1
|
Linder J, Srivastava D, Yuan H, Agarwal V, Kelley DR. Predicting RNA-seq coverage from DNA sequence as a unifying model of gene regulation. Nat Genet 2025; 57:949-961. [PMID: 39779956 PMCID: PMC11985352 DOI: 10.1038/s41588-024-02053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Sequence-based machine-learning models trained on genomics data improve genetic variant interpretation by providing functional predictions describing their impact on the cis-regulatory code. However, current tools do not predict RNA-seq expression profiles because of modeling challenges. Here, we introduce Borzoi, a model that learns to predict cell-type-specific and tissue-specific RNA-seq coverage from DNA sequence. Using statistics derived from Borzoi's predicted coverage, we isolate and accurately score DNA variant effects across multiple layers of regulation, including transcription, splicing and polyadenylation. Evaluated on quantitative trait loci, Borzoi is competitive with and often outperforms state-of-the-art models trained on individual regulatory functions. By applying attribution methods to the derived statistics, we extract cis-regulatory motifs driving RNA expression and post-transcriptional regulation in normal tissues. The wide availability of RNA-seq data across species, conditions and assays profiling specific aspects of regulation emphasizes the potential of this approach to decipher the mapping from DNA sequence to regulatory function.
Collapse
Affiliation(s)
| | | | - Han Yuan
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Vikram Agarwal
- mRNA Center of Excellence, Sanofi Pasteur Inc., Cambridge, MA, USA
| | | |
Collapse
|
2
|
Pino MTL, Rocca MV, Acosta LH, Cabilla JP. Challenging the Norm: The Unrecognized Impact of Soluble Guanylyl Cyclase Subunits in Cancer. Int J Mol Sci 2024; 25:10053. [PMID: 39337539 PMCID: PMC11432225 DOI: 10.3390/ijms251810053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Since the discovery of nitric oxide (NO), a long journey has led us to the present, during which much knowledge has been gained about its pathway members and their roles in physiological and various pathophysiological conditions. Soluble guanylyl cyclase (sGC), the main NO receptor composed of the sGCα1 and sGCβ1 subunits, has been one of the central figures in this narrative. However, the sGCα1 and sGCβ1 subunits remained obscured by the focus on sGC's enzymatic activity for many years. In this review, we restore the significance of the sGCα1 and sGCβ1 subunits by compiling and analyzing available but previously overlooked information regarding their roles beyond enzymatic activity. We delve into the basics of sGC expression regulation, from its transcriptional regulation to its interaction with proteins, placing particular emphasis on evidence thus far demonstrating the actions of each sGC subunit in different tumor models. Exploring the roles of sGC subunits in cancer offers a valuable opportunity to enhance our understanding of tumor biology and discover new therapeutic avenues.
Collapse
Affiliation(s)
- María Teresa L Pino
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Buenos Aires C1270AAH, Argentina
| | - María Victoria Rocca
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Buenos Aires C1270AAH, Argentina
| | - Lucas H Acosta
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Buenos Aires C1270AAH, Argentina
| | - Jimena P Cabilla
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Buenos Aires C1270AAH, Argentina
| |
Collapse
|
3
|
Agarwal V, Kelley DR. The genetic and biochemical determinants of mRNA degradation rates in mammals. Genome Biol 2022; 23:245. [PMID: 36419176 PMCID: PMC9684954 DOI: 10.1186/s13059-022-02811-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Degradation rate is a fundamental aspect of mRNA metabolism, and the factors governing it remain poorly characterized. Understanding the genetic and biochemical determinants of mRNA half-life would enable more precise identification of variants that perturb gene expression through post-transcriptional gene regulatory mechanisms. RESULTS We establish a compendium of 39 human and 27 mouse transcriptome-wide mRNA decay rate datasets. A meta-analysis of these data identified a prevalence of technical noise and measurement bias, induced partially by the underlying experimental strategy. Correcting for these biases allowed us to derive more precise, consensus measurements of half-life which exhibit enhanced consistency between species. We trained substantially improved statistical models based upon genetic and biochemical features to better predict half-life and characterize the factors molding it. Our state-of-the-art model, Saluki, is a hybrid convolutional and recurrent deep neural network which relies only upon an mRNA sequence annotated with coding frame and splice sites to predict half-life (r=0.77). The key novel principle learned by Saluki is that the spatial positioning of splice sites, codons, and RNA-binding motifs within an mRNA is strongly associated with mRNA half-life. Saluki predicts the impact of RNA sequences and genetic mutations therein on mRNA stability, in agreement with functional measurements derived from massively parallel reporter assays. CONCLUSIONS Our work produces a more robust ground truth for transcriptome-wide mRNA half-lives in mammalian cells. Using these revised measurements, we trained Saluki, a model that is over 50% more accurate in predicting half-life from sequence than existing models. Saluki succinctly captures many of the known determinants of mRNA half-life and can be rapidly deployed to predict the functional consequences of arbitrary mutations in the transcriptome.
Collapse
Affiliation(s)
- Vikram Agarwal
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA.
- Present Address: mRNA Center of Excellence, Sanofi Pasteur Inc., Waltham, MA, 02451, USA.
| | - David R Kelley
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA.
| |
Collapse
|
4
|
Russo J, Wilusz J. Trick or TREAT: A Scary-Good New Approach for Single-Molecule mRNA Decay Analysis. Mol Cell 2019; 68:476-477. [PMID: 29100051 DOI: 10.1016/j.molcel.2017.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this issue of Molecular Cell, Horvathova et al. (2017) have developed a powerful approach to single-molecule assessment of RNA decay in living cells by exploiting the ability of flavivirus RNA structural elements to trap XRN1 decay intermediates in dual-labeled reporter constructs.
Collapse
Affiliation(s)
- Joseph Russo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
5
|
Ruiz JC, Hunter OV, Conrad NK. Kaposi's sarcoma-associated herpesvirus ORF57 protein protects viral transcripts from specific nuclear RNA decay pathways by preventing hMTR4 recruitment. PLoS Pathog 2019; 15:e1007596. [PMID: 30785952 PMCID: PMC6398867 DOI: 10.1371/journal.ppat.1007596] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/04/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
Nuclear RNAs are subject to a number of RNA decay pathways that serve quality control and regulatory functions. As a result, any virus that expresses its genes in the nucleus must have evolved mechanisms that avoid these pathways, but the how viruses evade nuclear RNA decay remains largely unknown. The multifunctional Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 (Mta) protein is required for the nuclear stability of viral transcripts. In the absence of ORF57, we show that viral transcripts are subject to degradation by two specific nuclear RNA decay pathways, PABPN1 and PAPα/γ-mediated RNA decay (PPD) in which decay factors are recruited through poly(A) tails, and an ARS2-mediated RNA decay pathway dependent on the 5ʹ RNA cap. In transcription pulse chase assays, ORF57 appears to act primarily by inhibiting the ARS2-mediated RNA decay pathway. In the context of viral infection in cultured cells, inactivation of both decay pathways by RNAi is necessary for the restoration of ORF57-dependent viral genes produced from an ORF57-null bacmid. Mechanistically, we demonstrate that ORF57 protects viral transcripts by preventing the recruitment of the exosome co-factor hMTR4. In addition, our data suggest that ORF57 recruitment of ALYREF inhibits hMTR4 association with some viral RNAs, whereas other KSHV transcripts are stabilized by ORF57 in an ALYREF-independent fashion. In conclusion, our studies show that KSHV RNAs are subject to nuclear degradation by two specific host pathways, PPD and ARS2-mediated decay, and ORF57 protects viral transcripts from decay by inhibiting hMTR4 recruitment. Eukaryotic cells contain numerous nuclear RNA quality control (QC) systems that ensure transcriptome fidelity by detecting and degrading aberrant RNAs. Some viral RNAs are also predicted to be degraded by these RNA QC systems, so viruses have evolved mechanisms that counter host RNA QC pathways. Previous studies showed that the Kaposi’s sarcoma-associated herpesvirus (KSHV) expresses the ORF57 protein to protect its RNAs from nuclear decay. However, neither the specific host pathways that degrade KSHV RNAs nor the mechanisms describing ORF57 protection of viral RNAs were known. Our data suggest that ORF57 protects viral RNAs from two different nuclear RNA QC pathways, PABPN1 and PAPα/γ-mediated RNA decay (PPD) and an ARS2-mediated RNA decay pathway. Mechanistically, we show that ORF57 binds directly to viral RNAs and prevents the recruitment of hMTR4, a cellular factor whose function is to recruit the exosome, the complex responsible for RNA decay, to the transcript. We conclude that by preventing hMTR4 recruitment, ORF57 protects viral RNAs from degradation resulting in robust expression of viral genes.
Collapse
Affiliation(s)
- Julio C. Ruiz
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Olga V. Hunter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nicholas K. Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
- * E-mail:
| |
Collapse
|
6
|
Sequences encoding C2H2 zinc fingers inhibit polyadenylation and mRNA export in human cells. Sci Rep 2018; 8:16995. [PMID: 30451889 PMCID: PMC6242934 DOI: 10.1038/s41598-018-35138-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023] Open
Abstract
The large C2H2-Zinc Finger (C2H2-ZNF) gene family has rapidly expanded in primates through gene duplication. There is consequently considerable sequence homology between family members at both the nucleotide and amino acid level, allowing for coordinated regulation and shared functions. Here we show that multiple C2H2-ZNF mRNAs experience differential polyadenylation resulting in populations with short and long poly(A) tails. Furthermore, a significant proportion of C2H2-ZNF mRNAs are retained in the nucleus. Intriguingly, both short poly(A) tails and nuclear retention can be specified by the repeated elements that encode zinc finger motifs. These Zinc finger Coding Regions (ZCRs) appear to restrict polyadenylation of nascent RNAs and at the same time impede their export. However, the polyadenylation process is not necessary for nuclear retention of ZNF mRNAs. We propose that inefficient polyadenylation and export may allow C2H2-ZNF mRNAs to moonlight as non-coding RNAs or to be stored for later use.
Collapse
|
7
|
Saha S, Chakraborty A, Bandyopadhyay SS. Stabilization of Oncostatin-M mRNA by Binding of Nucleolin to a GC-Rich Element in Its 3'UTR. J Cell Biochem 2016; 117:988-99. [PMID: 26399567 DOI: 10.1002/jcb.25384] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/22/2015] [Indexed: 12/23/2022]
Abstract
Oncostatin-M (OSM) is a patho-physiologically important pleiotropic, multifunctional cytokine. OSM mRNA sequence analysis revealed that its 3'UTR contains three highly conserved GC-rich cis-elements (GCREs) whose role in mRNA stability is unidentified. In the present study, the functional role of the proximal GC-rich region of osm 3'-UTR (GCRE-1) in post-transcriptional regulation of osm expression in U937 cells was assessed by transfecting construct containing GCRE-1 at 3'-end of a fairly stable reporter gene followed by analysis of the expression of the reporter. GCRE-1 showed mRNA destabilizing activity; however, upon PMA treatment the reporter message containing GCRE-1 was stabilized. This stabilization is owing to a time-dependent progressive binding of trans-factors (at least five proteins) to GCRE-1 post-PMA treatment. Nucleolin was identified as one of the proteins in the RNP complex of GCRE-1 with PMA-treated U937 cytosolic extracts by oligo-dT affinity chromatography of poly-adenylated GCRE-1. Immuno-blot revealed time-dependent enhancement of nucleolin in the cytoplasm which in turn directly binds GCRE-1. RNA co-immunoprecipitation confirmed the GCRE-1-nucleolin interaction in vivo. To elucidate the functional role of nucleolin in stabilization of osm mRNA, nucleolin was overexpressed in U937 cells and found to stabilize the intrinsic osm mRNA, where co-transfection with the reporter containing GCRE-1 confirms the role of GCRE-1 in stabilization of the reporter mRNA. Thus, in conclusion, the results asserted that PMA treatment in U937 cells leads to cytoplasmic translocation of nucleolin that directly binds GCRE-1, one of the major GC-rich instability elements, thereby stabilizing the osm mRNA.
Collapse
Affiliation(s)
- Sucharita Saha
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Alina Chakraborty
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Sumita Sengupta Bandyopadhyay
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| |
Collapse
|
8
|
The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay. PLoS Genet 2013; 9:e1003893. [PMID: 24146636 PMCID: PMC3798265 DOI: 10.1371/journal.pgen.1003893] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/05/2013] [Indexed: 12/05/2022] Open
Abstract
Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A)-binding protein (PABPN1), the poly(A) polymerases (PAPs), PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A) tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A) tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A) tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression. In eukaryotes, mRNAs include a stretch of adenosine nucleotides at their 3′ end termed the poly(A) tail. In the cytoplasm, the poly(A) tail stimulates translation of the mRNA into protein, and protects the transcript from degradation. Evidence suggests that poly(A) tails may play distinct roles in RNA metabolism in the nucleus, but little is known about these functions and mechanisms. We show here that poly(A) tails can stimulate transcript decay in the nucleus, a function mediated by the ubiquitous nuclear poly(A) binding protein PABPN1. We find that PABPN1 is required for the degradation of a viral nuclear noncoding RNA as well as an inefficiently exported human mRNA. Importantly, the targeting of RNAs to this decay pathway requires the PABPN1 and poly(A) polymerase-dependent extension of the poly(A) tail. Nuclear transcripts with longer poly(A) tails are then selectively degraded by components of the nuclear exosome. These studies elucidate mechanisms that mammalian cells use to ensure proper mRNA “quality control” and may be important to regulate the expression of nuclear noncoding RNAs. Furthermore, our results suggest that the poly(A) tail has diverse and context-specific roles in gene expression.
Collapse
|
9
|
Active stabilization of human endothelial nitric oxide synthase mRNA by hnRNP E1 protects against antisense RNA and microRNAs. Mol Cell Biol 2013; 33:2029-46. [PMID: 23478261 DOI: 10.1128/mcb.01257-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human endothelial nitric oxide synthase (eNOS) mRNA is highly stable in endothelial cells (ECs). Posttranscriptional regulation of eNOS mRNA stability is an important component of eNOS regulation, especially under hypoxic conditions. Here, we show that the human eNOS 3' untranslated region (3' UTR) contains multiple, evolutionarily conserved pyrimidine (C and CU)-rich sequence elements that are both necessary and sufficient for mRNA stabilization. Importantly, RNA immunoprecipitations and RNA electrophoretic mobility shift assays (EMSAs) revealed the formation of heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1)-containing RNP complexes at these 3'-UTR elements. Knockdown of hnRNP E1 decreased eNOS mRNA half-life, mRNA levels, and protein expression. Significantly, these stabilizing RNP complexes protect eNOS mRNA from the inhibitory effects of its antisense transcript sONE and 3'-UTR-targeting small interfering RNAs (siRNAs), as well as microRNAs, specifically, hsa-miR-765, which targets eNOS mRNA stability determinants. Hypoxia disrupts hnRNP E1/eNOS 3'-UTR interactions via increased Akt-mediated serine phosphorylation (including serine 43) and increased nuclear localization of hnRNP E1. These mechanisms account, at least in part, for the decrease in eNOS mRNA stability under hypoxic conditions. Thus, the stabilization of human eNOS mRNA by hnRNP E1-containing RNP complexes serves as a key protective mechanism against the posttranscriptional inhibitory effects of antisense RNA and microRNAs under basal conditions but is disrupted under hypoxic conditions.
Collapse
|
10
|
Ehlers C, Schirmer S, Kehlenbach RH, Hauber J, Chemnitz J. Post-transcriptional regulation of CD83 expression by AUF1 proteins. Nucleic Acids Res 2013; 41:206-19. [PMID: 23161671 PMCID: PMC3592417 DOI: 10.1093/nar/gks1069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/27/2012] [Accepted: 10/11/2012] [Indexed: 12/31/2022] Open
Abstract
Mature dendritic cells (DC), activated lymphocytes, mononuclear cells and neutrophils express CD83, a surface protein apparently necessary for effective DC-mediated activation of naïve T-cells and T-helper cells, thymic T-cell maturation and the regulation of B-cell activation and homeostasis. Although a defined ligand of CD83 remains elusive, the multiple cellular subsets expressing CD83, as well as its numerous potential implications in immunological processes suggest that CD83 plays an important regulatory role in the mammalian immune system. Lately, nucleocytoplasmic translocation of CD83 mRNA was shown to be mediated by direct interaction between the shuttle protein HuR and a novel post-transcriptional regulatory element (PRE) located in the CD83 transcript's coding region. Interestingly, this interaction commits the CD83 mRNA to efficient nuclear export through the CRM1 protein translocation pathway. More recently, the cellular phosphoprotein and HuR ligand ANP32B (APRIL) was demonstrated to be directly involved in this intracellular transport process by linking the CD83 mRNA:HuR ribonucleoprotein (RNP) complex with the CRM1 export receptor. Casein kinase II regulates this process by phosphorylating ANP32B. Here, we identify another RNA binding protein, AUF1 (hnRNP D) that directly interacts with CD83 PRE. Unlike HuR:PRE binding, this interaction has no impact on intracellular trafficking of CD83 mRNA-containing complexes; but it does regulate translation of CD83 mRNA. Thus, our data shed more light on the complex process of post-transcriptional regulation of CD83 expression. Interfering with this process may provide a novel strategy for inhibiting CD83, and thereby cellular immune activation.
Collapse
Affiliation(s)
- Christina Ehlers
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg and Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Susann Schirmer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg and Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Ralph H. Kehlenbach
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg and Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg and Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Jan Chemnitz
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg and Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
11
|
Mauxion F, Prève B, Séraphin B. C2ORF29/CNOT11 and CNOT10 form a new module of the CCR4-NOT complex. RNA Biol 2012; 10:267-76. [PMID: 23232451 DOI: 10.4161/rna.23065] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The CCR4-NOT complex was originally identified and its composition and organization characterized in the yeast Saccharomyces cerevisiae. It was first suggested to participate in transcription regulation, but since then it has become clear that it plays a key role in mRNA decay in all eukaryotes, thereby contributing importantly to gene expression regulation. Hence, the mammalian CCR4-NOT complex was recently shown to participate in miRNA-mediated mRNA repression. A better characterization of the composition and organization of this complex in higher eukaryotes is thus warranted. Purifications of the CCR4-NOT complex, performed by others and us, suggest that the protein of unknown function C2ORF29 is associated with this assembly. We demonstrate here that C2ORF29 is indeed a bona fide subunit of the human CCR4-NOT complex and propose to rename it CNOT11. In addition, we show that CNOT11 interacts with the first amino acids of CNOT1 and with CNOT10 and is required for the association of CNOT10 with the CCR4-NOT complex. Thus, the human CCR4-NOT complex possesses in addition to the CCR4-CAF1 deadenylase module and to the NOT module, a module composed of CNOT10 and CNOT11 that interacts with the N-terminal part of CNOT1. Phylogenetic analyses indicate that the CNOT10/CNOT11 module is conserved in all eukaryotes except fungi.
Collapse
Affiliation(s)
- Fabienne Mauxion
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMC, Centre National de Recherche Scientifique CNRS, UMR 7104, Institut National de Santé et de Recherche Médicale INSERM, U964, Université de Strasbourg, Illkirch, France.
| | | | | |
Collapse
|
12
|
Hoffmann D, Schwarck D, Banning C, Brenner M, Mariyanna L, Krepstakies M, Schindler M, Millar DP, Hauber J. Formation of trans-activation competent HIV-1 Rev:RRE complexes requires the recruitment of multiple protein activation domains. PLoS One 2012; 7:e38305. [PMID: 22675540 PMCID: PMC3366918 DOI: 10.1371/journal.pone.0038305] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/07/2012] [Indexed: 12/13/2022] Open
Abstract
The HIV-1 Rev trans-activator is a nucleocytoplasmic shuttle protein that is essential for virus replication. Rev directly binds to unspliced and incompletely spliced viral RNA via the cis-acting Rev Response Element (RRE) sequence. Subsequently, Rev oligomerizes cooperatively and interacts with the cellular nuclear export receptor CRM1. In addition to mediating nuclear RNA export, Rev also affects the stability, translation and packaging of Rev-bound viral transcripts. Although it is established that Rev function requires the multimeric assembly of Rev molecules on the RRE, relatively little is known about how many Rev monomers are sufficient to form a trans-activation competent Rev:RRE complex, or which specific activity of Rev is affected by its oligomerization. We here analyzed by functional studies how homooligomer formation of Rev affects the trans-activation capacity of this essential HIV-1 regulatory protein. In a gain-of-function approach, we fused various heterologous dimerization domains to an otherwise oligomerization-defective Rev mutant and were able to demonstrate that oligomerization of Rev is not required per se for the nuclear export of this viral trans-activator. In contrast, however, the formation of Rev oligomers on the RRE is a precondition to trans-activation by directly affecting the nuclear export of Rev-regulated mRNA. Moreover, experimental evidence is provided showing that at least two protein activation domains are required for the formation of trans-activation competent Rev:RRE complexes. The presented data further refine the model of Rev trans-activation by directly demonstrating that Rev oligomerization on the RRE, thereby recruiting at least two protein activation domains, is required for nuclear export of unspliced and incompletely spliced viral RNA.
Collapse
Affiliation(s)
- Dirk Hoffmann
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Doreen Schwarck
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Carina Banning
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Matthias Brenner
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Lakshmikanth Mariyanna
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Marcel Krepstakies
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Michael Schindler
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - David P. Millar
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joachim Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
13
|
Grammel M, Hang H, Conrad NK. Chemical reporters for monitoring RNA synthesis and poly(A) tail dynamics. Chembiochem 2012; 13:1112-5. [PMID: 22513998 DOI: 10.1002/cbic.201200091] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Indexed: 11/11/2022]
Abstract
A versatile "clickable" nucleoside: Metabolic labeling of cells is useful in studying the dynamics of biological molecules. N(6) pA can be utilized by all three mammalian RNA polymerases, as well as poly(A) polymerase. Because of its alkyne modification, RNA labeled with N(6) pA can be visualized and purified by using click chemistry.
Collapse
Affiliation(s)
- Markus Grammel
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue Box 250, New York, NY 10065, USA
| | | | | |
Collapse
|
14
|
Sato S, Shirato K, Tachiyashiki K, Imaizumi K. Synthesized glucocorticoid, dexamethasone regulates the expressions of .BETA.2-adrenoceptor and glucocorticoid receptor mRNAs but not proteins in slow-twitch soleus muscle of rats. J Toxicol Sci 2011; 36:479-86. [DOI: 10.2131/jts.36.479] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Shogo Sato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
- Japan Society for the Promotion of Science
| | - Ken Shirato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
| | - Kaoru Tachiyashiki
- Department of Natural and Living Sciences, Graduate School of Education, Joetsu University of Education
| | - Kazuhiko Imaizumi
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University
- Global COE Doctoral Program, Graduate School of Sport Sciences, Waseda University
| |
Collapse
|
15
|
Chen CYA, Shyu AB. Mechanisms of deadenylation-dependent decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:167-83. [PMID: 21957004 DOI: 10.1002/wrna.40] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Degradation of messenger RNAs (mRNAs) plays an essential role in modulation of gene expression and in quality control of mRNA biogenesis. Nearly all major mRNA decay pathways characterized thus far in eukaryotes are initiated by deadenylation, i.e., shortening of the mRNA 3(') poly(A) tail. Deadenylation is often a rate-limiting step for mRNA degradation and translational silencing, making it an important control point for both processes. In this review, we discuss the fundamental principles that govern mRNA deadenylation in eukaryotes. We use several major mRNA decay pathways in mammalian cells to illustrate mechanisms and regulation of deadenylation-dependent mRNA decay, including decay directed by adenine/uridine-rich elements (AREs) in the 3(') -untranslated region (UTR), the rapid decay mediated by destabilizing elements in protein-coding regions, the surveillance mechanism that detects and degrades nonsense-containing mRNA [i.e., nonsense-mediated decay (NMD)], the decay directed by miRNAs, and the default decay pathway for stable messages. Mammalian mRNA deadenylation involves two consecutive phases mediated by the PAN2-PAN3 and the CCR4-CAF1 complexes, respectively. Decapping takes place after deadenylation and may serve as a backup mechanism to trigger mRNA decay if initial deadenylation is compromised. In addition, we discuss how deadenylation impacts the dynamics of RNA processing bodies (P-bodies), where nontranslatable mRNAs can be degraded or stored. Possible models for mechanisms of various deadenylation-dependent mRNA decay pathways are also discussed.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, The University of Texas-Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
16
|
Kaposi's sarcoma-associated herpesvirus ORF57 protein binds and protects a nuclear noncoding RNA from cellular RNA decay pathways. PLoS Pathog 2010; 6:e1000799. [PMID: 20221435 PMCID: PMC2832700 DOI: 10.1371/journal.ppat.1000799] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/28/2010] [Indexed: 02/07/2023] Open
Abstract
The control of RNA stability is a key determinant in cellular gene expression. The stability of any transcript is modulated through the activity of cis- or trans-acting regulatory factors as well as cellular quality control systems that ensure the integrity of a transcript. As a result, invading viral pathogens must be able to subvert cellular RNA decay pathways capable of destroying viral transcripts. Here we report that the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds to a unique KSHV polyadenylated nuclear RNA, called PAN RNA, and protects it from degradation by cellular factors. ORF57 increases PAN RNA levels and its effects are greatest on unstable alleles of PAN RNA. Kinetic analysis of transcription pulse assays shows that ORF57 protects PAN RNA from a rapid cellular RNA decay process, but ORF57 has little effect on transcription or PAN RNA localization based on chromatin immunoprecipitation and in situ hybridization experiments, respectively. Using a UV cross-linking technique, we further demonstrate that ORF57 binds PAN RNA directly in living cells and we show that binding correlates with function. In addition, we define an ORF57-responsive element (ORE) that is necessary for ORF57 binding to PAN RNA and sufficient to confer ORF57-response to a heterologous intronless beta-globin mRNA, but not its spliced counterparts. We conclude that ORF57 binds to viral transcripts in the nucleus and protects them from a cellular RNA decay pathway. We propose that KSHV ORF57 protein functions to enhance the nuclear stability of intronless viral transcripts by protecting them from a cellular RNA quality control pathway.
Collapse
|
17
|
Sato S, Nomura S, Kawano F, Tanihata J, Tachiyashiki K, Imaizumi K. Adaptive effects of the beta2-agonist clenbuterol on expression of beta2-adrenoceptor mRNA in rat fast-twitch fiber-rich muscles. J Physiol Sci 2010; 60:119-27. [PMID: 20033361 PMCID: PMC10716947 DOI: 10.1007/s12576-009-0075-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/23/2009] [Indexed: 10/20/2022]
Abstract
Administration of the beta(2)-agonist clenbuterol has been shown to reduce the expression of beta(2)-adrenoceptor (AR) mRNA in fast-twitch fiber-rich (extensor digitorum longus, EDL) muscle without changing that in slow-twitch fiber-rich (soleus, SOL) muscle in rats. However, the regulatory mechanism for muscle fiber type-dependent down-regulation of the expression of beta(2)-AR mRNA induced by clenbuterol is still unclear. Therefore, mRNA expression of transcriptional and post-transcriptional regulatory factors for beta(2)-AR mRNA levels in fast-twitch fiber-rich (EDL and plantaris, PLA) and slow-twitch fiber-rich (SOL) muscles in clenbuterol-administered (1.0 mg/kg body weight/day for 10 days, subcutaneous) rats was studied by real-time reverse transcription-polymerase chain reaction. Administration of clenbuterol significantly reduced expression of beta(2)-AR mRNA in EDL and PLA muscles without changing that in SOL muscle. Administration of clenbuterol also significantly reduced the mRNA expression of transcriptional regulatory factor (glucocorticoid receptor) and mRNA stabilizing factor (Hu antigen R) in EDL and PLA muscles without changing those in SOL muscle. These results suggest that muscle fiber type-dependent effects of clenbuterol on expression of beta(2)-AR mRNA are closely related to the down-regulation of mRNA expression of transcriptional and post-transcriptional regulatory factors for beta(2)-AR mRNA levels.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/physiology
- Adrenergic beta-Agonists/pharmacology
- Animals
- Cells, Cultured
- Clenbuterol/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Male
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/physiology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
Collapse
Affiliation(s)
- Shogo Sato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 Japan
| | - Sachiko Nomura
- Graduate School of Medicine, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka 560-0043 Japan
| | - Fuuun Kawano
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
| | - Jun Tanihata
- Laboratory of Rehabilitation Biomedical Sciences, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 Japan
| | - Kaoru Tachiyashiki
- Department of Living and Health Sciences, Graduate School of Joetsu University of Education, 1 Yamayashiki, Joetsu, Niigata 943-8512 Japan
| | - Kazuhiko Imaizumi
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 Japan
| |
Collapse
|
18
|
Abstract
Mature rRNA are normally extremely stable in rapidly growing cells. However, studies show that some mature rRNA in Saccharomyces cerevisiae are, in fact, turned over quite rapidly by the nonfunctional rRNA decay (NRD) pathway. NRD eliminates the RNA component of mature but defective ribosomal subunits and ribosomes. NRD was discovered using rDNA reporter plasmids to express and track the fate of rRNA containing mutations in functionally important regions of the ribosome. This chapter outlines some of the available rDNA reporter plasmids that can be used to study NRD and describes assays to test for functionality and stability of rRNA in yeast.
Collapse
|
19
|
Zheng D, Ezzeddine N, Chen CYA, Zhu W, He X, Shyu AB. Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells. ACTA ACUST UNITED AC 2008; 182:89-101. [PMID: 18625844 PMCID: PMC2447901 DOI: 10.1083/jcb.200801196] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deadenylation is the major step triggering mammalian mRNA decay. One consequence of deadenylation is the formation of nontranslatable messenger RNA (mRNA) protein complexes (messenger ribonucleoproteins [mRNPs]). Nontranslatable mRNPs may accumulate in P-bodies, which contain factors involved in translation repression, decapping, and 5′-to-3′ degradation. We demonstrate that deadenylation is required for mammalian P-body formation and mRNA decay. We identify Pan2, Pan3, and Caf1 deadenylases as new P-body components and show that Pan3 helps recruit Pan2, Ccr4, and Caf1 to P-bodies. Pan3 knockdown causes a reduction of P-bodies and has differential effects on mRNA decay. Knocking down Caf1 or overexpressing a Caf1 catalytically inactive mutant impairs deadenylation and mRNA decay. P-bodies are not detected when deadenylation is blocked and are restored when the blockage is released. When deadenylation is impaired, P-body formation is not restorable, even when mRNAs exit the translating pool. These results support a dynamic interplay among deadenylation, mRNP remodeling, and P-body formation in selective decay of mammalian mRNA.
Collapse
Affiliation(s)
- Dinghai Zheng
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The inability of structural elements within a reporter mRNA to impede processive decay by the major 5' and 3' exonucleases has been a major obstacle to understanding mechanisms of vertebrate mRNA decay. We present here a new approach to this problem focused on quantifying the decay of individual portions of a reporter mRNA. Our approach entails two parts. The first involves the use of a regulated promoter, such as one controlled by tetracycline (tet), to allow reporter gene transcription to be turned off when needed. Cells stably expressing the tet repressor protein are transiently or stably transfected with tet-regulated beta-globin genes in which the sequence element under study is cloned into the 3'-UTR. The second involves the quantification of beta-globin mRNA using the Invader RNA assay, a sensitive and quantitative approach that relies on signal amplification instead of target amplification. Because the Invader RNA assay does not depend on downstream primer binding, the use of multiple probes across the reporter beta-globin mRNA allows for quantification of the decay of individual portions of the mRNA independent of events acting at other sites.
Collapse
|
21
|
Clement SL, Lykke-Andersen J. A tethering approach to study proteins that activate mRNA turnover in human cells. Methods Mol Biol 2008; 419:121-33. [PMID: 18369979 DOI: 10.1007/978-1-59745-033-1_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The regulation of mRNA turnover occurs in part through the action of mRNA-binding proteins that recognize specific nucleotide sequences and either activate or inhibit the decay of transcripts to which they are bound. In many cases, multiple mRNA-binding proteins, including those with opposing functions, bind to the same RNA sequence. This can make the study of the function of any one of these proteins difficult. Furthermore, monitoring endogenous mRNA decay rates using drugs that inhibit transcription (e.g., actinomycin D) can introduce pleiotropic effects. One way to circumvent these problems is to tether the protein of interest (POI) through a heterologous RNA-binding domain to an inducible reporter mRNA and measure the effect of the bound protein on mRNA decay. In this chapter, we illustrate the use of the tethering technique to study the role of a particular mRNA-binding protein, TTP, on the decay of an otherwise stable mRNA to which it is tethered through a fusion to the bacteriophage MS2 coat protein.
Collapse
Affiliation(s)
- Sandra L Clement
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | | |
Collapse
|
22
|
Identification of changes in gene expression by quantitation of mRNA levels. Methods Mol Biol 2008. [PMID: 18369988 DOI: 10.1007/978-1-59745-033-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Sequence elements within mRNA-untranslated regions and their binding partners are key controllers of mRNA stability. Changes in mRNA stability can often be detected by changes in steady-state mRNA abundance, or a more careful analysis of mRNA half-lives can be performed following transcriptional repression. This chapter presents methods to isolate RNA from both yeast and mammalian cells for either steady-state or half-life analyses. In addition, two reliable methods to quantitate mRNA levels, northern blot analysis and real-time PCR, are outlined and compared.
Collapse
|
23
|
Assays for determining poly(A) tail length and the polarity of mRNA decay in mammalian cells. Methods Enzymol 2008; 448:483-504. [PMID: 19111191 DOI: 10.1016/s0076-6879(08)02624-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This chapter describes several methods for measuring the length of the mRNA poly(A) tail and a novel method for measuring mRNA decay. Three methods for measuring the length of a poly(A) tail are presented: the poly(A) length assay, the ligation-mediated poly(A) test (LM-PAT), and the RNase H assay. The first two methods are PCR-based assays involving cDNA synthesis from an oligo(dT) primer. The third method involves removing the poly(A) tail from the mRNA of interest. A major obstacle to studying the enzymatic step of mammalian mRNA decay has been the inability to capture mRNA decay intermediates with structural impediments such as the poly(G) tract used in yeast. To overcome this, we combined a standard kinetic analysis of mRNA decay with a tetracycline repressor-controlled reporter with an Invader RNA assay. The Invader RNA assay is a simple, elegant assay for the quantification of mRNA. It is based on signal amplification, not target amplification, so it is less prone to artifacts than other methods for nucleic acid quantification. It is also very sensitive, able to detect attomolar levels of target mRNA. Finally, it requires only a short sequence for target recognition and quantitation. Therefore, it can be applied to determining the decay polarity of a mRNA by measuring the decay rates of different portions of that mRNA.
Collapse
|
24
|
Sensitive detection of mRNA decay products by use of reverse-ligation-mediated PCR (RL-PCR). Methods Enzymol 2008; 448:445-66. [PMID: 19111189 DOI: 10.1016/s0076-6879(08)02622-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ligation-mediated PCR allows the detection and mapping of cleavage products of specific nucleic acid molecules out of complex nucleic acid mixtures. It can be applied to the detection of either degradation products of exogenously added nucleases in footprinting applications or natural decay products or reaction intermediates. We have developed various ligation-mediated PCR approaches to analyze mRNAs, all relying on RNA ligation, followed by reverse-transcription and PCR amplification. We have termed these approaches reverse-ligation-mediated PCR (RL-PCR). The ligation event involves either an RNA linker added to the 5'-end of cleaved RNA or RNA circularization, allowing, respectively, the mapping and quantification of the cleavage points or the simultaneous analysis of the presence or absence of the 5'-cap structure and the length of the poly(A) tail. These methods enabled us to develop a very efficient 5'-RACE procedure to map mRNA 5'-ends, to footprint in permeabilized cells the interaction of regulatory proteins with RNA, to detect the products of cellular ribozyme action and to analyze cellular decay pathways that involve deadenylation and/or decapping. I review herein the methodologic aspects and protocols of the various RL-PCR procedures we have developed.
Collapse
|
25
|
Abstract
The recognition of the importance of mRNA turnover in regulating eukaryotic gene expression has mandated the development of reliable, rigorous, and "user-friendly" methods to accurately measure changes in mRNA stability in mammalian cells. Frequently, mRNA stability is studied indirectly by analyzing the steady-state level of mRNA in the cytoplasm; in this case, changes in mRNA abundance are assumed to reflect only mRNA degradation, an assumption that is not always correct. Although direct measurements of mRNA decay rate can be performed with kinetic labeling techniques and transcriptional inhibitors, these techniques often introduce significant changes in cell physiology. Furthermore, many critical mechanistic issues as to deadenylation kinetics, decay intermediates, and precursor-product relationships cannot be readily addressed by these methods. In light of these concerns, we have previously reported transcriptional pulsing methods based on the c-fos serum-inducible promoter and the tetracycline-regulated (Tet-off) promoter systems to better explain mechanisms of mRNA turnover in mammalian cells. In this chapter, we describe and discuss in detail different protocols that use these two transcriptional pulsing methods. The information described here also provides guidelines to help develop optimal protocols for studying mammalian mRNA turnover in different cell types under a wide range of physiologic conditions.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas, USA
| | | | | |
Collapse
|
26
|
Abstract
The abundance of a cytoplasmic mRNA in eukaryotes often determines the level of the encoded protein product. The rates at which an mRNA is synthesized, exported, and degraded collectively contribute to its abundance in all cell types. Numerous mRNAs, particularly those encoding structural proteins, are very stable, with half-lives in the order of many hours. In contrast, mRNAs encoding regulatory proteins, including oncoproteins, cytokines, and signaling proteins, are relatively unstable with half-lives of an hour or less. As a result, modest changes in their decay rates affect their levels over a relatively short time period. This is particularly important to ensure rapid responses to extracellular signaling events. Messenger RNAs often harbor sequence elements that dictate their degradation rates. Adenylate uridylate (A+U)-rich elements (AREs), first identified in 1986, are perhaps the best characterized sequences that promote rapid mRNA degradation. These elements, localized within 3'-untranslated regions, sometimes contain AUUUA pentamers within an overall U-rich sequence, but this does not always define a bona fide ARE. Thus, experimental validation is essential before bestowing upon a suspected A+U-rich sequence the title of "ARE." This chapter describes a reporter gene system that permits quantitative assessment of the effects of candidate A+U-rich sequences on mRNA half-life. This system employs tetracycline-controlled transcriptional silencing of the reporter gene, isolation of total-cell RNA at selected time points, quantitative reverse transcriptase polymerase chain reaction analysis of reporter mRNA levels, and nonlinear regression analysis of mRNA level as a function of time to quantitatively define parameters describing mRNA decay kinetics. Finally, this chapter describes more specialized assays to characterize ARE-mediated mRNA decay pathways, including deadenylation, and discusses decapping.
Collapse
|
27
|
Abstract
The renal response to metabolic acidosis is mediated, in part, by increased expression of the genes encoding key enzymes of glutamine catabolism and various ion transporters that contribute to the increased synthesis and excretion of ammonium ions and the net production and release of bicarbonate ions. The resulting adaptations facilitate the excretion of acid and partially restore systemic acid-base balance. Much of this response may be mediated by selective stabilization of the mRNAs that encode the responsive proteins. For example, the glutaminase mRNA contains a direct repeat of 8-nt AU sequences that function as a pH-response element (pHRE). This element is both necessary and sufficient to impart a pH-responsive stabilization to chimeric mRNAs. The pHRE also binds multiple RNA-binding proteins, including zeta-crystallin (zeta-cryst), AU-factor 1 (AUF1), and HuR. The onset of acidosis initiates an endoplasmic reticulum (ER)-stress response that leads to the formation of cytoplasmic stress granules. zeta-cryst is transiently recruited to the stress granules, and concurrently, HuR is translocated from the nucleus to the cytoplasm. On the basis of the cumulative data, a mechanism for the stabilization of selective mRNAs is proposed. This hypothesis suggests multiple experiments that should define better how cells in the kidney sense very slight changes in intracellular pH and mediate this essential adaptive response.
Collapse
Affiliation(s)
- H Ibrahim
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
28
|
Chen CYA, Yamashita Y, Chang TC, Yamashita A, Zhu W, Zhong Z, Shyu AB. Versatile applications of transcriptional pulsing to study mRNA turnover in mammalian cells. RNA (NEW YORK, N.Y.) 2007; 13:1775-86. [PMID: 17728382 PMCID: PMC1986818 DOI: 10.1261/rna.663507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Development of transcriptional pulsing approaches using the c-fos and Tet-off promoter systems greatly facilitated studies of mRNA turnover in mammalian cells. However, optimal protocols for these approaches vary for different cell types and/or physiological conditions, limiting their widespread application. In this study, we have further optimized transcriptional pulsing systems for different cell lines and developed new protocols to facilitate investigation of various aspects of mRNA turnover. We apply the Tet-off transcriptional pulsing strategy to investigate ARE-mediated mRNA decay in human erythroleukemic K562 cells arrested at various phases of the cell cycle by pharmacological inhibitors. This application facilitates studies of the role of mRNA stability in control of cell-cycle dependent gene expression. To advance the investigation of factors involved in mRNA turnover and its regulation, we have also incorporated recently developed transfection and siRNA reagents into the transcriptional pulsing approach. Using these protocols, siRNA and DNA plasmids can be effectively cotransfected into mouse NIH3T3 cells to obtain high knockdown efficiency. Moreover, we have established a tTA-harboring stable line using human bronchial epithelial BEAS-2B cells and applied the transcriptional pulsing approach to monitor mRNA deadenylation and decay kinetics in this cell system. This broadens the application of the transcriptional pulsing system to investigate the regulation of mRNA turnover related to allergic inflammation. Critical factors that need to be considered when employing these approaches are characterized and discussed.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Ezzeddine N, Chang TC, Zhu W, Yamashita A, Chen CYA, Zhong Z, Yamashita Y, Zheng D, Shyu AB. Human TOB, an antiproliferative transcription factor, is a poly(A)-binding protein-dependent positive regulator of cytoplasmic mRNA deadenylation. Mol Cell Biol 2007; 27:7791-801. [PMID: 17785442 PMCID: PMC2169145 DOI: 10.1128/mcb.01254-07] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In mammalian cells, mRNA decay begins with deadenylation, which involves two consecutive phases mediated by the PAN2-PAN3 and the CCR4-CAF1 complexes, respectively. The regulation of the critical deadenylation step and its relationship with RNA-processing bodies (P-bodies), which are thought to be a site where poly(A)-shortened mRNAs get degraded, are poorly understood. Using the Tet-Off transcriptional pulsing approach to investigate mRNA decay in mouse NIH 3T3 fibroblasts, we found that TOB, an antiproliferative transcription factor, enhances mRNA deadenylation in vivo. Results from glutathione S-transferase pull-down and coimmunoprecipitation experiments indicate that TOB can simultaneously interact with the poly(A) nuclease complex CCR4-CAF1 and the cytoplasmic poly(A)-binding protein, PABPC1. Combining these findings with those from mutagenesis studies, we further identified the protein motifs on TOB and PABPC1 that are necessary for their interaction and found that interaction with PABPC1 is necessary for TOB's deadenylation-enhancing effect. Moreover, our immunofluorescence microscopy results revealed that TOB colocalizes with P-bodies, suggesting a role of TOB in linking deadenylation to the P-bodies. Our findings reveal a new mechanism by which the fate of mammalian mRNA is modulated at the deadenylation step by a protein that recruits poly(A) nuclease(s) to the 3' poly(A) tail-PABP complex.
Collapse
Affiliation(s)
- Nader Ezzeddine
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Conrad NK, Fok V, Cazalla D, Borah S, Steitz JA. The challenge of viral snRNPs. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:377-84. [PMID: 17381320 DOI: 10.1101/sqb.2006.71.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Some gammaherpesviruses encode nuclear noncoding RNAs (ncRNAs) that assemble with host proteins. Their conservation and abundance implies that they serve important functions for the virus. This paper focuses on our studies of three classes of nuclear noncoding herpesvirus RNAs. (1) EBERs 1 and 2 are expressed by Epstein-Barr virus in latent infection of human B lymphocytes. Recent studies revealed three sites on EBER1 that associate with ribosomal protein L22. In addition, heterokaryon assays have definitively shown that both EBERs are confined to the nucleus, arguing that their contribution to viral latency is purely nuclear. (2) HSURs 1-7 are U RNAs encoded by Herpesvirus saimiri, which causes aggressive T-cell leukemias and lymphomas. Comparison of monkey T cells transformed with wild-type or mutant virus lacking HSURs 1 and 2 revealed significant changes in host mRNAs implicated in T-cell signaling. (3) PAN is a 1-kb polyadenylated RNA that accumulates in the nucleus of Kaposi's sarcoma-associated herpesvirus lytically infected cells. A novel element, the ENE, is essential for its high accumulation. Recent results indicate that the ENE functions to counteract poly(A)-dependent RNA degradation, which we propose contributes to nuclear surveillance of mRNA transcripts in mammalian cells. Continuing studies of these viral RNAs will provide insights into both cellular and viral gene expression.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/virology
- Base Sequence
- Herpesvirus 2, Saimiriine/genetics
- Herpesvirus 2, Saimiriine/metabolism
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/metabolism
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/metabolism
- Humans
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
Collapse
Affiliation(s)
- N K Conrad
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA
| | | | | | | | | |
Collapse
|
31
|
Conrad NK, Shu MD, Uyhazi KE, Steitz JA. Mutational analysis of a viral RNA element that counteracts rapid RNA decay by interaction with the polyadenylate tail. Proc Natl Acad Sci U S A 2007; 104:10412-7. [PMID: 17563387 PMCID: PMC1965527 DOI: 10.1073/pnas.0704187104] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously demonstrated that the Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA contains a 79-nt cis-acting element, the ENE, which allows intronless polyadenylated transcripts to accumulate to high nuclear levels by protecting them from rapid degradation. We proposed a model based on the predicted structure of the ENE in which a U-rich internal loop hybridizes with the 3'-polyadenylate (polyA) tail to sequester it from exonucleolytic attack. We have tested this model by mutational analysis of the ENE. Point mutations in the predicted U-rich internal loop and in the flanking stems abolish the ENE's ability to (i) interact with the polyA tail, (ii) inhibit deadenylation in vitro, and (iii) stabilize transcripts in vivo. In all but one case, compensatory mutations in the flanking stems restore ENE activities, demonstrating the importance of these stems and uncovering a unique role for the loop-proximal G-C base pair in the lower stem. Increasing the U content of the U-rich internal loop surprisingly decreases stability in vivo but does not affect deadenylation in vitro, comparable to the effects of deleting certain "unstructured" regions of the ENE. Taken together, our data support the formation of the proposed ENE secondary structure in vivo and argue that the specific ENE structure inhibits rapid RNA decay in cis by engaging in a limited set of base-pairing interactions with the polyA tail.
Collapse
Affiliation(s)
- Nicholas K. Conrad
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06536
| | - Mei-Di Shu
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06536
| | - Katherine E. Uyhazi
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06536
| | - Joan A. Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06536
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Conrad NK, Mili S, Marshall EL, Shu MD, Steitz JA. Identification of a rapid mammalian deadenylation-dependent decay pathway and its inhibition by a viral RNA element. Mol Cell 2007; 24:943-53. [PMID: 17189195 DOI: 10.1016/j.molcel.2006.10.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 07/18/2006] [Accepted: 10/24/2006] [Indexed: 12/26/2022]
Abstract
Cellular RNAs are subject to quality-control pathways that insure the fidelity of gene expression. We previously identified a 79 nt element, the ENE, that is essential for the nuclear accumulation of a viral polyadenylated nuclear (PAN) RNA. Here, we show that intron-less polyadenylated transcripts such as PAN RNA and beta-globin cRNA exhibit two-component exponential decay kinetics in which some transcripts are rapidly degraded (t(1/2) = approximately 15 min) while others decay more slowly (t(1/2) = approximately 3 hr). Inclusion of the ENE protects such transcripts from rapid decay in a poly(A)-dependent fashion. The ENE inhibits deadenylation and decay in nuclear extract and prevents deadenylation of naked RNA by a purified deadenylase, likely through snoRNA-like intramolecular hybridization with the poly(A) tail. The ENE causes increased accumulation of splicing-defective beta-globin pre-mRNAs in vivo. We propose that the ENE-controlled rapid-decay mechanism for polyadenylated transcripts comprises a nuclear pre-mRNA surveillance system in mammalian cells.
Collapse
Affiliation(s)
- Nicholas K Conrad
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06536, USA
| | | | | | | | | |
Collapse
|
33
|
Iwamoto KS, Barber CL. Radiation-induced posttranscriptional control of M6P/IGF2r expression in breast cancer cell lines. Mol Carcinog 2007; 46:497-502. [PMID: 17295243 DOI: 10.1002/mc.20303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2r), a member of the IGF axis of growth factors, is a negative regulator of cell growth and a putative tumor suppressor gene. Regulation of M6P/IGF2r levels is critical in breast physiology; low expression is associated with various aspects of breast cancer. We have found that ionizing radiation induces the rapid expression of M6P/IGF2r in a dose-dependent manner in MCF7 human breast cancer cells. We show that this increase is mediated, at least in part, by a stabilization of M6P/IGF2r transcripts by radiation in both ER positive (MCF7 and T47D) and ER negative (MDA-MB-231) breast cancer cell lines. It is probable, therefore, that posttranscriptional dysregulation of M6P/IGF2r is a contributing mechanism in breast cancer development and breast cancer response to therapy. This is a novel find that underscores the importance of posttranscriptional control of radiation-induced gene expression-a phenomenon that has often been paradigmatically attributed to transcriptional control.
Collapse
MESH Headings
- Blotting, Northern
- Breast Neoplasms/radiotherapy
- Dose-Response Relationship, Radiation
- Flow Cytometry
- Gene Expression Regulation/radiation effects
- Humans
- Mannosephosphates/genetics
- Mannosephosphates/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- Radiation, Ionizing
- Receptor, IGF Type 2/genetics
- Receptor, IGF Type 2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic/radiation effects
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/radiation effects
Collapse
Affiliation(s)
- Keisuke S Iwamoto
- Roy E. Coats Research Laboratories, Department of Radiation Oncology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | |
Collapse
|
34
|
Akgül B, Tu CPD. Regulation of mRNA stability through a pentobarbital-responsive element. Arch Biochem Biophys 2006; 459:143-50. [PMID: 17234150 PMCID: PMC2694843 DOI: 10.1016/j.abb.2006.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/22/2006] [Accepted: 10/24/2006] [Indexed: 11/23/2022]
Abstract
Pentobarbital, a general anesthetic and non-genotoxic carcinogen, can induce gene expression by activating transcription. In the Drosophila glutathione S-transferase D21 (gstD21) gene, pentobarbital's regulatory influence extends to the level of mRNA turnover. Transcribed from an intronless gene, gstD21 mRNA is intrinsically very labile. But exposure to pentobarbital renders it stabilized beyond what can be attributed to transcriptional activation. We aim here to identify cis-acting element(s) of gstD21 mRNA as contributors to the molecule's pentobarbital-mediated stabilization. In the context of hsp70 5'UTR and the 3'UTR of act5C, gstD21 mRNA, minus its native UTRs, is stable. Maintaining the same context of heterologous UTRs, we can reconstitute using the full-length gstD21 sequence the inherent instability of gstD21 mRNA and its stabilization by pentobarbital. Transgenic flies that express these chimeric gstD21 mRNA exhibit decay intermediates lacking 3'UTR, which are not stabilized by PB treatment. The 3'UTR sequence, when inserted downstream from a reporter transcript, stabilizes it 1.6-fold under PB treatment. The analysis of the decay intermediates suggests a polysome-associated decay pattern. We propose a regulatory model that features a 59-nucleotide pentobarbital-responsive element (PBRE) in the 3'UTR of gstD21 mRNA.
Collapse
Affiliation(s)
- Bünyamin Akgül
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 U.S.A
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Department of Biology, Izmir Institute of Technology, Urla, Izmir, 35430, Turkey
| | - Chen-Pei D. Tu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 U.S.A
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| |
Collapse
|
35
|
Lee HK, Jeong S. Beta-Catenin stabilizes cyclooxygenase-2 mRNA by interacting with AU-rich elements of 3'-UTR. Nucleic Acids Res 2006; 34:5705-14. [PMID: 17040897 PMCID: PMC1636482 DOI: 10.1093/nar/gkl698] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) mRNA is induced in the majority of human colorectal carcinomas. Transcriptional regulation plays a key role in COX-2 expression in human colon carcinoma cells, but post-transcriptional regulation of its mRNA is also critical for tumorigenesis. Expression of COX-2 mRNA is regulated by various cytokines, growth factors and other signals. β-Catenin, a key transcription factor in the Wnt signal pathway, activates transcription of COX-2. Here we found that COX-2 mRNA was also substantially stabilized by activating β-catenin in NIH3T3 and 293T cells. We identified the β-catenin-responsive element in the proximal region of the COX-2 3′-untranslated region (3′-UTR) and showed that β-catenin interacted with AU-rich elements (ARE) of 3′-UTR in vitro and in vivo. Interestingly, β-catenin induced the cytoplasmic localization of the RNA stabilizing factor, HuR, which may bind to β-catenin in an RNA-mediated complex and facilitate β-catenin-dependent stabilization of COX-2 mRNA. Taken together, we provided evidences for β-catenin as an RNA-binding factor and a regulator of stabilization of COX-2 mRNA.
Collapse
Affiliation(s)
| | - Sunjoo Jeong
- To whom correspondence should be addressed. Tel: +82 2 709 2819; Fax: +82 2 793 0176;
| |
Collapse
|
36
|
Paschoud S, Dogar AM, Kuntz C, Grisoni-Neupert B, Richman L, Kühn LC. Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Mol Cell Biol 2006; 26:8228-41. [PMID: 16954375 PMCID: PMC1636780 DOI: 10.1128/mcb.01155-06] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interleukin-6 mRNA is unstable and degraded with a half-life of 30 min. Instability determinants can entirely be attributed to the 3' untranslated region. By grafting segments of this region to stable green fluorescent protein mRNA and subsequent scanning mutagenesis, we have identified two conserved elements, which together account for most of the instability. The first corresponds to a short noncanonical AU-rich element. The other, 80 nucleotides further 5', comprises a sequence predicted to form a stem-loop structure. Neither element alone was sufficient to confer full instability, suggesting that they might cooperate. Overexpression of myc-tagged AUF1 p37 and p42 isoforms as well as suppression of endogenous AUF1 by RNA interference stabilized interleukin-6 mRNA. Both effects required the AU-rich instability element. Similarly, the proteasome inhibitor MG132 stabilized interleukin-6 mRNA probably through an increase of AUF1 levels. The mRNA coimmunoprecipitated specifically with myc-tagged AUF1 p37 and p42 in cell extracts but only when the AU-rich instability element was present. These results indicate that AUF1 binds to the AU-rich element in vivo and promotes IL-6 mRNA degradation.
Collapse
Affiliation(s)
- Serge Paschoud
- Swiss Institute for Experimental Cancer Research, Genetics Unit, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland.
| | | | | | | | | | | |
Collapse
|
37
|
Prechtel AT, Chemnitz J, Schirmer S, Ehlers C, Langbein-Detsch I, Stülke J, Dabauvalle MC, Kehlenbach RH, Hauber J. Expression of CD83 is regulated by HuR via a novel cis-active coding region RNA element. J Biol Chem 2006; 281:10912-25. [PMID: 16484227 DOI: 10.1074/jbc.m510306200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dendritic cells are the most potent of the antigen-presenting cells and are characterized by surface expression of CD83. Here, we show that the coding region of CD83 mRNA contains a novel cis-acting structured RNA element that binds to HuR, a member of the ELAV family of AU-rich element RNA-binding proteins. Transient transfection of mammalian cells demonstrated that this CD83 mRNA-derived element acts as a post-transcriptional regulatory element in cells overexpressing HuR. Notably, binding of HuR to the CD83 post-transcriptional regulatory element did not affect mRNA stability. Using RNA interference, we show that HuR mediated efficient expression of CD83. In particular, HuR was required for cytoplasmic accumulation of CD83 transcripts. Likewise, inhibition of the CRM1 nuclear export pathway by leptomycin B or overexpression of a defective form of the nucleoporin Nup214/CAN diminished cytoplasmic CD83 mRNA levels. In summary, the data presented demonstrate that the HuR-CRM1 axis affects the nucleocytoplasmic translocation of CD83 mRNA under regular physiological conditions.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Antigens, CD/biosynthesis
- Antigens, Surface/physiology
- Base Sequence
- Binding Sites
- COS Cells
- Cell Line
- Cell Nucleus/metabolism
- Chlorocebus aethiops
- Cloning, Molecular
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- ELAV Proteins
- ELAV-Like Protein 1
- Fatty Acids, Unsaturated/pharmacology
- Gene Expression Regulation
- Gene Silencing
- Genes, Reporter
- Genetic Vectors
- Glutathione Transferase/metabolism
- HeLa Cells
- Humans
- Immunoblotting
- Immunoglobulins/biosynthesis
- Immunoprecipitation
- Jurkat Cells
- Karyopherins/physiology
- Kinetics
- Luciferases/metabolism
- Membrane Glycoproteins/biosynthesis
- Molecular Sequence Data
- Nuclear Pore Complex Proteins/chemistry
- Polymerase Chain Reaction
- Protein Binding
- Protein Biosynthesis
- Protein Transport
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA Interference
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- RNA-Binding Proteins/physiology
- Receptors, Cytoplasmic and Nuclear/physiology
- Recombinant Fusion Proteins/metabolism
- Surface Plasmon Resonance
- Time Factors
- Transcription, Genetic
- Transfection
- Exportin 1 Protein
- CD83 Antigen
Collapse
Affiliation(s)
- Alexander T Prechtel
- Heinrich Pette Institute for Experimental Virology and Immunology, D-20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CYA, Shyu AB. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 2005; 12:1054-63. [PMID: 16284618 DOI: 10.1038/nsmb1016] [Citation(s) in RCA: 361] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 10/11/2005] [Indexed: 11/08/2022]
Abstract
In mammalian cells, the enzymatic pathways involved in cytoplasmic mRNA decay are incompletely defined. In this study, we have used two approaches to disrupt activities of deadenylating and/or decapping enzymes to monitor effects on mRNA decay kinetics and trap decay intermediates. Our results show that deadenylation is the key first step that triggers decay of both wild-type stable and nonsense codon-containing unstable beta-globin mRNAs in mouse NIH3T3 fibroblasts. PAN2 and CCR4 are the major poly(A) nucleases active in cytoplasmic deadenylation that have biphasic kinetics, with PAN2 initiating deadenylation followed by CCR4-mediated poly(A) shortening. DCP2-mediated decapping takes place after deadenylation and may serve as a backup mechanism for triggering mRNA decay when initial deadenylation by PAN2 is compromised. Our findings reveal a functional link between deadenylation and decapping and help to define in vivo pathways for mammalian cytoplasmic mRNA decay.
Collapse
Affiliation(s)
- Akio Yamashita
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Schroeder JM, Ibrahim H, Taylor L, Curthoys NP. Role of deadenylation and AUF1 binding in the pH-responsive stabilization of glutaminase mRNA. Am J Physiol Renal Physiol 2005; 290:F733-40. [PMID: 16219914 DOI: 10.1152/ajprenal.00250.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During chronic metabolic acidosis, increased expression of renal glutaminase (GA) results from selective stabilization of the GA mRNA. This response is mediated by a direct repeat of an 8-base adenylate-uridylate (AU) sequence that binds zeta-crystallin and functions as a pH response element (pH-RE). A tetracycline-responsive promoter system was developed in LLC-PK(1)-F(+) cells to perform pulse-chase analysis of the turnover of a chimeric beta-globin (betaG) mRNA that contains 960 bp of the 3'-UTR of GA mRNA including the pH-RE. The betaG-GA mRNA exhibits a 14-fold increase in half-life when the LLC-PK(1)-F(+) cells are transferred to acidic medium. RNase H cleavage and Northern blot analysis of the 3'-ends established that rapid deadenylation occurred concomitantly with the rapid decay of the betaG-GA mRNA in cells grown in normal medium. Stabilization of the betaG-GA mRNA in acidic medium is associated with a pronounced decrease in the rate of deadenylation. Mutation of the pH-RE within the betaG-GA mRNA blocked the pH-responsive stabilization, but not the rapid decay, whereas insertion of only a 29-bp segment containing the pH-RE was sufficient to produce both a rapid decay and a pH-responsive stabilization. Various kidney cells express multiple isoforms of AUF1, an AU-binding protein that enhances mRNA turnover. RNA gel-shift assays demonstrated that the recombinant p40 isoform of AUF1 binds to the pH-RE with high affinity and specificity. Thus AUF1 may mediate the rapid turnover of the GA mRNA, whereas increased binding of zeta-crystallin during acidosis may inhibit degradation and result in selective stabilization.
Collapse
Affiliation(s)
- Jill M Schroeder
- Department of Biochemistry and Molecular Biology, Colorado State University, Campus Delivery 1870, Fort Collins, CO 80523-1870, USA
| | | | | | | |
Collapse
|
40
|
Phelps ED, Updike DL, Bullen EC, Grammas P, Howard EW. Transcriptional and posttranscriptional regulation of angiopoietin-2 expression mediated by IGF and PDGF in vascular smooth muscle cells. Am J Physiol Cell Physiol 2005; 290:C352-61. [PMID: 16176970 DOI: 10.1152/ajpcell.00050.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiopoietins play a significant role in vascular development and angiogenesis. Both angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) bind the receptor tyrosine kinase Tie2. However, while Ang1 signaling results in the stabilization of vessel structure, Ang2 has been linked to vascular instability. The ratio of these two Tie2 ligands is thus critical for vascular stability and remodeling. This study identifies a mechanism of growth factor-mediated reduction in Ang2 expression in vascular smooth muscle cells (VSMCs). In response to PDGF, VSMCs downregulated Ang2 mRNA levels by 75% within 4 h, with a subsequent decrease in Ang2 protein levels. Quantitation of endogenous transcription rates revealed that PDGF stimulation did not alter Ang2 transcription rates, but instead induced a posttranscriptional mechanism of rapid Ang2 mRNA destabilization. The Ang2 mRNA half-life was reduced by at least 50% after PDGF treatment. The PDGF-induced mRNA turnover mechanism was dependent on several MAPK pathways, including ERK and JNK. In contrast, IGF-I, which did not significantly activate ERK or JNK, stimulated increased Ang2 expression through transcriptional activation. These findings demonstrate that VSMCs adjust Ang2 expression through multiple mechanisms, including changes in transcription as well as posttranscriptional mRNA destabilization.
Collapse
Affiliation(s)
- Eric D Phelps
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
41
|
Hajarnis S, Schroeder JM, Curthoys NP. 3'-Untranslated region of phosphoenolpyruvate carboxykinase mRNA contains multiple instability elements that bind AUF1. J Biol Chem 2005; 280:28272-80. [PMID: 15951444 DOI: 10.1074/jbc.m501204200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is regulated solely by alterations in gene expression that involve changes in rates of PEPCK mRNA transcription and degradation. A tetracycline-responsive promoter system was used to quantify the half-life of various chimeric beta-globin-PEPCK (betaG-PCK) mRNAs in LLC-PK -F(+) cells. The control betaG mRNA was extremely stable (t(1/2) = 5 days). However, betaG-PCK-1 mRNA, which contains the entire 3'-UTR of the PEPCK mRNA, was degraded with a half-life of 1.2 h. RNase H treatment indicated that rapid deadenylation occurred concomitant with degradation of the betaG-PCK-1 mRNA. Previous studies indicate that PCK-7, a 50-nucleotide segment at the 3'-end of the 3'-UTR, binds an unidentified protein that may contribute to the rapid decay of the PEPCK mRNA. However, the chimeric betaG-PCK-7 mRNA has a half-life of 17 h. Inclusion of the adjacent PCK-6 segment, a 23-bp AU-rich region, produced the betaG-PCK-6/7 mRNA, which has a half-life of 3.6 h. The betaG-PCK-3 mRNA that contains the 3'-half of 3'-UTR was degraded with the same half-life. Surprisingly, the betaG-PCK-2 mRNA, containing the 5'-end of the 3'-UTR, was also degraded rapidly (t((1/2)) = 5.4 h). RNA gel shift analyses established that AUF1 (hnRNP D) binds to the PCK-7, PCK-6, and PCK-2 segments with high affinity and specificity. Mutational analysis indicated that AUF1 binds to a UUAUUUUAU sequence within PCK-6 and the stem-loop structure and adjacent CU-region of PCK-7. Thus, AUF1 binds to multiple destabilizing elements within the 3'-UTR that participate in the rapid turnover of the PEPCK mRNA.
Collapse
Affiliation(s)
- Sachin Hajarnis
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | |
Collapse
|
42
|
Voon DC, Subrata LS, Baltic S, Leu MP, Whiteway JM, Wong A, Knight SA, Christiansen FT, Daly JM. Use of mRNA- and protein-destabilizing elements to develop a highly responsive reporter system. Nucleic Acids Res 2005; 33:e27. [PMID: 15716309 PMCID: PMC549429 DOI: 10.1093/nar/gni030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reporter assays are widely used in applications that require measurement of changes in gene expression over time (e.g. drug screening). With standard reporter vectors, the measurable effect of a treatment or compound (altered reporter activity) is substantially diluted and delayed, compared with its true effect (altered transcriptional activity). This problem is caused by the relatively long half-lives of both the reporter protein and its mRNA. As a result, the activities of compounds, ligands or treatments that have a relatively minor effect, or a substantial but transient effect, often remain undetected. To circumvent this problem, we introduced modular protein- and mRNA-destabilizing elements into a range of commonly used reporters. Our data show that both elements are required for maximal responses to both increases and decreases in transcriptional activity. The double-destabilized reporter vectors showed markedly improved performance in drug screening, kinetic assays and dose–response titrations.
Collapse
Affiliation(s)
- Dominic C. Voon
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Lily S. Subrata
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Svetlana Baltic
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Marco P. Leu
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Joanna M. Whiteway
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
- School of Surgery and Pathology, The University of Western AustraliaCrawley WA 6009, Australia
| | - Agnes Wong
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
- School of Surgery and Pathology, The University of Western AustraliaCrawley WA 6009, Australia
| | - Samuel A. Knight
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Frank T. Christiansen
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
- School of Surgery and Pathology, The University of Western AustraliaCrawley WA 6009, Australia
| | - John M. Daly
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
- To whom correspondence should be addressed. Tel/Fax: +61 8 92051149;
| |
Collapse
|
43
|
van Riggelen J, Buchwalter G, Soto U, De-Castro Arce J, zur Hausen H, Wasylyk B, Rösl F. Loss of Net as Repressor Leads to Constitutive Increased c-fos Transcription in Cervical Cancer Cells. J Biol Chem 2005; 280:3286-94. [PMID: 15548518 DOI: 10.1074/jbc.m409915200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the expression of c-fos in cervical carcinoma cells and in somatic cell hybrids derived therefrom. In malignant cells, c-fos was constitutively expressed even after serum starvation. Dissection of the c-fos promoter showed that expression was mainly controlled by the SRE motif, which was active in malignant cells, but repressed in their non-malignant counterparts. Constitutive SRE activity was not mediated by sustained mitogen-activated protein kinase activity but because of inefficient expression of the ternary complex factor Net, which was either very low or even barely discernible. Chromatin immunoprecipitation assays revealed that Net directly binds to the SRE nucleoprotein complex in non-tumorigenic cells, but not in malignant segregants. Small interfering RNA targeted against Net resulted in enhanced c-fos transcription, clearly illustrating its repressor function. Conversely, stable ectopic expression of Net in malignant cells negatively regulated endogenous c-fos, resulting in a disappearance of the c-Fos protein from the AP-1 transcription complex. These data indicate that loss of Net and constitutive c-fos expression appear to be a key event in the transformation of cervical cancer cells.
Collapse
Affiliation(s)
- Jan van Riggelen
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Ciccone NA, Dunn IC, Boswell T, Tsutsui K, Ubuka T, Ukena K, Sharp PJ. Gonadotrophin inhibitory hormone depresses gonadotrophin alpha and follicle-stimulating hormone beta subunit expression in the pituitary of the domestic chicken. J Neuroendocrinol 2004; 16:999-1006. [PMID: 15667455 DOI: 10.1111/j.1365-2826.2005.01260.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies performed in vitro suggest that a novel 12 amino acid RF amide peptide, isolated from the quail hypothalamus, is a gonadotrophin inhibitory hormone (GnIH). The aim of the present study was to investigate this hypothesis in the domestic chicken. Injections of GnIH into nest-deprived incubating hens failed to depress the concentration of plasma luteinizing hormone (LH). Addition of GnIH to short-term (120 min) cultures of diced pituitary glands from adult cockerels depressed follicle-stimulating hormone (FSH) and LH release and depressed common alpha and FSHbeta gonadotrophin subunit mRNAs, with no effect on LHbeta subunit mRNA. Hypothalamic GnIH mRNA was higher in incubating (out-of-lay) than in laying hens, but there was no significant difference in the amount of hypothalamic GnIH mRNA in out-of-lay and laying broiler breeder hens at the end of a laying year. It is concluded that avian GnIH may play a role in controlling gonadotrophin synthesis and associated constitutive release in the domestic chicken.
Collapse
Affiliation(s)
- N A Ciccone
- Division of Genetics and Genomics, Roslin Institute, Midlothian, UK.
| | | | | | | | | | | | | |
Collapse
|
45
|
Chang TC, Yamashita A, Chen CYA, Yamashita Y, Zhu W, Durdan S, Kahvejian A, Sonenberg N, Shyu AB. UNR, a new partner of poly(A)-binding protein, plays a key role in translationally coupled mRNA turnover mediated by the c-fos major coding-region determinant. Genes Dev 2004; 18:2010-23. [PMID: 15314026 PMCID: PMC514181 DOI: 10.1101/gad.1219104] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Messenger RNA decay mediated by the c-fos major protein coding-region determinant of instability (mCRD) is a useful system for studying translationally coupled mRNA turnover. Among the five mCRD-associated proteins identified previously, UNR was found to be an mCRD-binding protein and also a PABP-interacting protein. Interaction between UNR and PABP is necessary for the full destabilization function of the mCRD. By testing different classes of mammalian poly(A) nucleases, we identified CCR4 as a poly(A) nuclease involved in the mCRD-mediated rapid deadenylation in vivo and also associated with UNR. Blocking either translation initiation or elongation greatly impeded poly(A) shortening and mRNA decay mediated by the mCRD, demonstrating that the deadenylation step is coupled to ongoing translation of the message. These findings suggest a model in which the mCRD/UNR complex serves as a "landing/assembly" platform for formation of a deadenylation/decay mRNA-protein complex on an mCRD-containing transcript. The complex is dormant prior to translation. Accelerated deadenylation and decay of the transcript follows ribosome transit through the mCRD. This study provides new insights into a mechanism by which interplay between mRNA turnover and translation determines the lifespan of an mCRD-containing mRNA in the cytoplasm.
Collapse
Affiliation(s)
- Tsung-Cheng Chang
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Brewer G, Saccani S, Sarkar S, Lewis A, Pestka S. Increased interleukin-10 mRNA stability in melanoma cells is associated with decreased levels of A + U-rich element binding factor AUF1. J Interferon Cytokine Res 2004; 23:553-64. [PMID: 14585195 DOI: 10.1089/107999003322485053] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abnormal production of interleukin-10 (IL-10) is observed in some pathologic conditions. For example, compared with normal melanocytes, IL-10 expression is elevated in melanoma cells. IL-10 overexpression could inhibit both immune surveillance and tumor rejection. We investigated a potential posttranscriptional mechanism for IL-10 overexpression in melanoma cells. In normal melanocytes, the half-life of IL-10 mRNA is 7 min, whereas in the melanoma cell line MNT1, the half-life is 75 min. This 10-fold difference could account, at least in part, for IL-10 overexpression in MNT1 cells. Examination of the 3'-untranslated region (3'-UTR) of IL-10 mRNA revealed a suspected A + U-rich element (ARE) that might target the mRNA for rapid degradation. Transfection experiments confirmed that these sequences promote rapid degradation when inserted into a normally stable mRNA, indicating ARE functionality. As AREs act via their interactions with ARE-binding proteins, we examined cytoplasmic proteins from normal melanocytes and MNT1 cells for IL-10 ARE-binding activity. Compared with cytoplasmic extracts of normal melanocytes, cytoplasmic extracts of MNT1 cells possess substantially less ARE-binding activity, consistent with the extended half-life of IL-10 mRNA in MNT1 cells. Finally, we find that the ARE-binding protein AUF1 comprises the major ARE-binding activity in cytoplasmic extracts of normal melanocytes. By contrast, AUF1 is not detectable in cytoplasmic extracts of MNT1 cells but appears restricted to the nuclear fraction. Together, these data suggest a mechanism whereby reduced cytoplasmic levels of AUF1 in MNT1 melanoma cells may lead to IL-10 overexpression, with deleterious consequences for tumor surveillance and rejection.
Collapse
Affiliation(s)
- Gary Brewer
- Department of Molecular Genetics, Microbiology, and Immunology, Robert Wood Johnson Medical School-UMDNJ, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
47
|
Couttet P, Grange T. Premature termination codons enhance mRNA decapping in human cells. Nucleic Acids Res 2004; 32:488-94. [PMID: 14742663 PMCID: PMC373342 DOI: 10.1093/nar/gkh218] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance process that promotes selective degradation of imperfect messages containing premature translation termination codons (PTCs). In yeast, PTCs trigger both deadenylylation-independent mRNA decapping, thereby allowing their rapid degradation by a 5' to 3' exonuclease, and to a smaller extent accelerated deadenylylation. It is not clear to what extent this decay pathway is conserved in higher eukaryotes. We used a transcriptional pulse strategy relying on a tetracycline-regulated promoter to study the decay of a PTC- containing beta-globin mRNA in human cells. We show that a PTC destabilizes the mRNA and decreases its half-life from >16 h to 3 h. The deadenylylation rate is increased, but not sufficiently to account for the decreased half-life on its own. Using a circularization RT-PCR (cRT-PCR) strategy, we could detect decapped degradation intermediates and measure simultaneously their poly(A) tail length. This allowed us to show that a PTC enhances the rate of mRNA decapping and that decapped products have been deadenylylated to a certain extent. Thus the major feature of the NMD pathway, enhanced decapping, is conserved from yeast to man even though the kinetic details might differ between various mRNAs and/or species.
Collapse
Affiliation(s)
- P Couttet
- Institut Jacques Monod du CNRS, Universités Paris 6-7, Tour 43, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | |
Collapse
|
48
|
Atasoy U, Curry SL, López de Silanes I, Shyu AB, Casolaro V, Gorospe M, Stellato C. Regulation of eotaxin gene expression by TNF-alpha and IL-4 through mRNA stabilization: involvement of the RNA-binding protein HuR. THE JOURNAL OF IMMUNOLOGY 2004; 171:4369-78. [PMID: 14530362 DOI: 10.4049/jimmunol.171.8.4369] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During inflammatory responses, a major posttranscriptional regulation of early response and inflammatory gene expression occurs through modulation of mRNA turnover. We report that two potent inducers of the CC chemokine eotaxin, TNF-alpha and IL-4, regulate its production in airway epithelial cells by increasing eotaxin mRNA stability. In experiments using the transcriptional inhibitor actinomycin D, eotaxin mRNA half-life was significantly prolonged by cell stimulation with TNF-alpha or IL-4, with the combination of the two cytokines being the most effective in extending the mRNA half-life. Involvement of the eotaxin 3' untranslated region in the mRNA-stabilizing effect was tested by transient transfection of a construct expressing a chimeric transcript carrying a serum-inducible beta-globin reporter linked to the eotaxin 3' untranslated region. The half-life of the chimeric mRNA was markedly increased in cells stimulated with TNF-alpha and IL-4. Evidence that the mRNA-stabilizing protein HuR participated in the cytokine effect was obtained: first, HuR presence in the cytoplasm, believed to be required for HuR-mediated mRNA stabilization, increased in both transformed (BEAS-2B cell line) and primary bronchial epithelial cells following treatment with TNF-alpha and IL-4. Second, endogenous eotaxin mRNA was found to bind to HuR in vivo, as detected by immunoprecipitation of HuR-containing messenger ribonucleoprotein complexes followed by real-time RT-PCR analysis; such association increased after cell treatment with TNF-alpha and IL-4. Third, overexpression of HuR in BEAS-2B cells significantly increased the expression of eotaxin mRNA and protein. Our findings implicate mRNA stabilization in the cytokine-mediated increase in eotaxin expression and strongly suggest a role for HuR in this effect.
Collapse
Affiliation(s)
- Ulus Atasoy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Chen CYA, Shyu AB. Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway. Mol Cell Biol 2003; 23:4805-13. [PMID: 12832468 PMCID: PMC162215 DOI: 10.1128/mcb.23.14.4805-4813.2003] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an RNA surveillance pathway that detects and destroys aberrant mRNAs containing nonsense or premature termination codons (PTCs) in a translation-dependent manner in eukaryotes. In yeast, the NMD pathway bypasses the deadenylation step and directly targets PTC-containing messages for decapping, followed by 5'-to-3' exonuclease digestion of the RNA body. In mammals, most PTC-containing mRNAs are subject to active nucleus-associated NMD. Here, using two distinct transcription-pulsing approaches to monitor mRNA deadenylation and decay kinetics, we demonstrate the existence of an active cytoplasmic NMD pathway in mammalian cells. In this pathway, a nonsense codon triggers accelerated deadenylation that precedes decay of the PTC-containing mRNA body. Transcript is stabilized when accelerated deadenylation is impeded by blocking translation initiation; by ectopically expressing two RNA-binding proteins, UNR and NSAP1; or by ectopically expressing a UPF1 dominant-negative mutant. These results are consistent with the notion that the nonsense codon can function in the cytoplasm by promoting rapid removal of the poly(A) tail as a necessary first step in the decay process.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Houston Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
50
|
Han Q, Leng J, Bian D, Mahanivong C, Carpenter KA, Pan ZK, Han J, Huang S. Rac1-MKK3-p38-MAPKAPK2 pathway promotes urokinase plasminogen activator mRNA stability in invasive breast cancer cells. J Biol Chem 2002; 277:48379-85. [PMID: 12377770 DOI: 10.1074/jbc.m209542200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously that down-regulating or functionally blocking alphav integrins inhibits endogenous p38 mitogen-activated protein kinase (MAPK) activity and urokinase plasminogen activator (uPA) expression in invasive MDA-MB-231 breast cancer cells whereas engaging alphav integrins with vitronectin activates p38 MAPK and up-regulates uPA expression (Chen, J., Baskerville, C., Han, Q., Pan, Z., and Huang, S. (2001) J. Biol. Chem. 276, 47901-47905). Currently, it is not clear what upstream and downstream signaling molecules of p38 MAPK mediate alphav integrin-mediated uPA up-regulation. In the present study, we found that alphav integrin ligation activated small GTPase Rac1 preferentially, and dominant negative Rac1 inhibited alphav integrin-mediated p38 MAPK activation. Using constitutively active MAPK kinases, we found that both constitutively active MKK3 and MKK6 mutants were able to activate p38 MAPK and up-regulate uPA expression, but only dominant negative MKK3 blocked alphav integrin-mediated p38 MAPK activation and uPA up-regulation. These results suggest that MKK3, rather than MKK6, mediates alphav integrin-induced p38 MAPK activation. Among the potential downstream effectors of p38 MAPK, we found that only MAPK-activated protein kinase 2 affects alphav integrin-mediated uPA up-regulation significantly. Finally, using beta-globin reporter gene constructs containing uPA mRNA 3'-untranslated region (UTR) and adenosine/uridine-rich elements-deleted 3'-UTR, we demonstrated that p38 MAPK/MAPK-activated protein kinase 2 signaling pathway regulated uPA mRNA stability through a mechanism involving the adenosine/uridine-rich elements sequence in 3'-UTR of uPA mRNA.
Collapse
Affiliation(s)
- Qiwei Han
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|