1
|
Richards A, Berth SH, Brady S, Morfini G. Engagement of Neurotropic Viruses in Fast Axonal Transport: Mechanisms, Potential Role of Host Kinases and Implications for Neuronal Dysfunction. Front Cell Neurosci 2021; 15:684762. [PMID: 34234649 PMCID: PMC8255969 DOI: 10.3389/fncel.2021.684762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022] Open
Abstract
Much remains unknown about mechanisms sustaining the various stages in the life cycle of neurotropic viruses. An understanding of those mechanisms operating before their replication and propagation could advance the development of effective anti-viral strategies. Here, we review our current knowledge of strategies used by neurotropic viruses to undergo bidirectional movement along axons. We discuss how the invasion strategies used by specific viruses might influence their mode of interaction with selected components of the host’s fast axonal transport (FAT) machinery, including specialized membrane-bounded organelles and microtubule-based motor proteins. As part of this discussion, we provide a critical evaluation of various reported interactions among viral and motor proteins and highlight limitations of some in vitro approaches that led to their identification. Based on a large body of evidence documenting activation of host kinases by neurotropic viruses, and on recent work revealing regulation of FAT through phosphorylation-based mechanisms, we posit a potential role of host kinases on the engagement of viruses in retrograde FAT. Finally, we briefly describe recent evidence linking aberrant activation of kinase pathways to deficits in FAT and neuronal degeneration in the context of human neurodegenerative diseases. Based on these findings, we speculate that neurotoxicity elicited by viral infection may involve deregulation of host kinases involved in the regulation of FAT and other cellular processes sustaining neuronal function and survival.
Collapse
Affiliation(s)
- Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
| | - Sarah H Berth
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Scott Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Leo L, Weissmann C, Burns M, Kang M, Song Y, Qiang L, Brady ST, Baas PW, Morfini G. Mutant spastin proteins promote deficits in axonal transport through an isoform-specific mechanism involving casein kinase 2 activation. Hum Mol Genet 2017; 26:2321-2334. [PMID: 28398512 DOI: 10.1093/hmg/ddx125] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/24/2017] [Indexed: 01/19/2023] Open
Abstract
Mutations of various genes cause hereditary spastic paraplegia (HSP), a neurological disease involving dying-back degeneration of upper motor neurons. From these, mutations in the SPAST gene encoding the microtubule-severing protein spastin account for most HSP cases. Cumulative genetic and experimental evidence suggests that alterations in various intracellular trafficking events, including fast axonal transport (FAT), may contribute to HSP pathogenesis. However, the mechanisms linking SPAST mutations to such deficits remain largely unknown. Experiments presented here using isolated squid axoplasm reveal inhibition of FAT as a common toxic effect elicited by spastin proteins with different HSP mutations, independent of microtubule-binding or severing activity. Mutant spastin proteins produce this toxic effect only when presented as the tissue-specific M1 isoform, not when presented as the ubiquitously-expressed shorter M87 isoform. Biochemical and pharmacological experiments further indicate that the toxic effects of mutant M1 spastins on FAT involve casein kinase 2 (CK2) activation. In mammalian cells, expression of mutant M1 spastins, but not their mutant M87 counterparts, promotes abnormalities in the distribution of intracellular organelles that are correctable by pharmacological CK2 inhibition. Collectively, these results demonstrate isoform-specific toxic effects of mutant M1 spastin on FAT, and identify CK2 as a critical mediator of these effects.
Collapse
Affiliation(s)
- Lanfranco Leo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Carina Weissmann
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew Burns
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Minsu Kang
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Yuyu Song
- Marine Biological Laboratory, Woods Hole, MA, USA.,Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
3
|
Brady ST, Morfini GA. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis 2017; 105:273-282. [PMID: 28411118 DOI: 10.1016/j.nbd.2017.04.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND.
Collapse
Affiliation(s)
- Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
4
|
El-Kadi AM, Bros-Facer V, Deng W, Philpott A, Stoddart E, Banks G, Jackson GS, Fisher EMC, Duchen MR, Greensmith L, Moore AL, Hafezparast M. The legs at odd angles (Loa) mutation in cytoplasmic dynein ameliorates mitochondrial function in SOD1G93A mouse model for motor neuron disease. J Biol Chem 2010; 285:18627-39. [PMID: 20382740 PMCID: PMC2881788 DOI: 10.1074/jbc.m110.129320] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/08/2010] [Indexed: 12/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal late-onset neurodegenerative disease. Familial cases of ALS (FALS) constitute approximately 10% of all ALS cases, and mutant superoxide dismutase 1 (SOD1) is found in 15-20% of FALS. SOD1 mutations confer a toxic gain of unknown function to the protein that specifically targets the motor neurons in the cortex and the spinal cord. We have previously shown that the autosomal dominant Legs at odd angles (Loa) mutation in cytoplasmic dynein heavy chain (Dync1h1) delays disease onset and extends the life span of transgenic mice harboring human mutant SOD1(G93A). In this study we provide evidence that despite the lack of direct interactions between mutant SOD1 and either mutant or wild-type cytoplasmic dynein, the Loa mutation confers significant reductions in the amount of mutant SOD1 protein in the mitochondrial matrix. Moreover, we show that the Loa mutation ameliorates defects in mitochondrial respiration and membrane potential observed in SOD1(G93A) motor neuron mitochondria. These data suggest that the Loa mutation reduces the vulnerability of mitochondria to the toxic effects of mutant SOD1, leading to improved mitochondrial function in SOD1(G93A) motor neurons.
Collapse
Affiliation(s)
- Ali Morsi El-Kadi
- From the Biochemistry and Biomedical Science, School of Life Sciences, University of Sussex, Brighton BN1 9QG
| | | | - Wenhan Deng
- From the Biochemistry and Biomedical Science, School of Life Sciences, University of Sussex, Brighton BN1 9QG
| | - Amelia Philpott
- From the Biochemistry and Biomedical Science, School of Life Sciences, University of Sussex, Brighton BN1 9QG
| | - Eleanor Stoddart
- From the Biochemistry and Biomedical Science, School of Life Sciences, University of Sussex, Brighton BN1 9QG
| | - Gareth Banks
- the Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, and
| | - Graham S. Jackson
- the Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, and
| | - Elizabeth M. C. Fisher
- the Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, and
| | - Michael R. Duchen
- Cell and Developmental Biology, UCL Division of Biosciences, London WC1B 6BT, United Kingdom
| | - Linda Greensmith
- the Sobell Department of Motor Neuroscience and Movement Disorders and
| | - Anthony L. Moore
- From the Biochemistry and Biomedical Science, School of Life Sciences, University of Sussex, Brighton BN1 9QG
| | - Majid Hafezparast
- From the Biochemistry and Biomedical Science, School of Life Sciences, University of Sussex, Brighton BN1 9QG
| |
Collapse
|
5
|
Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, Bosco DA, Brown RH, Brown H, Tiwari A, Hayward L, Edgar J, Nave KA, Garberrn J, Atagi Y, Song Y, Pigino G, Brady ST. Axonal transport defects in neurodegenerative diseases. J Neurosci 2009; 29:12776-86. [PMID: 19828789 PMCID: PMC2801051 DOI: 10.1523/jneurosci.3463-09.2009] [Citation(s) in RCA: 344] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/04/2009] [Indexed: 12/26/2022] Open
Abstract
Adult-onset neurodegenerative diseases (AONDs) comprise a heterogeneous group of neurological disorders characterized by a progressive, age-dependent decline in neuronal function and loss of selected neuronal populations. Alterations in synaptic function and axonal connectivity represent early and critical pathogenic events in AONDs, but molecular mechanisms underlying these defects remain elusive. The large size and complex subcellular architecture of neurons render them uniquely vulnerable to alterations in axonal transport (AT). Accordingly, deficits in AT have been documented in most AONDs, suggesting a common defect acquired through different pathogenic pathways. These observations suggest that many AONDs can be categorized as dysferopathies, diseases in which alterations in AT represent a critical component in pathogenesis. Topics here address various molecular mechanisms underlying alterations in AT in several AONDs. Illumination of such mechanisms provides a framework for the development of novel therapeutic strategies aimed to prevent axonal and synaptic dysfunction in several major AONDs.
Collapse
Affiliation(s)
- Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Morfini GA, You YM, Pollema SL, Kaminska A, Liu K, Yoshioka K, Björkblom B, Coffey ET, Bagnato C, Han D, Huang CF, Banker G, Pigino G, Brady ST. Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat Neurosci 2009; 12:864-71. [PMID: 19525941 PMCID: PMC2739046 DOI: 10.1038/nn.2346] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 05/04/2009] [Indexed: 12/21/2022]
Abstract
Selected vulnerability of neurons in Huntington's disease suggests that alterations occur in a cellular process that is particularly critical for neuronal function. Supporting this idea, pathogenic Htt (polyQ-Htt) inhibits fast axonal transport (FAT) in various cellular and animal models of Huntington's disease (mouse and squid), but the molecular basis of this effect remains unknown. We found that polyQ-Htt inhibited FAT through a mechanism involving activation of axonal cJun N-terminal kinase (JNK). Accordingly, we observed increased activation of JNK in vivo in cellular and mouse models of Huntington's disease. Additional experiments indicated that the effects of polyQ-Htt on FAT were mediated by neuron-specific JNK3 and not by ubiquitously expressed JNK1, providing a molecular basis for neuron-specific pathology in Huntington's disease. Mass spectrometry identified a residue in the kinesin-1 motor domain that was phosphorylated by JNK3 and this modification reduced kinesin-1 binding to microtubules. These data identify JNK3 as a critical mediator of polyQ-Htt toxicity and provide a molecular basis for polyQ-Htt-induced inhibition of FAT.
Collapse
Affiliation(s)
- Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Martin KRG, Quigley HA, Valenta D, Kielczewski J, Pease ME. Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma. Exp Eye Res 2006; 83:255-62. [PMID: 16546168 DOI: 10.1016/j.exer.2005.11.025] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 06/26/2005] [Accepted: 11/30/2005] [Indexed: 10/24/2022]
Abstract
Acute intraocular pressure (IOP) elevation causes accumulation of retrogradely-transported brain derived neurotrophic factor and its receptor at the optic nerve head (ONH) in rats and monkeys. Obstruction of axonal transport may therefore be involved in glaucoma pathogenesis, but it is unknown if obstruction is specific to certain transported factors or represents a generalized failure of retrograde axonal transport. The dynein motor complex mediates retrograde axonal transport in retinal ganglion cells (RGC). Our hypothesis was that elevated IOP interferes with dynein-mediated axonal transport. We studied the distribution of dynein subunits in the retina and optic nerve after acute and chronic experimental IOP elevation in the rat. IOP was elevated unilaterally in 54 rats. Dynein subunit distribution was compared in treated and control eyes by immunohistochemistry and Western blotting at 1 day (n=12), 3 days (n=4), 1 week (n=15), 2 weeks (n=12) and 4 weeks (n=11). For immunohistochemistry, sections through the ONH were probed with an anti-dynein heavy chain (HC) antibody and graded semi-quantitatively by masked observers. Other freshly enucleated eyes were microdissected for separate Western blot quantification of dynein intermediate complex (IC) in myelinated and unmyelinated optic nerve, ONH and retina. Immunohistochemistry showed accumulation of dynein HC at the ONH in IOP elevation eyes compared to controls (P<0.001, Wilcoxon paired sign-rank test, n=29). ONH dynein IC was elevated by 46.5% in chronic IOP elevation eyes compared to controls by Western blotting (P<0.001, 95% CI=25.9% to 67.8%, n=17). The maximum increase in ONH dynein IC was 78.7% after 1 week (P<0.05, n=5), but significant increases were also detected after 4 h and 4 weeks of IOP elevation (P<0.05, n=4 rats per group). Total retinal dynein IC was increased by 8.7% in chronic IOP elevation eyes compared to controls (P<0.03, 95% CI 1.4% to 16.1%, n=24). In the retina, IOP elevation particularly affected the 72 kD subunit of dynein IC, which was 100.7% higher in chronic IOP elevation eyes compared to controls (P<0.00001, 95% CI 71.0% to 130.4%, n=21). Dynein IC changes in myelinated and unmyelinated optic nerve were not significant (P>0.05). We conclude that dynein accumulates at the ONH with experimental IOP elevation in the rat, supporting the hypothesis that disrupted axonal transport in RGC may be involved in the pathogenesis of glaucoma. The effect of IOP elevation on other motor proteins deserves further investigation in the future.
Collapse
Affiliation(s)
- Keith R G Martin
- Glaucoma Research Laboratory, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
8
|
Abstract
The majority of active transport in the cell is driven by three classes of molecular motors: the kinesin and dynein families that move toward the plus-end and minus-end of microtubules, respectively, and the unconventional myosin motors that move along actin filaments. Each class of motor has different properties, but in the cell they often function together. In this review we summarize what is known about their single-molecule properties and the possibilities for regulation of such properties. In view of new results on cytoplasmic dynein, we attempt to rationalize how these different classes of motors might work together as part of the intracellular transport machinery. We propose that kinesin and myosin are robust and highly efficient transporters, but with somewhat limited room for regulation of function. Because cytoplasmic dynein is less efficient and robust, to achieve function comparable to the other motors it requires a number of accessory proteins as well as multiple dyneins functioning together. This necessity for additional factors, as well as dynein's inherent complexity, in principle allows for greatly increased control of function by taking the factors away either singly or in combination. Thus, dynein's contribution relative to the other motors can be dynamically tuned, allowing the motors to function together differently in a variety of situations.
Collapse
Affiliation(s)
- Roop Mallik
- Department of Developmental and Cell Biology, University of California Irvine, California 92697, USA
| | | |
Collapse
|
9
|
Byers HR, Maheshwary S, Amodeo DM, Dykstra SG. Role of cytoplasmic dynein in perinuclear aggregation of phagocytosed melanosomes and supranuclear melanin cap formation in human keratinocytes. J Invest Dermatol 2003; 121:813-20. [PMID: 14632200 DOI: 10.1046/j.1523-1747.2003.12481.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytoplasmic dynein is a microtubule-associated motor molecule involved in the retrograde transport of membrane-bound organelles. To determine whether the supranuclear melanin cap of transferred, phagocytosed melanosomes in keratinocytes is associated with cytoplasmic dynein, we performed immunofluorescent confocal microscopy on human keratinocytes in situ. We identified the intermediate chain of cytoplasmic dynein by immunoblotting and examined its distribution by confocal microscopy in relation to microtubules and melano-phagolysosomes in vitro. We also used antisense and sense oligonucleotides of the cytoplasmic dynein heavy chain 1 (Dyh1) and time-lapse and microscopy. The intermediate chain of cytoplasmic dynein was identified in extracts of human foreskin epidermis and in isolated human keratinocytes. The intermediate chain localized with the perinuclear melano-phagolysosomal aggregates in vitro and the supranuclear melanin cap in situ. Antisense oligonucleotides directed towards Dyh1 resulted in dispersal of the keratinocyte perinuclear melano-phagolysosomal aggregates after 24 to 48 h, whereas cells treated with diluent or sense oligonucleotides maintained tight perinuclear aggregates. Taken together, these findings indicate that in human keratinocytes, the retrograde microtubule motor cytoplasmic dynein mediates the perinuclear aggregation of phagocytosed melanosomes, participates in the formation of the supranuclear melanin cap or "microparasol" and serves as a mechanism to help protect the nucleus from ultraviolet-induced DNA damage.
Collapse
Affiliation(s)
- H Randolph Byers
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
10
|
King SJ, Brown CL, Maier KC, Quintyne NJ, Schroer TA. Analysis of the dynein-dynactin interaction in vitro and in vivo. Mol Biol Cell 2003; 14:5089-97. [PMID: 14565986 PMCID: PMC284810 DOI: 10.1091/mbc.e03-01-0025] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cytoplasmic dynein and dynactin are megadalton-sized multisubunit molecules that function together as a cytoskeletal motor. In the present study, we explore the mechanism of dynein-dynactin binding in vitro and then extend our findings to an in vivo context. Solution binding assays were used to define binding domains in the dynein intermediate chain (IC) and dynactin p150Glued subunit. Transient overexpression of a series of fragments of the dynein IC was used to determine the importance of this subunit for dynein function in mammalian tissue culture cells. Our results suggest that a functional dynein-dynactin interaction is required for proper microtubule organization and for the transport and localization of centrosomal components and endomembrane compartments. The dynein IC fragments have different effects on endomembrane localization, suggesting that different endomembranes may bind dynein via distinct mechanisms.
Collapse
Affiliation(s)
- Stephen J King
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Because cytoplasmic dynein plays numerous critical roles in eukaryotic cells, determining the subunit composition and the organization and functions of the subunits within dynein are important goals. This has been difficult partly because of accessory polypeptide heterogeneity of dynein populations. The motor domain containing heavy chains of cytoplasmic dynein are associated with multiple intermediate, light intermediate, and light chain accessory polypeptides. We examined the organization of these subunits within cytoplasmic dynein by separating the molecule into two distinct subcomplexes. These subcomplexes were competent to reassemble into a molecule with dynein-like properties. One subcomplex was composed of the dynein heavy and light intermediate chains whereas the other subcomplex was composed of the intermediate and light chains. The intermediate and light chain subcomplex could be further separated into two pools, only one of which contained dynein light chains. The two pools had distinct intermediate chain compositions, suggesting that intermediate chain isoforms have different light chain-binding properties. When the two intermediate chain pools were characterized by analytical velocity sedimentation, at least four molecular components were seen: intermediate chain monomers, intermediate chain dimers, intermediate chain monomers with bound light chains, and a mixture of intermediate chain dimers with assorted bound light chains. These data provide new insights into the compositional heterogeneity and assembly of the cytoplasmic dynein complex and suggest that individual dynein molecules have distinct molecular compositions in vivo.
Collapse
Affiliation(s)
- Stephen J King
- Department of Biology, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
12
|
Wilson MJ, Salata MW, Susalka SJ, Pfister KK. Light chains of mammalian cytoplasmic dynein: identification and characterization of a family of LC8 light chains. CELL MOTILITY AND THE CYTOSKELETON 2001; 49:229-40. [PMID: 11746667 DOI: 10.1002/cm.1036] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cytoplasmic dynein is a large multisubunit motor protein that moves various cargoes toward the minus ends of microtubules. In addition to the previously identified heavy, intermediate, and light intermediate chains, it has recently been recognized that cytoplasmic dynein also has several light chain subunits with apparent molecular weights between 8-20 kDa. To systematically identify the light chains of purified rat brain cytoplasmic dynein, peptide sequences were obtained from each light chain band resolved by gel electrophoresis. Both members of the tctex1 light chain family, tctex1 and rp3, were identified in a single band. Only one member of the roadblock family, roadblock-2, was found. Two members of the LC8 family were resolved as separate bands, the previously identified LC8 subunit, and a second novel cytoplasmic dynein family member, LC8b. The tissue distribution of these two dynein LC8 subunits differed, although LC8b was the major family member in brain. Database searches found that both LC8a and LC8b were also present in several mammalian species, and a third mammalian LC8 sequence, LC8c was found in the human database. The amino acid sequences of both LC8a and LC8b were completely conserved in mammals. LC8a and LC8b differ in only six of the 89 amino acids. The amino acid differences between LC8a and LC8b were located near the N-terminus of the molecules, and most were in the outward facing alpha-helices of the LC8 dimer. When the mammalian LC8a sequence was compared to the LC8 sequences found in six other animal species including Xenopus and Drosophila, there was, on average, 94% sequence identity. More variation was found in LC8 sequences obtained from plants, fungi, and parasites. LC8c differed from the other two human LC8 sequences in that it has amino acid substitutions in the intermediate chain binding domain at the C-terminal of the molecule. The position of amino acid substitutions of the three mammalian LC8 family members is consistent with the hypothesis that they bind to different proteins.
Collapse
Affiliation(s)
- M J Wilson
- Cell Biology Department, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|