1
|
Gariballa N, Mohamed F, Badawi S, Ali BR. The double whammy of ER-retention and dominant-negative effects in numerous autosomal dominant diseases: significance in disease mechanisms and therapy. J Biomed Sci 2024; 31:64. [PMID: 38937821 PMCID: PMC11210014 DOI: 10.1186/s12929-024-01054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms. In autosomal dominant diseases, when mutant proteins get retained in the ER, they can interact with their wild-type counterparts. This interaction may lead to the formation of mixed dimers or aberrant complexes, disrupting their normal trafficking and function in a dominant-negative manner. The combination of ER retention and dominant-negative effects has been frequently documented to cause a significant loss of functional proteins, thereby exacerbating disease severity. This review aims to examine existing literature and provide insights into the impact of dominant-negative effects exerted by mutant proteins retained in the ER in a range of autosomal dominant diseases including skeletal and connective tissue disorders, vascular disorders, neurological disorders, eye disorders and serpinopathies. Most crucially, we aim to emphasize the importance of this area of research, offering substantial potential for understanding the factors influencing phenotypic variability associated with genetic variants. Furthermore, we highlight current and prospective therapeutic approaches targeted at ameliorating the effects of mutations exhibiting dominant-negative effects. These approaches encompass experimental studies exploring treatments and their translation into clinical practice.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Feda Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Lang E, Semon JA. Mesenchymal stem cells in the treatment of osteogenesis imperfecta. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:7. [PMID: 36725748 PMCID: PMC9892307 DOI: 10.1186/s13619-022-00146-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Osteogenesis imperfecta (OI) is a disease caused by mutations in different genes resulting in mild, severe, or lethal forms. With no cure, researchers have investigated the use of cell therapy to correct the underlying molecular defects of OI. Mesenchymal stem cells (MSCs) are of particular interest because of their differentiation capacity, immunomodulatory effects, and their ability to migrate to sites of damage. MSCs can be isolated from different sources, expanded in culture, and have been shown to be safe in numerous clinical applications. This review summarizes the preclinical and clinical studies of MSCs in the treatment of OI. Altogether, the culmination of these studies show that MSCs from different sources: 1) are safe to use in the clinic, 2) migrate to fracture sites and growth sites in bone, 3) engraft in low levels, 4) improve clinical outcome but have a transient effect, 5) have a therapeutic effect most likely due to paracrine mechanisms, and 6) have a reduced therapeutic potential when isolated from patients with OI.
Collapse
Affiliation(s)
- Erica Lang
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| | - Julie A. Semon
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| |
Collapse
|
3
|
Zhou Y, Zhang C, Zhou Z, Zhang C, Wang J. Identification of Key Genes and Pathways Associated with PIEZO1 in Bone-Related Disease Based on Bioinformatics. Int J Mol Sci 2022; 23:5250. [PMID: 35563641 PMCID: PMC9104149 DOI: 10.3390/ijms23095250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022] Open
Abstract
PIEZO1 is a mechano-sensitive ion channel that can sense various forms of mechanical stimuli and convert them into biological signals, affecting bone-related diseases. The present study aimed to identify key genes and signaling pathways in Piezo1-regulated bone-related diseases and to explain the potential mechanisms using bioinformatic analysis. The differentially expressed genes (DEGs) in tendon, femur, and humerus bone tissue; cortical bone; and bone-marrow-derived macrophages were identified with the criteria of |log2FC| > 1 and adjusted p-value < 0.05 analysis based on a dataset from GSE169261, GSE139121, GSE135282, and GSE133069, respectively, and visualized in a volcano plot. Venn diagram analyses were performed to identify the overlapping DEGs expressed in the above-mentioned tissues. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, protein−protein interaction (PPI) analysis, and module analysis were also conducted. Furthermore, qRT-PCR was performed to validate the above results using primary chondrocytes. As a result, a total of 222 overlapping DEGs and 12 mostly overlapping DEGs were identified. Key Piezo1-related genes, such as Lcn2, Dkk3, Obscn, and Tnnt1, were identified, and pathways, such as Wnt/β-catenin and PI3k-Akt, were also identified. The present informatic study provides insight, for the first time, into the potential therapeutic targets of Piezo1-regulated bone-related diseases
Collapse
Affiliation(s)
- Yuanyuan Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| | - Chen Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| | - Zhongguo Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane City 4072, Australia;
| | - Chao Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| |
Collapse
|
4
|
Han Y, Wang D, Guo J, Xiong Q, Li P, Zhou YA, Zhao B. A novel splicing pathogenic variant in COL1A1 causing osteogenesis imperfecta (OI) type I in a Chinese family. Mol Genet Genomic Med 2020; 8:e1366. [PMID: 32588564 PMCID: PMC7507304 DOI: 10.1002/mgg3.1366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/01/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background Osteogenesis imperfecta (OI), a rare autosomal inheritable disorder characterized by bone fragility and skeletal deformity, is caused by pathogenic variants in genes impairing the synthesis and processing of extracellular matrix protein collagen type I. With the use of next‐generation sequencing and panels approaches, an increasing number of OI patients can be confirmed and new pathogenic variants can be discovered. This study sought to identify pathogenic gene variants in a Chinese family with OI I. Methods Whole‐exome sequencing was used to identify pathogenic variants in the proband, which is confirmed by Sanger sequencing and cosegregation analysis; MES, HSF, and Spliceman were used to analyze this splicing variant;qRT‐PCR was performed to identify the mRNA expression level of COL1A1 in patient peripheral blood samples; Minigene splicing assay was performed to mimic the splicing process of COL1A1 variants in vitro; Analysis of evolutionary conservation of amino acid residues and structure prediction of the mutant protein. Results A novel splicing pathogenic variant (c.3814+1G>T) was identified in this OI family by using whole‐exome sequencing, Sanger sequencing, and cosegregation analysis. Sequencing of RT‐PCR products from the COL1A1 minigene variant reveals a 132‐nucleotide (nt) insertion exists at the junction between exons 48 and exon 49 of the COL1A1 cDNA. Splicing assay indicates that the mutated minigene produces an alternatively spliced transcript which may cause a frameshift resulting in early termination of protein expression. The molecular analysis suggested that the altered amino acid is located at the C‐terminus of type I procollagen. Conclusion Our study reveals the pathogenesis of a novel COL1A1 splicing pathogenic variant c.3814+1G>T in a Chinese family with OI I.
Collapse
Affiliation(s)
- Yaxin Han
- The Graduate School, Shanxi Medical University, Taiyuan, China
| | - Dongming Wang
- The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Jinli Guo
- The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yong-An Zhou
- The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Bin Zhao
- The Second Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Zhytnik L, Simm K, Salumets A, Peters M, Märtson A, Maasalu K. Reproductive options for families at risk of Osteogenesis Imperfecta: a review. Orphanet J Rare Dis 2020; 15:128. [PMID: 32460820 PMCID: PMC7251694 DOI: 10.1186/s13023-020-01404-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background Osteogenesis Imperfecta (OI) is a rare genetic disorder involving bone fragility. OI patients typically suffer from numerous fractures, skeletal deformities, shortness of stature and hearing loss. The disorder is characterised by genetic and clinical heterogeneity. Pathogenic variants in more than 20 different genes can lead to OI, and phenotypes can range from mild to lethal forms. As a genetic disorder which undoubtedly affects quality of life, OI significantly alters the reproductive confidence of families at risk. The current review describes a selection of the latest reproductive approaches which may be suitable for prospective parents faced with a risk of OI. The aim of the review is to alleviate suffering in relation to family planning around OI, by enabling prospective parents to make informed and independent decisions. Main body The current review provides a comprehensive overview of possible reproductive options for people with OI and for unaffected carriers of OI pathogenic genetic variants. The review considers reproductive options across all phases of family planning, including pre-pregnancy, fertilisation, pregnancy, and post-pregnancy. Special attention is given to the more modern techniques of assisted reproduction, such as preconception carrier screening, preimplantation genetic testing for monogenic diseases and non-invasive prenatal testing. The review outlines the methodologies of the different reproductive approaches available to OI families and highlights their advantages and disadvantages. These are presented as a decision tree, which takes into account the autosomal dominant and autosomal recessive nature of the OI variants, and the OI-related risks of people without OI. The complex process of decision-making around OI reproductive options is also discussed from an ethical perspective. Conclusion The rapid development of molecular techniques has led to the availability of a wide variety of reproductive options for prospective parents faced with a risk of OI. However, such options may raise ethical concerns in terms of methodologies, choice management and good clinical practice in reproductive care, which are yet to be fully addressed.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.
| | - Kadri Simm
- Institute of Philosophy and Semiotics, Faculty of Arts and Humanities, University of Tartu, Tartu, Estonia.,Centre of Ethics, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Institute of Genomics, University of Tartu, Tartu, Estonia.,COMBIVET ERA Chair, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Aare Märtson
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.,Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Katre Maasalu
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.,Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
6
|
Gug C, Caba L, Mozos I, Stoian D, Atasie D, Gug M, Gorduza EV. Rare splicing mutation in COL1A1 gene identified by whole exomes sequencing in a patient with osteogenesis imperfecta type I followed by prenatal diagnosis: A case report and review of the literature. Gene 2020; 741:144565. [PMID: 32165296 DOI: 10.1016/j.gene.2020.144565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/08/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare disease characterized by increased bone fragility and predisposition to fractures, bone deformities and other major signs such as dentinogenesis imperfecta, blue sclera and deafness. Over 90% of OI cases are caused by mutations in the COL1A1 and COL1A2 genes and the inheritance is autosomal dominant. METHODS We present a case of a couple requesting genetic counseling, because the man was diagnosed with OI on a clinical and radiological basis and the woman was pregnant. Whole exomes sequencing (WES) was performed in order to identify the mutation (s), followed by prenatal diagnosis. RESULTS WES identified a rare splicing mutation c.1155 + 1G > C in the COL1A1 gene recognized to be pathogenic and subsequently confirmed by next generation sequencing. The carrier state of the mutation was excluded for the fetus, so the pregnancy was further pursued and a healthy baby was born at term. CONCLUSIONS WES is a new and effective technique for detecting pathogenic variants in monogenic diseases and it is preferable to use such a technique in diseases with genetic heterogeneity especially when time does not allow another time-consuming diagnostic technique such classical Sanger sequencing. WES offers possibility to expand the global spectrum of OI pathogenic variants enabling the diagnosis of the disease.
Collapse
Affiliation(s)
- Cristina Gug
- Department of Microscopic Morphology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Lavinia Caba
- Department 8 - Medicine of Mother and Child "Grigore T. Popa", University of Medicine and Pharmacy, Iasi, Romania.
| | - Ioana Mozos
- Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Center for Translational Research and Systems Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.
| | - Dana Stoian
- 2nd Department of Internal Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.
| | - Diter Atasie
- Department of Clinical Medicine, Faculty of Medicine, "Lucian Blaga" University, Sibiu, Romania
| | - Miruna Gug
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Eusebiu Vlad Gorduza
- Department 8 - Medicine of Mother and Child "Grigore T. Popa", University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
7
|
Scheiber AL, Barton DK, Khoury BM, Marini JC, Swiderski DL, Caird MS, Kozloff KM. Sclerostin Antibody-Induced Changes in Bone Mass Are Site Specific in Developing Crania. J Bone Miner Res 2019; 34:2301-2310. [PMID: 31441963 PMCID: PMC7458133 DOI: 10.1002/jbmr.3858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 07/24/2019] [Accepted: 08/14/2019] [Indexed: 01/01/2023]
Abstract
Sclerostin antibody (Scl-Ab) is an anabolic bone agent that has been shown to increase bone mass in clinical trials of adult diseases of low bone mass, such as osteoporosis and osteogenesis imperfecta (OI). Its use to decrease bone fragility in pediatric OI has shown efficacy in several growing mouse models, suggesting translational potential to pediatric disorders of low bone mass. However, the effects of pharmacologic inhibition of sclerostin during periods of rapid growth and development have not yet been described with respect to the cranium, where lifelong deficiency of functioning sclerostin leads to patterns of excessive bone growth, cranial compression, and facial palsy. In the present study, we undertook dimensional and volumetric measurements in the skulls of growing Brtl/+ OI mice treated with Scl-Ab to examine whether therapy-induced phenotypic changes were similar to those observed clinically in patients with sclerosteosis or Van Buchem disorder. Mice treated between 3 and 14 weeks of age with high doses of Scl-Ab show significant calvarial thickening capable of rescuing OI-induced deficiencies in skull thickness. Other changes in cranial morphology, such as lengths and distances between anatomic landmarks, intracranial volume, and suture interdigitation, showed minimal effects of Scl-Ab when compared with growth-induced differences over the treatment duration. Treatment-induced narrowing of foramina was limited to sites of vascular but not neural passage, suggesting patterns of local regulation. Together, these findings reveal a site specificity of Scl-Ab action in the calvaria with no measurable cranial nerve impingement or brainstem compression. This differentiation from the observed outcomes of lifelong sclerostin deficiency complements reports of Scl-Ab treatment efficacy at other skeletal sites with the prospect of minimal cranial secondary complications. © 2019 American Society for Bone and Mineral Research. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Amanda L Scheiber
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - David K Barton
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Basma M Khoury
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Disorders, NIH, Bethesda, MD, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Michelle S Caird
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Ohata Y, Takeyari S, Nakano Y, Kitaoka T, Nakayama H, Bizaoui V, Yamamoto K, Miyata K, Yamamoto K, Fujiwara M, Kubota T, Michigami T, Yamamoto K, Yamamoto T, Namba N, Ebina K, Yoshikawa H, Ozono K. Comprehensive genetic analyses using targeted next-generation sequencing and genotype-phenotype correlations in 53 Japanese patients with osteogenesis imperfecta. Osteoporos Int 2019; 30:2333-2342. [PMID: 31363794 PMCID: PMC7083816 DOI: 10.1007/s00198-019-05076-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022]
Abstract
UNLABELLED To elucidate mutation spectrum and genotype-phenotype correlations in Japanese patients with OI, we conducted comprehensive genetic analyses using NGS, as this had not been analyzed comprehensively in this patient population. Most mutations were located on COL1A1 and COL1A2. Glycine substitutions in COL1A1 resulted in the severe phenotype. INTRODUCTION Most cases of osteogenesis imperfecta (OI) are caused by mutations in COL1A1 or COL1A2, which encode α chains of type I collagen. However, mutations in at least 16 other genes also cause OI. The mutation spectrum in Japanese patients with OI has not been comprehensively analyzed, as it is difficult to identify using classical Sanger sequencing. In this study, we aimed to reveal the mutation spectrum and genotype-phenotype correlations in Japanese patients with OI using next-generation sequencing (NGS). METHODS We designed a capture panel for sequencing 15 candidate OI genes and 19 candidate genes that are associated with bone fragility or Wnt signaling. Using NGS, we examined 53 Japanese patients with OI from unrelated families. RESULTS Pathogenic mutations were detected in 43 out of 53 individuals. All mutations were heterozygous. Among the 43 individuals, 40 variants were identified including 15 novel mutations. We found these mutations in COL1A1 (n = 30, 69.8%), COL1A2 (n = 12, 27.9%), and IFITM5 (n = 1, 2.3%). Patients with glycine substitution on COL1A1 had a higher frequency of fractures and were more severely short-statured. Although no significant genotype-phenotype correlation was observed for bone mineral density, the trabecular bone score was significantly lower in patients with glycine substitutions. CONCLUSION We identified pathogenic mutations in 81% of our Japanese patients with OI. Most mutations were located on COL1A1 and COL1A2. This study revealed that glycine substitutions on COL1A1 resulted in the severe phenotype among Japanese patients with OI.
Collapse
Affiliation(s)
- Y Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - S Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Y Nakano
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - T Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - H Nakayama
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- The Japan Environment and Children's Study, Osaka Unit Center, Suita, Japan
| | - V Bizaoui
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Medical Genetics, Reference Center for Skeletal Dysplasia, Hôpital Necker - Enfants Malades, Paris, France
| | - K Yamamoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - K Miyata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - K Yamamoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Pediatrics, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - M Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| | - T Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - T Michigami
- Department of Bone and Mineral Research, Osaka Women's and Children's Hospital, Izumi, Japan
| | - K Yamamoto
- Department of Pediatric Nephrology and Metabolism, Osaka Women's and Children's Hospital, Izumi, Japan
| | - T Yamamoto
- Department of Pediatrics, Minoh City Hospital, Minoh, Japan
| | - N Namba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization (JCHO), Osaka, Japan
| | - K Ebina
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - H Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - K Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
9
|
Chen A, Fertala A, Abboud J, Wang M, Rivlin M, Beredjiklian PK. The Molecular Basis of Genetic Collagen Disorders and Its Clinical Relevance. J Bone Joint Surg Am 2018; 100:976-986. [PMID: 29870450 DOI: 10.2106/jbjs.17.01136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Antonia Chen
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrzej Fertala
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Joseph Abboud
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mark Wang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael Rivlin
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Pedro K Beredjiklian
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Osteogenesis imperfecta with ectopic mineralizations in dentin and cementum and a COL1A2 mutation. J Hum Genet 2018; 63:811-820. [PMID: 29636545 DOI: 10.1038/s10038-018-0448-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 11/08/2022]
Abstract
We report a Thai father (patient 1) and his daughter (patient 2) affected with osteogenesis imperfecta type IV and dentinogenesis imperfecta. Both were heterozygous for the c.1451G>A (p.Gly484Glu) mutation in COL1A2. The father, a Thai boxer, had very mild osteogenesis imperfecta with no history of low-trauma bone fractures. Scanning electron micrography of the primary teeth with DI of the patient 2, and the primary teeth with DI of another OI patient with OI showed newly recognized dental manifestations of teeth with DI. Normal dentin and cementum might have small areas of ectopic mineralizations. Teeth affected with DI have well-organized ectopic mineralizations in dentin and cementum. The "French-fries-appearance" of the crystals at the cemento-dentinal junction and abnormal cementum have never been reported to be associated with dentinogenesis imperfecta, either isolated or osteogenesis imperfecta-associated. Our study shows for the first time that abnormal collagen fibers can lead to ectopic mineralization in dentin and cementum and abnormal cementum can be a part of osteogenesis imperfecta.
Collapse
|
11
|
Gene expression profiling of bone marrow mesenchymal stem cells from Osteogenesis Imperfecta patients during osteoblast differentiation. Eur J Med Genet 2017; 60:326-334. [DOI: 10.1016/j.ejmg.2017.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/22/2017] [Accepted: 04/05/2017] [Indexed: 12/26/2022]
|
12
|
Andersson K, Dahllöf G, Lindahl K, Kindmark A, Grigelioniene G, Åström E, Malmgren B. Mutations in COL1A1 and COL1A2 and dental aberrations in children and adolescents with osteogenesis imperfecta - A retrospective cohort study. PLoS One 2017; 12:e0176466. [PMID: 28498836 PMCID: PMC5428910 DOI: 10.1371/journal.pone.0176466] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/11/2017] [Indexed: 12/31/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous group of disorders of connective tissue, caused mainly by mutations in the collagen I genes (COL1A1 and COL1A2). Dentinogenesis imperfecta (DGI) and other dental aberrations are common features of OI. We investigated the association between collagen I mutations and DGI, taurodontism, and retention of permanent second molars in a retrospective cohort of 152 unrelated children and adolescents with OI. The clinical examination included radiographic evaluations. Teeth from 81 individuals were available for histopathological evaluation. COL1A1/2 mutations were found in 104 individuals by nucleotide sequencing. DGI was diagnosed clinically and radiographically in 29% of the individuals (44/152) and through isolated histological findings in another 19% (29/152). In the individuals with a COL1A1 mutation, 70% (7/10) of those with a glycine substitution located C-terminal of p.Gly305 exhibited DGI in both dentitions while no individual (0/7) with a mutation N-terminal of this point exhibited DGI in either dentition (p = 0.01). In the individuals with a COL1A2 mutation, 80% (8/10) of those with a glycine substitution located C terminal of p.Gly211 exhibited DGI in both dentitions while no individual (0/5) with a mutation N-terminal of this point (p = 0.007) exhibited DGI in either dentition. DGI was restricted to the deciduous dentition in 20 individuals. Seventeen had missense mutations where glycine to serine was the most prevalent substitution (53%). Taurodontism occurred in 18% and retention of permanent second molars in 31% of the adolescents. Dental aberrations are strongly associated with qualitatively changed collagen I. The varying expressivity of DGI is related to the location of the collagen I mutation. Genotype information may be helpful in identifying individuals with OI who have an increased risk of dental aberrations.
Collapse
Affiliation(s)
- Kristofer Andersson
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Göran Dahllöf
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
- Center for Pediatric Oral Health Research, Stockholm, Sweden
| | - Katarina Lindahl
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Andreas Kindmark
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Giedre Grigelioniene
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Eva Åström
- Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Neurology and Musculoskeletal disorders and Home care, Astrid Lindgren Children's Hospital at Karolinska University Hospital, Stockholm, Sweden
| | - Barbro Malmgren
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
13
|
Jeanne M, Gould DB. Genotype-phenotype correlations in pathology caused by collagen type IV alpha 1 and 2 mutations. Matrix Biol 2016; 57-58:29-44. [PMID: 27794444 DOI: 10.1016/j.matbio.2016.10.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
COL4A1 and COL4A2 are extracellular matrix proteins that form heterotrimers and are present in nearly all basement membranes in every organ. In the past decade, COL4A1 and COL4A2 mutations have been identified to cause a multi-system disorder for which penetrance and severity of constituent phenotypes can greatly vary. Here, we compare the outcomes of more than 100 mutations identified in patients and data from a murine allelic series to explore the presence of genotype-phenotype correlations - many of which are shared among other types of collagen. We find that there is a frequency bias for COL4A1 over COL4A2 mutations and that glycine (Gly) substitutions within the triple helical domain are the most common class of mutations. Glycine is most often replaced by a charged amino acid, however the position of the mutation, and not the properties of the substituting amino acid, appears to have a greater influence on disease severity. Moreover, the impact of position is not straightforward. Observations from a murine allelic series suggest that mutations in the NC1 domain may result in relatively mild phenotypes via a 'quantitative' mechanism similar to other types of collagens, however, this effect was not apparent in human reports. Importantly, other position-dependent effects had differential impacts depending on the phenotype of interest. For example, the severity of cerebrovascular disease correlated with an amino-to-carboxy severity gradient for triple-helical glycine substitutions whereas the penetrance and severity of myopathy and nephropathy appear to involve a functional sub-domain(s). Greater understanding of genotype-phenotype correlations and the interaction of consequences of different mutations will be important for patient prognosis and care and for developing mechanism-based therapeutics to treat individual components of this emerging syndrome.
Collapse
Affiliation(s)
- Marion Jeanne
- Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Douglas B Gould
- Department of Ophthalmology, Department of Anatomy, Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA 94143, USA.
| |
Collapse
|
14
|
Enderli TA, Burtch SR, Templet JN, Carriero A. Animal models of osteogenesis imperfecta: applications in clinical research. Orthop Res Rev 2016; 8:41-55. [PMID: 30774469 PMCID: PMC6209373 DOI: 10.2147/orr.s85198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteogenesis imperfecta (OI), commonly known as brittle bone disease, is a genetic disease characterized by extreme bone fragility and consequent skeletal deformities. This connective tissue disorder is caused by mutations in the quality and quantity of the collagen that in turn affect the overall mechanical integrity of the bone, increasing its vulnerability to fracture. Animal models of the disease have played a critical role in the understanding of the pathology and causes of OI and in the investigation of a broad range of clinical therapies for the disease. Currently, at least 20 animal models have been officially recognized to represent the phenotype and biochemistry of the 17 different types of OI in humans. These include mice, dogs, and fish. Here, we describe each of the animal models and the type of OI they represent, and present their application in clinical research for treatments of OI, such as drug therapies (ie, bisphosphonates and sclerostin) and mechanical (ie, vibrational) loading. In the future, different dosages and lengths of treatment need to be further investigated on different animal models of OI using potentially promising treatments, such as cellular and chaperone therapies. A combination of therapies may also offer a viable treatment regime to improve bone quality and reduce fragility in animals before being introduced into clinical trials for OI patients.
Collapse
Affiliation(s)
- Tanya A Enderli
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA,
| | - Stephanie R Burtch
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA,
| | - Jara N Templet
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA,
| | - Alessandra Carriero
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA,
| |
Collapse
|
15
|
Schleit J, Bailey SS, Tran T, Chen D, Stowers S, Schwarze U, Byers PH. Molecular Outcome, Prediction, and Clinical Consequences of Splice Variants in COL1A1, Which Encodes the proα1(I) Chains of Type I Procollagen. Hum Mutat 2016; 36:728-39. [PMID: 25963598 DOI: 10.1002/humu.22812] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/28/2015] [Indexed: 11/09/2022]
Abstract
Approximately 10%-20% of germline pathogenic variants alter mRNA splicing, with phenotypes often dependent on the stability of the mRNA produced by the mutant allele. To better understand the relationships between genotype, mRNA splicing, and phenotype, we examined clinical and molecular data from 243 probands with osteogenesis imperfecta (OI) representing 145 unique splicing variants within the type I procollagen gene, COL1A1. All individuals with IVSX-1G>A mutations had OI type I because the substitution shifted the splice acceptor site 1 nt downstream and destabilized the mRNA. OI phenotypes were not consistent for any other splice variant identified. We sequenced all cDNA species from cultured dermal fibroblasts from 40 individuals to identify splice outcome and compared those results to splice predictions from Human Splice Finder (HSF), Spliceport (SP), and Automatic Splice Site and Exon Definition Analyses (ASSEDA). Software-based splice predictions were correct in 42%, 55%, and 74% instances for HSF, SP, and ASSEDA, respectively. As molecular diagnostics move increasingly to DNA sequence analysis, the need to understand the effects of splice site variants will increase. These data demonstrate that caution must be exercised when using splice prediction software to predict splice outcome.
Collapse
Affiliation(s)
- Jennifer Schleit
- Departments of Pathology and Medicine (Medical Genetics), University of Washington, Seattle, Washington
| | - Samuel S Bailey
- Departments of Pathology and Medicine (Medical Genetics), University of Washington, Seattle, Washington
| | - Thao Tran
- Departments of Pathology and Medicine (Medical Genetics), University of Washington, Seattle, Washington
| | - Diana Chen
- Departments of Pathology and Medicine (Medical Genetics), University of Washington, Seattle, Washington
| | - Susan Stowers
- Departments of Pathology and Medicine (Medical Genetics), University of Washington, Seattle, Washington
| | - Ulrike Schwarze
- Departments of Pathology and Medicine (Medical Genetics), University of Washington, Seattle, Washington
| | - Peter H Byers
- Departments of Pathology and Medicine (Medical Genetics), University of Washington, Seattle, Washington
| |
Collapse
|
16
|
Westgren M, Götherström C. Stem cell transplantation before birth - a realistic option for treatment of osteogenesis imperfecta? Prenat Diagn 2015; 35:827-32. [PMID: 25962526 DOI: 10.1002/pd.4611] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 01/17/2023]
Abstract
Osteogenesis imperfecta (OI) is characterized by severe bone deformities, growth retardation and bones that break easily, often from little or no apparent cause. OI is a genetic disorder primarily with defective type I collagen with a wide spectrum of clinical expression. In the more severe cases, it can be diagnosed before birth. Transplantation of mesenchymal stem cells (MSC) has the potential to improve the bone structure and stability, growth and fracture healing. Prenatal and postnatal cell transplantation has been investigated in preclinical and clinical studies of OI and suggests that this procedure is safe and has positive effects. Cell transplantation resulted in improved linear growth, mobility and reduced fracture incidence. However, the effect is transient and for this reason re-transplantation may be needed. So far there is limited experience in this area, and proper studies are required to accurately determine if MSC transplantation is of clinical benefit in the treatment of OI. In this review, we summarize what is currently known in this field.
Collapse
Affiliation(s)
- Magnus Westgren
- Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden.,Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Götherström
- Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden.,Center for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Microstructure and compressive mechanical properties of cortical bone in children with osteogenesis imperfecta treated with bisphosphonates compared with healthy children. J Mech Behav Biomed Mater 2015; 46:261-70. [PMID: 25828157 DOI: 10.1016/j.jmbbm.2014.12.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/12/2014] [Accepted: 12/18/2014] [Indexed: 01/17/2023]
Abstract
Osteogenesis imperfecta (OI) is a genetic disorder characterized by a change in bone tissue quality, but little data are available to describe the factors involved at the macroscopic scale. To better understand the effect of microstructure alterations on the mechanical properties at the sample scale, we studied the structural and mechanical properties of six cortical bone samples from children with OI treated with bisphosphonates and compared them to the properties of three controls. Scanning electron microscopy, high resolution computed tomography and compression testing were used to assess these properties. More resorption cavities and a higher osteocyte lacunar density were observed in OI bone compared with controls. Moreover, a higher porosity was measured for OI bones along with lower macroscopic Young's modulus, yield stress and ultimate stress. The microstructure was impaired in OI bones; the higher porosity and osteocyte lacunar density negatively impacted the mechanical properties and made the bone more prone to fracture.
Collapse
|
18
|
Chan JKY, Götherström C. Prenatal transplantation of mesenchymal stem cells to treat osteogenesis imperfecta. Front Pharmacol 2014; 5:223. [PMID: 25346689 PMCID: PMC4191163 DOI: 10.3389/fphar.2014.00223] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/16/2014] [Indexed: 12/28/2022] Open
Abstract
Osteogenesis imperfecta (OI) can be a severe disorder that can be diagnosed before birth. Transplantation of mesenchymal stem cells (MSC) has the potential to improve the bone structure, growth, and fracture healing. In this review, we give an introduction to OI and MSC, and the basis for pre- and postnatal transplantation in OI. We also summarize the two patients with OI who have received pre- and postnatal transplantation of MSC. The findings suggest that prenatal transplantation of allogeneic MSC in OI is safe. The cell therapy is of likely clinical benefit with improved linear growth, mobility, and reduced fracture incidence. Unfortunately, the effect is transient. For this reason, postnatal booster infusions using same-donor MSC have been performed with clinical benefit, and without any adverse events. So far there is limited experience in this specific field and proper studies are required to accurately conclude on clinical benefits of MSC transplantation to treat OI.
Collapse
Affiliation(s)
- Jerry K Y Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine and National University of Singapore , Singapore, Singapore ; Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore , Singapore ; Cancer and Stem Cell Biology, Duke-National University of Singapore Graduate Medical School, Singapore , Singapore
| | - Cecilia Götherström
- Division for Obstetrics and Gynecology, Department of Clinical Science Intervention and Technology, Karolinska Institutet , Stockholm, Sweden ; Center for Hematology and Regenerative Medicine, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
19
|
Mannelli G, Deganello A, Laganà MR, Gallo O. Spontaneous internal carotid artery rupture during neck dissection in osteogenesis imperfecta patient. Auris Nasus Larynx 2014; 42:56-8. [PMID: 25246380 DOI: 10.1016/j.anl.2014.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/12/2014] [Accepted: 05/24/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Several connective tissue disorders are associated with vascular wall abnormalities, including spontaneous dissection of the cervical arteries. Osteogenesis imperfecta (OI) is a hereditary disorder, with rare neurovascular complications, which potentially lead to life-threatening events. METHODS We presented a case of spontaneous internal carotid artery (ICA) rupture that occurred in a 52-year-old-woman, suffering from OI type I, and who underwent a bilateral modified radical neck dissection (mRND) plus total thyroidectomy for a T4aN1b thyroid cancer. During mRND, an ICA's spontaneous rupture occurred. RESULTS Histopathologic report suggested a structural defect of the arterial wall without cancer infiltration. The patient did not experience any neurologic complications. DISCUSSION Head and neck surgeons have to be aware about early clinical recognition of possible cervical vascular abnormalities, in patients with connective tissue disorders, potentially responsible for dramatic vascular rupture during cervical surgical procedures.
Collapse
Affiliation(s)
- Giuditta Mannelli
- First Clinic of Otolaryngology, Department of Surgery and Translational Medicine, University of Florence, Via Largo Brambilla 3, 50134 Florence, Italy.
| | - Alberto Deganello
- First Clinic of Otolaryngology, Department of Surgery and Translational Medicine, University of Florence, Via Largo Brambilla 3, 50134 Florence, Italy
| | - Maria Rosa Laganà
- First Clinic of Otolaryngology, Department of Surgery and Translational Medicine, University of Florence, Via Largo Brambilla 3, 50134 Florence, Italy
| | - Oreste Gallo
- First Clinic of Otolaryngology, Department of Surgery and Translational Medicine, University of Florence, Via Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
20
|
Imbert L, Aurégan JC, Pernelle K, Hoc T. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level. Bone 2014; 65:18-24. [PMID: 24803077 DOI: 10.1016/j.bone.2014.04.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/18/2014] [Accepted: 04/25/2014] [Indexed: 12/12/2022]
Abstract
Osteogenesis imperfecta (OI) is a genetic disorder characterized by an increase in bone fragility on the macroscopic scale, but few data are available to describe the mechanisms involved on the tissue scale and the possible correlations between these scales. To better understand the effects of OI on the properties of human bone, we studied the mechanical and chemical properties of eight bone samples from children suffering from OI and compared them to the properties of three controls. High-resolution computed tomography, nanoindentation and Raman microspectroscopy were used to assess those properties. A higher tissue mineral density was found for OI bone (1.131 gHA/cm3 vs. 1.032 gHA/cm3, p=0.032), along with a lower Young's modulus (17.6 GPa vs. 20.5 GPa, p=0.024). Obviously, the mutation-induced collagen defects alter the collagen matrix, thereby affecting the mineralization. Raman spectroscopy showed that the mineral-to-matrix ratio was higher in the OI samples, while the crystallinity was lower, suggesting that the mineral crystals were smaller but more abundant in the case of OI. This change in crystal size, distribution and composition contributes to the observed decrease in mechanical strength.
Collapse
Affiliation(s)
- Laurianne Imbert
- LTDS UMR CNRS 5513, Ecole Centrale Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France
| | - Jean-Charles Aurégan
- Department of Pediatric Orthopedics, Necker - Enfants Malades Hospital, AP-HP, Paris Descartes University, 145 rue de Sèvres, 75014 Paris, France; B2OA UMR CNRS 7052, University Paris-Diderot, 10 avenue de Verdun, 75010 Paris, France
| | - Kélig Pernelle
- LTDS UMR CNRS 5513, Ecole Centrale Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France
| | - Thierry Hoc
- LTDS UMR CNRS 5513, Ecole Centrale Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France.
| |
Collapse
|
21
|
Skeletal diseases caused by mutations that affect collagen structure and function. Int J Biochem Cell Biol 2013; 45:1556-67. [DOI: 10.1016/j.biocel.2013.05.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/15/2022]
|
22
|
Jensen DA, Steplewski A, Gawron K, Fertala A. Persistence of intracellular and extracellular changes after incompletely suppressing expression of the R789C (p.R989C) and R992C (p.R1192C) collagen II mutants. Hum Mutat 2011; 32:794-805. [PMID: 21472893 DOI: 10.1002/humu.21506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/23/2011] [Indexed: 11/06/2022]
Abstract
Mutations in COL2A1 produce a spectrum of disorders whose hallmark feature is alterations in skeletal development. Attempts to counteract the effects of collagen mutations at the molecular level have been relatively ineffective due to the inability to selectively suppress a mutant allele, and failure to deliver a sufficient number of cells expressing wild-type collagen. Moreover, these approaches are hampered because the minimal therapeutic conditions that would allow extracellular matrix remodeling and recovery of cells from stress are not known. Here, we employed a tetracycline-inducible system for expressing the R789C or R992C collagen II mutants, allowing us to decrease the production of mutant proteins by 25, 50, 75, or 100% with respect to their initial production. Through analysis of intracellular and extracellular parameters we have shown that affected cell/matrix systems are able to recover from mutation-induced aberrations only when 100% expression of mutant collagens is shut off, but not if the expression of small amounts of mutant molecules persists in the system. Our data suggest that efficient remodeling of tissues affected by the presence of thermolabile collagen mutants may depend on their complete elimination rather than on partial reduction.
Collapse
Affiliation(s)
- Deborah A Jensen
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
23
|
Parsons CJ, Stefanovic B, Seki E, Aoyama T, Latour AM, Marzluff WF, Rippe RA, Brenner DA. Mutation of the 5'-untranslated region stem-loop structure inhibits α1(I) collagen expression in vivo. J Biol Chem 2011; 286:8609-8619. [PMID: 21193410 PMCID: PMC3048743 DOI: 10.1074/jbc.m110.189118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/07/2010] [Indexed: 01/22/2023] Open
Abstract
Type I collagen is a heterotrimeric extracellular matrix protein consisting of two α1(I) chains and one α2(I) chain. During liver fibrosis, activated hepatic stellate cells (HSCs) are the major source of the type I collagen that accumulates in the damaged tissue. Expression of α1(I) and α2(I) collagen mRNA is increased 60-fold compared with quiescent stellate cells and is due predominantly to post-transcriptional message regulation. Specifically, a stem-loop structure in the 5'-untranslated region of α1(I) collagen mRNA may regulate mRNA expression in activated HSCs through its interaction with stem-loop binding proteins. The stem-loop may also be necessary for efficient production and folding of the type I collagen heterotrimer. To assess the role of the stem-loop in type I collagen expression in vivo, we generated a knock-in mouse harboring a mutation that abolished the stem-loop structure. Heterozygous and homozygous knock-in mice exhibited a normal phenotype. However, steady-state levels of α1(I) collagen mRNA decreased significantly in homozygous mutant MEFs as well as HSCs; intracellular and secreted type I collagen protein levels also decreased. Homozygous mutant mice developed less liver fibrosis. These results confirm an important role of the 5' stem-loop in regulating type I collagen mRNA and protein expression and provide a mouse model for further study of collagen-associated diseases.
Collapse
Affiliation(s)
| | - Branko Stefanovic
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300, and
| | - Ekihiro Seki
- the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093
| | - Tomonori Aoyama
- the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093
| | | | | | - Richard A Rippe
- the Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7080
| | - David A Brenner
- the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093.
| |
Collapse
|
24
|
Yang Z, Ke ZF, Zeng C, Wang Z, Shi HJ, Wang LT. Mutation characteristics in type I collagen genes in Chinese patients with osteogenesis imperfecta. GENETICS AND MOLECULAR RESEARCH 2011; 10:177-85. [PMID: 21341209 DOI: 10.4238/vol10-1gmr984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Osteogenesis imperfecta is normally caused by an autosomal dominant mutation in the type I collagen genes COL1A1 and COL1A2. The severity of osteogenesis imperfecta varies, ranging from perinatal lethality to a very mild phenotype. Although there have been many reports of COL1A1 and COL1A2 mutations, few cases have been reported in Chinese people. We report on five unrelated families and three sporadic cases. The mutations were detected by PCR and direct sequencing. Four mutations in COL1A1 and one in COL1A2 were found, among which three mutations were previously unreported. The mutation rates of G>C at base 128 in intron 31 of the COL1A1 gene and G>A at base 162 in intron 30 of the COL1A2 gene were higher than normal. The patients' clinical characteristics with the same mutation were variable even in the same family. We conclude that mutations in COL1A1 and COL1A2 also have an important role in osteogenesis imperfecta in the Chinese population. As the Han Chinese people account for a quarter of the world's population, these new data contribute to the type I collagen mutation map.
Collapse
Affiliation(s)
- Z Yang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Schulze J, Seitz S, Saito H, Schneebauer M, Marshall RP, Baranowsky A, Busse B, Schilling AF, Friedrich FW, Albers J, Spiro AS, Zustin J, Streichert T, Ellwanger K, Niehrs C, Amling M, Baron R, Schinke T. Negative regulation of bone formation by the transmembrane Wnt antagonist Kremen-2. PLoS One 2010; 5:e10309. [PMID: 20436912 PMCID: PMC2860505 DOI: 10.1371/journal.pone.0010309] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 03/24/2010] [Indexed: 12/17/2022] Open
Abstract
Wnt signalling is a key pathway controlling bone formation in mice and humans. One of the regulators of this pathway is Dkk1, which antagonizes Wnt signalling through the formation of a ternary complex with the transmembrane receptors Krm1/2 and Lrp5/6, thereby blocking the induction of Wnt signalling by the latter ones. Here we show that Kremen-2 (Krm2) is predominantly expressed in bone, and that its osteoblast-specific over-expression in transgenic mice (Col1a1-Krm2) results in severe osteoporosis. Histomorphometric analysis revealed that osteoblast maturation and bone formation are disturbed in Col1a1-Krm2 mice, whereas bone resorption is increased. In line with these findings, primary osteoblasts derived from Col1a1-Krm2 mice display a cell-autonomous differentiation defect, impaired canonical Wnt signalling and decreased production of the osteoclast inhibitory factor Opg. To determine whether the observed effects of Krm2 on bone remodeling are physiologically relevant, we analyzed the skeletal phenotype of 24 weeks old Krm2-deficient mice and observed high bone mass caused by a more than three-fold increase in bone formation. Taken together, these data identify Krm2 as a regulator of bone remodeling and raise the possibility that antagonizing KRM2 might prove beneficial in patients with bone loss disorders.
Collapse
Affiliation(s)
- Jochen Schulze
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Sebastian Seitz
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Hiroaki Saito
- Harvard School of Dental Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Schneebauer
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Robert P. Marshall
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Bjoern Busse
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Arndt F. Schilling
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Felix W. Friedrich
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Joachim Albers
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Alexander S. Spiro
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Jozef Zustin
- Institute of Pathology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Thomas Streichert
- Department of Clinical Chemistry, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kristina Ellwanger
- Division of Molecular Embryology, Research Program Cell and Tumor Biology of the German Cancer Research Center and the Center for Molecular Biology of the University of Heidelberg (DKFZ-ZMBH) Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, Research Program Cell and Tumor Biology of the German Cancer Research Center and the Center for Molecular Biology of the University of Heidelberg (DKFZ-ZMBH) Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Michael Amling
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Roland Baron
- Harvard School of Dental Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thorsten Schinke
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
26
|
Niyibizi C, Li F. Potential implications of cell therapy for osteogenesis imperfecta. INTERNATIONAL JOURNAL OF CLINICAL RHEUMATOLOGY 2009; 4:57-66. [PMID: 20490372 PMCID: PMC2873227 DOI: 10.2217/17584272.4.1.57] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Osteogenesis imperfecta (OI) is a brittle-bone disease whose hallmark is bone fragility. Since the disease is genetic, there is currently no available cure. Several pharmacological agents have been tried with not much success, except the recent use of bisphosphonates. Stem cells have been suggested as an alternative OI treatment, but many hurdles remain before this technology can be applied for treating patients with OI. This review summarizes what is known at present regarding the application of stem cells to treat OI using animal models, clinical trials using mesenchymal stem cells to treat patients with OI and the knowledge gained from the clinical trials. Application of gene therapy in combination with stem cells is also discussed. The hurdles to be overcome to bring stem cells close to the clinic and future perspectives are discussed.
Collapse
Affiliation(s)
- Christopher Niyibizi
- Author for correspondence: Pennsylvania State University College of Medicine, Associate professor of Orthopaedics and Rehabilitation, Biochemistry and Molecular Biology and Anatomy, H089, 500 University Drive, Hershey, PA 17033, USA, Tel.: +1 717 531 5649, Fax: +1 717 531 7583,
| | | |
Collapse
|
27
|
Abstract
Osteogenesis Imperfecta is a heritable disorder characterized by bone fragility and low bone mass, with a wide spectrum of clinical expression. This review gives an update on its classification, the recent developments in the understanding of its pathophysiological mechanisms, and the current status of bisphosphonate therapy. Other therapeutic approaches and future directions of research are briefly discussed.
Collapse
Affiliation(s)
- Francis H Glorieux
- Genetics Unit, Shriners Hospital for Children, 1529 Cedar Avenue, McGill University, Montréal, Québec, Canada H3G 1A6.
| |
Collapse
|
28
|
Samatham R, Jacques SL, Campagnola P. Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM). JOURNAL OF BIOMEDICAL OPTICS 2008; 13:041309. [PMID: 19021317 DOI: 10.1117/1.2953195] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Separation of the two optical scattering properties, the scattering coefficient (mu(s)) and the anisotropy of scattering (g), has been experimentally difficult in tissues. A new method for measuring these properties in tissues uses reflectance-mode confocal scanning laser microscopy (rCSLM). Experimentally, the focus at depth z is scanned down into the tissue. The measured data is the exponential decay of the confocal reflectance signal as a function of the depth of the focal volume, R(z)=rho exp(-muz), summarized as a local reflectivity (rho) and an exponential decay constant (mu). The rho and mu map uniquely into the mu(s) and g of the tissue. The method was applied to three mouse skin tissues: one wild-type (wt/wt), one heterozygous mutant (oim/wt), and one homozygous mutant (oim/oim), where oim indicates the mutation for osteogenesis imperfecta, a bone disease that affects type I collagen structure. The mutation affects the collagen fibrils of the skin and the assembly of collagen fiber bundles. The anisotropy of scattering (g) at 488 nm wavelength decreased from 0.81 to 0.46 with the added mutant allele. There was a slight increase in the scattering coefficient (mu(s)) with the mutation from 74 to 94 cm(-1). The decrease in g (toward more isotropic scattering) is likely due to the failure of the mutant fibrils to assemble into the larger collagen fiber bundles that yield forward scattering.
Collapse
Affiliation(s)
- Ravikant Samatham
- Oregon Health & Science University, Department of Biomedical Engineering, 3303 SW Bond Avenue, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
29
|
Roschger P, Fratzl-Zelman N, Misof BM, Glorieux FH, Klaushofer K, Rauch F. Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcif Tissue Int 2008; 82:263-70. [PMID: 18311573 DOI: 10.1007/s00223-008-9113-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
Osteogenesis imperfecta type I (OI-I) represents the mildest form of OI. The collagen I mutations underlying the disorder can be classified as quantitative mutations that lead to formation of a decreased amount of normal collagen or qualitative mutations where structurally aberrant collagen chains are generated. However, the phenotypic consequences of a particular mutation are not well understood. Transiliac bone biopsies from 19 young OI-I patients (age range 2.0-14.1 years) and 19 age-matched controls were used to assess bone histomorphometric parameters and bone mineralization density distribution, measured by quantitative backscattered electron imaging. Thirteen of the OI-I patients were affected by quantitative and six patients by qualitative mutations. Compared to age-matched controls, iliac bone samples in the OI group were smaller and had thinner cortices and less trabecular bone. Resorption parameters were similar between groups, whereas surface-based parameters of bone formation were considerably higher in OI patients than in controls with the exception of bone formation rate per osteoblast surface, which was reduced in OI. Backscattered electron imaging revealed a higher mean mineralization density (+7%, P < 0.001) in OI-I patients than in age-matched controls, which was accompanied by a reduced heterogeneity of mineralization (-13%, P < 0.001). However, the increase of mean degree of mineralization in OI did not exceed the average level of normal adult bone. No differences were found between the two mutation types. In summary, the tissue- and material-level abnormalities found in OI-I (low bone mass and increased mineral content of the matrix) seem to be independent of the collagen mutations.
Collapse
Affiliation(s)
- Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 4th Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
30
|
Perco P, Wilflingseder J, Bernthaler A, Wiesinger M, Rudnicki M, Wimmer B, Mayer B, Oberbauer R. Biomarker candidates for cardiovascular disease and bone metabolism disorders in chronic kidney disease: a systems biology perspective. J Cell Mol Med 2008; 12:1177-87. [PMID: 18266955 PMCID: PMC3865659 DOI: 10.1111/j.1582-4934.2008.00280.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Patients with chronic kidney disease (CKD) show a panel of partially de-regulated serum markers indicative for bone metabolism disorders and cardiovascular diseases (CVDs). This review provides an overview of currently reported biomarker candidates at the interface of kidney disease, bone metabolism disorders and CVDs, and gives details on their functional interplay on the level of protein–protein interaction data. We retrieved 13 publications from 1999 to 2006 reporting 31 genes associated with CVDs, and 46 genes associated with bone metabolism disorders in patients with CKD. We identified these genes to be functionally involved in signal transduction processes, cell communication, immunity and defence, as well as skeletal development. On the basis of the given set of 77 genes further 276 interacting proteins were identified using reference data on known protein interactions. Their functional interplay was estimated by linking properties reflected by gene expression data characterizing CKD, gene ontology terms as provided by the gene ontology consortium and transcription factor binding site profiles. Highly connected sub-networks of proteins associated with CKD, CVDs or bone metabolism disorders were detected involving proteins like collagens (COL1A1, COL1A2), fibronectin, transforming growth factor-β1, or components of fibrinogen (FG-α, FG-β, FG-γ). A systems biology approach provides a methodological framework for linking singular biomarker candidates towards deriving functional dependencies among clinically interlinked diseases.
Collapse
Affiliation(s)
- Paul Perco
- Medical University of Vienna, Währinger Gürtel, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Makareeva E, Mertz EL, Kuznetsova NV, Sutter MB, DeRidder AM, Cabral WA, Barnes AM, McBride DJ, Marini JC, Leikin S. Structural heterogeneity of type I collagen triple helix and its role in osteogenesis imperfecta. J Biol Chem 2007; 283:4787-98. [PMID: 18073209 DOI: 10.1074/jbc.m705773200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We investigated regions of different helical stability within human type I collagen and discussed their role in intermolecular interactions and osteogenesis imperfecta (OI). By differential scanning calorimetry and circular dichroism, we measured and mapped changes in the collagen melting temperature (DeltaTm) for 41 different Gly substitutions from 47 OI patients. In contrast to peptides, we found no correlations of DeltaTm with the identity of the substituting residue. Instead, we observed regular variations in DeltaTm with the substitution location in different triple helix regions. To relate the DeltaTm map to peptide-based stability predictions, we extracted the activation energy of local helix unfolding (DeltaG) from the reported peptide data. We constructed the DeltaG map and tested it by measuring the H-D exchange rate for glycine NH residues involved in interchain hydrogen bonds. Based on the DeltaTm and DeltaG maps, we delineated regional variations in the collagen triple helix stability. Two large, flexible regions deduced from the DeltaTm map aligned with the regions important for collagen fibril assembly and ligand binding. One of these regions also aligned with a lethal region for Gly substitutions in the alpha1(I) chain.
Collapse
Affiliation(s)
- Elena Makareeva
- Section on Physical Biochemistry, Bone and Extracellular Matrix Branch, NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Forlino A, Tani C, Rossi A, Lupi A, Campari E, Gualeni B, Bianchi L, Armini A, Cetta G, Bini L, Marini JC. Differential expression of both extracellular and intracellular proteins is involved in the lethal or nonlethal phenotypic variation of BrtlIV, a murine model for osteogenesis imperfecta. Proteomics 2007; 7:1877-91. [PMID: 17520686 DOI: 10.1002/pmic.200600919] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study used proteomic and transcriptomic techniques to understand the molecular basis of the phenotypic variability in the bone disorder osteogenesis imperfecta (OI). Calvarial bone mRNA expression was evaluated by microarray, real-time, and comparative RT-PCR and the bone proteome profile was analyzed by 2-DE, MS, and immunoblotting in the OI murine model BrtlIV, which has either a moderate or a lethal OI outcome. Differential expression analysis showed significant changes for eight proteins. The expression of the ER stress-related protein Gadd153 was increased in lethal mice, whereas expression of the chaperone alphaB crystallin was increased in nonlethal mice, suggesting that the intracellular machinery is involved in the modulation of the OI phenotype. Furthermore, in lethal BrtlIV, the increased expression of the cartilaginous proteins Prelp, Bmp6, and Bmp7 and the lower expression of the bone matrix proteins matrilin 4, microfibril-associated glycoprotein 2, and thrombospondin 3 revealed that both a delay in skeletal development and an alteration in extracellular matrix composition influence OI outcomes. Differentially expressed proteins identified in this model offer a starting point for elucidating the molecular basis of phenotypic variability, a characteristic common to many genetic disorders. The first reference 2-DE map for murine calvarial tissue is also reported.
Collapse
Affiliation(s)
- Antonella Forlino
- Department of Biochemistry "A. Castellani", Section of Medicine and Pharmacy, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, Hyland JC, Körkkö J, Prockop DJ, De Paepe A, Coucke P, Symoens S, Glorieux FH, Roughley PJ, Lund AM, Kuurila-Svahn K, Hartikka H, Cohn DH, Krakow D, Mottes M, Schwarze U, Chen D, Yang K, Kuslich C, Troendle J, Dalgleish R, Byers PH. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat 2007; 28:209-21. [PMID: 17078022 PMCID: PMC4144349 DOI: 10.1002/humu.20429] [Citation(s) in RCA: 518] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Osteogenesis imperfecta (OI) is a generalized disorder of connective tissue characterized by fragile bones and easy susceptibility to fracture. Most cases of OI are caused by mutations in type I collagen. We have identified and assembled structural mutations in type I collagen genes (COL1A1 and COL1A2, encoding the proalpha1(I) and proalpha2(I) chains, respectively) that result in OI. Quantitative defects causing type I OI were not included. Of these 832 independent mutations, 682 result in substitution for glycine residues in the triple helical domain of the encoded protein and 150 alter splice sites. Distinct genotype-phenotype relationships emerge for each chain. One-third of the mutations that result in glycine substitutions in alpha1(I) are lethal, especially when the substituting residues are charged or have a branched side chain. Substitutions in the first 200 residues are nonlethal and have variable outcome thereafter, unrelated to folding or helix stability domains. Two exclusively lethal regions (helix positions 691-823 and 910-964) align with major ligand binding regions (MLBRs), suggesting crucial interactions of collagen monomers or fibrils with integrins, matrix metalloproteinases (MMPs), fibronectin, and cartilage oligomeric matrix protein (COMP). Mutations in COL1A2 are predominantly nonlethal (80%). Lethal substitutions are located in eight regularly spaced clusters along the chain, supporting a regional model. The lethal regions align with proteoglycan binding sites along the fibril, suggesting a role in fibril-matrix interactions. Recurrences at the same site in alpha2(I) are generally concordant for outcome, unlike alpha1(I). Splice site mutations comprise 20% of helical mutations identified in OI patients, and may lead to exon skipping, intron inclusion, or the activation of cryptic splice sites. Splice site mutations in COL1A1 are rarely lethal; they often lead to frameshifts and the mild type I phenotype. In alpha2(I), lethal exon skipping events are located in the carboxyl half of the chain. Our data on genotype-phenotype relationships indicate that the two collagen chains play very different roles in matrix integrity and that phenotype depends on intracellular and extracellular events.
Collapse
Affiliation(s)
- Joan C Marini
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstracts of the XXVII Italian Society for the Study of Connective Tissues (SISC) Meeting, Bologna, Italy, 8-10 November 2007. Connect Tissue Res 2007; 48:338-63. [PMID: 18075821 DOI: 10.1080/03008200701726970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
35
|
Mauney JR, Volloch V, Kaplan DL. Role of adult mesenchymal stem cells in bone tissue engineering applications: current status and future prospects. ACTA ACUST UNITED AC 2006; 11:787-802. [PMID: 15998219 DOI: 10.1089/ten.2005.11.787] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) have been demonstrated as an attractive cell source for tissue-engineering applications because of their ability to be easily isolated and expanded from adult bone marrow aspirates and their versatility for pluripotent differentiation into mesenchymal tissues. This review highlights advances and progress in bone reconstruction techniques for both the repair of site-specific bone defects and the attenuation of musculoskeletal disease symptoms associated with osteoporosis and osteogenesis imperfecta. Despite the enormous potential benefits of MSCs within these approaches, conventional tissue culture methods limit the clinical utility of these cells because of the gradual loss of both their proliferative and differentiation potential during ex vivo expansion. Novel strategies to overcome these limitations are discussed including cultivation in the presence of basic fibroblastic growth factor 2, induction of ectopotic telomerase expression, and ex vivo expansion on various collagenous biomaterials. In addition, this review also outlines mechanistic theories on the potential role of MSC-extracellular matrix interactions in mediating the retention of MSC proliferative and differentiation capacity after ex vivo expansion on collagenous biomaterials.
Collapse
Affiliation(s)
- Joshua R Mauney
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | |
Collapse
|
36
|
Pochampally RR, Horwitz EM, DiGirolamo CM, Stokes DS, Prockop DJ. Correction of a mineralization defect by overexpression of a wild-type cDNA for COL1A1 in marrow stromal cells (MSCs) from a patient with osteogenesis imperfecta: a strategy for rescuing mutations that produce dominant-negative protein defects. Gene Ther 2005; 12:1119-25. [PMID: 15815702 DOI: 10.1038/sj.gt.3302514] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gene therapy for dominant-negative disorders presents a more difficult challenge than gene therapy for recessive disorders, since even partial replacement of a protein for a recessive disorder can reverse symptoms. Osteogenesis imperfecta (OI) has frequently served as a model disorder for dominant-negative defects of structural proteins. The disease is caused by mutations in type I collagen (COL1A1), the major structural component of bone, skin and other connective tissues. The severity of the phenotype is largely dependent on the ratio of normal to mutant type I procollagen synthesized by cells. Recently, attempts have been made to develop strategies for cell and gene therapies using the adult stem cells from bone marrow referred to as mesenchymal stem cells or marrow stromal cells (MSCs). In this study, we used MSCs from a patient with type III OI who was heterozygous for an IVS 41A+4C mutation in COL1A1. A hybrid genomic / cDNA construct of COL1A1 was transfected into the MSCs and the transfectants were expanded over a 200-fold. Transfected MSCs showed increased expression of the wild-type mRNA and protein. In vitro assays demonstrated that the transfected cells more efficiently differentiated into mineralizing cells. The results indicated that it is possible to overexpress COL1A1 cDNA in OI MSCs and thereby to correct partially the dominant-negative protein defect.
Collapse
Affiliation(s)
- R R Pochampally
- Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
37
|
Kuznetsova NV, Forlino A, Cabral WA, Marini JC, Leikin S. Structure, stability and interactions of type I collagen with GLY349-CYS substitution in alpha 1(I) chain in a murine Osteogenesis Imperfecta model. Matrix Biol 2005; 23:101-12. [PMID: 15246109 DOI: 10.1016/j.matbio.2004.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 03/02/2004] [Accepted: 03/10/2004] [Indexed: 11/18/2022]
Abstract
Here we report the structural and functional studies of collagen from the Brtl mouse, a heterozygous knock-in model for Osteogenesis Imperfecta, which has a G349C substitution introduced in one col1a1 allele. We observed that 25+/-5% of alpha 1(I) chains in different tissues and in different extracts from matrix deposited by cultured cells were S-S-linked mutant dimers. Apparently mutant and normal molecules are equally well incorporated into the matrix and they form mature covalent crosslinks with the same efficiency. We found different extents of post-translational overmodification of mutant molecules in different tissues, but we found no consistent differences between lethal and non-lethal animals. We did not detect any changes in the thermal stability or rate of thermal denaturation of mutant collagen. We also did not detect any changes in collagen-collagen recognition and interactions except for disruption of quasi-crystalline lateral packing of molecules in tendons from some, mostly prepubertal, mutant animals. In contrast, alpha 1(I)(3) collagen from the oim mouse--the only other non-lethal murine OI model studied by similar techniques--has altered stability, fibrillogenesis, collagen-collagen interactions and produces a more consistent and more pronounced disruption of tendon crystallinity. Nevertheless, while the G349C substitution causes moderate or lethal OI, heterozygous oim mice are much less affected. Overall, our results suggest that OI symptoms and phenotype variation in G349C animals are related to abnormal interactions of mutant collagen helices with other matrix molecules or abnormal function of osteoblasts rather than to abnormal structure, physical properties or interactions between mutant collagen helices.
Collapse
Affiliation(s)
- Natalia V Kuznetsova
- Section on Physical Biochemistry, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 9, Rm. 1E-127, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
38
|
Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clin Chim Acta 2005; 364:33-60. [PMID: 16139830 DOI: 10.1016/j.cca.2005.06.014] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/07/2005] [Accepted: 06/08/2005] [Indexed: 01/18/2023]
Abstract
Liver fibrosis represents a significant health problem worldwide of which no acceptable therapy exists. The most characteristic feature of liver fibrosis is excess deposition of type I collagen. A great deal of research has been performed to understand the molecular mechanisms responsible for the development of liver fibrosis. The activated hepatic stellate cell (HSC) is the primary cell type responsible for the excess production of collagen. Following a fibrogenic stimulus, HSCs change from a quiescent to an activated, collagen-producing cell. Numerous changes in gene expression are associated with HSC activation including the induction of several intracellular signaling cascades, which help maintain the activated phenotype and control the fibrogenic and proliferative state of the cell. Detailed analyses in understanding the molecular basis of collagen gene regulation have revealed a complex process offering the opportunity for multiple potential therapeutic strategies. However, further research is still needed to gain a better understanding of HSC activation and how this cell maintains its fibrogenic nature. In this review we describe many of the molecular events that occur following HSC activation and collagen gene regulation that contribute to the fibrogenic nature of these cells and provide a review of therapeutic strategies to treat this disease.
Collapse
Affiliation(s)
- Shigeki Tsukada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, NC 27599-7032, USA
| | | | | |
Collapse
|
39
|
Aubin I, Adams CP, Opsahl S, Septier D, Bishop CE, Auge N, Salvayre R, Negre-Salvayre A, Goldberg M, Guénet JL, Poirier C. A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Nat Genet 2005; 37:803-5. [PMID: 16025116 DOI: 10.1038/ng1603] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 05/27/2005] [Indexed: 11/08/2022]
Abstract
The mouse mutation fragilitas ossium (fro) leads to a syndrome of severe osteogenesis and dentinogenesis imperfecta with no detectable collagen defect. Positional cloning of the locus identified a deletion in the gene encoding neutral sphingomyelin phosphodiesterase 3 (Smpd3) that led to complete loss of enzymatic activity. Our knowledge of SMPD3 function is consistent with the pathology observed in mutant mice and provides new insight into human pathologies.
Collapse
Affiliation(s)
- Isabelle Aubin
- Unité de Génétique des Mammifères, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Osteogenesis imperfecta is a genetic disorder of increased bone fragility, low bone mass, and other connective-tissue manifestations. The most frequently used classification outlines four clinical types, which we have expanded to seven distinct types. In most patients the disorder is caused by mutations in one of the two genes encoding collagen type 1, but in some individuals no such mutations are detectable. The most important therapeutic advance is the introduction of bisphosphonate treatment for moderate to severe forms of osteogenesis imperfecta. However, at present, the best treatment regimen and the long-term outcomes of bisphosphonate therapy are unknown. Although this treatment does not constitute a cure, it is an adjunct to physiotherapy, rehabilitation, and orthopaedic care. Gene-based therapy presently remains in the early stages of preclinical research.
Collapse
Affiliation(s)
- Frank Rauch
- Genetics Unit, Shriners Hospital for Children and McGill University, 1529 Cedar Avenue, Montréal, Québec, Canada H3G 1A6
| | | |
Collapse
|
41
|
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous group of genetic disorders that affect connective tissue integrity. The hallmark of OI is bone fragility, although other manifestations, which include osteoporosis, dentigenesis imperfecta, blue sclera, easy bruising, joint laxity and scoliosis, are also common among OI patients. The severity of OI ranges from prenatal death to mild osteopenia without limb deformity. Most forms of OI result from mutations in the genes that encode either the proalpha1or proalpha2 polypeptide chains that comprise type I collagen molecules, the major structural protein of bone. Treatment depends mainly on the severity of the disease with the primary goal to minimize fractures and maximize function. Current treatments include surgical intervention with intramedullarly stabilization and the use of prostheses. Pharmacological agents have also been attempted with limited success with the exception of recent use of bisphosphonates, which have been to shown to have some effect. Since OI is a genetic disease, these agents are not expected to alter the course of the collagen mutations. Cell and gene therapies as potential treatments for OI are therefore currently being actively investigated. The design of gene therapies for OI is however complicated by the genetic heterogeneity of the disease and by the factor that most of the OI mutations are dominant negative where the mutant allele product interferes with the function of the normal allele. The present review will discuss the molecular changes seen in OI, the current treatment options and the gene therapy approaches being investigated as potential future treatments for OI.
Collapse
Affiliation(s)
- C Niyibizi
- Department of Orthopaedic Surgery, Ferguson Laboratories for Orthopaedic Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
The first successful gene therapy trial was reported in 1991. Since then, successful gene transfer in cultured cells and small animals has been reported by many studies, with achievement of at least transitory high levels of exogenous gene expression. Over 400 clinical protocols for gene therapy have been approved, involving over 4000 patients. However, publication of the results of these gene therapy trials has been limited, with only 80 published reports as of 2002. The majority of clinical gene therapy trials reported so far have been phase I or phase II trials, which are concerned mainly with safety issues and have focused on the treatment of malignancies and other potentially fatal conditions. The death of a patient in 1999 from systemic administration of an adenoviral vector and recent reports of leukaemia in two patients in a clinical gene therapy trial have led to a further re-evaluation of the safety of gene therapy and the role for gene therapy in clinical practice. This review outlines the current status of gene therapy as it relates to orthopaedic diseases and highlights the areas where progress is still to be made.
Collapse
Affiliation(s)
- Mia Jüllig
- Orthopaedic Research Laboratory, Division of Surgery, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
43
|
Kuznetsova NV, McBride DJ, Leikin S. Changes in thermal stability and microunfolding pattern of collagen helix resulting from the loss of alpha2(I) chain in osteogenesis imperfecta murine. J Mol Biol 2003; 331:191-200. [PMID: 12875845 DOI: 10.1016/s0022-2836(03)00715-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Homozygous mutations resulting in formation of alpha1(I)(3) homotrimers instead of normal type I collagen cause mild to severe osteogenesis imperfecta (OI) in humans and mice. Limited studies of changes in thermal stability of type I homotrimers were reported previously, but the results were not fully consistent. We revisited this question in more detail using purified tendon collagen from wild-type (alpha1(I)(2)alpha2(I) heterotrimers) and oim (alpha1(I)(3)) mice as well as artificial alpha1(I)(3) homotrimers obtained by refolding of rat-tail-tendon collagen. We found that at the same heating rate oim homotrimers completely denature at approximately 2.5deg.C higher temperature than wild-type heterotrimers, as determined by differential scanning calorimetry. At the same, constant temperature, homotrimers denature approximately 100 times slower than heterotrimers, as determined by circular dichroism. Detailed analysis of proteolytic cleavage at different temperatures revealed that microunfolding of oim homotrimers and wild-type heterotrimers occurs at similar rate but within a number of different sites. In particular, the weakest spot on the oim triple helix is located approximately 100 amino acid residues from the C-terminal end within the cyanogen bromide peptide CB6. The same microunfolding site is also present in wild-type collagen, but the weakest spot of the latter is located close to the N-terminal end of CB8. Amino acid analysis and differential gel electrophoresis showed virtually no posttranslational overmodification of oim mouse tendon collagen. Moreover, thermal stability and microunfolding of artificial rat-tail-tendon homotrimers were similar to oim homotrimers. Thus, the observed changes are associated with difference in the amino acid composition of alpha1(I) and alpha2(I) chains rather than posttranslational overmodification.
Collapse
Affiliation(s)
- Natalia V Kuznetsova
- National Institute of Child Health and Human Development, NIH, DHHS, Building 9, Room 1E-125, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
44
|
McMahon L, Muriel JM, Roberts B, Quinn M, Johnstone IL. Two sets of interacting collagens form functionally distinct substructures within a Caenorhabditis elegans extracellular matrix. Mol Biol Cell 2003; 14:1366-78. [PMID: 12686594 PMCID: PMC153107 DOI: 10.1091/mbc.e02-08-0479] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Revised: 12/09/2002] [Accepted: 12/23/2002] [Indexed: 11/11/2022] Open
Abstract
A ubiquitous feature of collagens is protein interaction, the trimerization of monomers to form a triple helix followed by higher order interactions during the formation of the mature extracellular matrix. The Caenorhabditis elegans cuticle is a complex extracellular matrix consisting predominantly of cuticle collagens, which are encoded by a family of approximately 154 genes. We identify two discrete interacting sets of collagens and show that they form functionally distinct matrix substructures. We show that mutation in or RNA-mediated interference of a gene encoding a collagen belonging to one interacting set affects the assembly of other members of that set, but not those belonging to the other set. During cuticle synthesis, the collagen genes are expressed in a distinct temporal series, which we hypothesize exists to facilitate partner finding and the formation of appropriate interactions between encoded collagens. Consistent with this hypothesis, we find for the two identified interacting sets that the individual members of each set are temporally coexpressed, whereas the two sets are expressed approximately 2 h apart during matrix synthesis.
Collapse
Affiliation(s)
- Laura McMahon
- The Wellcome Centre for Molecular Parasitology, The University of Glasgow, Anderson College, Glasgow G11 6NU, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Saeed MU, Parmar DN, Ohri R. The role of an ophthalmologist in suspected non-accidental injury. Eye (Lond) 2003; 17:93-5. [PMID: 12579179 DOI: 10.1038/sj.eye.6700265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|