic structure located at the tip of the axon, senses environmental signals that guide axons towards their final targets. The expression of a specific repertoire of receptors on the cell surface of the growth cone together with the activation of a set of intracellular transducing molecules, outlines the response of each axon to specific guidance cues. This collection of axon guidance molecules is defined by the transcriptome of the cell which, in turn, depends on transcriptional and epigenetic regulators that modify the structure and DNA accessibility to determine what genes will be expressed to elicit specific axonal behaviors. Studies focused on understanding how axons navigate intermediate targets, such as the floor plate of vertebrates or the mammalian optic chiasm, have largely contributed to our knowledge of how neurons wire together during development. In fact, investigations on axon navigation at these midline structures led to the identification of many of the currently known families of proteins that act as guidance cues and their corresponding receptors. Although the transcription factors and the regulatory mechanisms that control the expression of these molecules are not well understood, important advances have been made in recent years in this regard. Here we provide an updated overview on the current knowledge about the transcriptional control of axon guidance and the selection of trajectories at midline structures.
Collapse
|
5
|
Lyu J, Mu X. Genetic control of retinal ganglion cell genesis. Cell Mol Life Sci 2021; 78:4417-4433. [PMID: 33782712 DOI: 10.1007/s00018-021-03814-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/27/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Retinal ganglion cells (RGCs) are the only projection neurons in the neural retina. They receive and integrate visual signals from upstream retinal neurons in the visual circuitry and transmit them to the brain. The function of RGCs is performed by the approximately 40 RGC types projecting to various central brain targets. RGCs are the first cell type to form during retinogenesis. The specification and differentiation of the RGC lineage is a stepwise process; a hierarchical gene regulatory network controlling the RGC lineage has been identified and continues to be elaborated. Recent studies with single-cell transcriptomics have led to unprecedented new insights into their types and developmental trajectory. In this review, we summarize our current understanding of the functions and relationships of the many regulators of the specification and differentiation of the RGC lineage. We emphasize the roles of these key transcription factors and pathways in different developmental steps, including the transition from retinal progenitor cells (RPCs) to RGCs, RGC differentiation, generation of diverse RGC types, and central projection of the RGC axons. We discuss critical issues that remain to be addressed for a comprehensive understanding of these different aspects of RGC genesis and emerging technologies, including single-cell techniques, novel genetic tools and resources, and high-throughput genome editing and screening assays, which can be leveraged in future studies.
Collapse
Affiliation(s)
- Jianyi Lyu
- Department of Ophthalmology/Ross Eye Institute, State University of New York At Buffalo, Buffalo, NY, 14203, USA
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, State University of New York At Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
6
|
Wu F, Bard JE, Kann J, Yergeau D, Sapkota D, Ge Y, Hu Z, Wang J, Liu T, Mu X. Single cell transcriptomics reveals lineage trajectory of retinal ganglion cells in wild-type and Atoh7-null retinas. Nat Commun 2021; 12:1465. [PMID: 33674582 PMCID: PMC7935890 DOI: 10.1038/s41467-021-21704-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Atoh7 has been believed to be essential for establishing the retinal ganglion cell (RGC) lineage, and Pou4f2 and Isl1 are known to regulate RGC specification and differentiation. Here we report our further study of the roles of these transcription factors. Using bulk RNA-seq, we identify genes regulated by the three transcription factors, which expand our understanding of the scope of downstream events. Using scRNA-seq on wild-type and mutant retinal cells, we reveal a transitional cell state of retinal progenitor cells (RPCs) co-marked by Atoh7 and other genes for different lineages and shared by all early retinal lineages. We further discover the unexpected emergence of the RGC lineage in the absence of Atoh7. We conclude that competence of RPCs for different retinal fates is defined by lineage-specific genes co-expressed in the transitional state and that Atoh7 defines the RGC competence and collaborates with other factors to shepherd transitional RPCs to the RGC lineage.
Collapse
Affiliation(s)
- Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jonathan E Bard
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Julien Kann
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Donald Yergeau
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Darshan Sapkota
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yichen Ge
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zihua Hu
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jie Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA.
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
7
|
Ge Y, Wu F, Cheng M, Bard J, Mu X. Two new genetically modified mouse alleles labeling distinct phases of retinal ganglion cell development by fluorescent proteins. Dev Dyn 2020; 249:1514-1528. [PMID: 32741043 PMCID: PMC7855626 DOI: 10.1002/dvdy.233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND During development, all retinal cell types arise from retinal progenitor cells (RPCs) in a step-wise fashion. Atoh7 and Pou4f2 mark, and function in, two phases of retinal ganglion cell (RGC) genesis; Atoh7 functions in a subpopulation of RPCs to render them competent for the RGC fate, whereas Pou4f2 participates in RGC fate specification and RGC differentiation. Despite extensive research on their roles, the properties of the two phases represented by these two factors have not been well studied, likely due to the retinal cellular heterogeneity. RESULTS In this report, we describe two novel knock-in mouse alleles, Atoh7zsGreenCreERT2 and Pou4f2FlagtdTomato , which labeled retinal cells in the two phases of RGC development by fluorescent proteins. Also, the Atoh7zsGreenCreERT2 allele allowed for indirect labeling of RGCs and other cell types upon tamoxifen induction in a dose-dependent manner. Further, these alleles could be used to purify retinal cells in the different phases by fluorescence assisted cell sorting (FACS). Single cell RNA-seq analysis of purified cells from Atoh7zsGreenCreERT2 retinas further validated that this allele labeled both transitional/competent RPCs and their progenies including RGCs. CONCLUSIONS Thus, these two alleles are very useful tools for studying the molecular and genetic mechanisms underlying RGC formation.
Collapse
Affiliation(s)
- Yichen Ge
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY
| | - Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY
| | - Mobin Cheng
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY
| | - Jonathan Bard
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
8
|
Leyva-Díaz E, Masoudi N, Serrano-Saiz E, Glenwinkel L, Hobert O. Brn3/POU-IV-type POU homeobox genes-Paradigmatic regulators of neuronal identity across phylogeny. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e374. [PMID: 32012462 DOI: 10.1002/wdev.374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
One approach to understand the construction of complex systems is to investigate whether there are simple design principles that are commonly used in building such a system. In the context of nervous system development, one may ask whether the generation of its highly diverse sets of constituents, that is, distinct neuronal cell types, relies on genetic mechanisms that share specific common features. Specifically, are there common patterns in the function of regulatory genes across different neuron types and are those regulatory mechanisms not only used in different parts of one nervous system, but are they conserved across animal phylogeny? We address these questions here by focusing on one specific, highly conserved and well-studied regulatory factor, the POU homeodomain transcription factor UNC-86. Work over the last 30 years has revealed a common and paradigmatic theme of unc-86 function throughout most of the neuron types in which Caenorhabditis elegans unc-86 is expressed. Apart from its role in preventing lineage reiterations during development, UNC-86 operates in combination with distinct partner proteins to initiate and maintain terminal differentiation programs, by coregulating a vast array of functionally distinct identity determinants of specific neuron types. Mouse orthologs of unc-86, the Brn3 genes, have been shown to fulfill a similar function in initiating and maintaining neuronal identity in specific parts of the mouse brain and similar functions appear to be carried out by the sole Drosophila ortholog, Acj6. The terminal selector function of UNC-86 in many different neuron types provides a paradigm for neuronal identity regulation across phylogeny. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Invertebrate Organogenesis > Worms Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Eduardo Leyva-Díaz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | - Neda Masoudi
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | | | - Lori Glenwinkel
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| |
Collapse
|
9
|
Rocha-Martins M, de Toledo BC, Santos-França PL, Oliveira-Valença VM, Vieira-Vieira CH, Matos-Rodrigues GE, Linden R, Norden C, Martins RAP, Silveira MS. De novo genesis of retinal ganglion cells by targeted expression of Klf4 in vivo. Development 2019; 146:dev.176586. [PMID: 31405994 DOI: 10.1242/dev.176586] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
Abstract
Retinal ganglion cell (RGC) degeneration is a hallmark of glaucoma, the most prevalent cause of irreversible blindness. Thus, therapeutic strategies are needed to protect and replace these projection neurons. One innovative approach is to promote de novo genesis of RGCs via manipulation of endogenous cell sources. Here, we demonstrate that the pluripotency regulator gene Krüppel-like factor 4 (Klf4) is sufficient to change the potency of lineage-restricted retinal progenitor cells to generate RGCs in vivo Transcriptome analysis disclosed that the overexpression of Klf4 induces crucial regulators of RGC competence and specification, including Atoh7 and Eya2 In contrast, loss-of-function studies in mice and zebrafish demonstrated that Klf4 is not essential for generation or differentiation of RGCs during retinogenesis. Nevertheless, induced RGCs (iRGCs) generated upon Klf4 overexpression migrate to the proper layer and project axons aligned with endogenous fascicles that reach the optic nerve head. Notably, iRGCs survive for up to 30 days after in vivo generation. We identified Klf4 as a promising candidate for reprogramming retinal cells and regenerating RGCs in the retina.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Maurício Rocha-Martins
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil .,Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Beatriz C de Toledo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Pedro L Santos-França
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Viviane M Oliveira-Valença
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Carlos H Vieira-Vieira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Gabriel E Matos-Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Rodrigo A P Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Mariana S Silveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Muzyka VV, Brooks M, Badea TC. Postnatal developmental dynamics of cell type specification genes in Brn3a/Pou4f1 Retinal Ganglion Cells. Neural Dev 2018; 13:15. [PMID: 29958540 PMCID: PMC6025728 DOI: 10.1186/s13064-018-0110-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND About 20-30 distinct Retinal Ganglion Cell (RGC) types transmit visual information from the retina to the brain. The developmental mechanisms by which RGCs are specified are still largely unknown. Brn3a is a member of the Brn3/Pou4f transcription factor family, which contains key regulators of RGC postmitotic specification. In particular, Brn3a ablation results in the loss of RGCs with small, thick and dense dendritic arbors ('midget-like' RGCs), and morphological changes in other RGC subpopulations. To identify downstream molecular mechanisms underlying Brn3a effects on RGC numbers and morphology, our group recently performed a RNA deep sequencing screen for Brn3a transcriptional targets in mouse RGCs and identified 180 candidate transcripts. METHODS We now focus on a subset of 28 candidate genes encoding potential cell type determinant proteins. We validate and further define their retinal expression profile at five postnatal developmental time points between birth and adult stage, using in situ hybridization (ISH), RT-PCR and fluorescent immunodetection (IIF). RESULTS We find that a majority of candidate genes are enriched in the ganglion cell layer during early stages of postnatal development, but dynamically change their expression profile. We also document transcript-specific expression differences for two example candidates, using RT-PCR and ISH. Brn3a dependency could be confirmed by ISH and IIF only for a fraction of our candidates. CONCLUSIONS Amongst our candidate Brn3a target genes, a majority demonstrated ganglion cell layer specificity, however only around two thirds showed Brn3a dependency. Some were previously implicated in RGC type specification, while others have known physiological functions in RGCs. Only three genes were found to be consistently regulated by Brn3a throughout postnatal retina development - Mapk10, Tusc5 and Cdh4.
Collapse
Affiliation(s)
| | - Matthew Brooks
- Genomics Core, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Building 6, Room 331B Center Drive, Bethesda, MD, 20892-0610, USA
| | - Tudor Constantin Badea
- Retinal Circuit Development & Genetics Unit, Building 6, Room 331B Center Drive, Bethesda, MD, 20892-0610, USA.
| |
Collapse
|
11
|
Divya MS, Rasheed VA, Schmidt T, Lalitha S, Hattar S, James J. Intraocular Injection of ES Cell-Derived Neural Progenitors Improve Visual Function in Retinal Ganglion Cell-Depleted Mouse Models. Front Cell Neurosci 2017; 11:295. [PMID: 28979193 PMCID: PMC5611488 DOI: 10.3389/fncel.2017.00295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/05/2017] [Indexed: 12/16/2022] Open
Abstract
Retinal ganglion cell (RGC) transplantation is a promising strategy to restore visual function resulting from irreversible RGC degeneration occurring in glaucoma or inherited optic neuropathies. We previously demonstrated FGF2 induced differentiation of mouse embryonic stem cells (ESC) to RGC lineage, capable of retinal ganglion cell layer (GCL) integration upon transplantation. Here, we evaluated possible improvement of visual function by transplantation of ES cell derived neural progenitors in RGC depleted glaucoma mice models. ESC derived neural progenitors (ES-NP) were transplanted into N-Methyl-D-Aspartate (NMDA) injected, RGC-ablated mouse models and a pre-clinical glaucoma mouse model (DBA/2J) having sustained higher intra ocular pressure (IOP). Visual acuity and functional integration was evaluated by behavioral experiments and immunohistochemistry, respectively. GFP-expressing ES-NPs transplanted in NMDA-injected RGC-depleted mice differentiated into RGC lineage and possibly integrating into GCL. An improvement in visual acuity was observed after 2 months of transplantation, when compared to the pre-transplantation values. Expression of c-Fos in the transplanted cells, upon light induction, further suggests functional integration into the host retinal circuitry. However, the transplanted cells did not send axonal projections into optic nerve. Transplantation experiments in DBA/2J mouse showed no significant improvement in visual functions, possibly due to both host and transplanted retinal cell death which could be due to an inherent high IOP. We showed that, ES NPs transplanted into the retina of RGC-ablated mouse models could survive, differentiate to RGC lineage, and possibly integrate into GCL to improve visual function. However, for the survival of transplanted cells in glaucoma, strategies to control the IOP are warranted.
Collapse
Affiliation(s)
- Mundackal S Divya
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - Vazhanthodi A Rasheed
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - Tiffany Schmidt
- Department of Biology, Johns Hopkins UniversityBaltimore, MD, United States
| | - Soundararajan Lalitha
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - Samer Hattar
- Department of Biology, Johns Hopkins UniversityBaltimore, MD, United States
| | - Jackson James
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| |
Collapse
|
12
|
He S, Stankowska DL, Ellis DZ, Krishnamoorthy RR, Yorio T. Targets of Neuroprotection in Glaucoma. J Ocul Pharmacol Ther 2017; 34:85-106. [PMID: 28820649 PMCID: PMC5963639 DOI: 10.1089/jop.2017.0041] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022] Open
Abstract
Progressive neurodegeneration of the optic nerve and the loss of retinal ganglion cells is a hallmark of glaucoma, the leading cause of irreversible blindness worldwide, with primary open-angle glaucoma (POAG) being the most frequent form of glaucoma in the Western world. While some genetic mutations have been identified for some glaucomas, those associated with POAG are limited and for most POAG patients, the etiology is still unclear. Unfortunately, treatment of this neurodegenerative disease and other retinal degenerative diseases is lacking. For POAG, most of the treatments focus on reducing aqueous humor formation, enhancing uveoscleral or conventional outflow, or lowering intraocular pressure through surgical means. These efforts, in some cases, do not always lead to a prevention of vision loss and therefore other strategies are needed to reduce or reverse the progressive neurodegeneration. In this review, we will highlight some of the ocular pharmacological approaches that are being tested to reduce neurodegeneration and provide some form of neuroprotection.
Collapse
Affiliation(s)
- Shaoqing He
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Dorota L Stankowska
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Dorette Z Ellis
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Raghu R Krishnamoorthy
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Thomas Yorio
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
13
|
Sun MM, Wang YC, Li Y, Guo XD, Chen YM, Zhang ZZ. Effect of ATF3-deletion on apoptosis of cultured retinal ganglion cells. Int J Ophthalmol 2017; 10:691-695. [PMID: 28546922 DOI: 10.18240/ijo.2017.05.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
AIM To investigate the effect of activating transcription factor-3 (ATF3)-deletion on apoptosis of cultured retinal ganglion cells (RGCs). METHODS Three ATF3 siRNA (ATF3-rat-651, ATF3-rat-319, ATF3-rat-520) were constructed, and were transiently transfected into RGC-5 cells. Quantitative real-time polymerase chain reaction (PCR) was used to examine ATF3 expression and the most effective ATF3 siRNA was selected for further studies. Flow cytometry was applied to investigate the effects of ATF3 deletion on RGC-5 apoptosis under elevated hydrostatic pressure. Quantitative real-time PCR and Western blot were performed to validate differentially expressed genes and proteins in ATF3-knockdown RGC-5 cells. RESULTS ATF3 specific siRNA effectively down-regulated ATF3 expression and significantly inhibited cell apoptosis in RGC-5 cells. Quantitative real-time PCR and Western blot confirmed that ATF3 knockdown remarkably decreased Jun-B and increased c-Jun at both mRNA and protein levels in RGC-5 cells. CONCLUSION ATF/cAMP-response element-binding family of transcription factors may be involved in the development of glaucoma and could be novel treatment targets for glaucoma.
Collapse
Affiliation(s)
- Ming-Ming Sun
- Ophthalmology Department, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ya-Chen Wang
- Ophthalmology Department, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yi Li
- Ophthalmology Department, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xiao-Dan Guo
- Ophthalmology Department, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yan-Ming Chen
- Ophthalmology Department, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Zhong-Zhi Zhang
- Ophthalmology Department, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
14
|
Zheng D, Yang X, Sheng D, Yu D, Liang G, Guo L, Xu M, Hu X, He D, Yang Y, Wang Y. Pou4f2-GFP knock-in mouse line: A model for studying retinal ganglion cell development. Genesis 2016; 54:534-541. [PMID: 27532212 DOI: 10.1002/dvg.22960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/27/2016] [Accepted: 07/27/2016] [Indexed: 01/10/2023]
Abstract
Pou4f2 acts as a key node in the comprehensive and step-wise gene regulatory network (GRN) and regulates the development of retinal ganglion cells (RGCs). Accordingly, deletion of Pou4f2 results in RGC axon defects and apoptosis. To investigate the GRN involved in RGC regeneration, we generated a mouse line with a POU4F2-green fluorescent protein (GFP) fusion protein expressed in RGCs. Co-localization of POU4F2 and GFP in the retina and brain of Pou4f2-GFP/+ heterozygote mice was confirmed using immunofluorescence analysis. Compared with those in wild-type mice, the expression patterns of POU4F2 and POU4F1 and the co-expression patterns of ISL1 and POU4F2 were unaffected in Pou4f2-GFP/GFP homozygote mice. Moreover, the quantification of RGCs showed no significant difference between Pou4f2-GFP/GFP homozygote and wild-type mice. These results demonstrated that the development of RGCs in Pou4f2-GFP/GFP homozygote mice was the same as in wild-type mice. Thus, the present Pou4f2-GFP knock-in mouse line is a useful tool for further studies on the differentiation and regeneration of RGCs.
Collapse
Affiliation(s)
- Dongwang Zheng
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyan Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Shanghai Chenpartner Company Limited, Shanghai, China
| | - Donglai Sheng
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Dongliang Yu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Guoqing Liang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Luming Guo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mei Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xu Hu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Daqiang He
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yang Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yuying Wang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
15
|
Wu N, Wang Y, Yang L, Cho KS. Signaling Networks of Retinal Ganglion Cell Formation and the Potential Application of Stem Cell–Based Therapy in Retinal Degenerative Diseases. Hum Gene Ther 2016; 27:609-20. [PMID: 27466076 DOI: 10.1089/hum.2016.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Nan Wu
- 1 Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Yi Wang
- 1 Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Lanbo Yang
- 2 Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts
| | - Kin-Sang Cho
- 2 Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
16
|
Phatak NR, Stankowska DL, Krishnamoorthy RR. Transcription Factor Brn-3b Overexpression Enhances Neurite Outgrowth in PC12 Cells Under Condition of Hypoxia. Cell Mol Neurobiol 2015; 35:769-83. [PMID: 25786379 DOI: 10.1007/s10571-015-0171-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
Transcription factor Brn-3b plays a key role in retinal ganglion cell differentiation, survival, and axon outgrowth during development. However, the precise role of Brn-3b in the normal adult retina as well as during neurodegeneration is unclear. In the current study, the effect of overexpression of Brn-3b was assessed in vitro, in PC12 cells under conditions of normoxia and hypoxia. Immunoblot analysis showed that overexpression of Brn-3b in PC12 cells as well as 661W cells produced significant increase in the growth cone marker, growth-associated protein-43 (GAP-43), and acetylated-tubulin (ac-TUBA). In addition, an increased immunostaining for GAP-43 and ac-TUBA was observed in PC12 cells overexpressing Brn-3b, which was accompanied by a marked increase in neurite outgrowth, compared to PC12 cells overexpressing the empty vector. In separate experiments, one set of PC12 cells transfected either with a Brn-3b expression vector or an empty vector was subjected to conditions of hypoxia for 2 h, while another set of similarly transfected PC12 cells was maintained in normoxic conditions. It was found that the upregulation of GAP-43 and ac-TUBA in PC12 cells overexpressing Brn-3b under conditions of normoxia was sustained under conditions of hypoxia. Immunocytochemical analysis revealed not only an upregulation of GAP-43 and ac-TUBA, but also increased neurite outgrowth in PC12 cells transfected with Brn-3b as compared to PC12 cells transfected with empty vector in both normoxia and hypoxia. The findings have implications for a potential role of Brn-3b in neurodegenerative diseases in which hypoxia/ischemia contribute to pathophysiology of the disease.
Collapse
Affiliation(s)
- Nitasha R Phatak
- Department of Cell Biology and Immunology, North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | | | | |
Collapse
|
17
|
Stankowska DL, Minton AZ, Rutledge MA, Mueller BH, Phatak NR, He S, Ma HY, Forster MJ, Yorio T, Krishnamoorthy RR. Neuroprotective effects of transcription factor Brn3b in an ocular hypertension rat model of glaucoma. Invest Ophthalmol Vis Sci 2015; 56:893-907. [PMID: 25587060 DOI: 10.1167/iovs.14-15008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Glaucoma is an optic neuropathy commonly associated with elevated intraocular pressure (IOP), leading to optic nerve head (ONH) cupping, axon loss, and apoptosis of retinal ganglion cells (RGCs), which could ultimately result in blindness. Brn3b is a class-4 POU domain transcription factor that plays a key role in RGC development, axon outgrowth, and pathfinding. Previous studies suggest that a decrease in Brn3b levels occurs in animal models of glaucoma. The goal of this study was to determine if adeno-associated virus (AAV)-directed overexpression of the Brn3b protein could have neuroprotective effects following elevated IOP-mediated neurodegeneration. METHODS Intraocular pressure was elevated in one eye of Brown Norway rats (Rattus norvegicus), following which the IOP-elevated eyes were intravitreally injected with AAV constructs encoding either the GFP (rAAV-CMV-GFP and rAAV-hsyn-GFP) or Brn3b (rAAV-CMV-Brn3b and rAAV-hsyn-Brn3b). Retina sections through the ONH were stained for synaptic plasticity markers and neuroprotection was assessed by RGC counts and visual acuity tests. RESULTS Adeno-associated virus-mediated expression of the Brn3b protein in IOP-elevated rat eyes promoted an upregulation of growth associated protein-43 (GAP-43), actin binding LIM protein (abLIM) and acetylated α-tubulin (ac-Tuba) both posterior to the ONH and in RGCs. The RGC survival as well as axon integrity score were significantly improved in IOP-elevated rAAV-hsyn-Brn3b-injected rats compared with those of the IOP-elevated rAAV-hsyn-GFP- injected rats. Additionally, intravitreal rAAV-hsyn-Brn3b administration significantly restored the visual optomotor response in IOP-elevated rat eyes. CONCLUSIONS Adeno-associated virus-mediated Brn3b protein expression may be a suitable approach for promoting neuroprotection in animal models of glaucoma.
Collapse
Affiliation(s)
- Dorota L Stankowska
- University of North Texas Health Science Center, Department of Cell Biology and Immunology, North Texas Eye Research Institute, Fort Worth, Texas, United States
| | - Alena Z Minton
- University of North Texas Health Science Center, Department of Cell Biology and Immunology, North Texas Eye Research Institute, Fort Worth, Texas, United States
| | - Margaret A Rutledge
- University of North Texas Health Science Center, Department of Pharmacology & Neuroscience, Fort Worth, Texas, United States
| | - Brett H Mueller
- University of North Texas Health Science Center, Department of Pharmacology & Neuroscience, Fort Worth, Texas, United States
| | - Nitasha R Phatak
- University of North Texas Health Science Center, Department of Cell Biology and Immunology, North Texas Eye Research Institute, Fort Worth, Texas, United States
| | - Shaoqing He
- University of North Texas Health Science Center, Department of Cell Biology and Immunology, North Texas Eye Research Institute, Fort Worth, Texas, United States
| | - Hai-Ying Ma
- University of North Texas Health Science Center, Department of Pharmacology & Neuroscience, Fort Worth, Texas, United States
| | - Michael J Forster
- University of North Texas Health Science Center, Department of Pharmacology & Neuroscience, Fort Worth, Texas, United States
| | - Thomas Yorio
- University of North Texas Health Science Center, Department of Pharmacology & Neuroscience, Fort Worth, Texas, United States
| | - Raghu R Krishnamoorthy
- University of North Texas Health Science Center, Department of Cell Biology and Immunology, North Texas Eye Research Institute, Fort Worth, Texas, United States
| |
Collapse
|
18
|
T-box transcription regulator Tbr2 is essential for the formation and maintenance of Opn4/melanopsin-expressing intrinsically photosensitive retinal ganglion cells. J Neurosci 2014; 34:13083-95. [PMID: 25253855 DOI: 10.1523/jneurosci.1027-14.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Opsin 4 (Opn4)/melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) play a major role in non-image-forming visual system. Although advances have been made in understanding their morphological features and functions, the molecular mechanisms that regulate their formation and survival remain unknown. Previously, we found that mouse T-box brain 2 (Tbr2) (also known as Eomes), a T-box-containing transcription factor, was expressed in a subset of newborn RGCs, suggesting that it is involved in the formation of specific RGC subtypes. In this in vivo study, we used complex mouse genetics, single-cell dye tracing, and behavioral analyses to determine whether Tbr2 regulates ipRGC formation and survival. Our results show the following: (1) Opn4 is expressed exclusively in Tbr2-positive RGCs; (2) no ipRGCs are detected when Tbr2 is genetically ablated before RGC specification; and (3) most ipRGCs are eliminated when Tbr2 is deleted in established ipRGCs. The few remaining ipRGCs display abnormal dendritic morphological features and functions. In addition, some Tbr2-expressing RGCs can activate Opn4 expression on the loss of native ipRGCs, suggesting that Tbr2-expressing RGCs may serve as a reservoir of ipRGCs to regulate the number of ipRGCs and the expression levels of Opn4.
Collapse
|
19
|
Rasheed VA, Sreekanth S, Dhanesh SB, Divya MS, Divya TS, Akhila PK, Subashini C, Chandrika Sivakumar K, Das AV, James J. Developmental wave of Brn3b expression leading to RGC fate specification is synergistically maintained by miR-23a and miR-374. Dev Neurobiol 2014; 74:1155-71. [PMID: 24838392 DOI: 10.1002/dneu.22191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/02/2014] [Accepted: 05/13/2014] [Indexed: 12/18/2022]
Abstract
Differential regulation of Brn3b is essential for the Retinal Ganglion Cell (RGC) development in the two phases of retinal histogenesis. This biphasic Brn3b regulation is required first, during early retinal histogenesis for RGC fate specification and secondly, during late histogenesis, where Brn3b is needed for RGC axon guidance and survival. Here, we have looked into how the regulation of Brn3b at these two stages happens. We identified two miRNAs, miR-23a and miR-374, as regulators of Brn3b expression, during the early stage of RGC development. Temporal expression pattern of miR-23a during E10-19, PN1-7, and adult retina revealed an inverse relation with Brn3b expression. Though miR-374 did not show such a pattern, its co-expression with miR-23a evidently inhibited Brn3b. We further substantiated these findings by ex vivo overexpression of these miRNAs in E14 mice retina and found that miR-23a and miR-374 together brings about a change in Brn3b expression pattern in ganglion cell layer (GCL) of the developing retina. From our results, it appears that the combined expression of these miRNAs could be regulating the timing of the wave of Brn3b expression required for early ganglion cell fate specification and later for its survival and maturation into RGCs. Taken together, here we provide convincing evidences for the existence of a co-ordinated mechanism by miRNAs to down regulate Brn3b that will ultimately regulate the development of RGCs from their precursors.
Collapse
Affiliation(s)
- Vazhanthodi A Rasheed
- Department of Neurobiology, Neuro Stem Cell Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Huang L, Hu F, Xie X, Harder J, Fernandes K, Zeng XY, Libby R, Gan L. Pou4f1 and pou4f2 are dispensable for the long-term survival of adult retinal ganglion cells in mice. PLoS One 2014; 9:e94173. [PMID: 24736625 PMCID: PMC3988073 DOI: 10.1371/journal.pone.0094173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/12/2014] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To investigate the role of Pou4f1 and Pou4f2 in the survival of adult retinal ganglion cells (RGCs). METHODS Conditional alleles of Pou4f1 and Pou4f2 were generated (Pou4f1loxP and Pou4f2loxP respectively) for the removal of Pou4f1 and Pou4f2 in adult retinas. A tamoxifen-inducible Cre was used to delete Pou4f1 and Pou4f2 in adult mice and retinal sections and flat mounts were subjected to immunohistochemistry to confirm the deletion of both alleles and to quantify the changes in the number of RGCs and other retinal neurons. To determine the effect of loss of Pou4f1 and Pou4f2 on RGC survival after axonal injury, controlled optic nerve crush (CONC) was performed and RGC death was assessed. RESULTS Pou4f1 and Pou4f2 were ablated two weeks after tamoxifen treatment. Retinal interneurons and Müller glial cells are not affected by the ablation of Pou4f1 or Pou4f2 or both. Although the deletion of both Pou4f1 and Pou4f2 slightly delays the death of RGCs at 3 days post-CONC in adult mice, it does not affect the cell death progress afterwards. Moreoever, deletion of Pou4f1 or Pou4f2 or both has no impact on the long-term viability of RGCs at up to 6 months post-tamoxifen treatment. CONCLUSION Pou4f1 and Pou4f2 are involved in the acute response to damage to RGCs but are dispensable for the long-term survival of adult RGC in mice.
Collapse
Affiliation(s)
- Liang Huang
- Flaum Eye Institute and Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Ophthalmology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fang Hu
- Flaum Eye Institute and Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Ophthalmology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoling Xie
- Flaum Eye Institute and Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Jeffery Harder
- Flaum Eye Institute and Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Kimberly Fernandes
- Flaum Eye Institute and Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Xiang-yun Zeng
- Department of Ophthalmology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Richard Libby
- Flaum Eye Institute and Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Lin Gan
- Flaum Eye Institute and Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Sajgo S, Ghinia MG, Shi M, Liu P, Dong L, Parmhans N, Popescu O, Badea TC. Dre - Cre sequential recombination provides new tools for retinal ganglion cell labeling and manipulation in mice. PLoS One 2014; 9:e91435. [PMID: 24608965 PMCID: PMC3946778 DOI: 10.1371/journal.pone.0091435] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/11/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Genetic targeting methods have greatly advanced our understanding of many of the 20 Retinal Ganglion Cell (RGC) types conveying visual information from the eyes to the brain. However, the complexity and partial overlap of gene expression patterns in RGCs call for genetic intersectional or sparse labeling strategies. Loci carrying the Cre recombinase in conjunction with conditional knock-out, reporter or other genetic tools can be used for targeted cell type ablation and functional manipulation of specific cell populations. The three members of the Pou4f family of transcription factors, Brn3a, Brn3b and Brn3c, expressed early during RGC development and in combinatorial pattern amongst RGC types are excellent candidates for such gene manipulations. METHODS AND FINDINGS We generated conditional Cre knock-in alleles at the Brn3a and Brn3b loci, Brn3a(CKOCre) and Brn3b(CKOCre). When crossed to mice expressing the Dre recombinase, the endogenous Brn3 gene expressed by Brn3a(CKOCre) or Brn3b(CKOCre) is removed and replaced with a Cre recombinase, generating Brn3a(Cre) and Brn3b(Cre) knock-in alleles. Surprisingly both Brn3a(Cre) and Brn3b(Cre) knock-in alleles induce early ubiquitous recombination, consistent with germline expression. However in later stages of development, their expression is limited to the expected endogenous pattern of the Brn3a and Brn3b genes. We use the Brn3a(Cre) and Brn3b(Cre) alleles to target a Cre dependent Adeno Associated Virus (AAV) reporter to RGCs and demonstrate its use in morphological characterization, early postnatal gene delivery and tracing the expression of Brn3 genes in RGCs. CONCLUSIONS Dre recombinase effectively recombines the Brn3a(CKOCre) and Brn3b(CKOCre) alleles containing its roxP target sites. Sequential Dre to Cre recombination reveals Brn3a and Brn3b expression in early mouse development. The generated Brn3a(Cre) and Brn3b(Cre) alleles are useful tools that can target exogenously delivered Cre dependent reagents to RGCs in early postnatal development, opening up a large range of potential applications.
Collapse
Affiliation(s)
- Szilard Sajgo
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
- Biology Department, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Miruna Georgiana Ghinia
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
- Biology Department, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Melody Shi
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
| | - Pinghu Liu
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
| | - Lijin Dong
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
| | - Nadia Parmhans
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
| | - Octavian Popescu
- Biology Department, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
- Institute of Biology, Romanian Academy, Bucharest, Romania
| | | |
Collapse
|
22
|
Reh TA. The Development of the Retina. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Distinct neurogenic potential in the retinal margin and the pars plana of mammalian eye. J Neurosci 2012; 32:12797-807. [PMID: 22973003 DOI: 10.1523/jneurosci.0118-12.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Unlike many other vertebrates, a healthy mammalian retina does not grow throughout life and lacks a ciliary margin zone capable of actively generating new neurons. The isolation of stem-like cells from the ciliary epithelium has led to speculation that the mammalian retina and/or surrounding tissues may retain neurogenic potential capable of responding to retinal damage. Using genetically altered mouse lines with varying degrees of retinal ganglion cell loss, we show that the retinal margin responds to ganglion cell loss by prolonging specific neurogenic activity, as characterized by increased numbers of Atoh7(LacZ)-expressing cells. The extent of neurogenic activity correlated with the degree of ganglion cell deficiency. In the pars plana, but not the retinal margin, cells remain proliferative into adulthood, marking the junction of pars plana and retinal margin as a niche capable of producing proliferative cells in the mammalian retina and a potential cellular source for retinal regeneration.
Collapse
|
24
|
Xiang M. Intrinsic control of mammalian retinogenesis. Cell Mol Life Sci 2012; 70:2519-32. [PMID: 23064704 DOI: 10.1007/s00018-012-1183-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 01/18/2023]
Abstract
The generation of appropriate and diverse neuronal and glial types and subtypes during development constitutes the critical first step toward assembling functional neural circuits. During mammalian retinogenesis, all seven neuronal and glial cell types present in the adult retina are specified from multipotent progenitors by the combined action of various intrinsic and extrinsic factors. Tremendous progress has been made over the past two decades in uncovering the complex molecular mechanisms that control retinal cell diversification. Molecular genetic studies coupled with bioinformatic approaches have identified numerous transcription factors and cofactors as major intrinsic regulators leading to the establishment of progenitor multipotency and eventual differentiation of various retinal cell types and subtypes. More recently, non-coding RNAs have emerged as another class of intrinsic factors involved in generating retinal cell diversity. These intrinsic regulatory factors are found to act in different developmental processes to establish progenitor multipotency, define progenitor competence, determine cell fates, and/or specify cell types and subtypes.
Collapse
Affiliation(s)
- Mengqing Xiang
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA.
| |
Collapse
|
25
|
Jain V, Ravindran E, Dhingra NK. Differential expression of Brn3 transcription factors in intrinsically photosensitive retinal ganglion cells in mouse. J Comp Neurol 2012; 520:742-55. [PMID: 21935940 DOI: 10.1002/cne.22765] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several subtypes of melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) have been reported. The M1 type of ipRGCs exhibit distinct properties compared with the remaining (non-M1) cells. They differ not only in their soma size and dendritic arbor, but also in their physiological properties, projection patterns, and functions. However, it is not known how these differences arise. We tested the hypothesis that M1 and non-M1 cells express Brn3 transcription factors differentially. The Brn3 family of class IV POU-domain transcription factors (Brn3a, Brn3b, and Brn3c) is involved in the regulation of differentiation, dendritic stratification, and axonal projection of retinal ganglion cells during development. By using double immunofluorescence for Brn3 transcription factors and melanopsin, and with elaborate morphometric analyses, we show in mouse retina that neither Brn3a nor Brn3c are expressed in ipRGCs. However, Brn3b is expressed in a subset of ipRGCs, particularly those with larger somas and lower melanopsin levels, suggesting that Brn3b is expressed preferentially in the non-M1 cells. By using dendritic stratification to distinguish M1 from non-M1 cells, we found that whereas nearly all non-M1 cells expressed Brn3b, a vast majority of the M1 cells were negative for Brn3b. Interestingly, in the small proportion of the M1 cells that did express Brn3b, the expression level of Brn3b was significantly lower than in the non-M1 cells. These results provide insights about how expression of specific molecules in a ganglion cell could be linked to its role in visual function.
Collapse
Affiliation(s)
- Varsha Jain
- National Brain Research Centre, Manesar (Haryana) 122050, India
| | | | | |
Collapse
|
26
|
Zou M, Li S, Klein WH, Xiang M. Brn3a/Pou4f1 regulates dorsal root ganglion sensory neuron specification and axonal projection into the spinal cord. Dev Biol 2012; 364:114-27. [PMID: 22326227 DOI: 10.1016/j.ydbio.2012.01.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/10/2012] [Accepted: 01/27/2012] [Indexed: 11/19/2022]
Abstract
The sensory neurons of the dorsal root ganglia (DRG) must project accurately to their central targets to convey proprioceptive, nociceptive and mechanoreceptive information to the spinal cord. How these different sensory modalities and central connectivities are specified and coordinated still remains unclear. Given the expression of the POU homeodomain transcription factors Brn3a/Pou4f1 and Brn3b/Pou4f2 in DRG and spinal cord sensory neurons, we determined the subtype specification of DRG and spinal cord sensory neurons as well as DRG central projections in Brn3a and Brn3b single and double mutant mice. Inactivation of either or both genes causes no gross abnormalities in early spinal cord neurogenesis; however, in Brn3a single and Brn3a;Brn3b double mutant mice, sensory afferent axons from the DRG fail to form normal trajectories in the spinal cord. The TrkA(+) afferents remain outside the dorsal horn and fail to extend into the spinal cord, while the projections of TrkC(+) proprioceptive afferents into the ventral horn are also impaired. Moreover, Brn3a mutant DRGs are defective in sensory neuron specification, as marked by the excessive generation of TrkB(+) and TrkC(+) neurons as well as TrkA(+)/TrkB(+) and TrkA(+)/TrkC(+) double positive cells at early embryonic stages. At later stages in the mutant, TrkB(+), TrkC(+) and parvalbumin(+) neurons diminish while there is a significant increase of CGRP(+) and c-ret(+) neurons. In addition, Brn3a mutant DRGs display a dramatic down-regulation of Runx1 expression, suggesting that the regulation of DRG sensory neuron specification by Brn3a is mediated in part by Runx1. Our results together demonstrate a critical role for Brn3a in generating DRG sensory neuron diversity and regulating sensory afferent projections to the central targets.
Collapse
Affiliation(s)
- Min Zou
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
27
|
Sel S, Kaiser M, Nass N, Trau S, Roepke A, Storsberg J, Hampel U, Paulsen F, Kalinski T. Oligophrenin-1 (Ophn1) is expressed in mouse retinal vessels. Gene Expr Patterns 2012; 12:63-7. [DOI: 10.1016/j.gep.2011.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/18/2011] [Accepted: 11/07/2011] [Indexed: 12/20/2022]
|
28
|
Eichenlaub MP, Ettwiller L. De novo genesis of enhancers in vertebrates. PLoS Biol 2011; 9:e1001188. [PMID: 22069375 PMCID: PMC3206014 DOI: 10.1371/journal.pbio.1001188] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 09/22/2011] [Indexed: 02/02/2023] Open
Abstract
Whole genome duplication in teleost fish reveals that a few changes in non-regulatory genomic sequences are a source for generating new enhancers. Evolutionary innovation relies partially on changes in gene regulation. While a growing body of evidence demonstrates that such innovation is generated by functional changes or translocation of regulatory elements via mobile genetic elements, the de novo generation of enhancers from non-regulatory/non-mobile sequences has, to our knowledge, not previously been demonstrated. Here we show evidence for the de novo genesis of enhancers in vertebrates. For this, we took advantage of the massive gene loss following the last whole genome duplication in teleosts to systematically identify regions that have lost their coding capacity but retain sequence conservation with mammals. We found that these regions show enhancer activity while the orthologous coding regions have no regulatory activity. These results demonstrate that these enhancers have been de novo generated in fish. By revealing that minor changes in non-regulatory sequences are sufficient to generate new enhancers, our study highlights an important playground for creating new regulatory variability and evolutionary innovation. The genome of each living organism contains thousands of genes, and the precise control of the timing and location of expression of these genes is key for normal development and homeostasis of each individual. Despite the oftentimes high genetic similarity between organisms, the source of phenotypic differences, for example between human and mouse, is thought to originate mainly from changes in how and when genes are expressed. This is partially determined by enhancers, that contribute to the control of gene expression. For decades, duplication of existing genomic enhancers, mobile elements, and changes in the sequence of existing enhancers were believed to be the major ways of increasing the number and modifying the activity of enhancers. In this study, we show that enhancers don't have to be derived from pre-existing ones but can also appear de novo in regions of the genome that were previously not regulating gene expression. We analyzed teleost fish genomes and found three regions for which a limited number of changes in the DNA sequence was sufficient to generate new enhancers. We predict that such a process is frequent in vertebrate genomes, making de novo generation of enhancers an important mechanism for creating variation in gene expression.
Collapse
Affiliation(s)
| | - Laurence Ettwiller
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
29
|
Feng L, Eisenstat DD, Chiba S, Ishizaki Y, Gan L, Shibasaki K. Brn-3b inhibits generation of amacrine cells by binding to and negatively regulating DLX1/2 in developing retina. Neuroscience 2011; 195:9-20. [PMID: 21875655 DOI: 10.1016/j.neuroscience.2011.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 08/03/2011] [Accepted: 08/03/2011] [Indexed: 02/03/2023]
Abstract
During retinogenesis, the basic helix-loop-helix proneural gene math5 (atoh7) initiates the generation of the first-born neurons, retinal ganglion cells (RGCs), by activating a network of RGC transcription factors, including Brn-3b (POU4F2). Herein, we show that the expression of DLX1 and DLX2 is significantly down-regulated in math5-null retina but is markedly increased in Brn-3b-null retina. Interestingly, Brn-3b interacts with DLX1 through its homeodomain, and this interaction represses DLX1 activity. Retrovirus-mediated mis-expression of DLX1 or DLX2 dramatically increases the number of amacrine/bipolar cells and concurrently reduces rod photoreceptors. Conversely, combined ectopic expression of Brn-3b with DLX1 or DLX2 promotes the production of RGCs and inhibits amacrine cell differentiation. Thus, DLX1/2 play an essential role in cell fate selection between amacrine and RGCs. Brn-3b suppresses the role of DLX1/2 through physical interaction and biases the competent precursors toward RGC fates.
Collapse
Affiliation(s)
- L Feng
- Department of Ophthalmology, University of Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
30
|
Camp AS, Ruggeri M, Munguba GC, Tapia ML, John SWM, Bhattacharya SK, Lee RK. Structural correlation between the nerve fiber layer and retinal ganglion cell loss in mice with targeted disruption of the Brn3b gene. Invest Ophthalmol Vis Sci 2011; 52:5226-32. [PMID: 21622702 DOI: 10.1167/iovs.10-6307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Mice with a targeted disruption of Brn3b (knockout Brn3b(-/-)) undergo the loss of a majority of retinal ganglion cells (RGCs) before birth. Spectral domain optical coherence tomography (SD-OCT) allows for the noninvasive examination of Brn3b(-/-) cellular loss in vivo. METHODS The central retinas of Brn3b(-/-) and phenotypically wild-type (Brn3b(+/+) and Brn3b(±)) mice were imaged by SD-OCT. The combined nerve fiber layer (NFL) and inner plexiform layer (IPL) were manually segmented and thickness maps were generated. The results were confirmed by histologic and immunofluorescence cell counts of the RGC layer (RGCL) of the same retinas. RESULTS The combined NFL and IPL of the Brn3b(-/-) retinas were significantly thinner, and the histologic cell counts significantly lower, than those of the phenotypically wild-type retinas (paired t-test; P < 0.01 and P < 0.01, respectively). The combined NFL and IPL thickness and the histologic cell count correlated highly (R(2) = 0.9612). Immunofluorescence staining revealed significant RGC-specific loss in Brn3b(-/-) retinas (paired t-test; P < 0.01). The distribution of combined central NFL and IPL loss was not localized or sectorial. CONCLUSIONS The strong correlation between the combined layer thickness and histologic cell counts validates manual OCT segmentation as a method of monitoring cell loss in the RGCL. A retinal thickness map assessed if combined NFL and IPL thickness loss in Brn3b(-/-) eyes was topographically specific. Generalized RGC and combined NFL and IPL loss was observed in the Brn3b(-/-) retinas, in contrast to topographically specific RGC loss observed in glaucomatous DBA2/J eyes.
Collapse
Affiliation(s)
- Andrew S Camp
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Morphologies of mouse retinal ganglion cells expressing transcription factors Brn3a, Brn3b, and Brn3c: analysis of wild type and mutant cells using genetically-directed sparse labeling. Vision Res 2010; 51:269-79. [PMID: 20826176 DOI: 10.1016/j.visres.2010.08.039] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/27/2010] [Accepted: 08/30/2010] [Indexed: 11/23/2022]
Abstract
The mammalian retina contains more than 50 distinct neuronal types, which are broadly classified into several major classes: photoreceptor, bipolar, horizontal, amacrine, and ganglion cells. Although some of the developmental mechanisms involved in the differentiation of retinal ganglion cells (RGCs) are beginning to be understood, there is little information regarding the genetic and molecular determinants of the distinct morphologies of the 15-20 mammalian RGC cell types. Previous work has shown that the transcription factor Brn3b/Pou4f2 plays a major role in the development and survival of many RGCs. The roles of the closely related family members, Brn3a/Pou4f1 and Brn3c/Pou4f3 in RGC development are less clear. Using a genetically-directed method for sparse cell labeling and sparse conditional gene ablation in mice, we describe here the sets of RGC types in which each of the three Brn3/Pou4f transcription factors are expressed and the consequences of ablating these factors on the development of RGC morphologies.
Collapse
|
32
|
GABAergic amacrine cells and visual function are reduced in PAC1 transgenic mice. Neuropharmacology 2010; 58:215-25. [DOI: 10.1016/j.neuropharm.2009.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/25/2009] [Accepted: 07/02/2009] [Indexed: 01/22/2023]
|
33
|
Fu X, Kiyama T, Li R, Russell M, Klein WH, Mu X. Epitope-tagging Math5 and Pou4f2: new tools to study retinal ganglion cell development in the mouse. Dev Dyn 2009; 238:2309-17. [PMID: 19459208 DOI: 10.1002/dvdy.21974] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although immunological detection of proteins is used extensively in retinal development, studies are often impeded because antibodies against crucial proteins cannot be generated or are not readily available. Here, we overcome these limitations by constructing genetically engineered alleles for Math5 and Pou4f2, two genes required for retinal ganglion cell (RGC) development. Sequences encoding a peptide epitope from haemagglutinin (HA) were added to Math5 or Pou4f2 in frame to generate Math5(HA) and Pou4f2(HA) alleles. We demonstrate that the tagged alleles recapitulated the wild-type expression patterns of the two genes, and that the tags did not interfere with the function of the cognate proteins. In addition, by co-staining, we found that Math5 and Pou4f2 were transiently co-expressed in newly born RGCs, unequivocally demonstrating that Pou4f2 is immediately downstream of Math5 in RGC formation. The epitope-tagged alleles provide new and useful tools for analyzing gene regulatory networks underlying RGC development.
Collapse
Affiliation(s)
- Xueyao Fu
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
34
|
Badea TC, Cahill H, Ecker J, Hattar S, Nathans J. Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron 2009; 61:852-64. [PMID: 19323995 DOI: 10.1016/j.neuron.2009.01.020] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 11/19/2008] [Accepted: 01/21/2009] [Indexed: 01/05/2023]
Abstract
Transcriptional regulatory networks that control the morphologic and functional diversity of mammalian neurons are still largely undefined. Here we dissect the roles of the highly homologous POU-domain transcription factors Brn3a and Brn3b in retinal ganglion cell (RGC) development and function using conditional Brn3a and Brn3b alleles that permit the visualization of individual wild-type or mutant cells. We show that Brn3a- and Brn3b-expressing RGCs exhibit overlapping but distinct dendritic stratifications and central projections. Deletion of Brn3a alters dendritic stratification and the ratio of monostratified:bistratified RGCs, with little or no change in central projections. In contrast, deletion of Brn3b leads to RGC transdifferentiation and loss, axon defects in the eye and brain, and defects in central projections that differentially compromise a variety of visually driven behaviors. These findings reveal distinct roles for Brn3a and Brn3b in programming RGC diversity, and they illustrate the broad utility of germline methods for genetically manipulating and visualizing individual identified mammalian neurons.
Collapse
Affiliation(s)
- Tudor C Badea
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
35
|
Manuel M, Pratt T, Liu M, Jeffery G, Price DJ. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance. BMC DEVELOPMENTAL BIOLOGY 2008; 8:59. [PMID: 18507827 PMCID: PMC2422841 DOI: 10.1186/1471-213x-8-59] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 05/28/2008] [Indexed: 11/17/2022]
Abstract
Background The transcription factor Pax6 is expressed by many cell types in the developing eye. Eyes do not form in homozygous loss-of-function mouse mutants (Pax6Sey/Sey) and are abnormally small in Pax6Sey/+ mutants. Eyes are also abnormally small in PAX77 mice expressing multiple copies of human PAX6 in addition to endogenous Pax6; protein sequences are identical in the two species. The developmental events that lead to microphthalmia in PAX77 mice are not well-characterised, so it is not clear whether over- and under-expression of Pax6/PAX6 cause microphthalmia through similar mechanisms. Here, we examined the consequences of over-expression for the eye and its axonal connections. Results Eyes form in PAX77+/+ embryos but subsequently degenerate. At E12.5, we found no abnormalities in ocular morphology, retinal cell cycle parameters and the incidence of retinal cell death. From E14.5 on, we observed malformations of the optic disc. From E16.5 into postnatal life there is progressively more severe retinal dysplasia and microphthalmia. Analyses of patterns of gene expression indicated that PAX77+/+ retinae produce a normal range of cell types, including retinal ganglion cells (RGCs). At E14.5 and E16.5, quantitative RT-PCR with probes for a range of molecules associated with retinal development showed only one significant change: a slight reduction in levels of mRNA encoding the secreted morphogen Shh at E16.5. At E16.5, tract-tracing with carbocyanine dyes in PAX77+/+ embryos revealed errors in intraretinal navigation by RGC axons, a decrease in the number of RGC axons reaching the thalamus and an increase in the proportion of ipsilateral projections among those RGC axons that do reach the thalamus. A survey of embryos with different Pax6/PAX6 gene dosage (Pax6Sey/+, Pax6+/+, PAX77+ and PAX77+/+) showed that (1) the total number of RGC axons projected by the retina and (2) the proportions that are sorted into the ipsilateral and contralateral optic tracts at the optic chiasm vary differently with gene dosage. Increasing dosage increases the proportion projecting ipsilaterally regardless of the size of the total projection. Conclusion Pax6 overexpression does not obviously impair the initial formation of the eye and its major cell-types but prevents normal development of the retina from about E14.5, leading eventually to severe retinal degeneration in postnatal life. This sequence is different to that underlying microphthalmia in Pax6+/- heterozygotes, which is due primarily to defects in the initial stages of lens formation. Before the onset of severe retinal dysplasia, Pax6 overexpression causes defects of retinal axons, preventing their normal growth and navigation through the optic chiasm.
Collapse
Affiliation(s)
- Martine Manuel
- Genes and Development Group, Centres for Integrative Physiology and Neuroscience Research, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | | | | | | | | |
Collapse
|
36
|
Gene regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2. Proc Natl Acad Sci U S A 2008; 105:6942-7. [PMID: 18460603 DOI: 10.1073/pnas.0802627105] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Understanding gene regulatory networks (GRNs) that control neuronal differentiation will provide systems-level perspectives on neurogenesis. We have previously constructed a model for a GRN in retinal ganglion cell (RGC) differentiation in which four hierarchical tiers of transcription factors ultimately control the expression of downstream terminal genes. Math5 occupies a central node in the hierarchy because it is essential for the formation of RGCs and the expression of the immediate downstream factor Pou4f2. Based on its expression, we also proposed that Isl1, a LIM-homeodomain factor, functions in parallel with Pou4f2 and downstream of Math5 in the RGC GRN. To determine whether this was the case, a conditional Isl1 allele was generated and deleted specifically in the developing retina. Although RGCs formed in Isl1-deleted retinas, most underwent apoptosis, and few remained at later stages. By microarray analysis, we identified a distinct set of genes whose expression depended on Isl1. These genes are all downstream of Math5, and some of them, but not all, also depend on Pou4f2. Additionally, Isl1 was required for the sustained expression of Pou4f2, suggesting that Isl1 positively regulates Pou4f2 after Math5 levels are diminished. The results demonstrate an essential role for Isl1 in RGC development and reveal two distinct but intersecting branches of the RGC GRN downstream of Math5, one directed by Pou4f2 and the other by Isl1. They also reveal that identical RGC expression patterns are achieved by different combinations of divergent inputs from upstream transcription factors.
Collapse
|
37
|
A comprehensive negative regulatory program controlled by Brn3b to ensure ganglion cell specification from multipotential retinal precursors. J Neurosci 2008; 28:3392-403. [PMID: 18367606 DOI: 10.1523/jneurosci.0043-08.2008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The retinal ganglion cells (RGCs) are the sole output neurons in the retina that form the optic nerve and convey light signals detected by photoreceptors to the higher visual system. Their degeneration and damage caused by glaucoma and injury can lead to blindness. During retinogenesis, RGCs are specified from a population of multipotential precursors capable of generating RGC, amacrine, horizontal, and cone cells. How the RGC fate is selected from these multiple neuron fates is unknown at present. Here we show that the previously unsuspected POU domain transcription factor Brn3b (brain-specific homeobox/POU domain protein 3b) plays such a critical role. Loss of Brn3b function in mice leads to misspecification of early RGC precursors as late-born RGC, amacrine, and horizontal cells, whereas misexpressed Brn3b suppresses non-RGC cell fates but promotes the RGC fate. Microarray profiling and other molecular analyses reveal that, in RGC precursors, Brn3b normally represses the expression of a network of retinogenic factor genes involved in fate commitment and differentiation of late-born RGC, amacrine, horizontal, and cone cells. Our data suggest that Brn3b specifies the RGC fate from multipotential precursors not only by promoting RGC differentiation but also by suppressing non-RGC differentiation programs as a safeguard mechanism.
Collapse
|
38
|
Moshiri A, Gonzalez E, Tagawa K, Maeda H, Wang M, Frishman LJ, Wang SW. Near complete loss of retinal ganglion cells in the math5/brn3b double knockout elicits severe reductions of other cell types during retinal development. Dev Biol 2008; 316:214-27. [PMID: 18321480 DOI: 10.1016/j.ydbio.2008.01.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/19/2007] [Accepted: 01/08/2008] [Indexed: 11/16/2022]
Abstract
Retinal ganglion cells (RGCs) are the first cell type to differentiate during retinal histogenesis. It has been postulated that specified RGCs subsequently influence the number and fate of the remaining progenitors to produce the rest of the retinal cell types. However, several genetic knockout models have argued against this developmental role for RGCs. Although it is known that RGCs secrete cellular factors implicated in cell proliferation, survival, and differentiation, until now, limited publications have shown that reductions in the RGC number cause significant changes in these processes. In this study, we observed that Math5 and Brn3b double null mice exhibited over a 99% reduction in the number of RGCs during development. This severe reduction of RGCs is accompanied by a drastic loss in the number of all other retinal cell types that was never seen before. Unlike Brn3b null or Math5 null animals, mice null for both alleles lack an optic nerve and have severe retinal dysfunction. Results of this study support the hypothesis that RGCs play a pivotal role in the late phase of mammalian retina development.
Collapse
Affiliation(s)
- Ala Moshiri
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Mao CA, Kiyama T, Pan P, Furuta Y, Hadjantonakis AK, Klein WH. Eomesodermin, a target gene of Pou4f2, is required for retinal ganglion cell and optic nerve development in the mouse. Development 2007; 135:271-80. [PMID: 18077589 DOI: 10.1242/dev.009688] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms regulating retinal ganglion cell (RGC) development are crucial for retinogenesis and for the establishment of normal vision. However, these mechanisms are only vaguely understood. RGCs are the first neuronal lineage to segregate from pluripotent progenitors in the developing retina. As output neurons, RGCs display developmental features very distinct from those of the other retinal cell types. To better understand RGC development, we have previously constructed a gene regulatory network featuring a hierarchical cascade of transcription factors that ultimately controls the expression of downstream effector genes. This has revealed the existence of a Pou domain transcription factor, Pou4f2, that occupies a key node in the RGC gene regulatory network and that is essential for RGC differentiation. However, little is known about the genes that connect upstream regulatory genes, such as Pou4f2 with downstream effector genes responsible for RGC differentiation. The purpose of this study was to characterize the retinal function of eomesodermin (Eomes), a T-box transcription factor with previously unsuspected roles in retinogenesis. We show that Eomes is expressed in developing RGCs and is a mediator of Pou4f2 function. Pou4f2 directly regulates Eomes expression through a cis-regulatory element within a conserved retinal enhancer. Deleting Eomes in the developing retina causes defects reminiscent of those in Pou4f2(-/-) retinas. Moreover, myelin ensheathment in the optic nerves of Eomes(-/-) embryos is severely impaired, suggesting that Eomes regulates this process. We conclude that Eomes is a crucial regulator positioned immediately downstream of Pou4f2 and is required for RGC differentiation and optic nerve development.
Collapse
Affiliation(s)
- Chai-An Mao
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
40
|
Lieven CJ, Millet LE, Hoegger MJ, Levin LA. Induction of axon and dendrite formation during early RGC-5 cell differentiation. Exp Eye Res 2007; 85:678-83. [PMID: 17904550 PMCID: PMC2194805 DOI: 10.1016/j.exer.2007.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/07/2007] [Accepted: 08/01/2007] [Indexed: 10/23/2022]
Abstract
The retinal ganglion cell (RGC)-like RGC-5 line can be differentiated with staurosporine to stop dividing, extend neurites, and increase levels of several ganglion cell markers. This allows study of regulation of neurite development on a single cell basis. However, it is unclear whether the neurites induced by differentiation have features characteristic of dendrites or axons. To address this question, RGC-5 cells were differentiated with staurosporine and then immunoblotted for microtubule-associated protein 2 (MAP2) and actin, or stained immunocytochemically for different MAP2 isoforms, tau, growth-associated protein 43 (GAP-43), or the neuronal marker beta-III-tubulin. We found that staurosporine-induced differentiation led to an upregulation of MAP2c, a MAP2 isoform expressed in developing neurons. Some neurites expressed MAP2c but not the dendritic markers MAP2a and MAP2b, consistent with an axonal phenotype. Some neurites expressed the axonal marker tau in a characteristic proximal-to-distal gradient, and had GAP-43 labeling characteristic of axonal growth cones. The presence of MAP2c in differentiated RGC-5 cells is indicative of RGC-like neurite development, and the pattern of staining for the different MAP2 isoforms, as well as positivity for tau and GAP-43, indicates that differentiation induces axon-like and dendrite-like neurites.
Collapse
Affiliation(s)
- Christopher J Lieven
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Despite a relatively long history, general knowledge is not widespread that adult neurons can be maintained in cell culture for fairly extended periods of time. Within the central nervous system, this capacity seems to be particularly well developed in the retina, although it is still not clear whether this property is due to physical reasons (spatial configuration, simple connections) or to more fundamental differences (molecular composition, physiological function). Irrespective of the reasons, in vitro model systems are useful for investigating physiological and pathological processes occurring in mature retina. The authors argue that the numerous molecular changes undergone during maturation (modifications in ion channels and receptors, apoptotic pathways and growth factor effects) should be taken into account when using in vitro approaches to study processes involved in photoreceptor and ganglion cell degeneration, and hence that more classical methods relying on embryonic or newborn tissue should be interpreted with caution. A number of examples are given where the use of adult retinal neuronal culture may be especially informative: neurite regeneration, neuroprotection assays and pathogenic mechanisms; and areas of further research that should be explored: cell transplantation.
Collapse
Affiliation(s)
- Carl Romano
- Retina Discovery, Alcon Laboratories Inc., 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | | |
Collapse
|
42
|
Liedtke T, Schwamborn JC, Schröer U, Thanos S. Elongation of axons during regeneration involves retinal crystallin beta b2 (crybb2). Mol Cell Proteomics 2007; 6:895-907. [PMID: 17264069 DOI: 10.1074/mcp.m600245-mcp200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adult retinal ganglion cells (RGCs) can regenerate their axons in vitro. Using proteomics, we discovered that the supernatants of cultured retinas contain isoforms of crystallins with crystallin beta b2 (crybb2) being clearly up-regulated in the regenerating retina. Immunohistochemistry revealed the expression of crybb within the retina, including in filopodial protrusions and axons of RGCs. Cloning and overexpression of crybb2 in RGCs and hippocampal neurons increased axonogenesis, which in turn could be blocked with antibodies against beta-crystallin. Conditioned medium from crybb2-transfected cell cultures also supported the growth of axons. Finally real time imaging of the uptake of green fluorescent protein-tagged crybb2 fusion protein showed that this protein becomes internalized. These data are the first to show that axonal regeneration is related to crybb2 movement. The results suggest that neuronal crystallins constitute a novel class of neurite-promoting factors that likely operate through an autocrine mechanism and that they could be used in neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Liedtke
- Department of Experimental Ophthalmology, University of Münster, Germany
| | | | | | | |
Collapse
|
43
|
Butler SJ, Tear G. Getting axons onto the right path: the role of transcription factors in axon guidance. Development 2006; 134:439-48. [PMID: 17185317 DOI: 10.1242/dev.02762] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The normal function of the nervous system requires that the constituent neurons are precisely 'wired together'. During embryogenesis, each neuron extends an axonal process, which can navigate a considerable distance to its target. Although a number of the receptors and guidance signals that direct axonal growth have been identified, less is known about the transcription factors that regulate the expression of these molecules within the neuron and its environment. This review examines recent studies in vertebrates and Drosophila that address the identity of the transcription factors that either control the repertoire of guidance receptors and signals that permits an axon to take a particular trajectory or act themselves as novel extracellular guidance factors.
Collapse
Affiliation(s)
- Samantha J Butler
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
44
|
Contin MA, Verra DM, Guido ME. An invertebrate‐like phototransduction cascade mediates light detection in the chicken retinal ganglion cells. FASEB J 2006; 20:2648-50. [PMID: 17077288 DOI: 10.1096/fj.06-6133fje] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prebilaterian animals perceived ambient light through nonvisual rhabdomeric photoreceptors (RPs), which evolved as support of the chordate visual system. In vertebrates, the identity of nonvisual photoreceptors and the phototransduction cascade involved in nonimage forming tasks remain uncertain. We investigated whether chicken retinal ganglion cells (RGCs) could be nonvisual photoreceptors and the nature of the photocascade involved. We found that primary cultures of chicken embryonic RGCs express such RP markers as transcription factors Pax6 and Brn3, photopigment melanopsin, and G-protein q but not markers for ciliary photoreceptors (alpha-transducin and Crx). To investigate the photoreceptive capability of RGCs, we assessed the direct effect of light on 3H-melatonin synthesis in RGC cultures synchronized to 12:12 h light-dark cycles. In constant dark, RGCs displayed a daily variation in 3H-melatonin levels peaking at subjective day, which was significantly inhibited by light. This light effect was further increased by the chromophore all-trans-retinal and suppressed by specific inhibitors of the invertebrate photocascade involving phosphoinositide hydrolysis (100 microM neomycin; 5 microM U73122) and Ca2+ mobilization (10 mM BAPTA; 1 mM lanthanum). The results demonstrate that chicken RGCs are intrinsically photosensitive RPs operating via an invertebrate-like phototransduction cascade, which may be responsible for early detection of light before vision occurs.
Collapse
Affiliation(s)
- Maria Ana Contin
- CIQUIBIC- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
45
|
Yaron O, Farhy C, Marquardt T, Applebury M, Ashery-Padan R. Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina. Development 2006; 133:1367-78. [PMID: 16510501 DOI: 10.1242/dev.02311] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Notch receptor-mediated cell-cell signaling is known to negatively regulate neurogenesis in both vertebrate and invertebrate species, while being implicated in promoting the acquisition of glial fates. We studied Notch1 function directly during retinal neurogenesis by selective Cre/loxP-triggered Notch1 gene inactivation in peripheral retinal progenitor cells (RPCs) prior to the onset of cell differentiation. Consistent with its previously established role, Notch1 inactivation led to dramatic alteration in the expression profile of multiple basic helix-loop-helix transcription factors, consequently prompting premature cell-cycle exit and neuronal specification. Surprisingly, however, Notch1 inactivation led to a striking change in retinal cell composition, with cone-photoreceptor precursors expanding at the expense of other early- as well as late-born cell fates. Intriguingly, the Notch1-deficient precursors adhered to the normal chronological sequence of the cone-photoreceptor differentiation program. Together, these findings reveal an unexpected role of Notch signaling in directly controlling neuronal cell-type composition, and suggest a model by which, during normal retinogenesis, Notch1 functions to suppress cone-photoreceptor fate, allowing for the specification of the diversity of retinal cell types.
Collapse
Affiliation(s)
- Orly Yaron
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
46
|
Mu X, Fu X, Sun H, Beremand PD, Thomas TL, Klein WH. A gene network downstream of transcription factor Math5 regulates retinal progenitor cell competence and ganglion cell fate. Dev Biol 2005; 280:467-81. [PMID: 15882586 DOI: 10.1016/j.ydbio.2005.01.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 01/03/2005] [Accepted: 01/25/2005] [Indexed: 11/28/2022]
Abstract
Math5, a mouse homolog of the Drosophila proneural bHLH transcription factor Atonal, is essential in the developing retina to establish retinal progenitor cell competence for a ganglion cell fate. Elucidating the mechanisms by which Math5 influences progenitor cell competence is crucial for understanding how specification of neuronal cell fate occurs in the retina and it requires knowledge of the downstream target genes that depend on Math5 for their expression. To date, only a handful of genes downstream of Math5 have been identified. To better define the gene network operating downstream of Math5, we used custom-designed microarrays to examine the changes in embryonic retinal gene expression caused by deletion of math5. We identified 270 Math5-dependent genes, including those that were expressed specifically either in progenitor cells or differentiated ganglion cells. The ganglion cell-specific genes included both Brn3b-dependent and Brn3b-independent genes, indicating that Math5 regulates distinct branches of the gene network responsible for retinal ganglion cell differentiation. In math5-null progenitor cells, there was an up-regulation of the proneural genes math3, neuroD, and ngn2, indicating that Math5 suppresses the production of other cell types in addition to promoting retinal ganglion cell formation. The promoter regions of many Math5-dependent genes contained binding sites for REST/NRSF, suggesting that release from general repression in retinal progenitor cells is required for ganglion cell-specific gene activation. The identification of multiple roles for Math5 provides new insights into the gene network that defines progenitor cell competence in the embryonic retina.
Collapse
Affiliation(s)
- Xiuqian Mu
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Neurons extend long axons and highly branched dendrites, and our understanding of the essential regulators of these processes has advanced in recent years. In the past year, investigators have shown that transcriptional control, posttranslational degradation and signaling cascades may be master regulators of axon and dendrite elongation and branching. Thus, evidence is mounting for the importance of the intrinsic growth state of a neuron as a crucial determinant of its ability to grow, or to regenerate, axons and dendrites.
Collapse
Affiliation(s)
- Jeffrey L Goldberg
- Department of Ophthalmology, McKnight Vision Research Center, Bascom Palmer Eye Institute, 1638 NW 10th Ave, Miami, Florida 33136, USA.
| |
Collapse
|
48
|
Martin SE, Mu X, Klein WH. Identification of an N-terminal transcriptional activation domain within Brn3b/POU4f2. Differentiation 2005; 73:18-27. [PMID: 15733064 DOI: 10.1111/j.1432-0436.2005.07301004.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The POU-domain transcription factor Brn3b/ POU4f2 is an essential regulator of gene expression in mouse retinal ganglion cells. Although Brn3b's importance in the differentiation of these cells has been firmly established, the regions on Brn3b where transcriptional activation and/or repression domains reside are only vaguely defined, and conflicting publications report both activation and repression activities for Brn3b. To clarify its function, we monitored the transcriptional activity of Brn3b and Gal4 DNA-binding domain (DBD)-Brn3b fusion proteins in cotransfection experiments using either Brn3-consensus or Gal4 DNA-binding sites to drive reporter gene expression. At Gal4 DNA-binding sites, transrepression activity mapping to the POU domain within Brn3b's C-terminal region masked any transactivation activity. More detailed experiments revealed that expressing abnormally high levels of POU homeodomain- or other homeodomain-containing sequences caused fortuitous transrepression in the cotransfection assay. To avoid transrepression, Brn3b sequences lacking Brn3b's POU domain were fused to the Gal4 DBD to allow identification of regions that were responsible for transcriptional activation. Considerable transactivation activity was located between amino acid residues 100 and 239, although other regions also had activity. The transactivation domain synergized strongly with another transcription factor, LexA-VP16. At Brn3 DNA-binding sites, full-length Brn3b increased transcription more than 25-fold, and similar activation was observed with the closely related factor Brn3a/POU4f1. No transactivation activity was associated with the C-terminal POU domain-containing portion of Brn3b. The results demonstrate that Brn3b regulates gene expression through the action of a strong transcriptional activation domain within its N-terminal sequence.
Collapse
Affiliation(s)
- Suzanna E Martin
- Department of Biochemistry and Molecular Biology, Unit 117, The University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| | | | | |
Collapse
|
49
|
Mu X, Klein WH. A gene regulatory hierarchy for retinal ganglion cell specification and differentiation. Semin Cell Dev Biol 2004; 15:115-23. [PMID: 15036214 DOI: 10.1016/j.semcdb.2003.09.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Retinal ganglion cells (RGCs) are the first cell type to be specified during vertebrate retinogenesis. Specification and differentiation of the RGC lineage are a stepwise process involving a hierarchical gene regulatory network. During the past decade, a framework of the network has emerged and key transcriptional regulators have been identified. Pax6, Notch, Ath5, and the Brn3 (Pou4f) factors act at different levels of the regulatory hierarchy. In this review, we summarize the current understanding of the functions of these and other transcriptional factors in the specification and differentiation of the RGC lineage. We emphasize the regulatory relationships among transcription factors at different steps of RGC development. We discuss critical issues that need to be addressed before a complete understanding of the gene regulatory network for RGC development can be achieved. Future directions in RGC development will inevitably rely on combined genetic and genomics approaches.
Collapse
Affiliation(s)
- Xiuqian Mu
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, The University of Texas, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | | |
Collapse
|
50
|
Xie W, Yan RT, Ma W, Wang SZ. Enhanced retinal ganglion cell differentiation by ath5 and NSCL1 coexpression. Invest Ophthalmol Vis Sci 2004; 45:2922-8. [PMID: 15326103 PMCID: PMC1986831 DOI: 10.1167/iovs.04-0280] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The molecular mechanism underlying retinal ganglion cell (RGC) differentiation is not fully understood. In this study, the role of the basic helix-loop-helix (bHLH) genes ath5 and NSCL1 in RGC differentiation was examined, by testing whether their coexpression would promote RGC differentiation to a greater extent than either gene alone. METHODS The replication-competent avian RCAS retrovirus was used to coexpress ath5 and NSCL1 through an internal ribosomal entry site. The effect of the coexpression on RGC differentiation was assayed in vivo in the developing chick retina and in vitro in RPE cell cultures derived from day 6 chick embryos. RESULTS Coexpression of ath5 and NSCL1 in RPE cells cultured in the presence of bFGF promoted RPE transdifferentiation toward RGCs, and the degree of transdifferentiation was much higher than with either gene alone. Cells expressing RGC markers, including RA4, calretinin, and two neurofilament-associated proteins, displayed processes that were remarkably long and thin and often had numerous branches, characteristics of long-projecting RGCs. In the developing chick retina, retroviral expression of NSCL1 resulted in a moderate increase in the number of RGCs, results similar to retroviral expression of ath5. Coexpression of ath5 and NSCL1 yielded increases in RGCs greater than the sum of their increases when expressed separately. CONCLUSIONS Both in vitro and in vivo data indicate that the combination of ath5 and NSCL1 promotes RGC differentiation to a greater degree than either gene alone, suggesting a synergism between ath5 and NSCL1 in advancing RGC development.
Collapse
Affiliation(s)
- Wenlian Xie
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
- Sun Yat-Sen University, Guangzhou, China
| | - Run-Tao Yan
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wenxin Ma
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shu-Zhen Wang
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|