1
|
Watanabe N, Saito-Nakano Y, Kurisawa N, Otomo K, Suenaga K, Nakano K, Nozaki T. Fumagillin inhibits growth of the enteric protozoan parasite Entamoeba histolytica by covalently binding to and selectively inhibiting methionine aminopeptidase 2. Antimicrob Agents Chemother 2023; 67:e0056023. [PMID: 37874291 PMCID: PMC10648944 DOI: 10.1128/aac.00560-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/27/2023] [Indexed: 10/25/2023] Open
Abstract
Amebiasis is an important cause of morbidity and mortality worldwide, and caused by infection with the protozoan parasite Entamoeba histolytica. Metronidazole is currently the first-line drug despite adverse effects and concerns on the emergence of drug resistance. Fumagillin, a fungal metabolite from Aspergillus fumigatus, and its structurally related natural and synthetic compounds have been previously explored as potential anti-angiogenesis inhibitors for cancers, anti-microbial, and anti-obese compounds. Although fumagillin was used for human amebiasis in clinical trials in 1950s, the mode of action of fumagillin remains elusive until now. In this report, we showed that fumagillin covalently binds to methionine aminopeptidase 2 (MetAP2) and non-covalently but abundantly binds to patatin family phospholipase A (PLA). Susceptibility against fumagillin of the amebic strains in which expression of E. histolytica MetAP2 (EhMetAP2) gene was silenced increased compared to control strain. Conversely, overexpression of EhMetAP2 mutants that harbors amino acid substitutions responsible for resistance to ovalicin, a fumagillin analog, in human MetAP2, also resulted in decrease in fumagillin susceptibility. In contrast, neither gene silencing nor overexpression of E. histolytica PLA (EhPLA) affected fumagillin susceptibility. These data suggest that EhPLA is not essential and not the target of fumagillin for its amebicidal activity. Taken together, our data have demonstrated that EhMetAP2 is the primary target for amebicidal activity of fumagillin, and EhMetAP2 represents a rational explorable target for the development of alternative therapeutic agents against amebiasis.
Collapse
Affiliation(s)
- Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology and Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoaki Kurisawa
- Department of Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Keisuke Otomo
- Department of Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Kentaro Nakano
- Degree Programs in Biology, Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Liu A, Ouyang X, Wang Z, Dong B. ELMOD3-Rab1A-Flotillin2 cascade regulates lumen formation via vesicle trafficking in Ciona notochord. Open Biol 2023; 13:220367. [PMID: 36918025 PMCID: PMC10014252 DOI: 10.1098/rsob.220367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Lumen development is a crucial phase in tubulogenesis, although its molecular mechanisms are largely unknown. In this study, we discovered an ELMO domain-containing 3 (ELMOD3), which belongs to ADP-ribosylation factor GTPase-activating protein family, was necessary to form the notochord lumen in Ciona larvae. We demonstrated that ELMOD3 interacted with lipid raft protein Flotillin2 and regulated its subcellular localization. The loss-of-function of Flotillin2 prevented notochord lumen formation. Furthermore, we found that ELMOD3 also interacted with Rab1A, which is the regulatory GTPase for vesicle trafficking and located at the notochord cell surface. Rab1A mutations arrested the lumen formation, phenocopying the loss-of-function of ELMOD3 and Flotillin2. Our findings further suggested that Rab1A interactions influenced Flotillin2 localization. We thus identified a unique pathway in which ELMOD3 interacted with Rab1A, which controlled the Flotillin2-mediated vesicle trafficking from cytoplasm to apical membrane, required for Ciona notochord lumen formation.
Collapse
Affiliation(s)
- Amei Liu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xiuke Ouyang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zhuqing Wang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Bo Dong
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
- Laoshan Laboratory, Qingdao 266237, People's Republic of China
| |
Collapse
|
3
|
An in vitro vesicle formation assay reveals cargo clients and factors that mediate vesicular trafficking. Proc Natl Acad Sci U S A 2021; 118:2101287118. [PMID: 34433667 PMCID: PMC8536394 DOI: 10.1073/pnas.2101287118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein sorting in the secretory pathway is a fundamentally important cellular process, but the clients of a specific cargo sorting machinery remains largely underinvestigated. Here, utilizing a vesicle formation assay to profile proteins associated with vesicles, we identified cytosolic proteins that are associated with vesicle membranes in a GTP-dependent manner or that interact with GTP-bound Sar1A. We found that two of them, FAM84B and PRRC1, regulate anterograde trafficking. Moreover, we revealed specific clients of two export adaptors, SURF4 and ERGIC53. These analyses demonstrate that our approach is powerful to identify factors that regulate vesicular trafficking and to uncover clients of specific cargo receptors, providing a robust method to reveal insights into the secretory pathway. The fidelity of protein transport in the secretory pathway relies on the accurate sorting of proteins to their correct destinations. To deepen our understanding of the underlying molecular mechanisms, it is important to develop a robust approach to systematically reveal cargo proteins that depend on specific sorting machinery to be enriched into transport vesicles. Here, we used an in vitro assay that reconstitutes packaging of human cargo proteins into vesicles to quantify cargo capture. Quantitative mass spectrometry (MS) analyses of the isolated vesicles revealed cytosolic proteins that are associated with vesicle membranes in a GTP-dependent manner. We found that two of them, FAM84B (also known as LRAT domain containing 2 or LRATD2) and PRRC1, contain proline-rich domains and regulate anterograde trafficking. Further analyses revealed that PRRC1 is recruited to endoplasmic reticulum (ER) exit sites, interacts with the inner COPII coat, and its absence increases membrane association of COPII. In addition, we uncovered cargo proteins that depend on GTP hydrolysis to be captured into vesicles. Comparing control cells with cells depleted of the cargo receptors, SURF4 or ERGIC53, we revealed specific clients of each of these two export adaptors. Our results indicate that the vesicle formation assay in combination with quantitative MS analysis is a robust and powerful tool to uncover novel factors that mediate vesicular trafficking and to uncover cargo clients of specific cellular factors.
Collapse
|
4
|
Pensalfini A, Kim S, Subbanna S, Bleiwas C, Goulbourne CN, Stavrides PH, Jiang Y, Lee JH, Darji S, Pawlik M, Huo C, Peddy J, Berg MJ, Smiley JF, Basavarajappa BS, Nixon RA. Endosomal Dysfunction Induced by Directly Overactivating Rab5 Recapitulates Prodromal and Neurodegenerative Features of Alzheimer's Disease. Cell Rep 2020; 33:108420. [PMID: 33238112 DOI: 10.1016/j.celrep.2020.108420] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/05/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Neuronal endosomal dysfunction, the earliest known pathobiology specific to Alzheimer's disease (AD), is mediated by the aberrant activation of Rab5 triggered by APP-β secretase cleaved C-terminal fragment (APP-βCTF). To distinguish pathophysiological consequences specific to overactivated Rab5 itself, we activate Rab5 independently from APP-βCTF in the PA-Rab5 mouse model. We report that Rab5 overactivation alone recapitulates diverse prodromal and degenerative features of AD. Modest neuron-specific transgenic Rab5 expression inducing hyperactivation of Rab5 comparable to that in AD brain reproduces AD-related Rab5-endosomal enlargement and mistrafficking, hippocampal synaptic plasticity deficits via accelerated AMPAR endocytosis and dendritic spine loss, and tau hyperphosphorylation via activated glycogen synthase kinase-3β. Importantly, Rab5-mediated endosomal dysfunction induces progressive cholinergic neurodegeneration and impairs hippocampal-dependent memory. Aberrant neuronal Rab5-endosome signaling, therefore, drives a pathogenic cascade distinct from β-amyloid-related neurotoxicity, which includes prodromal and neurodegenerative features of AD, and suggests Rab5 overactivation as a potential therapeutic target.
Collapse
Affiliation(s)
- Anna Pensalfini
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA
| | - Seonil Kim
- Colorado State University, Department of Biomedical Sciences, Fort Collins, CO 80523, USA; Cellular and Molecular Biology Training Program, New York University Langone Health, New York, NY 10003, USA
| | - Shivakumar Subbanna
- Department of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Cynthia Bleiwas
- Department of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Philip H Stavrides
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA
| | - Ju-Hyun Lee
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA
| | - Sandipkumar Darji
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Monika Pawlik
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Chunfeng Huo
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - James Peddy
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Martin J Berg
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - John F Smiley
- Department of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Balapal S Basavarajappa
- Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; Department of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; Department of Cell Biology, New York University Langone Health, New York, NY 10003, USA; NYU Neuroscience Institute, New York, NY 10003, USA.
| |
Collapse
|
5
|
Human Golgi phosphoprotein 3 is an effector of RAB1A and RAB1B. PLoS One 2020; 15:e0237514. [PMID: 32790781 PMCID: PMC7425898 DOI: 10.1371/journal.pone.0237514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a peripheral membrane protein localized at the trans-Golgi network that is also distributed in a large cytosolic pool. GOLPH3 has been involved in several post-Golgi protein trafficking events, but its precise function at the molecular level is not well understood. GOLPH3 is also considered the first oncoprotein of the Golgi apparatus, with important roles in several types of cancer. Yet, it is unknown how GOLPH3 is regulated to achieve its contribution in the mechanisms that lead to tumorigenesis. Binding of GOLPH3 to Golgi membranes depends on its interaction to phosphatidylinositol-4-phosphate. However, an early finding showed that GTP promotes the binding of GOLPH3 to Golgi membranes and vesicles. Nevertheless, it remains largely unknown whether this response is consequence of the function of GTP-dependent regulatory factors, such as proteins of the RAB family of small GTPases. Interestingly, in Drosophila melanogaster the ortholog of GOLPH3 interacts with- and behaves as effector of the ortholog of RAB1. However, there is no experimental evidence implicating GOLPH3 as a possible RAB1 effector in mammalian cells. Here, we show that human GOLPH3 interacted directly with either RAB1A or RAB1B, the two isoforms of RAB1 in humans. The interaction was nucleotide dependent and it was favored with GTP-locked active state variants of these GTPases, indicating that human GOLPH3 is a bona fide effector of RAB1A and RAB1B. Moreover, the expression in cultured cells of the GTP-locked variants resulted in less distribution of GOLPH3 in the Golgi apparatus, suggesting an intriguing model of GOLPH3 regulation.
Collapse
|
6
|
Binda C, Génier S, Degrandmaison J, Picard S, Fréchette L, Jean S, Marsault E, Parent JL. L-type prostaglandin D synthase regulates the trafficking of the PGD 2 DP1 receptor by interacting with the GTPase Rab4. J Biol Chem 2019; 294:16865-16883. [PMID: 31575663 DOI: 10.1074/jbc.ra119.008233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/27/2019] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence indicates that G protein-coupled receptors (GPCRs) interact with Rab GTPases during their intracellular trafficking. How GPCRs recruit and activate the Rabs is unclear. Here, we report that depletion of endogenous L-type prostaglandin D synthase (L-PGDS) in HeLa cells inhibited recycling of the prostaglandin D2 (PGD2) DP1 receptor (DP1) to the cell surface after agonist-induced internalization and that L-PGDS overexpression had the opposite effect. Depletion of endogenous Rab4 prevented l-PGDS-mediated recycling of DP1, and l-PGDS depletion inhibited Rab4-dependent recycling of DP1, indicating that both proteins are mutually involved in this pathway. DP1 stimulation promoted its interaction through its intracellular C terminus with Rab4, which was increased by l-PGDS. Confocal microscopy revealed that DP1 activation induces l-PGDS/Rab4 co-localization. l-PGDS/Rab4 and DP1/Rab4 co-immunoprecipitation levels were increased by DP1 agonist treatment. Pulldown assays with purified GST-l-PGDS and His6-Rab4 indicated that both proteins interact directly. l-PGDS interacted preferentially with the inactive, GDP-locked Rab4S22N variant rather than with WT Rab4 or with constitutively active Rab4Q67L proteins. Overexpression and depletion experiments disclosed that l-PGDS partakes in Rab4 activation following DP1 stimulation. Experiments with deletion mutants and synthetic peptides revealed that amino acids 85-92 in l-PGDS are involved in its interaction with Rab4 and in its effect on DP1 recycling. Of note, GTPγS loading and time-resolved FRET assays with purified proteins suggested that l-PGDS enhances GDP-GTP exchange on Rab4. Our results reveal how l-PGDS, which produces the agonist for DP1, regulates DP1 recycling by participating in Rab4 recruitment and activation.
Collapse
Affiliation(s)
- Chantal Binda
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Samuel Génier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jade Degrandmaison
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Samuel Picard
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Louis Fréchette
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Steve Jean
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Eric Marsault
- Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jean-Luc Parent
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada .,Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
7
|
Del Olmo T, Lauzier A, Normandin C, Larcher R, Lecours M, Jean D, Lessard L, Steinberg F, Boisvert FM, Jean S. APEX2-mediated RAB proximity labeling identifies a role for RAB21 in clathrin-independent cargo sorting. EMBO Rep 2019; 20:e47192. [PMID: 30610016 PMCID: PMC6362359 DOI: 10.15252/embr.201847192] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
RAB GTPases are central modulators of membrane trafficking. They are under the dynamic regulation of activating guanine exchange factors (GEFs) and inactivating GTPase-activating proteins (GAPs). Once activated, RABs recruit a large spectrum of effectors to control trafficking functions of eukaryotic cells. Multiple proteomic studies, using pull-down or yeast two-hybrid approaches, have identified a number of RAB interactors. However, due to the in vitro nature of these approaches and inherent limitations of each technique, a comprehensive definition of RAB interactors is still lacking. By comparing quantitative affinity purifications of GFP:RAB21 with APEX2-mediated proximity labeling of RAB4a, RAB5a, RAB7a, and RAB21, we find that APEX2 proximity labeling allows for the comprehensive identification of RAB regulators and interactors. Importantly, through biochemical and genetic approaches, we establish a novel link between RAB21 and the WASH and retromer complexes, with functional consequences on cargo sorting. Hence, APEX2-mediated proximity labeling of RAB neighboring proteins represents a new and efficient tool to define RAB functions.
Collapse
Affiliation(s)
- Tomas Del Olmo
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Annie Lauzier
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Caroline Normandin
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Raphaëlle Larcher
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mia Lecours
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dominique Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis Lessard
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Florian Steinberg
- Center for Biological Systems Analysis (ZBSA), Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - François-Michel Boisvert
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
8
|
Regulation of the small GTPase Rab1 function by a bacterial glucosyltransferase. Cell Discov 2018; 4:53. [PMID: 30323948 PMCID: PMC6175885 DOI: 10.1038/s41421-018-0055-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Posttranslational modification of key host proteins by virulence factors is an important theme in bacterial pathogenesis. A remarkable example is the reversible modifications of the small GTPase Rab1 by multiple effectors of the bacterial pathogen Legionella pneumophila. Previous studies have shown that the effector SetA, dependent on a functional glucosyltransferase domain, interferes with host secretory pathways. However, the enzymatic substrate(s) of SetA in host cells remains unknown. Here, by using cross-linking mass spectrometry we uncovered Rab1 as the target of SetA during L. pneumophila infection. Biochemical studies establish that SetA covalently attaches a glucose moiety to Thr75 within the switch II region of Rab1, inhibiting its intrinsic GTPase activity. Moreover, we found that SetA preferentially modifies the GDP-bound form of Rab1 over its GTP-associated state and the modification of Rab1 inhibits its interaction with the GDP dissociation inhibitor GDI1, allowing for Rab1 activation. Our results thus add an extra layer of regulation on Rab1 activity and provide a mechanistic understanding of its inhibition of the host secretory pathways as well as cellular toxicity.
Collapse
|
9
|
Hirai M, Arita Y, McGlade CJ, Lee KF, Chen J, Evans SM. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation. J Clin Invest 2017; 127:569-582. [PMID: 28067668 PMCID: PMC5272190 DOI: 10.1172/jci91081] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022] Open
Abstract
Failure of trabecular myocytes to undergo appropriate cell cycle withdrawal leads to ventricular noncompaction and heart failure. Signaling of growth factor receptor ERBB2 is critical for myocyte proliferation and trabeculation. However, the mechanisms underlying appropriate downregulation of trabecular ERBB2 signaling are little understood. Here, we have found that the endocytic adaptor proteins NUMB and NUMBL were required for downregulation of ERBB2 signaling in maturing trabeculae. Loss of NUMB and NUMBL resulted in a partial block of late endosome formation, resulting in sustained ERBB2 signaling and STAT5 activation. Unexpectedly, activated STAT5 overrode Hippo-mediated inhibition and drove YAP1 to the nucleus. Consequent aberrant cardiomyocyte proliferation resulted in ventricular noncompaction that was markedly rescued by heterozygous loss of function of either ERBB2 or YAP1. Further investigations revealed that NUMB and NUMBL interacted with small GTPase Rab7 to transition ERBB2 from early to late endosome for degradation. Our studies provide insight into mechanisms by which NUMB and NUMBL promote cardiomyocyte cell cycle withdrawal and highlight previously unsuspected connections between pathways that are important for cardiomyocyte cell cycle reentry, with relevance to ventricular noncompaction cardiomyopathy and regenerative medicine.
Collapse
Affiliation(s)
- Maretoshi Hirai
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Yoh Arita
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - C. Jane McGlade
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kuo-Fen Lee
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, USA
| | | | - Sylvia M. Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
- Department of Medicine and
- Department of Pharmacology, UCSD, La Jolla, California, USA
| |
Collapse
|
10
|
Paul F, Zauber H, von Berg L, Rocks O, Daumke O, Selbach M. Quantitative GTPase Affinity Purification Identifies Rho Family Protein Interaction Partners. Mol Cell Proteomics 2016; 16:73-85. [PMID: 27852748 DOI: 10.1074/mcp.m116.061531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/27/2016] [Indexed: 12/17/2022] Open
Abstract
Although Rho GTPases are essential molecular switches involved in many cellular processes, an unbiased experimental comparison of their interaction partners was not yet performed. Here, we develop quantitative GTPase affinity purification (qGAP) to systematically identify interaction partners of six Rho GTPases (Cdc42, Rac1, RhoA, RhoB, RhoC, and RhoD), depending on their nucleotide loading state. The method works with cell line or tissue-derived protein lysates in combination with SILAC-based or label-free quantification, respectively. We demonstrate that qGAP identifies known and novel binding partners that can be validated in an independent assay. Our interaction network for six Rho GTPases contains many novel binding partners, reveals highly promiscuous interaction of several effectors, and mirrors evolutionary relationships among Rho GTPases.
Collapse
Affiliation(s)
| | | | | | - Oliver Rocks
- §Spatio-Temporal Control of Rho GTPase Signaling
| | - Oliver Daumke
- ¶Crystallography, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, D-13092 Berlin, Germany
| | | |
Collapse
|
11
|
Ijuin T, Hatano N, Takenawa T. Glucose-regulated protein 78 (GRP78) binds directly to PIP3 phosphatase SKIP and determines its localization. Genes Cells 2016; 21:457-65. [PMID: 26940976 DOI: 10.1111/gtc.12353] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/31/2016] [Indexed: 11/29/2022]
Abstract
Skeletal muscle and kidney-enriched inositol polyphosphate phosphatase (SKIP), a PIP3 phosphatase, has been implicated in the regulation of insulin signaling in skeletal muscle. SKIP interacts with Pak1 and glucose-regulated protein 78 (GRP78), both of which are necessary for the regulation of insulin signaling. In this study, we showed that GRP78 directly binds to the SKIP C-terminal homology (SKICH) domain of SKIP and that this binding is necessary for the localization of SKIP at the ER. In addition, in vitro binding analysis showed that GRP78 and Pak1 competitively bind to SKIP. Taken together, these findings suggest a model by which GRP78 regulates intracellular localization of SKIP and how SKIP binds to Pak1 on insulin stimulation.
Collapse
Affiliation(s)
- Takeshi Ijuin
- Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki Chu-o, Kobe, 650-0017, Japan
| | - Naoya Hatano
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki Chu-o, Kobe, 650-0017, Japan
| | - Tadaomi Takenawa
- Division of Membrane Biology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
12
|
Egerer J, Emmerich D, Fischer-Zirnsak B, Chan WL, Meierhofer D, Tuysuz B, Marschner K, Sauer S, Barr FA, Mundlos S, Kornak U. GORAB Missense Mutations Disrupt RAB6 and ARF5 Binding and Golgi Targeting. J Invest Dermatol 2015; 135:2368-2376. [PMID: 26000619 DOI: 10.1038/jid.2015.192] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 11/09/2022]
Abstract
Gerodermia osteodysplastica is a hereditary segmental progeroid disorder affecting skin, connective tissues, and bone that is caused by loss-of-function mutations in GORAB. The golgin, RAB6-interacting (GORAB) protein localizes to the Golgi apparatus and interacts with the small GTPase RAB6. In this study, we used different approaches to shed more light on the recruitment of GORAB to this compartment. We show that GORAB best colocalizes with trans-Golgi markers and is rapidly displaced upon Brefeldin A exposition, indicating a loose association with Golgi membranes. A yeast two-hybrid screening revealed a specific interaction with the small GTPase ADP-ribosylation factor (ARF5) in its active, GTP-bound form. ARF5 and RAB6 bind to GORAB via the same internal Golgi-targeting RAB6 and ARF5 binding (IGRAB) domain. Two GORAB missense mutations identified in gerodermia osteodysplastica patients fall within this IGRAB domain. GORAB carrying the mutation p.Ala220Pro had a cytoplasmic distribution and failed to interact with both RAB6 and ARF5. In contrast, the p.Ser175Phe mutation displaced GORAB from the Golgi compartment to vesicular structures and selectively impaired ARF5 binding. Our findings indicate that the IGRAB domain is crucial for the Golgi localization of GORAB and that loss of this localization impairs its physiological function.
Collapse
Affiliation(s)
- Johannes Egerer
- Institut fuer Medizinische Genetik und Humangenetik, Charité-Universitaetsmedizin Berlin, Berlin, Germany; Max-Planck-Institut fuer Molekulare Genetik, FG Development & Disease, Berlin, Germany
| | - Denise Emmerich
- Institut fuer Medizinische Genetik und Humangenetik, Charité-Universitaetsmedizin Berlin, Berlin, Germany; Max-Planck-Institut fuer Molekulare Genetik, FG Development & Disease, Berlin, Germany
| | - Björn Fischer-Zirnsak
- Institut fuer Medizinische Genetik und Humangenetik, Charité-Universitaetsmedizin Berlin, Berlin, Germany; Max-Planck-Institut fuer Molekulare Genetik, FG Development & Disease, Berlin, Germany
| | - Wing Lee Chan
- Institut fuer Medizinische Genetik und Humangenetik, Charité-Universitaetsmedizin Berlin, Berlin, Germany; Max-Planck-Institut fuer Molekulare Genetik, FG Development & Disease, Berlin, Germany
| | - David Meierhofer
- Max-Planck-Institut fuer Molekulare Genetik, Mass Spectrometry Facility, Berlin, Germany
| | - Beyhan Tuysuz
- Department of Pediatric Genetics, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Katrin Marschner
- Institut fuer Medizinische Genetik und Humangenetik, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Sascha Sauer
- Max-Planck-Institut fuer Molekulare Genetik, Otto-Warburg-Laboratories, Berlin, Germany
| | - Francis A Barr
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Stefan Mundlos
- Institut fuer Medizinische Genetik und Humangenetik, Charité-Universitaetsmedizin Berlin, Berlin, Germany; Max-Planck-Institut fuer Molekulare Genetik, FG Development & Disease, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institut fuer Medizinische Genetik und Humangenetik, Charité-Universitaetsmedizin Berlin, Berlin, Germany; Max-Planck-Institut fuer Molekulare Genetik, FG Development & Disease, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitaetsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Mottola G. The complexity of Rab5 to Rab7 transition guarantees specificity of pathogen subversion mechanisms. Front Cell Infect Microbiol 2014; 4:180. [PMID: 25566515 PMCID: PMC4273659 DOI: 10.3389/fcimb.2014.00180] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/05/2014] [Indexed: 12/19/2022] Open
Affiliation(s)
- Giovanna Mottola
- UMR MD2, Faculté de Médecine NORD, Aix Marseille University and Institute of Research in Biology of the French Army Marseille, France ; Laboratory of Biochemistry, La Timone University Hospital, Assistance Publique Hôpitaux de Marseille Marseille, France
| |
Collapse
|
14
|
Perini ED, Schaefer R, Stöter M, Kalaidzidis Y, Zerial M. Mammalian CORVET Is Required for Fusion and Conversion of Distinct Early Endosome Subpopulations. Traffic 2014; 15:1366-89. [DOI: 10.1111/tra.12232] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Enrico D. Perini
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
| | - Ramona Schaefer
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
| | - Martin Stöter
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
- Faculty of Bioengineering and Bioinformatics; Moscow State University; 119991 Moscow Russia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
| |
Collapse
|
15
|
Simeone A, Marsico G, Collinet C, Galvez T, Kalaidzidis Y, Zerial M, Beyer A. Revealing molecular mechanisms by integrating high-dimensional functional screens with protein interaction data. PLoS Comput Biol 2014; 10:e1003801. [PMID: 25188415 PMCID: PMC4154648 DOI: 10.1371/journal.pcbi.1003801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/25/2014] [Indexed: 12/27/2022] Open
Abstract
Functional genomics screens using multi-parametric assays are powerful approaches for identifying genes involved in particular cellular processes. However, they suffer from problems like noise, and often provide little insight into molecular mechanisms. A bottleneck for addressing these issues is the lack of computational methods for the systematic integration of multi-parametric phenotypic datasets with molecular interactions. Here, we present Integrative Multi Profile Analysis of Cellular Traits (IMPACT). The main goal of IMPACT is to identify the most consistent phenotypic profile among interacting genes. This approach utilizes two types of external information: sets of related genes (IMPACT-sets) and network information (IMPACT-modules). Based on the notion that interacting genes are more likely to be involved in similar functions than non-interacting genes, this data is used as a prior to inform the filtering of phenotypic profiles that are similar among interacting genes. IMPACT-sets selects the most frequent profile among a set of related genes. IMPACT-modules identifies sub-networks containing genes with similar phenotype profiles. The statistical significance of these selections is subsequently quantified via permutations of the data. IMPACT (1) handles multiple profiles per gene, (2) rescues genes with weak phenotypes and (3) accounts for multiple biases e.g. caused by the network topology. Application to a genome-wide RNAi screen on endocytosis showed that IMPACT improved the recovery of known endocytosis-related genes, decreased off-target effects, and detected consistent phenotypes. Those findings were confirmed by rescreening 468 genes. Additionally we validated an unexpected influence of the IGF-receptor on EGF-endocytosis. IMPACT facilitates the selection of high-quality phenotypic profiles using different types of independent information, thereby supporting the molecular interpretation of functional screens. Genome-scale functional genomics screens are important tools for investigating the function of genes. Technological progress allows for the simultaneous measurement of multiple parameters quantifying the response of cells to gene perturbations such as RNA interference. Such multi-dimensional screens provide rich data, but there is a lack of computational methods for interpreting these complex measurements. We have developed two computational methods that combine the data from multi-dimensional functional genomics screens with protein interaction information. These methods search for phenotype patterns that are consistent among interacting genes. Thereby, we could reduce the noise in the data and facilitate the mechanistic interpretation of the findings. The performance of the methods was demonstrated through application to a genome-wide screen studying endocytosis. Subsequent experimental validation demonstrated the improved detection of phenotypic profiles through the use of protein interaction data. Our analysis revealed unexpected roles of specific network modules and protein complexes with respect to endocytosis. Detailed follow-up experiments investigating the dynamics of endocytosis uncovered crosstalk between the cancer-related EGF and IGF pathways with so far unknown effects on endocytosis and cargo trafficking.
Collapse
Affiliation(s)
| | - Giovanni Marsico
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Claudio Collinet
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Thierry Galvez
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Yannis Kalaidzidis
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany; Belozersky Institute of Physico-Chemical Biology & Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Marino Zerial
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andreas Beyer
- Biotechnology Center, TU Dresden, Dresden, Germany; Center for Regenerative Therapy, Dresden, Germany; University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Kiss RS, Nilsson T. Rab proteins implicated in lipid storage and mobilization. J Biomed Res 2014; 28:169-77. [PMID: 25013400 PMCID: PMC4085554 DOI: 10.7555/jbr.28.20140029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/28/2014] [Indexed: 12/28/2022] Open
Abstract
Abnormal intracellular accumulation or transport of lipids contributes greatly to the pathogenesis of human diseases. In the liver, excess accumulation of triacylglycerol (TG) leads to fatty liver disease encompassing steatosis, steatohepatitis and fibrosis. This places individuals at risk of developing cirrhosis, hepatocellular carcinoma or hepatic decompensation and also contributes to the emergence of insulin resistance and dyslipidemias affecting many other organs. Excessive accumulation of TG in adipose tissue contributes to insulin resistance as well as to the release of cytokines attracting leucocytes leading to a pro-inflammatory state. Pathological accumulation of cholesteryl ester (CE) in macrophages in the arterial wall is the progenitor of atherosclerotic plaques and heart disease. Overconsumption of dietary fat, cholesterol and carbohydrates explains why these diseases are on the increase yet offers few clues for how to prevent or treat individuals. Dietary regimes have proven futile and barring surgery, no realistic alternatives are at hand as effective drugs are few and not without side effects. Overweight and obesity-related diseases are no longer restricted to the developed world and as such, constitute a global problem. Development of new drugs and treatment strategies are a priority yet requires as a first step, elucidation of the molecular pathophysiology underlying each associated disease state. The lipid droplet (LD), an up to now overlooked intracellular organelle, appears at the heart of each pathophysiology linking key regulatory and metabolic processes as well as constituting the site of storage of both TGs and CEs. As the molecular machinery and mechanisms of LDs of each cell type are being elucidated, regulatory proteins used to control various cellular processes are emerging. Of these and the subject of this review, small GTPases belonging to the Rab protein family appear as important molecular switches used in the regulation of the intracellular trafficking and storage of lipids.
Collapse
Affiliation(s)
- Robert Scott Kiss
- Department of Medicine, McGill University, Montreal, Canada; ; Research Institute of McGill University Health Centre, Montreal, Canada
| | - Tommy Nilsson
- Department of Medicine, McGill University, Montreal, Canada; ; Research Institute of McGill University Health Centre, Montreal, Canada
| |
Collapse
|
17
|
Tubular endocytosis drives remodelling of the apical surface during epithelial morphogenesis in Drosophila. Nat Commun 2014; 4:2244. [PMID: 23921440 PMCID: PMC3753550 DOI: 10.1038/ncomms3244] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/04/2013] [Indexed: 11/23/2022] Open
Abstract
During morphogenesis, remodelling of cell shape requires the expansion or contraction of plasma membrane domains. Here we identify a mechanism underlying the restructuring of the apical surface during epithelial morphogenesis in Drosophila. We show that the retraction of villous protrusions and subsequent apical plasma membrane flattening is an endocytosis-driven morphogenetic process. Quantitation of endogenously tagged GFP::Rab5 dynamics reveals a massive increase in apical endocytosis that correlates with changes in apical morphology. This increase is accompanied by the formation of tubular plasma membrane invaginations that serve as platforms for the de novo generation of Rab5-positive endosomes. We identify the Rab5-effector Rabankyrin-5 as a regulator of this pathway and demonstrate that blocking dynamin activity results in the complete inhibition of tubular endocytosis, in the disappearance of Rab5 endosomes, and in the inhibition of surface flattening. These data collectively demonstrate a requirement for endocytosis in morphogenetic remodelling during epithelial development. During epithelial morphogenesis in Drosophila, the villous apical cell surface is flattened. Fabrowski et al. show that this flattening depends on a dramatic increase in endocytosis associated with the formation of tubular invaginations, revealing a role for membrane trafficking in morphological remodelling.
Collapse
|
18
|
Dong B, Kakihara K, Otani T, Wada H, Hayashi S. Rab9 and retromer regulate retrograde trafficking of luminal protein required for epithelial tube length control. Nat Commun 2013; 4:1358. [PMID: 23322046 PMCID: PMC3562448 DOI: 10.1038/ncomms2347] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/30/2012] [Indexed: 01/30/2023] Open
Abstract
Apical extracellular matrix filling the lumen controls the morphology and geometry of epithelial tubes during development, yet the regulation of luminal protein composition and its role in tube morphogenesis are not well understood. Here we show that an endosomal-retrieval machinery consisting of Rab9, retromer and actin nucleator WASH (Wiskott–Aldrich Syndrome Protein and SCAR Homolog) regulates selective recycling of the luminal protein Serpentine in the Drosophila trachea. Secreted Serpentine is endocytosed and sorted into the late endosome. Vps35, WASH and actin filaments differentially localize at the Rab9-enriched subdomains of the endosomal membrane, where Serpentine containing vesicles bud off. In Rab9, Vps35 and WASH mutants, Serpentine was secreted normally into the tracheal lumen, but the luminal quantities were depleted at later stages, resulting in excessively elongated tubes. In contrast, secretion of many luminal proteins was unaffected, suggesting that retrograde trafficking of a specific class of luminal proteins is a pivotal rate-limiting mechanism for continuous tube length regulation. The development of biological tubes is regulated by mutual interactions between cells and luminal extracellular matrix. Dong et al. show that retrograde recycling of luminal chitin deacetylase regulates Drosophila tracheal tubule geometry by restricting length independently of diameter.
Collapse
Affiliation(s)
- Bo Dong
- Laboratory for Morphogenetic Signaling, Riken Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Hyogo, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
19
|
Abstract
LRRK2 (leucine-rich repeat kinase 2) is a large protein encoding multiple functional domains, including two catalytically active domains, a kinase and a GTPase domain. The LRRK2 GTPase belongs to the Ras-GTPase superfamily of GTPases, more specifically to the ROC (Ras of complex proteins) subfamily. Studies with recombinant LRRK2 protein purified from eukaryotic cells have confirmed that LRRK2 binds guanine nucleotides and catalyses the hydrolysis of GTP to GDP. LRRK2 is linked to PD (Parkinson's disease) and GTPase activity is impaired for several PD mutants located in the ROC and COR (C-terminal of ROC) domains, indicating that it is involved in PD pathogenesis. Ras family GTPases are known to function as molecular switches, and several studies have explored this possibility for LRRK2. These studies show that there is interplay between the LRRK2 GTPase function and its kinase function, with most data pointing towards a role for the kinase domain as an upstream regulator of ROC. The GTPase function is therefore a pivotal functionality within the LRRK2-mediated signalling cascade which includes partners encoded by other LRRK2 domains as well as other cellular signalling partners. The present review examines what is known of the enzymatic properties of the LRRK2 GTPase, the interplay between ROC and other LRRK2 domains, and the interplay between ROC and other cellular proteins with the dual goal to understand how LRRK2 GTPase affects cellular functions and point to future research venues.
Collapse
|
20
|
Ramel D, Wang X, Laflamme C, Montell DJ, Emery G. Rab11 regulates cell-cell communication during collective cell movements. Nat Cell Biol 2013; 15:317-24. [PMID: 23376974 DOI: 10.1038/ncb2681] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/19/2012] [Indexed: 12/15/2022]
Abstract
Collective cell movements contribute to development and metastasis. The small GTPase Rac is a key regulator of actin dynamics and cell migration but the mechanisms that restrict Rac activation and localization in a group of collectively migrating cells are unknown. Here, we demonstrate that the small GTPases Rab5 and Rab11 regulate Rac activity and polarization during collective cell migration. We use photoactivatable forms of Rac to demonstrate that Rab11 acts on the entire group to ensure that Rac activity is properly restricted to the leading cell through regulation of cell-cell communication. In addition, we show that Rab11 binds to the actin cytoskeleton regulator Moesin and regulates its activation in vivo during migration. Accordingly, reducing the level of Moesin activity also affects cell-cell communication, whereas expressing active Moesin rescues loss of Rab11 function. Our model suggests that Rab11 controls the sensing of the relative levels of Rac activity in a group of cells, leading to the organization of individual cells in a coherent multicellular motile structure.
Collapse
Affiliation(s)
- Damien Ramel
- Institute for Research in Immunology and Cancer (IRIC) and Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Quebec, H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
21
|
Guo Y, Zanetti G, Schekman R. A novel GTP-binding protein-adaptor protein complex responsible for export of Vangl2 from the trans Golgi network. eLife 2013; 2:e00160. [PMID: 23326640 PMCID: PMC3539332 DOI: 10.7554/elife.00160] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/18/2012] [Indexed: 01/03/2023] Open
Abstract
Planar cell polarity (PCP) requires the asymmetric sorting of distinct signaling
receptors to distal and proximal surfaces of polarized epithelial cells. We have
examined the transport of one PCP signaling protein, Vangl2, from the
trans Golgi network (TGN) in mammalian cells. Using siRNA
knockdown experiments, we find that the GTP-binding protein, Arfrp1, and the clathrin
adaptor complex 1 (AP-1) are required for Vangl2 transport from the TGN. In contrast,
TGN export of Frizzled 6, which localizes to the opposing epithelial surface from
Vangl2, does not depend on Arfrp1 or AP-1. Mutagenesis studies identified a YYXXF
sorting signal in the C-terminal cytosolic domain of Vangl2 that is required for
Vangl2 traffic and interaction with the μ subunit of AP-1. We propose that
Arfrp1 exposes a binding site on AP-1 that recognizes the Vangl2 sorting motif for
capture into a transport vesicle destined for the proximal surface of a polarized
epithelial cell. DOI:http://dx.doi.org/10.7554/eLife.00160.001 Most cells in multicellular organisms possess a property known as polarity that is
reflected, in part, in the organization of the cell surface into distinct domains.
One well-known axis in epithelial cells, such as those in the skin, divides the cell
into an apical domain, which faces out, and a basal domain, which faces the
underlying tissue. These cells rely on the distribution of structural components
inside the cell, or within the cell membrane, to tell the difference between these
two directions. Epithelial cells also possess a second type of polarity, planar cell
polarity, that ensures that cells adjacent to each other in the plane parallel to the
skin tissue are oriented correctly with respect to each other during development.
This ensures, in turn, that hairs, scales, feathers and so on are all aligned. All eukaryotic cells sort and process proteins within an organelle called the Golgi
apparatus, and proteins that are required at a specific destination within the cell,
such as the cell surface membrane, carry specific molecular sorting signals that act
as address labels to convey the protein into and within the secretory pathway. As one
of these proteins moves through the Golgi apparatus, its sorting signals are
recognized by coat proteins, such as clathrin, that subsequently form a vesicle
around it. The assembly of this vesicle is initiated by an enzyme from the Arf
family, but the enzyme must first undergo a conformational change (by exchanging a
molecule of GDP for one of GTP) before formation can begin. The resulting vesicle can
then be sent on its way to the address indicated by its Golgi-to-cell-surface sorting
signal. These sorting signals also help to establish planar cell polarity in cells by
ensuring that proteins called signaling receptors are distributed asymmetrically
within the cell membrane. Guo et al. have now examined the mechanism behind the asymmetric sorting of two
proteins that are involved in planar cell polarity: Vangl2 and Frizzled 6. In an
effort to understand why these proteins are localized to opposite surfaces of
epithelial cells, Guo et al. used genetic techniques to reduce the expression of
Golgi-localized Arf proteins in epithelial cell cultures. They found that knockdown
of a protein called Arfrp1 caused Vangl2 to accumulate in the last station of the
Golgi complex instead of being transported to the cell surface membrane. Then, using
a technique called affinity chromatography, they demonstrated that a coat protein
called the clathrin adaptor complex (AP-1) had to be present for the formation of
vesicles around Vangl2. Moreover, disrupting AP-1 and Arfrp1 did not prevent Frizzled
6 being transported to the cell surface membrane. This suggests that cells use
several distinct adaptor proteins and coat complexes to ensure that proteins from the
Golgi apparatus go to specific locations on the cell surface and, thus, help to
establish planar cell polarity. DOI:http://dx.doi.org/10.7554/eLife.00160.002
Collapse
Affiliation(s)
- Yusong Guo
- Department of Molecular and Cell Biology , Howard Hughes Medical Institute, University of California-Berkeley , Berkeley , United States
| | | | | |
Collapse
|
22
|
Dbouk HA, Vadas O, Shymanets A, Burke JE, Salamon RS, Khalil BD, Barrett MO, Waldo GL, Surve C, Hsueh C, Perisic O, Harteneck C, Shepherd PR, Harden TK, Smrcka AV, Taussig R, Bresnick AR, Nürnberg B, Williams RL, Backer JM. G protein-coupled receptor-mediated activation of p110β by Gβγ is required for cellular transformation and invasiveness. Sci Signal 2012; 5:ra89. [PMID: 23211529 DOI: 10.1126/scisignal.2003264] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synergistic activation by heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) and receptor tyrosine kinases distinguishes p110β from other class IA phosphoinositide 3-kinases (PI3Ks). Activation of p110β is specifically implicated in various physiological and pathophysiological processes, such as the growth of tumors deficient in phosphatase and tensin homolog deleted from chromosome 10 (PTEN). To determine the specific contribution of GPCR signaling to p110β-dependent functions, we identified the site in p110β that binds to the Gβγ subunit of G proteins. Mutation of this site eliminated Gβγ-dependent activation of PI3Kβ (a dimer of p110β and the p85 regulatory subunit) in vitro and in cells, without affecting basal activity or phosphotyrosine peptide-mediated activation. Disrupting the p110β-Gβγ interaction by mutation or with a cell-permeable peptide inhibitor blocked the transforming capacity of PI3Kβ in fibroblasts and reduced the proliferation, chemotaxis, and invasiveness of PTEN-null tumor cells in culture. Our data suggest that specifically targeting GPCR signaling to PI3Kβ could provide a therapeutic approach for tumors that depend on p110β for growth and metastasis.
Collapse
Affiliation(s)
- Hashem A Dbouk
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
RAB-like 2 has an essential role in male fertility, sperm intra-flagellar transport, and tail assembly. PLoS Genet 2012; 8:e1002969. [PMID: 23055941 PMCID: PMC3464206 DOI: 10.1371/journal.pgen.1002969] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 08/08/2012] [Indexed: 12/05/2022] Open
Abstract
A significant percentage of young men are infertile and, for the majority, the underlying cause remains unknown. Male infertility is, however, frequently associated with defective sperm motility, wherein the sperm tail is a modified flagella/cilia. Conversely, a greater understanding of essential mechanisms involved in tail formation may offer contraceptive opportunities, or more broadly, therapeutic strategies for global cilia defects. Here we have identified Rab-like 2 (RABL2) as an essential requirement for sperm tail assembly and function. RABL2 is a member of a poorly characterized clade of the RAS GTPase superfamily. RABL2 is highly enriched within developing male germ cells, where it localizes to the mid-piece of the sperm tail. Lesser amounts of Rabl2 mRNA were observed in other tissues containing motile cilia. Using a co-immunoprecipitation approach and RABL2 affinity columns followed by immunochemistry, we demonstrated that within developing haploid germ cells RABL2 interacts with intra-flagella transport (IFT) proteins and delivers a specific set of effector (cargo) proteins, including key members of the glycolytic pathway, to the sperm tail. RABL2 binding to effector proteins is regulated by GTP. Perturbed RABL2 function, as exemplified by the Mot mouse line that contains a mutation in a critical protein–protein interaction domain, results in male sterility characterized by reduced sperm output, and sperm with aberrant motility and short tails. Our data demonstrate a novel function for the RABL protein family, an essential role for RABL2 in male fertility and a previously uncharacterised mechanism for protein delivery to the flagellum. A greater understanding of the mechanism of male fertility is essential in order to address the medical needs of the 1 in 20 men of reproductive age who are infertile. Conversely, there remains a critical need for additional contraceptive options, including those that target male gametes. Towards the aim of filling these knowledge gaps, we have used random mutagenesis to produce the Mot mouse line and to identify RABL2 as an essential regulator of male fertility. Mice carrying a mutant Rabl2 gene are sterile as a consequence of severely compromised sperm motility. Using biochemical approaches we have revealed that RABL2 binds to components of the intraflagellar transport machinery and have identified a number of RABL2 binding (effector) proteins. The presence of the Mot mutation in RABL2 leads to a significantly compromised ability to deliver binding proteins into the sperm tail. RABL2 is predominantly produced in male germ cells; however, lower levels are notably produced in organs that contain motile cilia (hair like structures involved in fluid/cell movement), thus raising the possibility that RABL2 may be involved in a broader set of human diseases collectively known as primary cilia dyskinesia.
Collapse
|
24
|
Davey JR, Humphrey SJ, Junutula JR, Mishra AK, Lambright DG, James DE, Stöckli J. TBC1D13 is a RAB35 specific GAP that plays an important role in GLUT4 trafficking in adipocytes. Traffic 2012; 13:1429-41. [PMID: 22762500 DOI: 10.1111/j.1600-0854.2012.01397.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 07/02/2012] [Accepted: 07/04/2012] [Indexed: 01/14/2023]
Abstract
Insulin stimulates glucose transport in adipocytes by triggering translocation of GLUT4 glucose transporters to the plasma membrane (PM) and several Rabs including Rab10 have been implicated in this process. To delineate the molecular regulation of this pathway, we conducted a TBC/RabGAP overexpression screen in adipocytes. This identified TBC1D13 as a potent inhibitor of insulin-stimulated GLUT4 translocation without affecting other trafficking pathways. To determine the potential Rab substrate for TBC1D13 we conducted a yeast two-hybrid screen and found that the GTP bound forms of Rabs 1 and 10 specifically interacted with TBC1D13 but not with eight other TBC proteins. Surprisingly, a comprehensive in vitro screen for TBC1D13 GAP activity revealed Rab35 but not Rab10 as a specific substrate. TBC1D13 also displayed in vivo GAP activity towards Rab35. Overexpression of constitutively active Rab35 but not constitutively active Rab10 reversed the block in insulin-stimulated GLUT4 translocation observed with TBC1D13 overexpression. These studies implicate an important role for Rab35 in insulin-stimulated GLUT4 translocation in adipocytes.
Collapse
Affiliation(s)
- Jonathan R Davey
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Regulation of insulin signaling by the phosphatidylinositol 3,4,5-triphosphate phosphatase SKIP through the scaffolding function of Pak1. Mol Cell Biol 2012; 32:3570-84. [PMID: 22751929 DOI: 10.1128/mcb.00636-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle and kidney-enriched inositol polyphosphate phosphatase (SKIP) has previously been implicated in the regulation of insulin signaling in skeletal muscle. Here, we present the first report of the mechanisms by which SKIP specifically suppresses insulin signaling and the subsequent glucose uptake. Upon insulin stimulation, SKIP is translocated to the membrane ruffles, where it binds to the active form of Pak1, which mediates multiple protein complex formation with phosphatidylinositol 3,4,5-triphosphate (PIP(3)) effectors such as Akt2, PDK1, and Rac1; this leads to inactivation of these proteins. SKIP also promotes the inhibition of Rac1-dependent kinase activity and the scaffolding function of Pak1, which results in the dissociation of Akt2 and PDK1 from Pak1. Thus, specific suppression of insulin signaling is achieved via the spatiotemporal regulation of SKIP through the scaffolding function of Pak1. These interactions are the foundation of the specific and prominent role of SKIP in the regulation of insulin signaling.
Collapse
|
26
|
Kyrkou A, Soufi M, Bahtz R, Ferguson C, Bai M, Parton RG, Hoffmann I, Zerial M, Fotsis T, Murphy C. RhoD participates in the regulation of cell-cycle progression and centrosome duplication. Oncogene 2012; 32:1831-42. [PMID: 22665057 DOI: 10.1038/onc.2012.195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously identified a Rho protein, RhoD, which localizes to the plasma membrane and the early endocytic compartment. Here, we show that a GTPase-deficient mutant of RhoD, RhoDG26V, causes hyperplasia and perturbed differentiation of the epidermis, when targeted to the skin of transgenic mice. In vitro, gain-of-function and loss-of-function approaches revealed that RhoD is involved in the regulation of G1/S-phase progression and causes overduplication of centrosomes. Centriole overduplication assays in aphidicolin-arrested p53-deficient U2OS cells, in which the cell and the centrosome cycles are uncoupled, revealed that the effects of RhoD and its mutants on centrosome duplication and cell cycle are independent. Enhancement of G1/S-phase progression was mediated via Diaph1, a novel effector of RhoD, which we have identified using a two-hybrid screen. These results indicate that RhoD participates in the regulation of cell-cycle progression and centrosome duplication.
Collapse
Affiliation(s)
- A Kyrkou
- Laboratory of Biological Chemistry, University of Ioannina Medical School, Ioannina, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jean S, Cox S, Schmidt EJ, Robinson FL, Kiger A. Sbf/MTMR13 coordinates PI(3)P and Rab21 regulation in endocytic control of cellular remodeling. Mol Biol Cell 2012; 23:2723-40. [PMID: 22648168 PMCID: PMC3395661 DOI: 10.1091/mbc.e12-05-0375] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The MTM phosphatases include poorly defined, catalytically inactive members. Drosophila Sbf, an MTM pseudophosphatase, physically and functionally interacts with class II PI3-kinase, Mtm PI3-phosphatase, and Rab21, each required for macrophage remodeling. Sbf plays dual roles in Mtm PI(3)P turnover and as a Rab21 GEF to coordinate endosomal dynamics. Cells rely on the coordinated regulation of lipid phosphoinositides and Rab GTPases to define membrane compartment fates along distinct trafficking routes. The family of disease-related myotubularin (MTM) phosphoinositide phosphatases includes catalytically inactive members, or pseudophosphatases, with poorly understood functions. We found that Drosophila MTM pseudophosphatase Sbf coordinates both phosphatidylinositol 3-phosphate (PI(3)P) turnover and Rab21 GTPase activation in an endosomal pathway that controls macrophage remodeling. Sbf dynamically interacts with class II phosphatidylinositol 3-kinase and stably recruits Mtm to promote turnover of a PI(3)P subpool essential for endosomal trafficking. Sbf also functions as a guanine nucleotide exchange factor that promotes Rab21 GTPase activation associated with PI(3)P endosomes. Of importance, Sbf, Mtm, and Rab21 function together, along with Rab11-mediated endosomal trafficking, to control macrophage protrusion formation. This identifies Sbf as a critical coordinator of PI(3)P and Rab21 regulation, which specifies an endosomal pathway and cortical control.
Collapse
Affiliation(s)
- Steve Jean
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | |
Collapse
|
28
|
Conservation and innovation in Tetrahymena membrane traffic: proteins, lipids, and compartments. Methods Cell Biol 2012; 109:141-75. [PMID: 22444145 DOI: 10.1016/b978-0-12-385967-9.00006-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The past decade has seen a significant expansion in our understanding of membrane traffic in Tetrahymena thermophila, facilitated by the development of new experimental tools and by the availability of the macronuclear genome sequence. Here we review studies on multiple pathways of uptake and secretion, as well as work on metabolism of membrane lipids. We discuss evidence for conservation versus innovation in the mechanisms used in ciliates compared with those in other eukaryotic lineages, and raise the possibility that existing gene expression databases can be exploited to analyze specific pathways of membrane traffic in these cells.
Collapse
|
29
|
The ubiquitin ligase HACE1 regulates Golgi membrane dynamics during the cell cycle. Nat Commun 2011; 2:501. [PMID: 21988917 DOI: 10.1038/ncomms1509] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/13/2011] [Indexed: 11/09/2022] Open
Abstract
Partitioning of the Golgi membrane into daughter cells during mammalian cell division occurs through a unique disassembly and reassembly process that is regulated by ubiquitination. However, the identity of the ubiquitin ligase is unknown. Here we show that the Homologous to the E6-AP Carboxyl Terminus (HECT) domain containing ubiquitin ligase HACE1 is targeted to the Golgi membrane through interactions with Rab proteins. The ubiquitin ligase activity of HACE1 in mitotic Golgi disassembly is required for subsequent postmitotic Golgi membrane fusion. Depletion of HACE1 using small interfering RNAs or expression of an inactive HACE1 mutant protein in cells impaired postmitotic Golgi membrane fusion. The identification of HACE1 as a Golgi-localized ubiquitin ligase provides evidence that ubiquitin has a critical role in Golgi biogenesis during the cell cycle.
Collapse
|
30
|
Pirruccello M, Swan LE, Folta-Stogniew E, De Camilli P. Recognition of the F&H motif by the Lowe syndrome protein OCRL. Nat Struct Mol Biol 2011; 18:789-95. [PMID: 21666675 PMCID: PMC3130824 DOI: 10.1038/nsmb.2071] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/15/2011] [Indexed: 12/25/2022]
Abstract
Lowe syndrome and type 2 Dent disease are caused by defects in the inositol 5-phosphatase OCRL. Most missense mutations in the OCRL ASH-RhoGAP domain that are found in affected individuals abolish interactions with the endocytic adaptors APPL1 and Ses (both Ses1 and Ses2), which bind OCRL through a short phenylalanine and histidine (F&H) motif. Using X-ray crystallography, we have identified the F&H motif binding site on the RhoGAP domain of OCRL. Missense mutations associated with disease affected F&H binding indirectly by destabilizing the RhoGAP fold. By contrast, a disease-associated mutation that does not perturb F&H binding and ASH-RhoGAP stability disrupted the interaction of OCRL with Rab5. The F&H binding site of OCRL is conserved even in species that do not have an identified homolog for APPL or Ses. Our study predicts the existence of other OCRL binding partners and shows that the perturbation of OCRL interactions has a crucial role in disease.
Collapse
Affiliation(s)
- Michelle Pirruccello
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
31
|
Leclerc EA, Gazeilles L, Serre G, Guerrin M, Jonca N. The ubiquitous dermokine delta activates Rab5 function in the early endocytic pathway. PLoS One 2011; 6:e17816. [PMID: 21423773 PMCID: PMC3053396 DOI: 10.1371/journal.pone.0017816] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/10/2011] [Indexed: 11/18/2022] Open
Abstract
The expression of the recently identified dermokine (Dmkn) gene leads to four families of proteins with as yet unknown functions. The secreted α, β and γ isoforms share an epidermis-restricted expression pattern, whereas the δ isoform is intracellular and ubiquitous. To get an insight into Dmknδ function, we performed yeast two-hybrid screening and identified the small GTPases Rab5 as partners for Dmknδ. The Rab5 proteins are known to regulate membrane docking and fusion in the early endocytic pathway. GST pull-down assays confirmed the direct interaction between Rab5 and Dmknδ. Transient expression of Dmknδ in HeLa cells led to the formation of punctate structures colocalized with endogenous Rab5 and clathrin, indicating Dmknδ involvement in the early steps of endocytosis. Dmknδ indeed colocalized with transferrin at early stages of endocytosis, but did not modulate its endocytosis or recycling kinetics. We also showed that Dmknδ was able to bind both inactive (GDP-bound) and active (GTP-bound) forms of Rab5 in vitro but preferentially targeted GDP-bound form in HeLa cells. Interestingly, Dmknδ expression rescued the Rab5S34N-mediated inhibition of endosome fusion. Moreover, Dmknδ caused the enlargement of vesicles positive for Rab5 by promoting GTP loading onto the small GTPase. Together our data reveal that Dmknδ activates Rab5 function and thus is involved in the early endosomal trafficking.
Collapse
Affiliation(s)
- Emilie A. Leclerc
- UMR 5165 “Epidermis Differentiation and Rheumatoid Autoimmunity Unit”, CNRS – University Toulouse III (IFR 150, INSERM – CNRS – University Toulouse III – CHU), CHU Purpan, Toulouse, France
| | - Leila Gazeilles
- UMR 5165 “Epidermis Differentiation and Rheumatoid Autoimmunity Unit”, CNRS – University Toulouse III (IFR 150, INSERM – CNRS – University Toulouse III – CHU), CHU Purpan, Toulouse, France
| | - Guy Serre
- UMR 5165 “Epidermis Differentiation and Rheumatoid Autoimmunity Unit”, CNRS – University Toulouse III (IFR 150, INSERM – CNRS – University Toulouse III – CHU), CHU Purpan, Toulouse, France
| | - Marina Guerrin
- UMR 5165 “Epidermis Differentiation and Rheumatoid Autoimmunity Unit”, CNRS – University Toulouse III (IFR 150, INSERM – CNRS – University Toulouse III – CHU), CHU Purpan, Toulouse, France
| | - Nathalie Jonca
- UMR 5165 “Epidermis Differentiation and Rheumatoid Autoimmunity Unit”, CNRS – University Toulouse III (IFR 150, INSERM – CNRS – University Toulouse III – CHU), CHU Purpan, Toulouse, France
- * E-mail:
| |
Collapse
|
32
|
Slavin I, García IA, Monetta P, Martinez H, Romero N, Alvarez C. Role of Rab1b in COPII dynamics and function. Eur J Cell Biol 2010; 90:301-11. [PMID: 21093099 DOI: 10.1016/j.ejcb.2010.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 10/04/2010] [Accepted: 10/04/2010] [Indexed: 12/27/2022] Open
Abstract
In eukaryotic cells, proteins destined for secretion are translocated into the endoplasmic reticulum (ER) and packaged into so-called COPII-coated vesicles. In the ER exit sites (ERES), COPII has the capacity of deforming the lipid bilayer, where it modulates the selective sorting and concentration of cargo proteins. In this study, we analyze the involvement of Rab1b in COPII dynamics and function by expressing either the Rab1b negative-mutant (Rab1N121I) or the Rab1b GTP restricted mutant (Rab1Q67L), or performing short interference RNA-based knockdown. We show that Rab1b interacts with the COPII components Sec23, Sec24 and Sec31 and that Rab1b inhibition changes the COPII phenotype. FRAP assays reveal that Rab1b modulates COPII association/dissociation kinetics at the ERES interface. Furthermore, Rab1b inhibition delays cargo sorting at the ER exit sites. We postulate that Rab1b is a key regulatory component of COPII dynamics and function.
Collapse
Affiliation(s)
- Ileana Slavin
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | | | | | | | | | | |
Collapse
|
33
|
Yip CK, Berscheminski J, Walz T. Molecular architecture of the TRAPPII complex and implications for vesicle tethering. Nat Struct Mol Biol 2010; 17:1298-304. [PMID: 20972447 PMCID: PMC2988884 DOI: 10.1038/nsmb.1914] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/19/2010] [Indexed: 01/04/2023]
Abstract
Multisubunit tethering complexes participate in the process of vesicle tethering--the initial interaction between transport vesicles and their acceptor compartments. TRAPPII (named for transport protein particle II) is a highly conserved tethering complex that functions in the late Golgi apparatus and consists of all of the subunits of TRAPPI and three additional, specific subunits. We have purified native yeast TRAPPII and characterized its structure and subunit organization by single-particle EM. Our data show that the nine TRAPPII components form a core complex that dimerizes into a three-layered, diamond-shaped structure. The TRAPPI subunits assemble into TRAPPI complexes that form the outer layers. The three TRAPPII-specific subunits cap the ends of TRAPPI and form the middle layer, which is responsible for dimerization. TRAPPII binds the Ypt1 GTPase and probably uses the TRAPPI catalytic core to promote guanine nucleotide exchange. We discuss the implications of the structure of TRAPPII for coat interaction and TRAPPII-associated human pathologies.
Collapse
Affiliation(s)
- Calvin K Yip
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
34
|
Tabata K, Matsunaga K, Sakane A, Sasaki T, Noda T, Yoshimori T. Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain. Mol Biol Cell 2010; 21:4162-72. [PMID: 20943950 PMCID: PMC2993745 DOI: 10.1091/mbc.e10-06-0495] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rubicon, a subunit of the Beclin 1-PI3-kinase complex and its homologue, PLEKHM1, negatively regulate endocytic pathway through the interaction with Rab7. Synchronous association with the Beclin 1–PI3-kinase complex and Rab7 is necessary for the function of Rubicon, but not PLEKHM1. The endocytic and autophagic pathways are involved in the membrane trafficking of exogenous and endogenous materials to lysosomes. However, the mechanisms that regulate these pathways are largely unknown. We previously reported that Rubicon, a Beclin 1–binding protein, negatively regulates both the autophagic and endocytic pathways by unidentified mechanisms. In this study, we performed database searches to identify potential Rubicon homologues that share the common C-terminal domain, termed the RH domain. One of them, PLEKHM1, the causative gene of osteopetrosis, also suppresses endocytic transport but not autophagosome maturation. Rubicon and PLEKHM1 specifically and directly interact with Rab7 via their RH domain, and this interaction is critical for their function. Furthermore, we show that Rubicon but not PLEKHM1 uniquely regulates membrane trafficking via simultaneously binding both Rab7 and PI3-kinase.
Collapse
Affiliation(s)
- Keisuke Tabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Jin H, White SR, Shida T, Schulz S, Aguiar M, Gygi SP, Bazan JF, Nachury MV. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 2010; 141:1208-19. [PMID: 20603001 PMCID: PMC2898735 DOI: 10.1016/j.cell.2010.05.015] [Citation(s) in RCA: 475] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/19/2010] [Accepted: 04/16/2010] [Indexed: 12/18/2022]
Abstract
The BBSome is a complex of Bardet-Biedl Syndrome (BBS) proteins that shares common structural elements with COPI, COPII, and clathrin coats. Here, we show that the BBSome constitutes a coat complex that sorts membrane proteins to primary cilia. The BBSome is the major effector of the Arf-like GTPase Arl6/BBS3, and the BBSome and GTP-bound Arl6 colocalize at ciliary punctae in an interdependent manner. Strikingly, Arl6(GTP)-mediated recruitment of the BBSome to synthetic liposomes produces distinct patches of polymerized coat apposed onto the lipid bilayer. Finally, the ciliary targeting signal of somatostatin receptor 3 needs to be directly recognized by the BBSome in order to mediate targeting of membrane proteins to cilia. Thus, we propose that trafficking of BBSome cargoes to cilia entails the coupling of BBSome coat polymerization to the recognition of sorting signals by the BBSome.
Collapse
Affiliation(s)
- Hua Jin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305-5345, USA
| | - Susan Roehl White
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305-5345, USA
| | - Toshinobu Shida
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305-5345, USA
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Mike Aguiar
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Maxence V. Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305-5345, USA
| |
Collapse
|
36
|
Abenza JF, Galindo A, Pantazopoulou A, Gil C, de los Ríos V, Peñalva MA. Aspergillus RabB Rab5 integrates acquisition of degradative identity with the long distance movement of early endosomes. Mol Biol Cell 2010; 21:2756-69. [PMID: 20534811 PMCID: PMC2912360 DOI: 10.1091/mbc.e10-02-0119] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Of the two Aspergillus early endosomal Rab5 paralogues, RabB recruits, in its GTP conformation, Vps19, Vps45, and Vps34, and the CORVET complex and couples acquisition of PI(3)P degradative identity with the long-distance movement of early endosomes. RabA also recruits CORVET, albeit less efficiently. The simultaneous loss of RabA and RabB is lethal. Aspergillus nidulans early endosomes display characteristic long-distance bidirectional motility. Simultaneous dual-channel acquisition showed that the two Rab5 paralogues RabB and RabA colocalize in these early endosomes and also in larger, immotile mature endosomes. However, RabB-GTP is the sole recruiter to endosomes of Vps34 PI3K (phosphatidylinositol-3-kinase) and the phosphatidylinositol-3-phosphate [PI(3)P] effector AnVps19 and rabBΔ, leading to thermosensitivity prevents multivesicular body sorting of endocytic cargo. Thus, RabB is the sole mediator of degradative endosomal identity. Importantly, rabBΔ, unlike rabAΔ, prevents early endosome movement. As affinity experiments and pulldowns showed that RabB-GTP recruits AnVps45, RabB coordinates PI(3)P-dependent endosome-to-vacuole traffic with incoming traffic from the Golgi and with long-distance endosomal motility. However, the finding that Anvps45Δ, unlike rabBΔ, severely impairs growth indicates that AnVps45 plays RabB-independent functions. Affinity chromatography showed that the CORVET complex is a RabB and, to a lesser extent, a RabA effector, in agreement with GST pulldown assays of AnVps8. rabBΔ leads to smaller vacuoles, suggesting that it impairs homotypic vacuolar fusion, which would agree with the sequential maturation of endosomal CORVET into HOPS proposed for Saccharomyces cerevisiae. rabBΔ and rabAΔ mutations are synthetically lethal, demonstrating that Rab5-mediated establishment of endosomal identity is essential for A. nidulans.
Collapse
Affiliation(s)
- Juan F Abenza
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas del CSIC, Madrid 28040, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Kloer DP, Rojas R, Ivan V, Moriyama K, van Vlijmen T, Murthy N, Ghirlando R, van der Sluijs P, Hurley JH, Bonifacino JS. Assembly of the biogenesis of lysosome-related organelles complex-3 (BLOC-3) and its interaction with Rab9. J Biol Chem 2010; 285:7794-7804. [PMID: 20048159 PMCID: PMC2844223 DOI: 10.1074/jbc.m109.069088] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/24/2009] [Indexed: 12/30/2022] Open
Abstract
The Hermansky-Pudlak syndrome (HPS) is a genetic hypopigmentation and bleeding disorder caused by defective biogenesis of lysosome-related organelles (LROs) such as melanosomes and platelet dense bodies. HPS arises from mutations in any of 8 genes in humans and 16 genes in mice. Two of these genes, HPS1 and HPS4, encode components of the biogenesis of lysosome-related organelles complex-3 (BLOC-3). Herein we show that recombinant HPS1-HPS4 produced in insect cells can be efficiently isolated as a 1:1 heterodimer. Analytical ultracentrifugation reveals that this complex has a molecular mass of 146 kDa, equivalent to that of the native complex and to the sum of the predicted molecular masses of HPS1 and HPS4. This indicates that HPS1 and HPS4 interact directly in the absence of any other protein as part of BLOC-3. Limited proteolysis and deletion analyses show that both subunits interact with one another throughout most of their lengths with the sole exception of a long, unstructured loop in the central part of HPS4. An interaction screen reveals a specific and strong interaction of BLOC-3 with the GTP-bound form of the endosomal GTPase, Rab9. This interaction is mediated by HPS4 and the switch I and II regions of Rab9. These characteristics indicate that BLOC-3 might function as a Rab9 effector in the biogenesis of LROs.
Collapse
Affiliation(s)
| | - Raul Rojas
- the Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Viorica Ivan
- the Department of Cell Biology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Kengo Moriyama
- the Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Thijs van Vlijmen
- the Department of Cell Biology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Namita Murthy
- the Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | | | - Peter van der Sluijs
- the Department of Cell Biology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - Juan S. Bonifacino
- the Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
38
|
Ebine K, Ueda T. Unique mechanism of plant endocytic/vacuolar transport pathways. JOURNAL OF PLANT RESEARCH 2009; 122:21-30. [PMID: 19082690 DOI: 10.1007/s10265-008-0200-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 10/23/2008] [Indexed: 05/08/2023]
Abstract
The post-Golgi traffic network in plant cells is highly complex, which is correlated with the large number of genes related to this function. RABs and SNAREs are key regulators of tethering and fusion of transport vesicles to target membranes, and the numbers of these regulators have also expanded in plant lineages. In addition to this increase in the net number of genes, plants also seem to have evolved new gene families tailored to fulfill plant-unique functions. In this article, we summarize recent progress in studies on plant-unique RABs and SNAREs functioning in post-Golgi trafficking, with a special focus on the endocytic pathway.
Collapse
Affiliation(s)
- Kazuo Ebine
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
39
|
Rojas R, van Vlijmen T, Mardones GA, Prabhu Y, Rojas AL, Mohammed S, Heck AJR, Raposo G, van der Sluijs P, Bonifacino JS. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. ACTA ACUST UNITED AC 2008; 183:513-26. [PMID: 18981234 PMCID: PMC2575791 DOI: 10.1083/jcb.200804048] [Citation(s) in RCA: 411] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The retromer complex mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network (TGN). Mammalian retromer is composed of a sorting nexin (SNX) dimer that binds to phosphatidylinositol 3-phosphate–enriched endosomal membranes and a vacuolar protein sorting (Vps) 26/29/35 trimer that participates in cargo recognition. The mammalian SNX dimer is necessary but not sufficient for recruitment of the Vps26/29/35 trimer to membranes. In this study, we demonstrate that the guanosine triphosphatase Rab7 contributes to this recruitment. The Vps26/29/35 trimer specifically binds to Rab7–guanosine triphosphate (GTP) and localizes to Rab7-containing endosomal domains. Interference with Rab7 function causes dissociation of the Vps26/29/35 trimer but not the SNX dimer from membranes. This blocks retrieval of mannose 6-phosphate receptors to the TGN and impairs cathepsin D sorting. Rab5-GTP does not bind to the Vps26/29/35 trimer, but perturbation of Rab5 function causes dissociation of both the SNX and Vps26/29/35 components from membranes through inhibition of a pathway involving phosphatidylinositol 3-kinase. These findings demonstrate that Rab5 and Rab7 act in concert to regulate retromer recruitment to endosomes.
Collapse
Affiliation(s)
- Raul Rojas
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hagiwara M, Shirai Y, Nomura R, Sasaki M, Kobayashi KI, Tadokoro T, Yamamoto Y. Caveolin-1 activates Rab5 and enhances endocytosis through direct interaction. Biochem Biophys Res Commun 2008; 378:73-8. [PMID: 19013132 DOI: 10.1016/j.bbrc.2008.10.172] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 12/14/2022]
Abstract
Caveolin-1, a constitutive protein of the caveolae, is implicated in processes of vesicular transport during caveolae-mediated endocytosis. However, the molecular mechanisms of caveolae-mediated endocytosis are not yet clearly defined. Here, we show the physiological role of the Rab5-caveolin-1 interaction during caveolae-mediated endocytosis. Rab5 was found in caveolae-enriched fractions and Rab5 directly bound to caveolin-1. Furthermore, binding sites of Rab5 to caveolin-1 were identified in the scaffold (SD), transmembrane (TM), and C-terminus (CC) domains, and the Rab5 binding domain of caveolin-1 was required for CTXB uptake. Subsequently, we performed a GST-R5BD pull-down assay to determine whether the Rab5 binding domain of caveolin-1 is involved in Rab5 activity or not. The results showed that overexpression of the Rab5 binding domain of caveolin-1 increase the amount of Rab5-GTP in Cos-1 cells. These findings imply that caveolin-1 controls the Rab5 activity during the caveolae-mediated endocytosis.
Collapse
Affiliation(s)
- Makoto Hagiwara
- Department of Agricultural Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
McCrea HJ, Paradise S, Tomasini L, Addis M, Melis MA, De Matteis MA, De Camilli P. All known patient mutations in the ASH-RhoGAP domains of OCRL affect targeting and APPL1 binding. Biochem Biophys Res Commun 2008; 369:493-9. [PMID: 18307981 PMCID: PMC2442618 DOI: 10.1016/j.bbrc.2008.02.067] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 02/12/2008] [Indexed: 11/17/2022]
Abstract
Mutations in the inositol 5-phosphatase OCRL are responsible for Lowe syndrome, an X-linked disorder characterized by bilateral cataracts, mental retardation, neonatal hypotonia, and renal Fanconi syndrome, and for Dent disease, another X-linked condition characterized by kidney reabsorption defects. We have previously described an interaction of OCRL with the endocytic adaptor APPL1 that links OCRL to protein networks involved in the disease phenotype. Here, we provide new evidence showing that among the interactions which target OCRL to membranes of the endocytic pathway, binding to APPL1 is the only one abolished by all known disease-causing missense mutations in the ASH-RhoGAP domains of the protein. Furthermore, we demonstrate that APPL1 and rab5 independently contribute to recruit OCRL to enlarged endosomes induced by the expression of constitutively active Rab5. Thus, binding to APPL1 helps localize OCRL at specific cellular sites, and disruption of this interaction may play a role in disease.
Collapse
Affiliation(s)
- Heather J. McCrea
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience Neurodegeneration and Repair, Howard Hughes Medical Institute and Kavli Institute for Neuroscience, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Summer Paradise
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience Neurodegeneration and Repair, Howard Hughes Medical Institute and Kavli Institute for Neuroscience, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Livia Tomasini
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience Neurodegeneration and Repair, Howard Hughes Medical Institute and Kavli Institute for Neuroscience, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Maria Addis
- Dipartimento di Scienze Biomediche e Biotecnologie, Università di Cagliari, 09134 Cagliari, Italy
| | - Maria Antonietta Melis
- Dipartimento di Scienze Biomediche e Biotecnologie, Università di Cagliari, 09134 Cagliari, Italy
| | | | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience Neurodegeneration and Repair, Howard Hughes Medical Institute and Kavli Institute for Neuroscience, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
42
|
Identification and verification of Sro7p as an effector of the Sec4p Rab GTPase. Methods Enzymol 2008. [PMID: 18413243 DOI: 10.1016/s0076-6879(07)38007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Effectors are operationally defined as proteins that recognize a specific GTPase preferentially in its GTP-bound conformation. Here we present the use of affinity chromatography to identify potential effectors of Sec4p, the Rab GTPase that controls the final stage of the yeast secretory pathway. We describe the preparation of the Rab protein affinity matrix and the yeast lysate used in the purification. We also describe the methods used to identify and verify one candidate, Sro7p, as a bona fide Sec4p effector. This includes tests of the specificity and efficiency of binding both in vitro and in vivo.
Collapse
|
43
|
Liberali P, Kakkonen E, Turacchio G, Valente C, Spaar A, Perinetti G, Böckmann RA, Corda D, Colanzi A, Marjomaki V, Luini A. The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO J 2008; 27:970-81. [PMID: 18354494 PMCID: PMC2323256 DOI: 10.1038/emboj.2008.59] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 02/29/2008] [Indexed: 12/22/2022] Open
Abstract
Membrane fission is an essential process in membrane trafficking and other cellular functions. While many fissioning and trafficking steps are mediated by the large GTPase dynamin, some fission events are dynamin independent and involve C-terminal-binding protein-1/brefeldinA-ADP ribosylated substrate (CtBP1/BARS). To gain an insight into the molecular mechanisms of CtBP1/BARS in fission, we have studied the role of this protein in macropinocytosis, a dynamin-independent endocytic pathway that can be synchronously activated by growth factors. Here, we show that upon activation of the epidermal growth factor receptor, CtBP1/BARS is (a) translocated to the macropinocytic cup and its surrounding membrane, (b) required for the fission of the macropinocytic cup and (c) phosphorylated on a specific serine that is a substrate for p21-activated kinase, with this phosphorylation being essential for the fission of the macropinocytic cup. Importantly, we also show that CtBP1/BARS is required for macropinocytic internalization and infection of echovirus 1. These results provide an insight into the molecular mechanisms of CtBP1/BARS activation in membrane fissioning, and extend the relevance of CtBP1/BARS-induced fission to human viral infection.
Collapse
Affiliation(s)
- Prisca Liberali
- Laboratory of Cell Regulation, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Elina Kakkonen
- Department of Biological and Environmental Science, Nanoscience Centre, University of Jyvaskyla, Jyvaskyla, Finland
| | - Gabriele Turacchio
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Carmen Valente
- Laboratory of Cell Regulation, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Alexander Spaar
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Giuseppe Perinetti
- Laboratory of Cell Regulation, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Rainer A Böckmann
- Theoretical and Computational Membrane Biology, Centre for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Daniela Corda
- Laboratory of Cell Regulation, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Antonino Colanzi
- Laboratory of Cell Regulation, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Varpu Marjomaki
- Department of Biological and Environmental Science, Nanoscience Centre, University of Jyvaskyla, Jyvaskyla, Finland
| | - Alberto Luini
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| |
Collapse
|
44
|
ICA69 is a novel Rab2 effector regulating ER–Golgi trafficking in insulinoma cells. Eur J Cell Biol 2008; 87:197-209. [DOI: 10.1016/j.ejcb.2007.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 11/22/2007] [Accepted: 11/22/2007] [Indexed: 11/24/2022] Open
|
45
|
Shin N, Jeong H, Kwon J, Heo HY, Kwon JJ, Yun HJ, Kim CH, Han BS, Tong Y, Shen J, Hatano T, Hattori N, Kim KS, Chang S, Seol W. LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res 2008; 314:2055-65. [PMID: 18445495 DOI: 10.1016/j.yexcr.2008.02.015] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/21/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
Abstract
The leucine-rich repeat kinase 2 (LRRK2) has been identified as the defective gene at the PARK8 locus causing the autosomal dominant form of Parkinson's disease (PD). Although several LRRK2 mutations were found in familial as well as sporadic PD patients, its physiological functions are not clearly defined. In this study, using yeast two-hybrid screening, we report the identification of Rab5b as an LRRK2-interacting protein. Indeed, our GST pull down and co-immunoprecipitation assays showed that it specifically interacts with LRRK2. In addition, subcellular fractionation and immunocytochemical analyses confirmed that a fraction of both proteins co-localize in synaptic vesicles. Interestingly, we found that alteration of LRRK2 expression by either overexpression or knockdown of endogenous LRRK2 in primary neuronal cells significantly impairs synaptic vesicle endocytosis. Furthermore, this endocytosis defect was rescued by co-expression of functional Rab5b protein, but not by its inactive form. Taken together, we propose that LRRK2, in conjunction with its interaction with Rab5b, plays an important role in synaptic function by modulating the endocytosis of synaptic vesicles.
Collapse
Affiliation(s)
- Narae Shin
- Department of Life Science, GIST, Buk-gu, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tanaka T, Nakamura A. The endocytic pathway acts downstream of Oskar in Drosophila germ plasm assembly. Development 2008; 135:1107-17. [PMID: 18272590 DOI: 10.1242/dev.017293] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell fate is often determined by the intracellular localization of RNAs and proteins. In Drosophila oocytes, oskar (osk) RNA localization and the subsequent Osk synthesis at the posterior pole direct the assembly of the pole plasm, where factors for the germline and abdomen formation accumulate. osk RNA produces two isoforms, long and short Osk, which have distinct functions in pole plasm assembly. Short Osk recruits downstream components of the pole plasm, whose anchoring to the posterior cortex requires long Osk. The anchoring of pole plasm components also requires actin cytoskeleton, and Osk promotes long F-actin projections in the oocyte posterior cytoplasm. However, the mechanism by which Osk mediates F-actin reorganization remains elusive. Furthermore, although long Osk is known to associate with endosomes under immuno-electron microscopy, it was not known whether this association is functionally significant. Here we show that Rabenosyn-5 (Rbsn-5), a Rab5 effector protein required for the early endocytic pathway, is crucial for pole plasm assembly. rbsn-5(-) oocytes fail to maintain microtubule polarity, which secondarily disrupts osk RNA localization. Nevertheless, anteriorly misexpressed Osk, particularly long Osk, recruits endosomal proteins, including Rbsn-5, and stimulates endocytosis. In oocytes lacking rbsn-5, the ectopic Osk induces aberrant F-actin aggregates, which diffuse into the cytoplasm along with pole plasm components. We propose that Osk stimulates endosomal cycling, which in turn promotes F-actin reorganization to anchor the pole plasm components to the oocyte cortex.
Collapse
Affiliation(s)
- Tsubasa Tanaka
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | | |
Collapse
|
47
|
Catz SD. Characterization of Rab27a and JFC1 as constituents of the secretory machinery of prostate-specific antigen in prostate carcinoma cells. Methods Enzymol 2008; 438:25-40. [PMID: 18413239 PMCID: PMC11960417 DOI: 10.1016/s0076-6879(07)38003-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Prostate-specific antigen (PSA) and prostate-specific acid phosphatase (PSAP) are produced by prostate carcinoma cells. Their secretion has implications in both prostate cancer diagnosis and progression. The mechanisms involved in PSA and PSAP secretion in response to androgens have remained relatively unknown. The small GTPase Rab27a regulates exocytosis in several tissues. Here, we present methods for the characterization of Rab27a and its effector JFC1/Slp1 as key components of the secretory machinery that regulates exocytosis in prostate carcinoma cells.
Collapse
Affiliation(s)
- Sergio D Catz
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
48
|
Pal A, Severin F, Höpfner S, Zerial M. Regulation of endosome dynamics by Rab5 and Huntingtin-HAP40 effector complex in physiological versus pathological conditions. Methods Enzymol 2008; 438:239-57. [PMID: 18413253 DOI: 10.1016/s0076-6879(07)38017-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vesicular transport of signaling molecules, specifically neurotrophins, in neurons is essential for their differentiation, survival, and plasticity. Neurotrophins such as neuron growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are internalized by receptor-mediated endocytosis at synaptic terminals and loaded into endosomes for microtubule-based transport along axons to the cell body where they exert their signaling function in the nucleus. The molecular mechanisms underlying this intracellular transport are not only relevant from a basic knowledge viewpoint, but have also important implications for neurodegenerative diseases. Defects in trafficking are increasingly implicated in the pathology of Huntington's disease (HD) and other neurodegenerative disorders. The small GTPases Rab5 and Rab7 play important roles in the endocytic trafficking of neurotrophins. We have recently identified Huntingtin (Htt) and Huntingtin associated protein of 40 kDa (HAP40) as a novel Rab5 effector complex that regulates endosome motility. In HD, we detected higher HAP40 protein levels compared with normal cells. Such increase causes an augmented recruitment of Htt onto Rab5-positive early endosomes that drastically reduces their motility by "switching" these organelles from microtubules to F-actin. These findings suggest a mechanism by which impaired Rab5-mediated trafficking of neurotrophic factors may be a key event of the pathogenetic process leading to neurodegeneration in HD. To dissect the mechanisms by which Htt, HAP40, and Rab5 function in early endosome interactions with the cytoskeleton, we developed assays to investigate endosome-cytoskeleton interactions that can be applied to normal and pathological conditions. We provide here detailed protocols for, first, an assay that measures binding of early endosomes to microtubules and F-actin. Second, we describe an improved protocol for a cell-free assay that recapitulates the motility of early endosomes along microtubules in vitro. These assays provide mechanistic insights into the dysfunction of endosome motility occurring in HD as well as other neurodegenerative disorders.
Collapse
Affiliation(s)
- Arun Pal
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | |
Collapse
|
49
|
Ingmundson A, Delprato A, Lambright DG, Roy CR. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 2007; 450:365-9. [PMID: 17952054 DOI: 10.1038/nature06336] [Citation(s) in RCA: 321] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Accepted: 10/04/2007] [Indexed: 12/29/2022]
Abstract
Rab1 is a GTPase that regulates the transport of endoplasmic-reticulum-derived vesicles in eukaryotic cells. The intracellular pathogen Legionella pneumophila subverts Rab1 function to create a vacuole that supports bacterial replication by a mechanism that is not well understood. Here we describe L. pneumophila proteins that control Rab1 activity directly. We show that a region in the DrrA (defect in Rab1 recruitment A) protein required for recruitment of Rab1 to membranes functions as a guanine nucleotide dissociation inhibitor displacement factor. A second region of the DrrA protein stimulated Rab1 activation by functioning as a guanine nucleotide exchange factor. The LepB protein was found to inactivate Rab1 by stimulating GTP hydrolysis, indicating that LepB has GTPase-activating protein activity that regulates removal of Rab proteins from membranes. Thus, L. pneumophila encodes proteins that regulate three distinct biochemical reactions critical for Rab GTPase membrane cycling to redirect Rab1 to the pathogen-occupied vacuole and to control Rab1 function.
Collapse
Affiliation(s)
- Alyssa Ingmundson
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, Connecticut 06536, USA
| | | | | | | |
Collapse
|
50
|
Goh T, Uchida W, Arakawa S, Ito E, Dainobu T, Ebine K, Takeuchi M, Sato K, Ueda T, Nakano A. VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana. THE PLANT CELL 2007; 19:3504-15. [PMID: 18055610 PMCID: PMC2174884 DOI: 10.1105/tpc.107.053876] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/09/2007] [Accepted: 10/12/2007] [Indexed: 05/18/2023]
Abstract
Rab5, a subfamily of Rab GTPases, regulates a variety of endosomal functions as a molecular switch. Arabidopsis thaliana has two different types of Rab5-member GTPases: conventional type, ARA7 and RHA1, and a plant-specific type, ARA6. We found that only one guanine nucleotide exchange factor (GEF), named VPS9a, can activate all Rab5 members to GTP-bound forms in vitro in spite of their diverged structures. In the vps9a-1 mutant, whose GEF activity is completely lost, embryogenesis was arrested at the torpedo stage. Green fluorescent protein (GFP)-ARA7 and ARA6-GFP were diffused in cytosol like GDP-fixed mutants of Rab5 in vps9a-1, indicating that both types of GTPase are regulated by VPS9a. In the leaky vps9a-2 mutant, elongation of the primary root was severely affected. Overexpression of the GTP-fixed form of ARA7 suppressed the vps9a-2 mutation, but overexpression of ARA6 had no apparent effects. These results indicate that the two types of plant Rab5 members are functionally differentiated, even though they are regulated by the same activator, VPS9a.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|