1
|
Piga D, Rimoldi M, Magri F, Zanotti S, Napoli L, Ripolone M, Pagliarani S, Ciscato P, Velardo D, D’Amico A, Bertini E, Comi GP, Ronchi D, Corti S. Case report: A novel ACTA1 variant in a patient with nemaline rods and increased glycogen deposition. Front Neurol 2024; 15:1340693. [PMID: 38500810 PMCID: PMC10944937 DOI: 10.3389/fneur.2024.1340693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Background Congenital myopathies are a group of heterogeneous inherited disorders, mainly characterized by early-onset hypotonia and muscle weakness. The spectrum of clinical phenotype can be highly variable, going from very mild to severe presentations. The course also varies broadly resulting in a fatal outcome in the most severe cases but can either be benign or lead to an amelioration even in severe presentations. Muscle biopsy analysis is crucial for the identification of pathognomonic morphological features, such as core areas, nemaline bodies or rods, nuclear centralizations and congenital type 1 fibers disproportion. However, multiple abnormalities in the same muscle can be observed, making more complex the myopathological scenario. Case presentation Here, we describe an Italian newborn presenting with severe hypotonia, respiratory insufficiency, inability to suck and swallow, requiring mechanical ventilation and gastrostomy feeding. Muscle biopsy analyzed by light microscopy showed the presence of vacuoles filled with glycogen, suggesting a metabolic myopathy, but also fuchsinophilic inclusions. Ultrastructural studies confirmed the presence of normally structured glycogen, and the presence of minirods, directing the diagnostic hypothesis toward a nemaline myopathy. An expanded Next Generation Sequencing analysis targeting congenital myopathies genes revealed the presence of a novel heterozygous c.965 T > A p. (Leu322Gln) variant in the ACTA1 gene, which encodes the skeletal muscle alpha-actin. Conclusion Our case expands the repertoire of molecular and pathological features observed in actinopathies. We highlight the value of ultrastructural examination to investigate the abnormalities detected at the histological level. We also emphasized the use of expanded gene panels in the molecular analysis of neuromuscular patients, especially for those ones presenting multiple bioptic alterations.
Collapse
Affiliation(s)
- Daniela Piga
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Martina Rimoldi
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Medical Genetics Unit, Milan, Italy
| | - Francesca Magri
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Simona Zanotti
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Laura Napoli
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Michela Ripolone
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Serena Pagliarani
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Patrizia Ciscato
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Daniele Velardo
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Adele D’Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu’ Children’s Research Hospital, IRCCS, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu’ Children’s Research Hospital, IRCCS, Rome, Italy
| | - Giacomo Pietro Comi
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Dario Ronchi
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Stefania Corti
- IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Hanna AD, Lee CS, Babcock L, Wang H, Recio J, Hamilton SL. Pathological mechanisms of vacuolar aggregate myopathy arising from a Casq1 mutation. FASEB J 2021; 35:e21349. [PMID: 33786938 DOI: 10.1096/fj.202001653rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 11/11/2022]
Abstract
Mice with a mutation (D244G, DG) in calsequestrin 1 (CASQ1), analogous to a human mutation in CASQ1 associated with a delayed onset human myopathy (vacuolar aggregate myopathy), display a progressive myopathy characterized by decreased activity, decreased ability of fast twitch muscles to generate force and low body weight after one year of age. The DG mutation causes CASQ1 to partially dissociate from the junctional sarcoplasmic reticulum (SR) and accumulate in the endoplasmic reticulum (ER). Decreased junctional CASQ1 reduces SR Ca2+ release. Muscles from older DG mice display ER stress, ER expansion, increased mTOR signaling, inadequate clearance of aggregated proteins by the proteasomes, and elevation of protein aggregates and lysosomes. This study suggests that the myopathy associated with the D244G mutation in CASQ1 is driven by CASQ1 mislocalization, reduced SR Ca2+ release, CASQ1 misfolding/aggregation and ER stress. The subsequent maladaptive increase in protein synthesis and decreased protein aggregate clearance are likely to contribute to disease progression.
Collapse
Affiliation(s)
- Amy D Hanna
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Chang Seok Lee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Lyle Babcock
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Hui Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Recio
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Susan L Hamilton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Al-Maslamani NA, Khilan AA, Horn HF. Design of a 3D printed, motorized, uniaxial cell stretcher for microscopic and biochemical analysis of mechanotransduction. Biol Open 2021; 10:bio057778. [PMID: 33563607 PMCID: PMC7888744 DOI: 10.1242/bio.057778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Cells respond to mechanical cues from their environment through a process of mechanosensing and mechanotransduction. Cell stretching devices are important tools to study the molecular pathways responsible for cellular responses to mechanobiological processes. We describe the development and testing of a uniaxial cell stretcher that has applications for microscopic as well as biochemical analyses. By combining simple fabrication techniques with adjustable control parameters, the stretcher is designed to fit a variety of experimental needs. The stretcher can be used for static and cyclic stretching. As a proof of principle, we visualize stretch induced deformation of cell nuclei via incremental static stretch, and changes in IEX1 expression via cyclic stretching. This stretcher is easily modified to meet experimental needs, inexpensive to build, and should be readily accessible for most laboratories with access to 3D printing.
Collapse
Affiliation(s)
- Noor A Al-Maslamani
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Abdulghani A Khilan
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Henning F Horn
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| |
Collapse
|
4
|
Di Blasi C, Sansanelli S, Ruggieri A, Moriggi M, Vasso M, D'Adamo AP, Blasevich F, Zanotti S, Paolini C, Protasi F, Tezzon F, Gelfi C, Morandi L, Pessia M, Mora M. A CASQ1 founder mutation in three Italian families with protein aggregate myopathy and hyperCKaemia. J Med Genet 2015; 52:617-26. [PMID: 26136523 DOI: 10.1136/jmedgenet-2014-102882] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 06/16/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Protein aggregate myopathies are increasingly recognised conditions characterised by a surplus of endogenous proteins. The molecular and mutational background for many protein aggregate myopathies has been clarified with the discovery of several underlying mutations. Familial idiopathic hyperCKaemia is a benign genetically heterogeneous condition with autosomal dominant features in a high proportion of cases. METHODS In 10 patients from three Italian families with autosomal dominant benign vacuolar myopathy and hyperCKaemia, we performed linkage analysis and exome sequencing as well as morphological and biochemical investigations. RESULTS AND CONCLUSIONS We show, by Sanger and exome sequencing, that the protein aggregate myopathy with benign evolution and muscle inclusions composed of excess CASQ1, affecting three Italian families, is due to the D244G heterozygous missense mutation in the CASQ1 gene. Investigation of microsatellite markers revealed a common haplotype in the three families indicating consanguinity and a founder effect. Results from immunocytochemistry, electron microscopy, biochemistry and transfected cell line investigations contribute to our understanding of pathogenetic mechanisms underlining this defect. The mutation is common to other Italian patients and is likely to share a founder effect with them. HyperCKaemia in the CASQ1-related myopathy is common and sometimes the sole overt manifestation. It is likely that CASQ1 mutations may remain undiagnosed if a muscle biopsy is not performed, and the condition could be more common than supposed.
Collapse
Affiliation(s)
- Claudia Di Blasi
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Serena Sansanelli
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Alessandra Ruggieri
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milano, Milano, Italy
| | - Michele Vasso
- Department of Biomedical Sciences for Health, University of Milano, Milano, Italy CNR-Institute of Bioimaging and Molecular Physiology, Milano, Italy
| | | | - Flavia Blasevich
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Simona Zanotti
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Cecilia Paolini
- CeSI, Center for Research on Ageing & Department of Neuroscience, Imaging, and Clinical Sciences, University G D'Annunzio of Chieti, Chieti, Italy
| | - Feliciano Protasi
- CeSI, Center for Research on Ageing & Department of Neuroscience, Imaging, and Clinical Sciences, University G D'Annunzio of Chieti, Chieti, Italy
| | - Frediano Tezzon
- Neurology Unit, F Tappeiner Hospital of Merano, Merano, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milano, Milano, Italy CNR-Institute of Bioimaging and Molecular Physiology, Milano, Italy
| | - Lucia Morandi
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Mauro Pessia
- Faculty of Medicine, Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| |
Collapse
|
5
|
Abstract
Electron microscopy is an essential component of myopathology, both in diagnostics and research of neuromuscular diseases. Although recently reduced in the diagnostic armamentarium, it has greatly been expanded to mouse models in research. Mostly it is descriptive, but a few additional techniques in combination with transmission electron microscopy have been employed. Foremost among them is immunoelectron microscopy, which assists in guiding molecular analysis in hereditary conditions, but may be vital in diagnostics of certain acquired entities, e.g., undulating tubules in dermatomyositis and in those congenital myopathies where genes and mutations remain to be identified, as in cylindrical spirals myopathy and hexagonal crystalloid-body myopathy.
Collapse
Affiliation(s)
- Hans H Goebel
- Department of Neuropathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany and
| | | |
Collapse
|
6
|
Abstract
Myofibrillar myopathies (MFMs) are clinically and genetically heterogeneous muscle disorders that are defined morphologically by the presence of foci of myofibril dissolution, accumulation of myofibrillar degradation products, and ectopic expression of multiple proteins. MFMs are the paradigm of conformational protein diseases of the skeletal (and cardiac) muscles characterised by intracellular protein accumulation in muscle cells. Understanding of this group of disorders has advanced in recent years through the identification of causative mutations in various genes, most of which encode proteins of the sarcomeric Z-disc, including desmin, alphaB-crystallin, myotilin, ZASP and filamin C. This review focuses on the MFMs arising from defects in these proteins, summarising genetic and clinical features of the disorders and then discussing emerging understanding of the molecular pathogenic mechanisms leading to muscle fibre degeneration. Defective extralysosomal degradation of proteins is now recognised as an important element in this process. Several factors--including mutant proteins, a defective ubiquitin-proteasome system, aggresome formation, mutant ubiquitin, p62, oxidative stress and abnormal regulation of some transcription factors--are thought to participate in the cascade of events occurring in muscle fibres in MFMs.
Collapse
|
7
|
Li ZF, Wu X, Jiang Y, Liu J, Wu C, Inagaki M, Izawa I, Mizisin AP, Engvall E, Shelton GD. Non-pathogenic protein aggregates in skeletal muscle in MLF1 transgenic mice. J Neurol Sci 2008; 264:77-86. [PMID: 17854834 DOI: 10.1016/j.jns.2007.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 02/06/2023]
Abstract
Protein aggregate formation in muscle is thought to be pathogenic and associated with clinical weakness. Over-expression of either wild type or a mutant form of myeloid leukemia factor 1 (MLF1) in transgenic mouse skeletal muscle and in cultured cells resulted in aggregate formation. Aggregates were detected in MLF1 transgenic mice at 6 weeks of age, and increased in size with age. However, histological examination of skeletal muscles of MLF1 transgenic mice revealed no pathological changes other than the aggregates, and RotaRod testing did not detect functional deficits. MLF1 has recently been identified as a protein that could neutralize the toxicity of intracellular protein aggregates in a Drosophila model of Huntington's disease (HD). We also demonstrate that MLF1 interacts with MRJ, a heat shock protein, which can independently neutralize the toxicity of intracellular protein aggregates in the Drosophila HD model. Our data suggest that over-expression of MLF1 has no significant impact on skeletal muscle function in mice; that progressive formation of protein aggregates in muscle are not necessarily pathogenic; and that MLF1 and MRJ may function together to ameliorate the toxic effects of polyglutamine or mutant proteins in myodegenerative diseases such as inclusion body myositis and oculopharyngeal muscular dystrophy, as well as neurodegenerative disease.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins
- Cells, Cultured
- Cytoprotection/genetics
- DNA-Binding Proteins
- Disease Models, Animal
- HSP40 Heat-Shock Proteins/metabolism
- Humans
- Inclusion Bodies/genetics
- Inclusion Bodies/metabolism
- Inclusion Bodies/pathology
- Mice
- Mice, Transgenic
- Microscopy, Electron, Transmission
- Molecular Chaperones/metabolism
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle Weakness/genetics
- Muscle Weakness/metabolism
- Muscle Weakness/physiopathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Diseases/genetics
- Muscular Diseases/metabolism
- Muscular Diseases/physiopathology
- Nerve Tissue Proteins/metabolism
- Peptides/antagonists & inhibitors
- Peptides/metabolism
- Proteins/genetics
- Proteins/metabolism
Collapse
Affiliation(s)
- Zhi-Fang Li
- Burnham Institute for Medical Research, La Jolla, CA 92037, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rederstorff M, Krol A, Lescure A. Understanding the importance of selenium and selenoproteins in muscle function. Cell Mol Life Sci 2006; 63:52-9. [PMID: 16314926 PMCID: PMC2792354 DOI: 10.1007/s00018-005-5313-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Selenium is an essential trace element. In cattle, selenium deficiency causes dysfunction of various organs, including skeletal and cardiac muscles. In humans as well, lack of selenium is associated with many disorders, but despite accumulation of clinical reports, muscle diseases are not generally considered on the list. The goal of this review is to establish the connection between clinical observations and the most recent advances obtained in selenium biology. Recent results about a possible role of selenium-containing proteins in muscle formation and repair have been collected. Selenoprotein N is the first selenoprotein linked to genetic disorders consisting of different forms of congenital muscular dystrophies. Understanding the muscle disorders associated with selenium deficiency or selenoprotein N dysfunction is an essential step in defining the causes of the disease and obtaining a better comprehension of the mechanisms involved in muscle formation and maintenance.
Collapse
Affiliation(s)
- M. Rederstorff
- UPR 9002 du CNRS ARN ‘Architecture et Réactivité de l’ar’, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | - A. Krol
- UPR 9002 du CNRS ARN ‘Architecture et Réactivité de l’ar’, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | - A. Lescure
- UPR 9002 du CNRS ARN ‘Architecture et Réactivité de l’ar’, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| |
Collapse
|
9
|
Shumaker DK, Lopez-Soler RI, Adam SA, Herrmann H, Moir RD, Spann TP, Goldman RD. Functions and dysfunctions of the nuclear lamin Ig-fold domain in nuclear assembly, growth, and Emery-Dreifuss muscular dystrophy. Proc Natl Acad Sci U S A 2005; 102:15494-9. [PMID: 16227433 PMCID: PMC1255737 DOI: 10.1073/pnas.0507612102] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2005] [Indexed: 12/11/2022] Open
Abstract
The non-alpha-helical C terminus of Xenopus lamin B3 (LB3T) inhibits the polymerization of lamin B3 in vitro and prevents the assembly of nuclei in Xenopus egg interphase extracts. To more precisely define the functions of LB3T in nuclear assembly, we have expressed subdomains of LB3T and determined their effects on nuclear assembly in Xenopus extracts. The results demonstrate that the Ig-fold motif (LB3T-Ig) is sufficient to inhibit lamin polymerization in vitro. Addition of the LB3T-Ig to egg extracts before the introduction of chromatin prevents chromatin decondensation and the assembly of the lamina, membranes, and pore complexes comprising the nuclear envelope. When added to assembled nuclei, LB3T-Ig prevents the further incorporation of lamin B3 into the endogenous lamina and blocks nuclear growth. The introduction of a point mutation in LB3T-Ig (R454W; LB3T-IgRW), known to cause Emery-Dreifuss muscular dystrophy when present in lamin A, does not inhibit lamin polymerization, chromatin decondensation, or nuclear assembly and growth. These results shed light on the specific alterations in lamin functions attributable to a known muscular dystrophy mutation and provide an experimental framework for revealing the effects of other mutations causing a wide range of laminopathies.
Collapse
Affiliation(s)
- Dale K Shumaker
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
den Engelsman J, Gerrits D, de Jong WW, Robbins J, Kato K, Boelens WC. Nuclear import of {alpha}B-crystallin is phosphorylation-dependent and hampered by hyperphosphorylation of the myopathy-related mutant R120G. J Biol Chem 2005; 280:37139-48. [PMID: 16129694 DOI: 10.1074/jbc.m504106200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation modulates the functioning of alphaB-crystallin as a molecular chaperone. We here explore the role of phosphorylation in the nuclear import and cellular localization of alphaB-crystallin in HeLa cells. Inhibition of nuclear export demonstrated that phosphorylation of alphaB-crystallin is required for import into the nucleus. As revealed by mutant analysis, phosphorylation at Ser-59 is crucial for nuclear import, and phosphorylation at Ser-45 is required for speckle localization. Co-immunoprecipitation experiments suggested that the import of alphaB-crystallin is possibly regulated by its phosphorylation-dependent interaction with the survival motor neuron (SMN) protein, an important factor in small nuclear ribonucleoprotein nuclear import and assembly. This interaction was supported by co-localization of endogenous phosphorylated alphaB-crystallin with SMN in nuclear structures. The cardiomyopathy-causing alphaB-crystallin mutant R120G was found to be excessively phosphorylated, which disturbed SMN interaction and nuclear import, and resulted in the formation of cytoplasmic inclusions. Like for other protein aggregation disorders, hyperphosphorylation appears as an important aspect of the pathogenicity of alphaB-crystallin R120G.
Collapse
Affiliation(s)
- John den Engelsman
- Department of Biochemistry 161, Nijmegen Center for Molecular Life Sciences, Radboud University of Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Mermelstein CS, Amaral LM, Rebello MIL, Reis JSN, Borojevic R, Costa ML. Changes in cell shape and desmin intermediate filament distribution are associated with down-regulation of desmin expression in C2C12 myoblasts grown in the absence of extracellular Ca2+. Braz J Med Biol Res 2005; 38:1025-32. [PMID: 16007273 DOI: 10.1590/s0100-879x2005000700005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Desmin is the main intermediate filament (IF) protein of muscle cells. In skeletal muscle, desmin IFs form a scaffold that interconnects the entire contractile apparatus with the subsarcolemmal cytoskeleton and cytoplasmic organelles. The interaction between desmin and the sarcolemma is mediated by a number of membrane proteins, many of which are Ca2+-sensitive. In the present study, we analyzed the effects of the Ca2+ chelator EGTA (1.75 mM) on the expression and distribution of desmin in C2C12 myoblasts grown in culture. We used indirect immunofluorescence microscopy and reverse transcription polymerase chain reaction (RT-PCR) to analyze desmin distribution and expression in C2C12 cells grown in the presence or absence of EGTA. Control C2C12 myoblasts showed a well-spread morphology after a few hours in culture and became bipolar when grown for 24 h in the presence of EGTA. Control C2C12 cells showed a dense network of desmin from the perinuclear region to the cell periphery, whereas EGTA-treated cells showed desmin aggregates in the cytoplasm. RT-PCR analysis revealed a down-regulation of desmin expression in EGTA-treated C2C12 cells compared to untreated cells. The present results suggest that extracellular Ca2+ availability plays a role in the regulation of desmin expression and in the spatial distribution of desmin IFs in myoblasts, and is involved in the generation and maintenance of myoblast cell shape.
Collapse
Affiliation(s)
- C S Mermelstein
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brasil.
| | | | | | | | | | | |
Collapse
|
12
|
Hsiao VC, Tian R, Long H, Der Perng M, Brenner M, Quinlan RA, Goldman JE. Alexander-disease mutation of GFAP causes filament disorganization and decreased solubility of GFAP. J Cell Sci 2005; 118:2057-65. [PMID: 15840648 DOI: 10.1242/jcs.02339] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alexander disease is a fatal neurological illness characterized by white-matter degeneration and the formation of astrocytic cytoplasmic inclusions called Rosenthal fibers, which contain the intermediate filament glial fibrillary acidic protein (GFAP), the small heat-shock proteins HSP27 and αB-crystallin, and ubiquitin. Many Alexander-disease patients are heterozygous for one of a set of point mutations in the GFAP gene, all of which result in amino acid substitutions. The biological effects of the most common alteration, R239C, were tested by expressing the mutated protein in cultured cells by transient transfection. In primary rat astrocytes and Cos-7 cells, the mutant GFAP was incorporated into filament networks along with the endogenous GFAP and vimentin, respectively. In SW13Vim– cells, which have no endogenous cytoplasmic intermediate filaments, wild-type human GFAP frequently formed filamentous bundles, whereas the R239C GFAP formed `diffuse' and irregular patterns. Filamentous bundles of R239C GFAP were sometimes formed in SW13Vim– cells when wild-type GFAP was co-transfected. Although the presence of a suitable coassembly partner (vimentin or GFAP) reduced the potential negative effects of the R239C mutation on GFAP network formation, the mutation affected the stability of GFAP in cells in a dominant fashion. Extraction of transfected SW13Vim– cells with Triton-X-100-containing buffers showed that the mutant GFAP was more resistant to solubilization at elevated KCl concentrations. Both wild-type and R239C GFAP assembled into 10 nm filaments with similar morphology in vitro. Thus, although the R239C mutation does not appear to affect filament formation per se, the mutation alters the normal solubility and organization of GFAP networks.
Collapse
Affiliation(s)
- Victoria C Hsiao
- Department of Pathology and the Center for Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Lowe J, Hand N, Mayer RJ. Application of Ubiquitin Immunohistochemistry to the Diagnosis of Disease. Methods Enzymol 2005; 399:86-119. [PMID: 16338351 DOI: 10.1016/s0076-6879(05)99007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Ubiquitin immunohistochemistry has changed understanding of the pathophysiology of many diseases, particularly chronic neurodegenerative diseases. Protein aggregates (inclusions) containing ubiquitinated proteins occur in neurones and other cell types in the central nervous system in afflicted cells. The inclusions are present in all the neurological illnesses, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, polyglutamine diseases, and rarer forms of neurodegenerative disease. A new cause of cognitive decline in the elderly, "dementia with Lewy bodies," accounting for some 15-30% of cases, was initially discovered and characterized by ubiquitin immunocytochemistry. The optimal methods for carrying out immunohistochemical analyses of paraffin-embedded tissues are described, and examples of all the types of intracellular inclusions detected by ubiquitin immunohistochemistry in the diseases are illustrated. The role of the ubiquitin proteasome system (UPS) in disease progression is being actively researched globally and increasingly, because it is now realized that the UPS controls most pathways in cellular homeostasis. Many of these regulatory mechanisms will be dysfunctional in diseased cells. The goal is to understand fully the role of the UPS in the disorders and then therapeutically intervene in the ubiquitin pathway to treat these incurable diseases.
Collapse
Affiliation(s)
- James Lowe
- School of Molecular Medical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham, United Kingdom
| | | | | |
Collapse
|
14
|
Ferrer I, Martín B, Castaño JG, Lucas JJ, Moreno D, Olivé M. Proteasomal expression, induction of immunoproteasome subunits, and local MHC class I presentation in myofibrillar myopathy and inclusion body myositis. J Neuropathol Exp Neurol 2004; 63:484-98. [PMID: 15198127 DOI: 10.1093/jnen/63.5.484] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Inclusion body myositis (IBM) and myofibrillar myopathy (MM) are diseases characterized by the abnormal accumulation of proteins in muscle fibers, including desmin, alphaB-crystallin, gelsolin, actin, kinases, and phospho-tau, along with ubiquitin in muscle fibers, suggesting abnormal protein degradation as a possible cause of the surplus myopathy. Since the ubiquitin-proteasome system plays a crucial role in non-lysosomal protein degradation, the present study has examined by immunohistochemistry the expression of components of the catalytic core of 20S proteasomes and its regulators: 19S and PA28alpha/beta, and the expression of immunoproteasome subunits LMP2, LMP7, and MECL1 in 8 patients with MM and 10 patients with IBM. The patients with MM were from 6 unrelated families, 2 sporadic cases, I with autosomal recessive and 5 with autosomal dominant inheritance. One sporadic patient had a de novo R406W mutation in the desmin gene, and 1 patient with autosomal dominant MM had a single amino acid deletion at position 366 in the desmin gene. Increased immunoreactivity to 20S, 19S, and PA28alpha/beta colocalizing abnormal protein deposits, as revealed in consecutive serial sections, was seen in all cases with MM and IBM. In all cases, the subunits of the immunoproteasome LMP2, LMP7, and MECL1 colocalized with proteasomal immunoreactivity and abnormal protein accumulation. Immunohistochemistry revealed focal MHC class I immunoreactivity in the cytoplasmic membrane of muscle fibers in IBM and in association with protein aggregates in IBM, and to a lesser degree, in MM. The present findings provide a link between abnormal protein accumulation and altered proteasomal expression in IBM and MM.
Collapse
MESH Headings
- Adenosine Triphosphatases/immunology
- Adenosine Triphosphatases/metabolism
- Adult
- Aged
- Aged, 80 and over
- Antigen Presentation/immunology
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Membrane/pathology
- Cysteine Endopeptidases/immunology
- Cysteine Endopeptidases/metabolism
- DNA Mutational Analysis
- Desmin/deficiency
- Desmin/genetics
- Endopeptidases/immunology
- Endopeptidases/metabolism
- Female
- Genetic Testing
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunohistochemistry
- Male
- Middle Aged
- Multienzyme Complexes/immunology
- Multienzyme Complexes/metabolism
- Muscle Proteins/immunology
- Muscle Proteins/metabolism
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Mutation/genetics
- Myofibrils/immunology
- Myofibrils/metabolism
- Myofibrils/pathology
- Myopathies, Structural, Congenital/immunology
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Myositis, Inclusion Body/immunology
- Myositis, Inclusion Body/metabolism
- Myositis, Inclusion Body/pathology
- Proteasome Endopeptidase Complex
- Protein Subunits/genetics
- Protein Subunits/immunology
- Protein Subunits/metabolism
- Protein Transport/genetics
- Proteins/immunology
- Proteins/metabolism
Collapse
Affiliation(s)
- Isidro Ferrer
- Instituto de Neuropatología, Servicio de Anatomía Patológica, Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Spain.
| | | | | | | | | | | |
Collapse
|
15
|
Olivé M, Goldfarb L, Moreno D, Laforet E, Dagvadorj A, Sambuughin N, Martínez-Matos JA, Martínez F, Alió J, Farrero E, Vicart P, Ferrer I. Desmin-related myopathy: clinical, electrophysiological, radiological, neuropathological and genetic studies. J Neurol Sci 2004; 219:125-37. [PMID: 15050448 DOI: 10.1016/j.jns.2004.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Revised: 12/16/2003] [Accepted: 01/05/2004] [Indexed: 11/24/2022]
Abstract
Ten Spanish patients from six unrelated families diagnosed with desmin-related myopathy (DRM) were studied. The pattern of DRM inheritance was autosomal dominant in three families, autosomal recessive in one, and there was no family history in two cases. The disease onset was in early adulthood. Cardiac myopathy was the initial presentation in two patients, respiratory insufficiency in one, and lower limb weakness in all others. Cardiac involvement was observed in four patients. Lens opacities were found in four. CK level was normal or slightly elevated, and electrophysiological examination was consistent with myopathy. Muscle biopsies identified intracytoplasmic desmin-immunoreactive inclusions. In addition to desmin, synemin, actin, gelsolin, ubiquitin, alphaB-crystallin and amyloid betaA4 were also present in the deposits. Ultrastructural examination revealed areas of myofibrillary disruption, abnormal electron-dense structures and accumulations of granulofilamentous material. A missense R406W mutation and a novel single amino acid deletion in the desmin gene were identified in two patients; the other patients did not show mutations in desmin, synemin, syncoilin or alphaB-crystallin genes. Analysis of 10 Spanish DRM cases illustrates a wide clinical, myopathological and genetic spectrum of DRM, reinforcing the need for further exploration of genetic causes for this group of disorders.
Collapse
Affiliation(s)
- Montse Olivé
- Institut de Neuropatologia, Hospital de Bellvitge, C/Feixa Llarga s/n degrees, 08907 Hospitalet de Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Luethje LGC, Boennemann C, Goldfarb L, Goebel HH, Halle M. Prophylactic Implantable Cardioverter Defibrillator Placement in a Sporadic Desmin Related Myopathy and Cardiomyopathy. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2004; 27:559-60. [PMID: 15078418 DOI: 10.1111/j.1540-8159.2004.00484.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Desminopathy is a neuromuscular disorder associated with the accumulation of the protein desmin. This article reports a case of a man with a mutation in the desmin gene suffering from cardiomyopathy and skeletal myopathy. This patient underwent implantable cardioverter defibrillator (ICD) implantation for prognostic considerations and subsequently developed a sustained ventricular tachycardia (SVT). While nonsustained VTs (NSVT) have previously been reported, this is the first time that a SVT could be seen in a patient with this disease.
Collapse
Affiliation(s)
- Lars G C Luethje
- Department of Cardiology and Pneumology, Georg-August-University, Goettingen, Germany.
| | | | | | | | | |
Collapse
|
17
|
Ferreiro A, Ceuterick-de Groote C, Marks JJ, Goemans N, Schreiber G, Hanefeld F, Fardeau M, Martin JJ, Goebel HH, Richard P, Guicheney P, Bönnemann CG. Desmin-related myopathy with mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann Neurol 2004; 55:676-86. [PMID: 15122708 DOI: 10.1002/ana.20077] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Desmin-related myopathies (DRMs) are a heterogeneous group of muscle disorders, morphologically defined by intrasarcoplasmic aggregates of desmin. Mutations in the desmin and the alpha-B crystallin genes account for approximately one third of the DRM cases. The genetic basis of the other forms remain unknown, including the early-onset, recessive form with Mallory body-like inclusions (MB-DRMs), first described in five related German patients. Recently, we identified the selenoprotein N gene (SEPN1) as responsible for SEPN-related myopathy (SEPN-RM), a unique early-onset myopathy formerly divided in two different nosological categories: rigid spine muscular dystrophy and the severe form of classical multiminicore disease. The finding of Mallory body-like inclusions in two cases of genetically documented SEPN-RM led us to suspect a relationship between MB-DRM and SEPN1. In the original MB-DRM German family, we demonstrated a linkage of the disease to the SEPN1 locus (1p36), and subsequently a homozygous SEPN1 deletion (del 92 nucleotide -19/+73) in the affected patients. A comparative reevaluation showed that MB-DRM and SEPN-RM share identical clinical features. Therefore, we propose that MB-DRM should be categorized as SEPN-RM. These findings substantiate the molecular heterogeneity of DRM, expand the morphological spectrum of SEPN-RM, and implicate a necessary reassessment of the nosological boundaries in early-onset myopathies.
Collapse
Affiliation(s)
- Ana Ferreiro
- Institut National de la Santé et de la Recherche Médicale U582, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Goebel HH, Brockmann K, Bönnemann CG, Warlo IAP, Hanefeld F, Labeit S, Durling HJ, Laing NG. Actin-related myopathy without any missense mutation in the ACTA1 gene. J Child Neurol 2004; 19:149-53. [PMID: 15072110 DOI: 10.1177/08830738040190021201] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Actinopathies are defined by missense mutations in the ACTA1 gene coding for sarcomeric actin, of which some 70 families have, so far, been identified. Often, but not always, muscle fibers carry large patches of actin filaments. Many such patients also have nemaline myopathy, qualifying actinopathies as a subgroup of nemaline myopathies. This article concerns a then newborn, now 2 1/2-year-old boy, the first and single child of nonconsanguineous parents, who was born floppy, requiring immediate postnatal assisted ventilation. A quadriceps muscle biopsy revealed large patches of thin myofilaments reacting at light and electron microscopic levels with antibodies against actin but only a few sarcoplasmic rods and no intranuclear rods. DNA analysis of the patient's and both parents' blood did not reveal any missense mutation in the ACTA1 gene. Thus, this congenital myopathy can be caused by a new type of ACTA1 gene mutation, a new non-ACTA1 gene mutation, or no mutation at all, designating it as an actin-related myopathy, perhaps a new type of congenital myopathy and a new member of protein aggregate myopathies marked by aggregation of proteins within muscle fibers, among them desminopathies, alpha-beta crystallinopathies, other desmin-related myopathies (also termed myofibrillar myopathies), actinopathies and, now, actin-related myopathies.
Collapse
Affiliation(s)
- Hans H Goebel
- Department of Neuropathology, Johannes Gutenberg University Medical Center, Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The floppy infant syndrome is a well-recognized entity for pediatricians and neonatologists. The condition refers to an infant with generalized hypotonia presenting at birth or in early life. The diagnostic work up in many instances is often complex, and requires multidisciplinary assessment. Advances in genetics and neurosciences have lead to recognition of newer diagnostic entities (several congenital myopathies), and rapid molecular diagnosis is now possible for several conditions such as spinal muscular atrophy (SMA), congenital muscular dystrophies (CMD), several forms of congenital myopathies and congenital myotonic dystrophy. The focus of the present review is to describe the advances in our understanding in the genetic, metabolic basis of neurological disorders, as well as the investigative work up of the floppy infant. An algorithm for the systematic evaluation of infants with hypotonia is suggested for the practicing pediatrician/neonatologist.
Collapse
Affiliation(s)
- Asuri N Prasad
- Section of Pediatric Neurosciences, Department of Pediatrics and Child Health, Faculty of Medicine, University of Manitoba, Manitoba, Canada.
| | | |
Collapse
|
20
|
Abstract
The introduction and application of molecular techniques have commenced to influence and alter the nosology of congenital myopathies. Long-known entities such as nemaline myopathies, core diseases, and desmin-related myopathies have now been found to be caused by unequivocal mutations. Several of these mutations and their genes have been identified by analyzing aggregates of proteins within muscle fibers as a morphological hallmark as in desminopathy and actinopathy, the latter a subtype among the nemaline myopathies. Immunohistochemistry has played a crucial role in recognizing this new group of protein aggregate myopathies within the spectrum of congenital myopathies. It is to be expected that other congenital myopathies marked by inclusion bodies may turn out to be such protein aggregate myopathies, depending on analysis of individual proteins within these protein aggregates and their association with putative gene mutations.
Collapse
Affiliation(s)
- Hans H Goebel
- Department of Neuropathology, Johannes Gutenberg University, Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
21
|
Xiao YY, Wang MC, Purintrapiban J, Forsberg NE. Roles of mu-calpain in cultured L8 muscle cells: application of a skeletal muscle-specific gene expression system. Comp Biochem Physiol C Toxicol Pharmacol 2003; 134:439-50. [PMID: 12727293 DOI: 10.1016/s1532-0456(03)00026-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The goal of this work was to characterize the roles of mu-calpain in skeletal muscle protein degradation. Three approaches were developed to alter mu-calpain activity in rat myotubes. These included over-expression of antisense mu-calpain (mu-AS), dominant negative mu-calpain (mu-DN) and the antisense 30-kDa calpain subunit (30-AS). Constructs were expressed in rat L8 myotubes, and their effects on protein degradation and on concentrations of intact and/or degraded fodrin, desmin and tropomyosin were examined. An ecdysone-inducible expression system, in which we replaced a constitutively active CMV promoter with a skeletal muscle-specific alpha-actin promoter, was used to drive expression. Cell lines were evaluated by expression of the gene-of-interest following addition of ponasterone A (PA; ecdysone analog) to culture medium. Changes in calpain activity were assessed by evaluating fodrin degradation. 30-AS, which should alter both mu- and m-calpain activities, increased intact fodrin concentration. mu-DN and mu-AS reduced fodrin degradation products. mu-DN reduced total protein degradation by 7.9% (P<0.01) at 24 h and by 10.6% (P<0.01) at 48 h. mu-AS reduced total protein degradation by 6.4% at 24 h (P<0.05). 30-AS reduced total protein degradation by 13.4% (P<0.05) and 7.3% (P<0.05) following 24 and 48 h of PA administration, respectively. We assessed effects of mu-DN, mu-AS and 30-AS on concentrations of desmin and tropomyosin. Inhibition of calpains stabilized desmin, but had no effect on tropomyosin. These data indicate that fodrin and desmin are mu-calpain substrates and that mu-calpain accounts for a small proportion of total protein degradation in muscle cells. Tropomyosin is not degraded by calpain in muscle cells.
Collapse
Affiliation(s)
- Ying-yi Xiao
- Department of Animal Sciences, Oregon State University, Corvallis, OR 97331-6702, USA
| | | | | | | |
Collapse
|
22
|
Howman EV, Sullivan N, Poon EP, Britton JE, Hilton-Jones D, Davies KE. Syncoilin accumulation in two patients with desmin-related myopathy. Neuromuscul Disord 2003; 13:42-8. [PMID: 12467731 DOI: 10.1016/s0960-8966(02)00181-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have recently shown that syncoilin interacts with desmin in skeletal muscle and has a role in attaching and organising desmin filaments to the Z-lines. We have analysed patients with desmin accumulation and have found that syncoilin is both upregulated at the sarcolemma and aggregates with desmin indicating the presence of two distinct protein populations. Additional dystrophin-associated protein complex components also accumulate. The striking finding was that alpha-dystrobrevin-1 and neuronal nitric oxide synthase (nNOS) are almost completely lost from the membrane of these patients indicating that the myopathy may result from both the abnormal accumulation of proteins and an increase in ischaemic injury due to the loss of nNOS. We speculate that the loss of alpha-dystrobrevin from the membrane, and subsequent loss of nNOS, is due to the alpha-dystrobrevin-syncoilin-desmin interaction.
Collapse
Affiliation(s)
- Emily V Howman
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, OX13QX, Oxford, UK
| | | | | | | | | | | |
Collapse
|
23
|
Titeux M, Brocheriou V, Xue Z, Gao J, Pellissier JF, Guicheney P, Paulin D, Li Z. Human synemin gene generates splice variants encoding two distinct intermediate filament proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6435-49. [PMID: 11737198 DOI: 10.1046/j.0014-2956.2001.02594.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Intermediate filament (IF) proteins are constituents of the cytoskeleton, conferring resistance to mechanical stress, and are encoded by a dispersed multigene family. In man we have identified two isoforms (180 and 150 kDa) of the IF protein synemin. Synemin alpha and beta have a very short N-terminal domain of 10 amino acids and a long C-terminal domain consisting of 1243 amino acids for the alpha isoform and 931 amino acids for the beta isoform. An intronic sequence of the synemin beta isoform is used as a coding sequence for synemin alpha. Both mRNA isoforms (6.5 and 7.5 kb) result from alternative splicing of the same gene, which has been assigned to human chromosome 15q26.3. Analyses by Northern and Western blot revealed that isoform beta is the predominant isoform in striated muscles, whereas both isoforms (alpha and beta) are present in almost equal quantities in smooth muscles. Co-transfection and immunolabeling experiments indicate that both synemin isoforms are incorporated with desmin to form heteropolymeric IFs. Furthermore synemin and desmin are found aggregated together in certain pathological situations.
Collapse
Affiliation(s)
- M Titeux
- Biologie Moléculaire de la Différenciation, Université Denis-Diderot-Paris 7, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Congenital myopathies and congenital myopathic dystrophies are distinct groups of inherited diseases of muscle, genetically heterogeneous, that manifest in early life or infancy. Congenital myopathic dystrophy is characterized by a dystrophic pattern, whereas no necrotic or degenerative changes are present in congenital myopathies. Much progress has been made in recent years in clarifying the classification of the congenital myopathies. This is a clinically and genetically heterogeneous group of conditions originally classified according to unique morphological changes seen in muscle. Not unlike the later-onset muscular dystrophies, the discovery of the genetic aetiology of many of the congenital myopathies has led to a revamping of how these conditions can now be diagnosed and this should enable physicians to give a more accurate prognosis to patients and their families. New mutations in the ryanodine receptor, slow tropomyosin, troponin T1, actin, and nebulin genes have been described in the last 2 years. Clinical and genetic guidelines for conditions like nemaline rod myopathy and central core disease have been suggested. The notion of minus and surplus protein myopathies has been developed. Several groups of congenital myopathic dystrophy have been identified. In the first category, without intellectual impairment or major structural brain abnormalities, half of the cases are merosin deficient due to mutations of the laminin alpha 2 chain gene. If generally the muscular phenotype is severe, mild allelic variants have been reported with early onset dystrophies and partial merosin deficiency. Among other pure congenital myopathic dystrophies unlinked to the laminin alpha 2 gene, one form has been assigned to chromosome 1q42. In the group of congenital myopathic dystrophies associated with mental retardation and structural brain abnormalities, two main entities are genetically characterized: (1) Fukuyama congenital myopathic dystrophy, affecting the Japanese population, is due to fukutin gene mutations, and (2) the muscle eye brain syndrome assigned to chromosome 1p32-34. In several cases, the gene localization remains unknown.
Collapse
Affiliation(s)
- N Tubridy
- Fédération de Neurologie, Institute of Myology and Inserm, La Pitié Salpêtrière, Paris, France
| | | | | |
Collapse
|